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ABSTRACT

Reconstructing the intricate local morphology of neurons as well as their long-
range projecting axons can address many connectivity related questions in neu-
roscience. While whole-brain imaging at single neuron resolution has recently
become available with advances in light microscopy, segmenting multiple entan-
gled neuronal arbors remains a challenging instance segmentation problem. Split
and merge mistakes in automated tracings of neuronal branches can produce qual-
itatively different results and represent a bottleneck of reconstruction pipelines.
Here, by extending the notion of simple points from digital topology to connected
sets of voxels (i.e. supervoxels), we develop a topology-aware neural network
based segmentation method with minimal overhead. We demonstrate the merit of
our approach on a newly established public dataset that contains 3-d images of the
mouse brain where multiple fluorescing neurons are visible as well as the DRIVE
2-d retinal fundus images benchmark.

1 INTRODUCTION

High-throughput reconstruction of neurons is a challenging 3-d instance segmentation problem and
represents the bottleneck of many data-driven neuroscience studies (Winnubst et al., 2019; Gouwens
et al., 2020). In recent years, deep learning-based methods have become the leading framework for
segmenting individual neurons which is the first step towards reconstructing neural circuits (Turaga
et al., 2010; Januszewski et al., 2018; Lee et al., 2019). While these studies and others have sig-
nificantly improved the quality, automated segmentations of neurons from large 3-d volumes still
contain many topological mistakes (i.e. splits and merges) and require extensive human proofread-
ing. This can be attributed to two basic observations: (i) neuronal branches can be as thin as the size
of a single voxel, (ii) branches often appear to touch or even overlap due to the imaging resolution
and artifacts. Consequently, seemingly innocuous mistakes at the single voxel level can produce
catastrophically incorrect segmentations.

A natural solution to these problems is to take the topology of the underlying objects into account
during the training process. In digital topology, a simple voxel of a binary 3-d image is defined
as a foreground voxel whose deletion does not change the topology of the image (Kong & Rosen-
feld, 1989). (i.e., does not cause splits/merges, create/delete loops, holes, objects) Accuracy in
segmenting simple voxels is, therefore, inconsequential from the perspective of topological correct-
ness. An efficient method for identifying such voxels (Bertrand & Malandain, 1994) was utilized in
warping the reference segmentation to flip noisy labels at object boundaries in electron microscopy
images (Jain et al., 2010). This characterization was also used to place more emphasis on non-simple
voxels to segment neurons in light microscopy images (Gornet et al., 2019).

However, multiple connected voxels are involved in most topological mistakes, which is ignored
in the voxel-based perspective. Therefore, we first pursue extending the theory of simple voxel
characterization to supervoxels (i.e., connected components). We then use this theory to propose
efficient methods to characterize the topological role of supervoxels in biomedical instance seg-
mentation problems. We propose a simple, differentiable cost function based on this supervoxel
characterization to enable training of neural networks to minimize split/merge mistakes efficiently.
Finally, we test our approach on 3-d images of the mouse brain that label multiple neurons, obtained
by lightsheet microscopy as well as 2-d fundus images of the human retina Staal et al. (2004), to
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demonstrate its merit in decreasing topological mistakes with minimal overhead during training of
the neural network.

2 RELATED WORKS

Accurate segmentation of fine-scale structures, e.g., neurons, vessel, and roads from satellite images
is a challenging problem that has been intensely studied. There are numerous methods that aim
to accurately reconstruct an object’s topology by either incorporating topology-inspired loss func-
tions during training or learning better feature representations (see Hu et al. (2023); Mosinska et al.
(2018); Reininghaus et al. (2014); Sheridan et al. (2023); Wu et al. (2017). In addition, there have
also been several works that utilize homotopy warping to emphasize mistakes at non-simple pixels
as opposed to noncritical boundary differences (Hu, 2022; Jain et al., 2010).

