
ShareLoRA: Parameter Efficient and Robust Large Language Model
Fine-tuning via Shared Low-Rank Adaptation

Anonymous EMNLP submission

Abstract

This study introduces an approach to optimize001
Parameter Efficient Fine Tuning (PEFT) for002
Pretrained Language Models (PLMs) by im-003
plementing a Shared Low Rank Adaptation004
(ShareLoRA). By strategically deploying005
ShareLoRA across different layers and adapt-006
ing it for the Query, Key, and Value compo-007
nents of self-attention layers, we achieve a sub-008
stantial reduction in the number of training009
parameters and memory usage. Importantly,010
ShareLoRA not only maintains model perfor-011
mance but also exhibits robustness in both clas-012
sification and generation tasks across a vari-013
ety of models, including RoBERTa, GPT-2,014
LLaMA and LLaMA2. It demonstrates su-015
perior transfer learning capabilities compared016
to standard LoRA applications and mitigates017
overfitting by sharing weights across layers.018
Our findings affirm that ShareLoRA effectively019
boosts parameter efficiency while ensuring scal-020
able and high-quality performance across dif-021
ferent language model architectures.022

1 Introduction023

As Pretrained Language Models (PLMs) have024

gained prominence (Devlin et al., 2019; Liu et al.,025

2019; Radford et al., 2019; Raffel et al., 2020),026

researchers are increasingly focused on optimiz-027

ing the utilization of these models’ pre-trained028

weights. Traditional fine-tuning, which involves029

adjusting all parameters of a PLM for a specific030

dataset or task, is often resource-intensive and time-031

consuming, especially given the massive scale of032

large language models (LLMs) (Brown et al., 2020;033

Kaplan et al., 2020; Hoffmann et al., 2022; Chowd-034

hery et al., 2022; Zhang et al., 2022; Touvron et al.,035

2023a).036

Parameter-Efficient Fine-Tuning (PEFT) has037

proven to be an effective strategy for mitigating038

the challenges associated with extensive parame-039

ter adjustments. By modifying only a select sub-040

set of a model’s parameters, PEFT enables cost-041

effective adaptation to domain-specific tasks while 042

preserving performance levels comparable to those 043

achieved with full fine-tuning (Houlsby et al., 2019; 044

Li and Liang, 2021a; Lin et al., 2020; Lei et al., 045

2023; He et al., 2022, 2023; Mahabadi et al., 2021). 046

Techniques like Low-Rank Adaptation (LoRA) (Hu 047

et al., 2021) stand out within PEFT by demonstrat- 048

ing that models fine-tuned with a reduced param- 049

eter set can match the performance of those fine- 050

tuned with full parameters, effectively bridging the 051

gap in efficiency and efficacy. 052

Given the impressive performance of LoRA, nu- 053

merous subsequent studies have aimed to enhance 054

its efficiency, mainly by reducing the number of 055

trainable parameters to minimize the memory foot- 056

print during the fine-tuning process. However, sig- 057

nificantly lowering the trainable parameters can 058

lead to slow convergence, while insufficient reduc- 059

tions may encourage the model to easily overfit. 060

Therefore, we pose the question: Is there a PEFT 061

approach that effectively balances trainable pa- 062

rameter selection, minimizes the memory footprint 063

required for model parameters, and maintains the 064

model’s adaptability? 065

To address this issue, we introduce ShareLoRA, 066

an efficient and straightforward PEFT method that 067

effectively balances trainable parameter selection 068

while optimizing the model’s adaptability and min- 069

imizing memory requirements. Our approach lever- 070

ages the observation that low-rank weight matrices 071

A and B do not need to be uniquely configured 072

across layers to achieve optimal PEFT performance 073

in PLMs. Instead, we propose sharing either ma- 074

trix A or B across all layers while maintaining its 075

counterpart as distinct in each layer. This strategy 076

meets several key objectives: 1) Sharing a low-rank 077

matrix across layers significantly reduces the num- 078

ber of trainable parameters and cuts down on the 079

memory footprint needed for model finetuning; 2) 080

Keeping the shared matrix trainable preserves the 081

model’s adaptability; 3) The updated weights for 082

1

each component that LoRA applies remain unique083

yet share a common base.084

In our experiments, we demonstrate the benefits of085

ShareLoRA under three configurations: 1) sharing086

across all layers, and 2) sharing the Query, Key,087

and Value components of the self-attention lay-088

ers in PLMs. 3) sharing the down-projection, up-089

projection, or both in LoRA. The results show that090

ShareLoRA not only preserves model performance091

but also shows robustness in a variety of tasks, both092

in classification and generation, across multiple093

models including RoBERTa, GPT-2, and LLaMA.094

This method exhibits enhanced transfer learning095

capabilities compared to traditional LoRA applica-096

tions and effectively prevents overfitting by shar-097

ing weights across layers. Our findings prove that098

ShareLoRA significantly improves parameter effi-099

ciency while maintaining scalable and high-quality100

performance across diverse language model archi-101

tectures.102

2 Related Work103

Parameter Efficient Fine-tuning. PLMs are104

trained on large datasets to develop broad linguis-105

tic representations (Devlin et al., 2019; Liu et al.,106

2019; Raffel et al., 2020), but often fall short in107

specialized tasks due to a lack of domain knowl-108

edge. Traditional approaches involve fully fine-109

tuning PLMs to enhance domain-specific perfor-110

mance (Xu and Wang, 2023; Xie et al., 2020; Dabre111

et al., 2019). However, with the increasing size112

of PLMs (Workshop et al., 2023; Touvron et al.,113

2023a,b; Zhang et al., 2022), this method becomes114

too resource-heavy. As an alternative, Parameter115

Efficient Fine-tuning (PEFT) provides an efficient116

way to maintain performance with less computa-117

tional expense.118

PEFT methods have become crucial for adapt-119

ing large-scale pre-trained models to specific tasks120

without extensively overhauling their parameters.121

This approach conserves computational resources122

and boosts efficiency. For example, Prefix tun-123

ing (Li and Liang, 2021a) adds parameters to the124

hidden states across layers, subtly influencing the125

model’s behavior without changing its underlying126

architecture, Prompt tuning (Lester et al., 2021)127

alters prompts and updates only the associated pa-128

rameters, focusing on specific areas of model per-129

formance, and BitFit (Zaken et al., 2022) updates130

only the biases within the model, resulting in mini-131

mal yet effective modifications.132

One notable PEFT technique is Low-Rank Adap- 133

tation (LoRA) (Hu et al., 2021), which achieves 134

efficient fine-tuning by incorporating a low-rank 135

matrix adaptation mechanism alongside the exist- 136