Topology-inspired loss functions identify topologically critical locations where the neural network is
error-prone, then enforce improvement via gradient updates. Turaga et al. (2009) developed MALIS
which aims to improve the network’s output at maximin edges. Each gradient update involves an
expensive maximin search in a restricted window to find the voxels that are most prone to introducing
topological mistakes in order to learn from those examples (Funke et al., 2018; Turaga et al., 2009).
Gornet et al. (2019) leveraged digital topology to place higher penalties on incorrectly predictions
at non-simple voxels. Shit et al. (2021) utilized morphological skeletons to compute a connectivity-
aware loss function based on the Dice coefficient.

Clough et al. (2019) utilized Betti numbers of the ground truth as a topological prior, then computed
gradients that increase or decrease the persistence of topological features in the prediction. Hu et al.
(2019) penalized differences between the persistence diagrams of the prediction and ground truth.
This involves an expensive search to find an optimal correspondence between persist features. In
a more recent work, Hu et al. (2021) used discrete Morse theory to detect topologically critical
structures, then used a persistence-based pruning scheme to filter them.

3 METHOD

Let G = (V,E) be an undirected graph with the vertex set V = {1, . . . , n}. We assume that G is a
graphical representation of an image where the vertices represent voxels and edges are defined with
respect to a k-connectivity1 constraint. A ground truth segmentation y = (y1, . . . , yn) is a labeling
of the vertices such that yi ∈ {0, 1, . . . ,m} denotes the label of node i ∈ V . Each segment has a
label in {1, . . . ,m} and the background is marked with 0.

Let F (y) be the foreground of the vertex labeling such that F (y) = {i ∈ V : yi ̸= 0}. Note that
the foreground may include multiple, potentially touching objects. Let S(y) ⊆ P(V ) be the set
of connected components induced by the labeling y, where P(V ) denotes the power set of V . Let
ŷ = (ŷ1, . . . , ŷn) be a prediction of the ground truth such that ŷi ∈ {0, 1, . . . , ℓ}, where ℓ is the
number of objects in the predicted segmentation2.

In a labeled graph, the connected components are determined by the equivalence relation that i ∼ j
if and only if yi = yj with i, j ∈ F (y) and there exists a path from i to j that is entirely contained
within the same segment. An equivalence relation induces a partition over a set into equivalence
classes which correspond to the connected components in this setting.

We propose a novel topological loss function to train a neural network with the goal of avoiding
false merges between, and false splits of, the foreground objects.

Definition 1. Let L : Rn × Rn → R be the topological loss function given by

L(y, ŷ) = L0(y, ŷ) + α
∑

C∈N (ŷ)

L0(yC , ŷC) + β
∑

C∈P(ŷ)

L0(yC , ŷC)

such that α, β ∈ R+ and L0 is an arbitrary loss function.

1We assume that k ∈ {4, 8} and k ∈ {6, 18, 26} for 2D and 3D images, respectively. See Kong &
Rosenfeld (1989) for basic definitions of connectivity between voxels in an image.

2We assume that the true number of objects m is unknown at the time of inference.
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We build upon a traditional loss function L0 (e.g. cross-entropy or Dice coefficient) by adding
additional terms that penalize sets of connected voxels (i.e. supervoxels) that cause topological mis-
takes. These supervoxels are formed by computing connected components of the false negative and
false positive masks, respectively (i.e., by considering foregrounds of y, ŷ). The sets N (ŷ9) and
P(ŷ+) contain components whose removal or addition, respectively, changes the number of con-
nected components. A component that changes the underlying topology in this manner is referred
to as a critical component. The objective this section is to rigorously define these sets, then present
an algorithm that detects such components.

3.1 CRITICAL COMPONENTS

Critical components are an extension of the notion of non-simple voxels from digital topology to
connected sets (i.e. supervoxels). Intuitively, a voxel is called non-simple if its removal or addition
changes the number of connected components, holes, or cavities. Analogously, a supervoxel is
called critical if its removal or addition changes the topology. We use the terminology critical as
opposed to non-simple since the definition is not a direct generalization for computational reasons.
The advantage of limiting the definition is that it enables our supervoxel-based loss function to be
computed in linear time, which is a significant improvement over related topological loss functions.

3.1.1 FALSE SPLITS

Let ŷ9 be the false negative mask determined by comparing the prediction to the ground truth. Let
Sy(ŷ9) be the set of connected components of ŷ9 with respect to y3. In this definition, the connected
components are determined by the equivalence relation that i ∼ j if and only if (ŷ9)i = (ŷ9)j and
yi = yj with i, j ∈ F (ŷ9) in addition to the existence of a path from i to j contained within the
same segments. The second condition guarantees that each component in the false negative mask
corresponds to only one component in the ground truth.

Negatively critical components are determined by comparing the number of connected components
in y and y ⊖ C. The notation y ⊖ C denotes “removing” a component from the ground truth. The
result of this operation is a vertex labeling where the label of node i ∈ V is given by

(y ⊖ C)i =

{
0, if i ∈ C

yi, otherwise
(1)

The removal of a component only impacts a specific region within the graph; the component itself
and the nodes connected to its boundary. Thus, for topological characterization, it is sufficient to
check whether the removal changes the number of connected components in that region (Bertrand &
Malandain, 1994). Let N(C) ⊆ V be the neighborhood surrounding a component C ∈ S(y) such
that N(C) = {i ∈ V : {i, j} ∈ E and j ∈ C}. Let y∩N(C) represent the labeling y within N(C).

Figure 1: Left: patches of ground truth and predicted segmentations. Third: false negative mask
with component C highlighted. Right: C is negatively critical since its removal changes topology.

Definition 2. A component C ∈ Sy(ŷ9) is said to be negatively critical if |S
(
y∩N(C)

)
| ≠ |S

(
(y⊖

C) ∩N(C)
)
|.

Negatively critical components change the local topology by either deleting an entire component
or altering the connectivity between vertices within N(C). In the latter case, the removal of such

3Note that Sy(y) = S(y) in the special case when the argument and subscript are identical.
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Figure 2: Visualization of Corollary 1.

components locally disconnects some i, j ∈ N(C) so that it is impossible to find a path (in this
neighborhood) that does not pass through C. Based on this intuition, we can establish an equivalent
definition of negatively critical components as components that (1) are identical to a component in
the ground truth, or (2) locally disconnect at least one pair of nodes in N(C) after being removed.

Theorem 1. A component C ∈ Sy(ŷ9) is negatively critical if and only if there exists an A ∈
S(y ∩N(C)) with A ⊇ C such that either: (1) A = C or (2) ∃ v0, vk ∈ A \C such that there does
not exist a path (v0, . . . , vk) ⊆ N(C) with vi /∈ C for i = 1, . . . , k − 1. (Proof is in Append A.1)

A computational challenge in both definitions is the need to recompute connected components within
the neighborhood N(C) for every C ∈ Sy(ŷ9). In the worst case, the computational complexity is
O(n2) with respect to the number of voxels in the image. However, we can develop a more efficient
algorithm with O(n) complexity by leveraging two useful facts: (1) neurons are tree-structured
objects, implying that, (2) negatively critical components change both the local and global topology.

Recall that a negatively critical component C ∈ Sy(ŷ9) changes the local topology of N(C) in the
sense that |S

(
y∩N(C)

)
| ≠ |S

(
(y⊖C)∩N(C)

)
|. Analogously, C also changes the global topology

if |S(y)| ≠ |S(y ⊖ C)|. In this special case, we can establish an equivalent definition, similar to
Theorem 1, that utilizes S(y) and S(y ⊖ C) in place of S(y ∩N(C)) and S((y ⊖ C) ∩N(C)).

However, this characterization can be streamlined by incorporating S(y ⊖ ŷ9) instead of S(y ⊖C),
where y ⊖ ŷ9 denotes the ground truth after removing every component in the false negative mask:

(y ⊖ ŷ9)i =

{
0, if (ŷ9)i = 1

yi, otherwise

Corollary 1. A component C ∈ Sy(ŷ9) is negatively critical with |S(y)| ≠ |S(y ⊖ C)| if and only
if there exists an A ∈ S(y) with A ⊇ C such that either: (1) A = C or (2) ∃B1, B2 ∈ S(y ⊖ ŷ9)
with B1, B2 ⊂ A such that B1 ∪ C ∪B2 is connected. (Proof is in Append A.2)

3.1.2 FALSE MERGES

Let ŷ+ be the false positive mask determined by comparing the prediction to the ground truth. A
component in the false positive mask is positively critical if its addition to the ground truth changes
the topology. Equivalently, removing such component from the prediction changes the topology in
this image. For computational reasons, we use this definition because it streamlines adapting results
from the previous section.