ing weights of linear layers, thereby reducing mem- 137

ory overhead while preserving the effectiveness of 138

the fine-tuning process. The modified output Y is 139

computed as follows: 140

Y ← XW + αXAB (1) 141

where W represents the original pre-trained 142

weights of dimensions din×dout, with din being the 143

dimension of the input to the layer, and dout being 144

the dimension of the output. The input tensor X 145

has dimensions b× s× din and the output tensor Y 146

has dimensions b× s× dout, where b and s denote 147

the batch size and sequence length, respectively. 148

The adaptation is facilitated by matrices A and 149

B, where A ∈ Rdin×r projects the input dimension 150

down to a lower rank r, and B ∈ Rr×dout projects 151

it back up, effectively creating a bottleneck that 152

captures the most significant transformations. The 153

hyperparameter α, typically set inversely propor- 154

tional to the rank r, scales the impact of this low- 155

rank update on the output. 156

Recent enhancements to LoRA have signifi- 157

cantly broadened its capabilities. For instance, 158

QLoRA (Dettmers et al., 2023) optimizes LoRA 159

for the fine-tuning of quantized models, thereby 160

increasing efficiency. ReLoRA (Lialin et al., 161

2023) incorporates a warm-up strategy during pre- 162

training to boost adaptability. LoraHub (Huang 163

et al., 2024) streamlines the process by automating 164

the creation of custom LoRA modules for specific 165

tasks. Additionally, GLoRA (Chavan et al., 2023) 166

introduces a prompt module that fine-tunes weights 167

and biases, enhancing performance across a variety 168

of applications. 169

Despite these advancements, LoRA still faces 170

significant memory overhead due to the high acti- 171

vation memory usage in LoRA layers during the 172

fine-tuning phase. To address this issue, LoRA- 173

FA (Zhang et al., 2023) strategically freezes the 174

low-rank A matrix and updates only the B ma- 175

trix. This approach significantly reduces the num- 176

ber of trainable parameters and activation mem- 177

ory, thus enhancing the efficiency of fine-tuning 178

large language models without substantially im- 179

pacting performance. However, LoRA-FA does 180

not adequately decrease the total number of param- 181

eters that need to be stored, presenting a consid- 182

erable challenge in contexts where computational 183

2

A
Bn

Wn

A
B1

W1

A
B0

W0

ShareA

An
B

Wn

A1
B

W1

A0
B

W0

ShareB

A
B

Wn

A
B

W1

A
B

W0

ShareAB

Shared A

B
W

Shared A

B
W

Shared A

B
W

Query Key Value

Frozen

Trainable

Trainable & Sharing

Figure 1: Overview of ShareLoRA: The implementation of ShareA, ShareB, and ShareAB across all layers (left),
including ShareA applied across self-attention layers (right).

resources and storage are constrained. Addition-184

ally, by freezing the A matrix, LoRA-FA limits185

the model’s capacity to adapt and learn from new186

data during fine-tuning. This rigidity can hinder the187

model’s performance, particularly in complex or188

domain-specific tasks. Compared with LoRA-FA,189

our approach ShareLoRA offers a more dynamic190

and flexible strategy by allowing either matrix A191

or B, or both, to be shared across different lay-192

ers. This method not only preserves the model’s193

adaptability but also further reduces the memory194

requirements. We will show the details of it in the195

following paragraphs.196

3 Approach197

In this section, we provide a detailed description of198

our proposed PEFT approach ShareLoRA, as illus-199

trated in Figure1. ShareLoRA facilitates flexible200

configurations through two primary dimensions: 1)201

the choice of sharing between the matrices A, B,202

or both A and B (ShareA, ShareB, and ShareAB),203

and 2) the scope of sharing, which can be across204

different layers such as self-attention layers. This205

framework allows for a variety of combinations,206

enabling tailored adaptation of low-rank models207

to specific tasks. In the following paragraphs, we208

examine each configuration offered by ShareLoRA,209

exploring its benefits and implications in depth.210

ShareA Configuration In the ShareA configu-211

ration, the low-rank matrix A is uniformly shared212

across all layers, with each layer employing its own213

unique matrix Bi. The formula for weight adapta-214

tion in each layer i can be expanded to detail the215

influence on model transformation:216

∆Wi = αABi = α

r∑
k=1

A:,kBk,:,i (2)217

where A:,k represents the k-th column of A, and 218

Bk,:,i is the k-th row of matrix Bi. This equation 219

shows that each layer’s weight change, ∆Wi, is a 220

linear combination of the columns of A weighted 221

by the corresponding elements of Bi. This shared 222

projection-down matrix A reduces the dimensional- 223

ity uniformly across all layers, thereby minimizing 224

redundancy in learning and memory usage while 225

enabling tailored output transformations through 226

layer-specific matrices Bi. 227

ShareB Configuration In the ShareB configura- 228

tion, matrix B is uniformly shared across all layers, 229

while each layer employs its own unique matrix Ai. 230

The weight adjustment for each layer is expressed 231

as: 232

∆Wi = αAiB = α
r∑

k=1

Ai,:,kBk,: (3) 233

where Ai,:,k denotes the k-th column of matrix Ai 234

for layer i, and Bk,: represents the k-th row of the 235

shared matrix B. Here, the uniform projection-up 236

matrix B ensures consistent expansion of the trans- 237

formed data back to the output dimension across 238

all layers, while the distinct Ai matrices allow for 239

adaptation to the specific input characteristics of 240

each layer. 241

ShareAB Configuration When both matrices A 242

and B are shared across all layers, the change in 243

weights is simplified, leading to substantial param- 244

eter reduction: 245

∆W = αAB = α
r∑

k=1

A:,kBk,: (4) 246

where both A:,k and Bk,: are shared across all lay- 247

ers. This configuration significantly reduces the 248

model complexity by eliminating the need for dis- 249

tinct matrices in each layer, thus reducing memory 250

3

requirements and computational overhead. The en-251

tire model operates under a uniform transformation252

schema, which simplifies training and storage but253

requires careful calibration of the initial values and254

ongoing adjustments during fine-tuning to preserve255

model effectiveness across diverse tasks.256

Sharing Across Self-Attention Layers In the257

ShareA configuration of ShareLoRA applied to258

PLMs across all self-attention layers, the matrices259

AQ, AK , and AV are shared. These matrices are260

responsible for reducing the dimensionality of the261

inputs for Queries (Q), Keys (K), and Values (V)262

respectively, we term it as ShareAqkv in the follow-263

ing paragraphs. The process for each component264

in the i-th self-attention layer is formalized as fol-265

lows:266

Qi = XiAQBQi (5)267

Ki = XiAKBKi (6)268

Vi = XiAV BVi (7)269

Attention(Qi,Ki, Vi) = softmax
(
QiK

T
i√

dk

)
Vi,

(8)

270

where Xi denotes the input to the i-th self-attention271

layer. Each matrix AQ, AK , and AV facilitates a272

consistent reduction in input dimensions across all273

layers, which simplifies the model architecture by274

maintaining a uniform approach to processing the275

foundational aspects of self-attention. The unique276

matrices BQi , BKi , and BVi for each component277

allow for tailored transformations that meet the278

specific needs of each self-attention layer.279

4 Experiments280

In our study, we conduct a comprehensive evalua-281

tion of the downstream performance of ShareLoRA282

across several series models, including RoBERTa283

(Liu et al., 2019) and GPT-2 (Radford et al., 2019).284

We benchmark these results against other estab-285

lished approaches such as LoRA (Hu et al., 2021),286

LoRA-FA (Zhang et al., 2023), on NLU and NLG287

tasks. Additionally, we extend the application of288

ShareLoRA to large-scale model in both LLaMA289

(Touvron et al., 2023a) and LLaMA2 (Touvron290

et al., 2023b) architectures, particularly in few-shot,291

zero-shot scenarios. Furthermore, our experiments292

cover a range of model sizes, from 7 billion to 13293

billion parameters, and included both quantized294

and unquantized model variants. All tests were295

performed on the Nvidia A6000 and RTX 3090 296

GPUs. 297

4.1 Datasets 298

The experiment datasets are primarily divided into 299

three categories: Natural Language Understanding 300

(NLU), Natural Language Generation (NLG) and 301

few-shot tasks, using the same configuration and 302

datasets as LoRA (Hu et al., 2021) and (Dettmers 303

et al., 2023). 304

For NLU, we employ the GLUE benchmark (Wang 305

et al., 2019), which includes MNLI, SST-2, MRPC, 306

CoLA, QNLI, QQP, RTE, and STS-B tasks. No- 307

tably, for MRPC, RTE, and STS-B tasks, we ini- 308

tialize the LoRA modules with the trained MNLI 309

checkpoint as (Hu et al., 2021) demonstrated. For 310

NLG, we replicate experiments similar to those of 311

LoRA using the E2E challenge dataset (Novikova 312

et al., 2017), following the same experimental 313

setup. 314

Additionally, we expand our experiments to few- 315

shot and zero-shot tasks on larger models, demon- 316

strating our approach’s adaptability. Following the 317

configuration outlined in (Dettmers et al., 2023), 318

we employ Alpaca (Taori et al., 2023) for LoRA 319

and ShareLoRA, using the MMLU benchmark 320

(Hendrycks et al., 2021) for evaluation. Some 321

other benchmarks like ARC (Chollet, 2019), Hel- 322

laswrag (Zellers et al., 2019) and GSM8K (Cobbe 323

et al., 2021) are used for comparison of model 324

adaptability. All experimental setups are consistent 325

with those described studies and demonstration of 326

their repositories, based on the best of our knowl- 327

edge. 328

4.2 Baselines 329

Full Fine-Tuning (FT) is a commonly used ap- 330

proach for model adaptation. It involves initializing 331

the model with pre-trained weights and biases, and 332

then gradient update all model’s parameters. 333

LoRA (Hu et al., 2021) is a technique that intro- 334

duces a pair of rank decomposition trainable ma- 335

trices alongside existing weight matrices in neural 336

networks. 337

Bitfit is a technique studied by (Zaken et al., 2022) 338

for updating only a select small subset of biases 339

parameters, to improve performance on new tasks 340

while freezing all other pre-trained weights. 341

PreLayer (Li and Liang, 2021b) is a parameter- 342

efficient technique for customizing large language 343

models by learning specific activations after each 344

Transformer layer for designated prefix tokens, 345

4

Method # Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Rb (FT)* 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
Rb (BitFit)* 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
Rb (AdptD)* 0.3M 87.1±.0 94.2±.1 88.5±1.1 60.8±.4 93.1±.1 90.2±00 71.5±2.7 89.7±.3 84.4
Rb (AdptD)* 0.9M 87.3±.1 94.7±.3 88.4±.1 62.6±.9 93.0±.2 90.6±.0 75.9±2.2 90.3±.1 85.4
Rb (LoRA)* 0.3M 87.5±.3 95.1±.2 89.7±.7 63.4±1.2 93.3±.3 90.8±.1 86.6±.7 91.5±.2 87.2
Rb (L-FA)* 0.15M 86.8 94.8 90 63.6 92.5 90.1 67.9 89.6 84.4
Rb (ShareA) 0.16M 87.3±.2 95.0±.3 89.9±.8 63.8±1.1 92.8±.18 90.3±.05 87.1±.5 91.4±.1 87.2

Rl (FT)* 335.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
Rl (LoRA)* 0.8M 90.6±.2 96.2±.5 90.9±1.2 68.2±1.9 94.9±.3 91.6±.1 87.4±1.1 92.6±.2 89.0
Rl (L-FA)* 0.4M 90.1 96 90 68 94.4 91.1 86.1 92 88.5
Rl (ShareA) 0.4M 90.7±.1 96.1±.1 91.1±.8 67.7±1.5 95.1±.1 91.3±.1 90.3±.3 92.5±.1 89.3

Rl (LoRA)† 0.8M 90.6±.2 96.2±.5 90.2±1.0 68.2±1.9 94.8±.3 91.6±.2 85.2±1.1 92.3±.5 88.6
Rl (ShareAB)† 0.03M 90.2±.1 95.9±.3 89.7±1.0 62.3±.9 94.6±.1 89.7±.1 83.0±0.8 90.3±.2 87.0
Rl (ShareB)† 0.4M 90.4±.1 96.0±.3 90.4±.4 65.8±.8 94.6±.1 91.0±.1 84.1±1.2 91.4±.2 88.0
Rl (ShareA)† 0.4M 90.7±.1 96.1±.1 90.0±.5 67.7±1.5 95.0±.1 91.3±.1 85.9±.8 91.8±.2 88.6

Table 1: RoBERTabase and RoBERTalarge with different adaptation methods on the GLUE benchmark. ∗ indicates
numbers published in prior works. † indicates runs configured in a setup similar to (Houlsby et al., 2019) and (Hu
et al., 2021) for a fair comparison.