Definition 3. A component C ∈ Sy(ŷ+) is said to be positively critical if |S(ŷ ∩N(C))| ≠ |S(ŷ⊖
C ∩N(C))|.
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Figure 3: Left: patches of ground truth and predicted segmentations. Third image: false positive
mask with a single component C highlighted. Right: C is positively critical since its removal
changes the number of connected components in the prediction.

Positively critical components change the local topology by either (1) creating a component or (2)
altering the connectivity between distinct locally connected components in the ground truth. For the
latter case, these components connect certain pairs of nodes that belong to locally distinct compo-
nents. Equivalently, the removal of these components from the prediction causes certain pairs of
nodes to become locally disconnected. Next, we present an equivalent definition that characterizes
positively critical components as satisfying one of these conditions.
Theorem 2. A component C ∈ Sy(ŷ+) is positively critical if and only if there exists an A ∈ S(ŷ)
with A ⊇ C such that either: (1) A = C or (2) ∃ v0, vk ∈ A \ C such that there does not exist a
path (v0, . . . , vk) ⊆ N(C) with vi /∈ C for i = 1, . . . , k − 1. (Proof is in Appendix A.1)

Similarly, positively critical components present the same computational challenge of needing to
recompute connected components for every C ∈ Sy(ŷ+). However, we can avoid this expensive
calculation by utilizing a corollary of Theorem 2 that establishes an equivalent definition of posi-
tively critical components that also change the global topology. This characterization uses S(ŷ) and
S(ŷ⊖ ŷ+) (instead of S(y ∩N(C)) and S(ŷ⊖C ∩N(C))), where ŷ⊖ ŷ+ denotes removing every
component in the false positive mask from the prediction via

(ŷ ⊖ ŷ+)i =

{
0, if (ŷ+)i = 1

ŷi, otherwise

Corollary 2. A component C ∈ Sy(ŷ+) is positively critical with |S(ŷ)| ̸= |S(ŷ ⊖ C)| if and only
if there exists an A ∈ S(ŷ) with A ⊇ C such that either: (1) A = C or (2) ∃B1, B2 ∈ S(ŷ ⊖ ŷ+)
with B1, B2 ⊂ A such that B1 ∪ C ∪B2 is connected. (Proof is in Appendix A.2)

3.2 COMPUTING CRITICAL COMPONENTS

Although topological loss functions improve the segmentation quality, a major drawback is that they
are computationally expensive. A key advantage of our proposed method is that the runtime isO(n)
with respect to the number of voxels. In contrast, the runtime of related methods is typically either
O(n log n) or O(n2) (e.g. Jain et al. (2010); Turaga et al. (2009); Gornet et al. (2019); Hu et al.
(2021); Shit et al. (2021); Hu et al. (2023)).

In the case of identifying non-simple voxels, Bertrand & Malandain (1994) prove that it is sufficient
to examine the topology of the neighborhood. Similarly, we can determine whether a component
is critical by checking the topology of nodes connected to the boundary. For the remainder of
this section, we focus the discussion on computing negatively critical components since the same
algorithm can be used to compute positively critical components.

Let D(C) = N(C) \C be the set of nodes connected to the boundary of a component C ∈ Sy(ŷ9).
Assuming that a negatively critical component also changes the global topology, Corollary 1 can be
used to establish analogous conditions on the set D(C) that are useful for computation.
Corollary 3. A component C ∈ Sy(ŷ9) is negatively critical with |S(y)| ≠ |S(y ⊖ C)| if and only
if ∃A ∈ S(y) with A ⊇ C such that either: (1) ∄ i ∈ D(C) with i ∈ A or (2) ∃B1, B2 ∈ S(y⊖ ŷ9)
with B1, B2 ⊂ A such that i ∈ B1 and j ∈ B2 for some i, j ∈ D(C). (Proof is in Appendix A.3)

Using Corollary 3 to compute critical components involves: (i) computing sets of connected com-
ponents and (ii) checking Conditions 1 and 2. The key to performing this computation in linear time
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is to first precompute S(y) and S(y ⊖ ŷ9), then compute Sy(ŷ9) with a breadth-first search (BFS)
while simultaneously checking whether Conditions 1 or 2 hold. Intuitively, the crux of this last step
is to leverage that a BFS terminates once the search reaches the boundary of a connected component.
Since the set D(C) is connected to the boundary, each node in this set will be visited.