while the main model parameters remain un-346

changed.347

Adapter as introduced by (Houlsby et al., 2019), in-348

volves inserting adapter layers between neural mod-349

ules such as the self-attention and MLP modules,350

enhancing model flexibility without extensive mod-351

ifications. AdapterL (Lin et al., 2020) introduce352

adapters only after the MLP module followed by a353

LayerNorm, with AdapterD (Rücklé et al., 2021)354

increases efficiency by omitting some adapter lay-355

ers.356

LoRA-FA (Zhang et al., 2023) is a memory-357

efficient approach to fine-tuning large language358

models by reducing the activation memory required.359

This method innovatively freezes the projection-360

down weight of A and updates the up projection361

weight in each LoRA layer.362

QLoRA (Dettmers et al., 2023) utilizes a frozen,363

4-bit quantized pretrained model and LoRA for effi-364

cient gradient propagation. The QLoRA approach365

features several innovations including 4-bit Nor-366

malFloat (NF4) data type and double quantization367

for memory reduction.368

5 Main Results369

5.1 GLUE Benchmark370

ShareA outperforms LoRA variants. In Ta-371

ble1, we present the performance metrics for differ-372

ent versions of ShareLoRA—ShareA, ShareB, and373

ShareAB—alongside a baseline comparison with374

previously published work using RoBERTa-base375

and RoBERTa-large models.376

For the RoBERTa-base model, ShareA demon- 377

strates its strengths on datasets such as MRPC, 378

CoLA, and RTE, where we notice performance im- 379

provements between 0.2% to 0.5%. This enhance- 380

ment is noteworthy especially, under the same train- 381

ing specifications (Hu et al., 2021), these datasets 382

have reached full convergence and are prone to 383

overfitting. 384

ShareA is adaptable and robust. In tasks such 385

as MRPC, RTE, and STS-B, both ShareLoRA and 386

LoRA utilize the best MNLI checkpoint derived 387

from multiple seeds and applies these checkpoints 388

effectively on other tasks, demonstrating superior 389

adaptability and performance enhancement com- 390

pared to using LoRA alone once convergence is 391

achieved. This adaptability highlights the poten- 392

tial of ShareLoRA in generalizing well across con- 393

verged datasets. 394

ShareLoRA also has a marginal decline in perfor- 395

mance as observed on the MNLI, QNLI, and QQP 396

datasets compared to LoRA in Table1. Due to the 397

large size of datasets, both LoRA and ShareLoRA 398

are not fully converged under the configurations 399

as described in (Hu et al., 2021). However, it is 400

crucial to highlight that even with the reduced per- 401

formance on MNLI checkpoint, the adaptive tasks 402

such as MRPC and RTE, still show better perfor- 403

mance, underscoring the robustness of ShareLoRA, 404

effectively preventing overfitting and optimizing 405

performance outcomes. 406

ShareA outperforms ShareB. Experiments con- 407

ducted with the RoBERTa-large model on ShareA, 408

5

Method # Params BLUE NIST MET ROUGE-L CIDEr

GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL)* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (AdapterL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M 69.5±.7 8.74±.08 46.56±.2 71.51±.3 2.50±.01

GPT-2 M (ShareB) 0.20M 67.1±.7 8.55±.09 45.12±.4 69.45±.6 2.37±.01

GPT-2 M (ShareA) 0.20M 69.7±.4 8.75±.05 46.60±.1 71.63±.1 2.51±.01

GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL)* 0.88M 69.1 8.68 46.3 71.4 2.49
GPT-2 L (AdapterL)* 23.00M 68.9 8.70 46.1 71.3 2.45
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.3 71.7 2.47
GPT-2 L (LoRA) 0.77M 69.8±.4 8.80±.04 46.69±.1 71.71±.3 2.52±.01

GPT-2 L (ShareB) 0.39M 69.7±.2 8.80±.01 46.17±.3 70.94±.5 2.49±.02

GPT-2 L (ShareA) 0.39M 70.0±.1 8.83±.03 46.60±.1 71.74±.1 2.52±.02

Table 2: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG Challenge. For all
metrics, higher is better. LoRA ShareA outperforms several baselines with comparable or fewer trainable parameters.
* indicates numbers published in prior works.

ShareB, and ShareAB reveal that ShareA gener-409

ally outperforms ShareB in various tasks and both410

ShareA and ShareB show superior results over411

ShareAB. Compared to LoRA, ShareA demon-412

strates increased stability with less fluctuation in413

the confidence intervals across the majority of tasks414

in Table1, emphasizing ShareLoRA’s advantage in415

providing consistent and reliable performance en-416

hancements.417

Parameter Efficiency of ShareLoRA Addition-418

ally, our shared approach significantly reduces419

the number of trainable parameters compared to420

LoRA and other approaches. Employing a similar421

number of trainable parameters as LoRA-FA, but422

ShareLoRA achieves enhanced performance across423

all datasets.424

Overall, the distinct advantages of ShareLoRA, par-425

ticularly in terms of its efficiency, robustness, and426

adaptability to different NLU tasks leading to su-427

perior performance. ShareLoRA produces a com-428

pelling balance between performance and compu-429

tational efficiency.430

5.2 E2E Challenge431

ShareA outperforms LoRA in NLG. In Table2,432

we utilize the configuration previously outlined in433

(Hu et al., 2021) with GPT-2 medium and large434

for E2E NLG tasks, showcasing the superiority of435

ShareLoRA in generative tasks. Our results indi-436

cate that ShareLoRA achieves a consistent perfor-437

mance improvement over LoRA across all evalu-438

ated metrics for the GPT-M model. When employ-439

ing the GPT-large model, ShareLoRA demonstrates 440

slightly better performance than LoRA, given that 441

ShareLoRA utilizes only half the training param- 442

eters of LoRA, achieving a performance improve- 443

ment of 0.1% to 0.2% over LoRA. 444

Up Projection Enhances Performance. Further- 445

more, both LoRA and ShareA outperform ShareB 446

in generative tasks across all metrics. Within 447

the LoRA framework, the significance of the up- 448

projection matrix B is evident as it crucially aug- 449

ments the dimensionality of the low-rank represen- 450

tation. The strategic choice to share component A 451

rather than B in ShareLoRA proves advantageous, 452

as it expansion the intermediate dimension is more 453

important and difficult than squeezing the high di- 454

mension features in complex generation tasks. 455

5.3 LLaMA on MMLU 456

ShareA and ShareAqkv outperform LoRA. In 457

Table3, the scalability and efficacy of ShareA 458

are assessed by examining its performance on 459

larger models ranging from 7B to 13B parame- 460

ters. Through fine-tuning on the Alpaca dataset 461

and employing the 5-shot MMLU benchmark as 462

specified by (Dettmers et al., 2023), ShareA demon- 463

strates notable enhancements in generative capabil- 464

ities compared to GPT-2 and RoBERTa.Focusing 465

exclusively on ShareA rather than ShareB, the re- 466

sults from different linear components indicate that 467

LLaMA models, particularly the 13B and both the 468

7B and 13B versions of LLaMA2, outperform stan- 469

dard LoRA with improvements of approximately 470

6

Method # Params MMLU Method # Params MMLU

LLaMA 7B * 6738.4M 35.1 LLaMA 13B * 13015M 46.9
LLaMA 7B (LoRA)* 159.9M 40.67 LLaMA 13B (LoRA)* 250.3M 47.49
LLaMA 7B (LoRA) 159.9M 41.65±1.0 LLaMA 13B (LoRA) 250.3M 47.60±1.4

LLaMA 7B (ShareAqkv) 135.5M 41.01±0.8 LLaMA 13B (ShareAqkv) 212.0M 48.76±0.7

LLaMA 7B (ShareA) 89.3M 40.93±0.5 LLaMA 13B (ShareA) 139.1M 48.15±0.5

LLaMA2 7B * 6898.3M 45.7 LLaMA2 13B * 13266M 53.8
LLaMA2 7B (LoRA) 159.9M 47.47±1.1 LLaMA2 13B (LoRA) 250.3M 55.31±0.2

LLaMA2 7B (ShareAqkv) 135.5M 47.88±0.1 LLaMA2 13B (ShareAqkv) 212.0M 55.66±0.1

LLaMA2 7B (ShareA) 89.3M 48.19±0.4 LLaMA2 13B (ShareA) 139.1M 55.53±0.3

Table 3: LLaMA and LLaMA2, ranging from 7B to 13B, are fine-tuned using different sharing approaches on
the Alpaca datasets and evaluated on the MMLU 5 shot benchmark. The configuration runs is based on the setup
described in (Dettmers et al., 2023).* indicates numbers published in prior works, reported by (Xu et al., 2023).

1.1%, 0.7%, and 0.4%, respectively. Moreover,471

ShareAqkv further improves performance by 0.6%472

for the LLaMA 13B model over ShareA, while473

ShareA outperforms ShareAqkv by 0.3% for the474

LLaMA2 7B model. The closely matched perfor-475

mance between ShareAqkv and ShareA across other476

models suggests a high convergence and potential477

overfitting risks, as discussed in Appendix 5.3 and478

Figure4, with the LLaMA 7B model showing sta-479

ble yet under-converged performance according to480

prior research (Xu et al., 2023).481

Memory Footprint Saving In the context of482

smaller models like RoBERTa and GPT-2, ShareA483

yields minimal parameter savings, which is neg-484

ligible given modern GPU capacities. However,485

with larger models like LLaMA, ShareA demon-486

strates more substantial reductions. Specifically,487

the LLaMA 7B and 13B models cut down approxi-488

mately 60 million and 110 million trainable param-489

eters, respectively, when compared to the LoRA490

architecture. This leads to substantial efficiency491

gains, reducing both computational footprint and492

disk storage needs. As depicted in Figure2 in the493

Appendix, ShareA achieves a memory footprint494

reduction of 1.8GB and approximately a 2% in-495

crease in training speed, while ShareAB can save496

around 4GB with similar training speeds. The con-497

fidence intervals in Table3 illustrate that ShareA498

not only improves performance but also increases499

robustness over standard LoRA, underscoring the500

practical advantages of ShareLoRA in LLMs.501

5.4 Zero Shot of ShareA502

The effectiveness of ShareA in enhancing gen-503

erative capabilities is evaluated using both zero-504

shot and five-shot settings on the lm-eval-harness505

leaderboard (Gao et al., 2023), focusing on tasks506

like MMLU, ARC Challenge, Hellaswarg, and 507

GSM8K. Results highlight ShareA’s strength in 508

zero-shot learning across various LoRA-configured 509

tasks. ShareA particularly improving performance 510

on domain-specific tasks such as GSM8K that in- 511

volve mathematical reasoning. This demonstrates 512

ShareA’s robust adaptability and superior perfor- 513

mance compared to other models, including the 514

LLaMA 7B, which, despite its strong performance 515

in MMLU as discussed in section 5.3, shows lim- 516

ited adaptability in varied tasks like ARC (c) and 517

GSM8K. Overall, ShareA’s consistency across dif- 518

ferent domains underscores its effectiveness. 519

5.5 Quantized ShareLoRA 520

The detailed experiments conducted on training 521

QLoRA for Quantized LLaMA models demon- 522

strate that the QShareA method exhibits better 523

performance compared to QLoRA in general, as 524

shown in the Table5. Despite a reduction in the 525

number of training parameters, both QShareA and 526

QShareAqkv maintain robust and stable in the per- 527

formance. 528

Even though, the original weight is quantized and 529

the number of training parameter is further re- 530

duced, the performance is not compromised for 531

both QShareA and QShareAqkv. It reveals that 532

the quantization strategies effectively combined 533

with our shared approach without sacrificing out- 534

put quality. 535

6 Analysis 536

6.1 Sharing Attention QKV or Sharing All 537

The distinction between sharing the self-attention 538

mechanism and all linear modules exists on MLP 539

components like gates and up/down projections, 540

which are suitable for LoRA techniques despite 541

7

Method MMLU ARC (c) Hellaswarg GSM8K

LLaMA 7B (LoRA) 41.28 48.49 76.74 2.43
LLaMA 7B (ShareA) 40.67 48.82 76.67 3.16
LLaMA 13B (LoRA) 45.02 51.34 79.46 5.79
LLaMA 13B (ShareA) 46.04 51.19 79.53 6.17

LLaMA2 7B (LoRA) 45.68 49.60 77.14 3.21
LLaMA2 7B (ShareA) 47.09 50.14 76.77 6.06
LLaMA2 13B (LoRA) 53.21 51.28 76.59 12.33
LLaMA2 13B (ShareA) 53.70 52.48 79.43 14.99

Table 4: Selected the optimal checkpoint based on performance in the five-shot MMLU and evaluated using a
zero-shot on MMLU, ARC Challenge, and Hellaswarg, along with a five-shot on GSM8K using the lm-eval-harness
leaderboard (Gao et al., 2023).

Method # Params MMLU (5) Method # Params MMLU (5)

LLaMA 7B (QLoRA)* 79.9M 38.8 LLaMA 13B (QLoRA)* 125.2M 47.8
LLaMA 7B (QLoRA)* 79.9M 39.96 LLaMA 13B (QLoRA)* 125.2M 47.29
LLaMA 7B (QLoRA) 79.9M 40.63± 0.9 LLaMA 13B (QLoRA) 125.2M 47.13± 0.9
LLaMA 7B (QShareAqkv) 67.7M 40.63± 0.5 LLaMA 13B (QShareAqkv) 106.0M 47.36± 0.7
LLaMA 7B (QShareA) 44.6M 41.11± 0.2 LLaMA 13B (QShareA) 69.5M 47.17± 0.8

Table 5: The performance comparison of LLaMA 7B and 13B with QLoRA and QShareA under the same
configuration of (Dettmers et al., 2023), ∗ is similar experiment results collected from prior work (Xu et al., 2023)