Let r ∈ F (ŷ9) be the root of the BFS. Given a node j ∈ D(C), Conditions 1 and 2 can be checked
with a hash table called collisions that stores the connected component label of j in S(y) and S(y⊖
ŷ9) as a key-value pair, respectively. If we never visit a node j ∈ D(C) with the same ground truth
label as the root, then this label is not a key in collisions and so the component satisfies Condition 1
(see Line 19 in Algorithm 2).

Now consider the case when we do visit a node j ∈ D(C) with the same ground truth label as the
root. A new entry is created in the hash table if this label is not a key (see Line 15 in Algorithm 2).
Otherwise, the value corresponding to this key is compared to the label of j in S(y ⊖ ŷ9). If these
labels differ, then the connected component satisfies Condition 2. We provide pseudo code for this
method in Algorithms 1 and 2.

Theorem 3. The computational complexity of computing critical components that satisfy either
|S(y)| ̸= |S(y ⊖ C)| or |S(ŷ)| ̸= |S(ŷ ⊖ C)| is O(n) with respect to the number of voxels in the
image. (Proof is in Appendix A.3)

We emphasize the the statements and algorithms surrounding Theorem 3 are restricted to tree-
structured objects (i.e. critical components that satisfy |S(y)| ≠ |S(y⊖C)| or |S(ŷ)| ≠ |S(ŷ⊖C)|).
Indeed, a similar algorithm based on the main definitions and deductions can be implemented in a
straightforward way, except that this algorithm will be super-linear in complexity.

Algorithm 1 Detection of Critical Components
1: procedure DETECT CRITICALS(y, ŷ):
2: ŷ9 ← compute false negatives
3: S(y)← compute connected components
4: S(y ⊖ ŷ9)← compute connected components
5: N (ŷ) = get critical(y, ŷ9, S(y), S(y ⊖ ŷ9))
6:
7: ŷ+ ← compute false positives
8: S(ŷ)← compute connected components
9: S(ŷ ⊖ ŷ+)← compute connected components

10: P(ŷ) = get critical(ŷ, ŷ+, S(ŷ), S(ŷ ⊖ ŷ+))
11: return N (ŷ), P(ŷ)
12: end procedure
13:
14: # Note that ŷ× is a placeholder for ŷ9 and ŷ+
15: procedure GET CRITICAL(y, ŷ×, S(y), S(y ⊖ ŷ×))
16: F (ŷ×)← compute foreground
17: X (ŷ×) = set()
18: while |F (ŷ×)| > 0 :
19: r = sample(F (ŷ×))
20: C, is critical = get component(y, ŷ×, S(y), S(y ⊖ ŷ×), r)
21: F (ŷ×).remove(C)
22: if is critical :
23: X (ŷ×).add(C)
24: return X (ŷ×)
25: end procedure

3.3 PENALIZING CRITICAL TOPOLOGICAL MISTAKES

Our topological loss function builds upon classical, voxel-based loss functions by adding terms that
penalize critical components. The paradigm shift here is to evaluate each mistake at a “structure
level” that transcends rectilinear geometry as opposed to the voxel level. In standard loss functions,
mistakes are detected at the voxel-level by directly comparing the prediction at each voxel against
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Algorithm 2 Check if Component is Critical
1: procedure GET COMPONENT(y, ŷ×, S(y), S(y ⊖ ŷ×), r ):
2: C = set()
3: collisions = dict()
4: is critical = False
5: queue = [r]
6: while |queue| > 0 :
7: i = queue.pop()
8: C.add(i)
9: for j in N(i):

10: if yj == yr:
11: if (ŷ×)j == 1:
12: queue.push(j)
13: else:
14: ℓj = get label(S(y), j)
15: if ℓj not in collisions.keys():
16: collisions[ℓj ] = get label(S(y ⊖ ŷ×), j)
17: elif collisions[ℓj ] ! = get label(S(y ⊖ ŷ×), j):
18: is critical = True
19: if yr not in collisions.keys() :
20: is critical = True
21: return C, is critical
22: end procedure

the ground truth. Instead, we consider the context of each mistake by determining whether a given
supervoxel causes a critical topological mistake.

One advantage of our topological loss function is that it is architecture agnostic and can be easily
integrated into existing neural network architectures. We first train a baseline model with a standard
loss function, then fine-tune with the topological loss function once the performance of the baseline
model starts to plateau. This could be achieved gradually by integrating the topological loss function
into the model with a continuation scheme over n epochs,

L(y, ŷ, i) = (1− ti)L0(y, ŷ) + α ti L−(y, ŷ) + β ti L+(y, ŷ)

where ti = min(i/n, 1) and i is the current epoch.

The objective of hyperparameter optimization is to minimize the number of critical mistakes. The
hyperparameters α, β ∈ R are scaling factors that control how much weight is placed on splits
versus merges. When it is preferable to avoid false merges (e.g., when they are more difficult to
detect and time consuming to fix), one can prioritize learning to avoid this type of mistake by setting
β > α so that merges receive higher penalties.

Our topological loss function adds little computational overhead since the only additional calculation
is computing the critical components. In Theorem 3, we prove that Algorithms 1 and 2 can be
used to compute critical components in linear time. This result can then be used to show that the
computational complexity of computing L is also O(n).

4 EXPERIMENTS

We evaluate our method on two biomedical image datasets: EXASPIM4 and DRIVE5. The first
consists of 3-d images of multiple neurons that were generated with Expansion-Assisted light Se-
lective Plane Illumination Microscope (ExA-SPIM) (Glaser et al., 2023). This dataset consists of
37 volumetric images whose sizes range from 256x256x256 to 1024x1024x1024 and voxel size is
∼1 µm3. DRIVE is a retinal vessel segmentation dataset consisting of 20 images with a size of
584x565 (Staal et al., 2004).

4Downloaded from the AWS bucket s3://aind-msma-morphology-data/EXASPIM
5Downloaded from https://drive.grand-challenge.org
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Figure 4: Objective function, each black dot is a trial.

Hyperparameter optimization. An
important component of our proposed
method are the hyperparameters α and β
that scale how much weight is placed on
critical mistakes. In general, we have ob-
served that α, β > 0 improves topological
accuracy. In order to gain insight on how
these parameters affect the performance
of a model, we performed hyperparame-
ter optimization (Akiba et al., 2019). In
this experiment, we trained a U-Net on the
EXASPIM dataset and used edge accuracy
as the objective function. We found that
the performance changes less than 10%
across changes of a few orders of magni-
tude around the optimal values of the hy-
perparameters as shown in Figure 4. Thus, these experiments suggest that careful hyperparameter
tuning is not necessary in practice. In fact, the results obtained by our method in Table 2 were
achieved without using hyperparameter optimization.

Performance metrics. In neuron segmentation, the ultimate goal is to reconstruct the network topol-
ogy of neural circuits. To this end, each prediction is skeletonized and so we use four skeleton-based
metrics (Appendix C.2) that reflect to what extent the topology of a neuron is correctly reconstructed.
For the retinal vessel segmentation dataset, we use four pixel-based evaluation metrics: pixel-wise
accuracy, Dice coefficient, Adapted Rand Index (ARI), and Variation of Information (VOI).

Baselines. For neuron segmentation, we use a U-Net as the backbone and compare our method to
two types of baselines: (1) Standard losses: Cross Entropy and Dice Coefficient and (2) topology
aware losses: clDice (Shit et al., 2021), Simple Voxel (Gornet et al., 2019) and MALIS (Turaga
et al., 2009). For the vessel segmentation task, we compare our method to Dive (Fakhry et al.,
2016), U-Net (Ronneberger et al., 2015), Mosin. (Mosinska et al., 2018), TopoLoss (Hu et al.,
2019), and DMT (Hu et al., 2023).