being non-square matrices. This leads to a dis-542

crepancy in trainable parameters between LoRA’s543

A and B. The strategic choice involves deciding544

whether to uniformly share weights across all lay-545

ers (ShareA) or selectively share them, such as only546

for the down projection (ShareAB) while maintain-547

ing unique weights for other components like the548

up projection and gates. Preliminary results in549

Appendix Figure 4 suggest that selective sharing,550

particularly of the QKV matrices in Shareqkv, pro-551

vides an effective balance by aligning closely with552

both ShareA and LoRA , potentially mitigating553

overfitting risks.554

6.2 Singular Value Decomposition across555

Layers556

As shown in the Figure 6 in Appendix, we ap-557

ply Singular Value Decomposition (SVD) to the558

LLaMA 13B both LoRA and ShareA weights. The559

singular value distributions for the LLaMA 13B560

model’s LoRA and ShareA weights reveals distinct561

patterns in their decay rates across layers. The562

LoRA weights exhibit a sharp decrease in singular563

values, indicating a concentration of information in564

a few dominant components, which might lead to565

specialization and potential overfitting. In contrast,566

the ShareA weights show a smoother and more567

gradual decrease, suggesting a more balanced dis-568

tribution of information among components. This 569

balanced distribution likely enhances the ShareA 570

model’s adaptability and generalization capability 571

across different tasks. 572

7 Conclusion 573

In this paper, we introduce ShareLoRA, a modifica- 574

tion of the LoRA architecture that shares either the 575

up or down projection across different layers. The 576

ShareA variant significantly reduces the number of 577

trainable parameters by about half relative to the 578

original LoRA and shows improved performance 579

on fully converged datasets. Through extensive 580

experimentation with NLU, NLG, and zero-shot 581

tasks on models varying from millions to billions 582

of parameters, ShareA provides an optimal balance 583

between computational efficiency and robust per- 584

formance. By sharing all linear components or fo- 585

cusing solely on self-attention mechanisms, ShareA 586

potentially reduces overfitting risks while main- 587

taining high adaptability and effectiveness across 588

various domains. 589

8

8 Limitation590

The limitations of ShareLoRA are primarily in591

its convergence speed and practical applications.592

ShareAB and ShareB tend to converge more slowly593

compared to LoRA, though ShareA shows a con-594

vergence rate that is largely competitive with LoRA595

on smaller datasets, with only a slight lag on larger596

datasets. This indicates that ShareA is quite adept597

at easily converged datasets and effectively mitigat-598

ing near-overfitting scenarios.599

Regarding the practical application of GPUs,600

ShareLoRA introduces some complexities in the601

parallel training process on multiple GPUs. This602

is primarily due to the need for consistent synchro-603

nization of the Shared Module, once it is replicated604

across various GPUs at every computational step.605

References606

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie607
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind608
Neelakantan, Pranav Shyam, Girish Sastry, Amanda609
Askell, Sandhini Agarwal, Ariel Herbert-Voss,610
Gretchen Krueger, Tom Henighan, Rewon Child,611
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,612
Clemens Winter, Christopher Hesse, Mark Chen, Eric613
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,614
Jack Clark, Christopher Berner, Sam McCandlish,615
Alec Radford, Ilya Sutskever, and Dario Amodei.616
2020. Language models are few-shot learners.617

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing,618
and Zhiqiang Shen. 2023. One-for-all: Generalized619
lora for parameter-efficient fine-tuning.620

François Chollet. 2019. On the measure of intelligence.621

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,622
Maarten Bosma, Gaurav Mishra, Adam Roberts,623
Paul Barham, Hyung Won Chung, Charles Sutton,624
Sebastian Gehrmann, Parker Schuh, Kensen Shi,625
Sasha Tsvyashchenko, Joshua Maynez, Abhishek626
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-627
odkumar Prabhakaran, Emily Reif, Nan Du, Ben628
Hutchinson, Reiner Pope, James Bradbury, Jacob629
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,630
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,631
Sunipa Dev, Henryk Michalewski, Xavier Garcia,632
Vedant Misra, Kevin Robinson, Liam Fedus, Denny633
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,634
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,635
David Dohan, Shivani Agrawal, Mark Omernick, An-636
drew M. Dai, Thanumalayan Sankaranarayana Pil-637
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,638
Rewon Child, Oleksandr Polozov, Katherine Lee,639
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark640
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy641
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,642
and Noah Fiedel. 2022. Palm: Scaling language mod-643
eling with pathways.644

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 645
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 646
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 647
Nakano, Christopher Hesse, and John Schulman. 648
2021. Training verifiers to solve math word prob- 649
lems. arXiv preprint arXiv:2110.14168. 650

Raj Dabre, Atsushi Fujita, and Chenhui Chu. 2019. 651
Exploiting multilingualism through multistage fine- 652
tuning for low-resource neural machine translation. 653
In Proceedings of the 2019 Conference on Empirical 654
Methods in Natural Language Processing and the 655
9th International Joint Conference on Natural Lan- 656
guage Processing (EMNLP-IJCNLP), pages 1410– 657
1416, Hong Kong, China. Association for Computa- 658
tional Linguistics. 659

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 660
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 661
of quantized llms. 662

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 663
Kristina Toutanova. 2019. Bert: Pre-training of deep 664
bidirectional transformers for language understand- 665
ing. 666

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 667
Sid Black, Anthony DiPofi, Charles Foster, Laurence 668
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 669
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 670
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 671
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 672
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 673
2023. A framework for few-shot language model 674
evaluation. 675

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 676
Kirkpatrick, and Graham Neubig. 2022. Towards a 677
unified view of parameter-efficient transfer learning. 678

Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi 679
Zhou, and Dacheng Tao. 2023. Mera: Merging pre- 680
trained adapters for few-shot learning. 681

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 682
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 683
2021. Measuring massive multitask language under- 684
standing. 685

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 686
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 687
Diego de Las Casas, Lisa Anne Hendricks, Johannes 688
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 689
Katie Millican, George van den Driessche, Bogdan 690
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 691
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, 692
and Laurent Sifre. 2022. Training compute-optimal 693
large language models. 694

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 695
Bruna Morrone, Quentin De Laroussilhe, Andrea 696
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 697
Parameter-efficient transfer learning for NLP. In 698
Proceedings of the 36th International Conference 699
on Machine Learning, volume 97 of Proceedings 700

9

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2306.07967
http://arxiv.org/abs/2306.07967
http://arxiv.org/abs/2306.07967
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/D19-1146
https://doi.org/10.18653/v1/D19-1146
https://doi.org/10.18653/v1/D19-1146
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2308.15982
http://arxiv.org/abs/2308.15982
http://arxiv.org/abs/2308.15982
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
https://proceedings.mlr.press/v97/houlsby19a.html

of Machine Learning Research, pages 2790–2799.701
PMLR.702

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan703
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and704
Weizhu Chen. 2021. Lora: Low-rank adaptation of705
large language models.706

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu707
Pang, Chao Du, and Min Lin. 2024. Lorahub: Effi-708
cient cross-task generalization via dynamic lora com-709
position.710

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.711
Brown, Benjamin Chess, Rewon Child, Scott Gray,712
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.713
Scaling laws for neural language models.714

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua715
Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vin-716
cent Y Zhao, Yuexin Wu, Bo Li, Yu Zhang, and Ming-717
Wei Chang. 2023. Conditional adapters: Parameter-718
efficient transfer learning with fast inference. In719
Thirty-seventh Conference on Neural Information720
Processing Systems.721

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.722
The power of scale for parameter-efficient prompt723
tuning. In Proceedings of the 2021 Conference on724
Empirical Methods in Natural Language Processing,725
pages 3045–3059, Online and Punta Cana, Domini-726
can Republic. Association for Computational Lin-727
guistics.728

Xiang Lisa Li and Percy Liang. 2021a. Prefix-tuning:729
Optimizing continuous prompts for generation. In730
Proceedings of the 59th Annual Meeting of the Asso-731
ciation for Computational Linguistics and the 11th732
International Joint Conference on Natural Language733
Processing (Volume 1: Long Papers), pages 4582–734
4597, Online. Association for Computational Lin-735
guistics.736

Xiang Lisa Li and Percy Liang. 2021b. Prefix-tuning:737
Optimizing continuous prompts for generation.738

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-739
atira, and Anna Rumshisky. 2023. Relora: High-rank740
training through low-rank updates.741

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.742
2020. Exploring versatile generative language model743
via parameter-efficient transfer learning.744

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-745
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,746
Luke Zettlemoyer, and Veselin Stoyanov. 2019.747
Roberta: A robustly optimized bert pretraining ap-748
proach.749

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa750
Dehghani, and James Henderson. 2021. Parameter-751
efficient multi-task fine-tuning for transformers via752
shared hypernetworks.753

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 754
2017. The e2e dataset: New challenges for end-to- 755
end generation. 756

Alec Radford, Jeff Wu, Rewon Child, David Luan, 757
Dario Amodei, and Ilya Sutskever. 2019. Language 758
models are unsupervised multitask learners. 759

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 760
ine Lee, Sharan Narang, Michael Matena, Yanqi 761
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the 762
limits of transfer learning with a unified text-to-text 763
transformer. Journal of Machine Learning Research, 764
21(140):1–67. 765

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman 766
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna 767
Gurevych. 2021. Adapterdrop: On the efficiency 768
of adapters in transformers. 769

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 770
Dubois, Xuechen Li, Carlos Guestrin, Percy 771
Liang, and Tatsunori B. Hashimoto. 2023. Stan- 772
ford alpaca: An instruction-following llama 773
model. https://github.com/tatsu-lab/ 774
stanford_alpaca. 775

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 776
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 777
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 778
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 779
Grave, and Guillaume Lample. 2023a. Llama: Open 780
and efficient foundation language models. 781

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 782
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 783
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 784
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 785
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 786
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 787
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 788
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 789
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 790
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 791
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 792
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 793
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 794
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 795
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 796
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 797
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 798
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 799
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 800
Melanie Kambadur, Sharan Narang, Aurelien Ro- 801
driguez, Robert Stojnic, Sergey Edunov, and Thomas 802
Scialom. 2023b. Llama 2: Open foundation and 803
fine-tuned chat models. 804

Alex Wang, Amanpreet Singh, Julian Michael, Felix 805
Hill, Omer Levy, and Samuel R. Bowman. 2019. 806
Glue: A multi-task benchmark and analysis platform 807
for natural language understanding. 808

BigScience Workshop, :, Teven Le Scao, Angela Fan, 809
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel 810

10

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=IyYyKov0Aj
https://openreview.net/forum?id=IyYyKov0Aj
https://openreview.net/forum?id=IyYyKov0Aj
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2010.11918
http://arxiv.org/abs/2010.11918
http://arxiv.org/abs/2010.11918
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461

Hesslow, Roman Castagné, Alexandra Sasha Luc-811
cioni, François Yvon, Matthias Gallé, Jonathan812
Tow, Alexander M. Rush, Stella Biderman, Albert813
Webson, Pawan Sasanka Ammanamanchi, Thomas814
Wang, Benoît Sagot, Niklas Muennighoff, Albert Vil-815
lanova del Moral, Olatunji Ruwase, Rachel Bawden,816
Stas Bekman, Angelina McMillan-Major, Iz Belt-817
agy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pe-818
dro Ortiz Suarez, Victor Sanh, Hugo Laurençon,819
Yacine Jernite, Julien Launay, Margaret Mitchell,820
Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor821
Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers,822
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou,823
Chris Emezue, Christopher Klamm, Colin Leong,824
Daniel van Strien, David Ifeoluwa Adelani, Dragomir825
Radev, Eduardo González Ponferrada, Efrat Lev-826
kovizh, Ethan Kim, Eyal Bar Natan, Francesco De827
Toni, Gérard Dupont, Germán Kruszewski, Giada828
Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran,829
Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar830
Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse831
Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg,832
Joseph Tobing, Joydeep Bhattacharjee, Khalid Al-833
mubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra,834
Leon Weber, Long Phan, Loubna Ben allal, Lu-835
dovic Tanguy, Manan Dey, Manuel Romero Muñoz,836
Maraim Masoud, María Grandury, Mario Šaško,837
Max Huang, Maximin Coavoux, Mayank Singh,838
Mike Tian-Jian Jiang, Minh Chien Vu, Moham-839
mad A. Jauhar, Mustafa Ghaleb, Nishant Subramani,840
Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen,841
Omar Espejel, Ona de Gibert, Paulo Villegas, Pe-842
ter Henderson, Pierre Colombo, Priscilla Amuok,843
Quentin Lhoest, Rheza Harliman, Rishi Bommasani,844
Roberto Luis López, Rui Ribeiro, Salomey Osei,845
Sampo Pyysalo, Sebastian Nagel, Shamik Bose,846
Shamsuddeen Hassan Muhammad, Shanya Sharma,847
Shayne Longpre, Somaieh Nikpoor, Stanislav Silber-848
berg, Suhas Pai, Sydney Zink, Tiago Timponi Tor-849
rent, Timo Schick, Tristan Thrush, Valentin Danchev,850
Vassilina Nikoulina, Veronika Laippala, Violette851
Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Ta-852
lat, Arun Raja, Benjamin Heinzerling, Chenglei Si,853
Davut Emre Taşar, Elizabeth Salesky, Sabrina J.854
Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea855
Santilli, Antoine Chaffin, Arnaud Stiegler, Debajy-856
oti Datta, Eliza Szczechla, Gunjan Chhablani, Han857
Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan858
Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Sai-859
ful Bari, Maged S. Al-shaibani, Matteo Manica, Ni-860
hal Nayak, Ryan Teehan, Samuel Albanie, Sheng861
Shen, Srulik Ben-David, Stephen H. Bach, Taewoon862
Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Ur-863
mish Thakker, Vikas Raunak, Xiangru Tang, Zheng-864
Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri,865
Hadar Tojarieh, Adam Roberts, Hyung Won Chung,866
Jaesung Tae, Jason Phang, Ofir Press, Conglong Li,867
Deepak Narayanan, Hatim Bourfoune, Jared Casper,868
Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia869
Zhang, Mohammad Shoeybi, Myriam Peyrounette,870
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,871
Patrick von Platen, Pierre Cornette, Pierre François872
Lavallée, Rémi Lacroix, Samyam Rajbhandari, San-873