Evaluation. EXASPIM: there are 33 and 4 images in the train and test set. All methods were
trained for 1500 epochs. In our method, the hyperparameters α and β were tuned via Bayesian
optimization (Akiba et al., 2019) prior to training. DRIVE: α = 5 was chosen manually. (β – merge
mistakes – does not exist in the case of binary segmentation.) We used 3-fold cross validation and
report the mean performance on the validation set. See Appendix for further details.

Quantitative and qualitative results. Table 1 shows the quantitative results for the different models
on the EXASPIM dataset. Table 3 (Appendix) shows the results on each individual block from the
test set. Note that bold numbers highlight the best value across all methods. Table 2 shows the
quantitative results for the DRIVE dataset. Our proposed method significantly outperforms the
other methods in terms of topological accuracy. Figure 5 shows qualitative results from models
trained with our proposed loss function in which L0, L9, and L+ are defined using cross entropy
loss. Although the only difference between these two models is the addition of the topological terms
L9 and L+, there is a clear difference in topological accuracy.

Table 1: Quantitative results for different models on the EXASPIM dataset
Method # Splits ↓ # Merges ↓ % Omit ↓ % Merged ↓ % Accuracy ↑
Cross Entropy 39.50±22.37 4.00±3.16 9.14±0.0830 13.18±9.63 74.68±16.40
Dice 38.25±37.12 4.25±5.68 16.83±14.95 14.10±14.49 69.08±26.77
clDice 42.25±57.04 2.5±2.06 6.49±6.08 6.13±3.61 89.91±7.82
Simple Voxel 40.00±39.04 5.00±5.15 8.88±5.10 1.83±1.97 89.30±7.06
MALIS 30.25±30.55 3.00±2.55 7.48±0.0520 5.08±0.0313 87.48±7.84
Ours 16.75±19.45 3.50±3.57 4.48±2.75 4.20±4.24 91.33±6.94
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Table 2: Quantitative results for different models on the DRIVE dataset
Method Accuracy ↑ Dice ↑ ARI ↑ VOI ↓ Betti Error ↓
DIVE 0.9549±0.0023 0.7543±0.0008 0.8407±0.0257 1.936±0.127 3.276±0.642
U-Net 0.9452±0.0058 0.7491±0.0027 0.8343±0.0413 1.975±0.046 3.643±0.536
Mosin. 0.9543±0.0047 0.7218±0.0013 0.8870±0.0386 1.167±0.026 2.784±0.293
TopoLoss 0.9521±0.0042 0.7621±0.0036 0.9024±0.0113 1.083±0.006 1.076±0.265
DMT 0.9495±0.0036 0.7733±0.0039 0.9024±0.0021 0.876±0.038 0.873±0.402
Ours 0.9533±0.0015 0.8092±0.0118 0.9433±0.0017 0.479±0.014 0.944±0.269

Figure 5: Qualitative results of the proposed method on the EXASPIM and DRIVE dataset. Baseline
is a U-Net trained with cross entropy and Proposed is a U-Net trained with our supervoxel loss.

5 DISCUSSION

Mistakes that change the connectivity of the underlying objects (i.e., topological mistakes) are a
key problem in instance segmentation. They produce qualitatively different results despite a few
pixels/voxels being be incorrect, making it a challenge to avoid these mistakes with voxel-level ob-
jectives. Existing work on topology-aware segmentation typically requires costly steps to guide the
segmentation towards topologically correct decisions, among other problems. Here, we developed
a theoretical framework that generalizes the concept of simple voxel to connected components of
arbitrary shape, and proposed a novel cost function with minimal computational overhead based on
these results. We demonstrated our approach on two datasets with different resolution, dimensional-
ity (2d vs 3d), and characteristics of the overall image content. Across multiple metrics, our method
achieved state-of-the-art results.

It is now possible to image not only a local patch of neuronal morphology, but the whole arbor,
which can reach multiple, distant brain regions. The favorable scalability of our approach will
enable efficient analysis of such large datasets.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
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