chit Gandhi, Shaden Smith, Stéphane Requena, Suraj 874
Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet 875
Singh, Anastasia Cheveleva, Anne-Laure Ligozat, 876
Arjun Subramonian, Aurélie Névéol, Charles Lover- 877
ing, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, 878
Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bog- 879
danov, Genta Indra Winata, Hailey Schoelkopf, Jan- 880
Christoph Kalo, Jekaterina Novikova, Jessica Zosa 881
Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, 882
Liam Hazan, Marine Carpuat, Miruna Clinciu, Na- 883
joung Kim, Newton Cheng, Oleg Serikov, Omer 884
Antverg, Oskar van der Wal, Rui Zhang, Ruochen 885
Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani 886
Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, 887
Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, 888
Vladislav Mikhailov, Yada Pruksachatkun, Yonatan 889
Belinkov, Zachary Bamberger, Zdeněk Kasner, Al- 890
ice Rueda, Amanda Pestana, Amir Feizpour, Ammar 891
Khan, Amy Faranak, Ana Santos, Anthony Hevia, 892
Antigona Unldreaj, Arash Aghagol, Arezoo Abdol- 893
lahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh 894
Behroozi, Benjamin Ajibade, Bharat Saxena, Car- 895
los Muñoz Ferrandis, Daniel McDuff, Danish Con- 896
tractor, David Lansky, Davis David, Douwe Kiela, 897
Duong A. Nguyen, Edward Tan, Emi Baylor, Ez- 898
inwanne Ozoani, Fatima Mirza, Frankline Onon- 899
iwu, Habib Rezanejad, Hessie Jones, Indrani Bhat- 900
tacharya, Irene Solaiman, Irina Sedenko, Isar Ne- 901
jadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis 902
Sanz, Livia Dutra, Mairon Samagaio, Maraim El- 903
badri, Margot Mieskes, Marissa Gerchick, Martha 904
Akinlolu, Michael McKenna, Mike Qiu, Muhammed 905
Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Ra- 906
jani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, 907
Ran An, Rasmus Kromann, Ryan Hao, Samira Al- 908
izadeh, Sarmad Shubber, Silas Wang, Sourav Roy, 909
Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, 910
Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, 911
Alfredo Palasciano, Alison Callahan, Anima Shukla, 912
Antonio Miranda-Escalada, Ayush Singh, Benjamin 913
Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag 914
Jain, Chuxin Xu, Clémentine Fourrier, Daniel León 915
Periñán, Daniel Molano, Dian Yu, Enrique Manjava- 916
cas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, 917
Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, 918
Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, 919
Jonas Golde, Jose David Posada, Karthik Ranga- 920
sai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa 921
Shinzato, Madeleine Hahn de Bykhovetz, Maiko 922
Takeuchi, Marc Pàmies, Maria A Castillo, Mari- 923
anna Nezhurina, Mario Sänger, Matthias Samwald, 924
Michael Cullan, Michael Weinberg, Michiel De 925
Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, 926
Myungsun Kang, Natasha Seelam, Nathan Dahlberg, 927
Nicholas Michio Broad, Nikolaus Muellner, Pascale 928
Fung, Patrick Haller, Ramya Chandrasekhar, Renata 929
Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline 930
Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, 931
Shlok S Deshmukh, Shubhanshu Mishra, Sid Ki- 932
blawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Ku- 933
mar, Stefan Schweter, Sushil Bharati, Tanmay Laud, 934
Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Ya- 935
nis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, 936

11

Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli937
Xie, Zifan Ye, Mathilde Bras, Younes Belkada, and938
Thomas Wolf. 2023. Bloom: A 176b-parameter939
open-access multilingual language model.940

Yuqing Xie, Wei Yang, Luchen Tan, Kun Xiong,941
Nicholas Jing Yuan, Baoxing Huai, Ming Li, and942
Jimmy Lin. 2020. Distant supervision for multi-stage943
fine-tuning in retrieval-based question answering. In944
Proceedings of The Web Conference 2020, WWW945
’20, page 2934–2940, New York, NY, USA. Associa-946
tion for Computing Machinery.947

Lingling Xu and Weiming Wang. 2023. Improving948
aspect-based sentiment analysis with contrastive949
learning. Natural Language Processing Journal,950
3:100009.951

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui952
Tao, and Fu Lee Wang. 2023. Parameter-efficient953
fine-tuning methods for pretrained language models:954
A critical review and assessment.955

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.956
2022. Bitfit: Simple parameter-efficient fine-tuning957
for transformer-based masked language-models.958

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali959
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a960
machine really finish your sentence? In Proceedings961
of the 57th Annual Meeting of the Association for962
Computational Linguistics.963

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen964
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient965
low-rank adaptation for large language models fine-966
tuning.967

Susan Zhang, Stephen Roller, Naman Goyal, Mikel968
Artetxe, Moya Chen, Shuohui Chen, Christopher De-969
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-970
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel971
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu972
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-973
trained transformer language models.974

12

http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

A Hyperparameters975
M

em
or

y
(M

B
)

35000

37500

40000

42500

45000

ShareAB LoRA-FA ShareA LoRA

Peak Memory Consumption

Figure 2: Peak Memory Consumption required for train-
ing LLaMA 13B

In our study, we limits the extent of hyperparam-976

eter optimization in order to maintain consistency977

with prior research (Hu et al., 2021; Dettmers et al.,978

2023; Mahabadi et al., 2021; Gao et al., 2023), fa-979

cilitating a direct comparison. Furthermore, we980

aims to investigate the behaviors of underfitting981

and overfitting across different scenarios using the982

LoRA and ShareLoRA approaches applied to vari-983

ous model size.984

Specifically, under the current training setup,985

both LoRA and ShareLoRA exhibit signs of non-986

convergence when applied to the LLaMA 7B987

model. On the other hand, LoRA demonstrates988

clear overfitting when used with the LLaMA2 13B989

model, suggesting that the model training has gone990

beyond the point of optimal generalization.991

For the models LLaMA 13B and LLaMA 2 7B,992

their performances are comparable. Both models993

reach a point of convergence and display fluctua-994

tions around this state, indicating that they are fully995

trained. It helps us understand the differing impacts996

of LoRA and ShareLoRA on these models under a997

set of reasonable training configurations.998

The hyperparameter setting for RoBERTa is in999

Table 6 and for LLaMA are in Table 7 and 8. The1000

number of trainable parameters in Table 5, should1001

remain consistent between QLoRA and LoRA for1002

LLaMA 7B and 13B in Table 3, as both models1003

utilize BFloat16. However, the reduced number of1004

trainable parameters is influenced by the implemen-1005

tation described in (Dettmers et al., 2023), which1006

reduces the trainable parameters by half when quan-1007

tizing to 4 bits. This is also reported the same by1008

(Xu et al., 2023), and we maintain this parameter1009

count to ensure consistency.1010

We conducted five experiments with Roberta and1011

GPT-2, and three experiments for all tasks related 1012

to LLaMA using different seeds. The results pre- 1013

sented are all averages. 1014

B LLaMA Performance Analysis 1015

In Figures 3 and 4 , we present the Dev Set per- 1016

formance changes for both LLaMA and LLaMA2 1017

models, ranging from 7B to 13B, to observe the 1018

differences in performance over steps. The results 1019

demonstrate that ShareA and ShareAqkv configu- 1020

rations offer several advantages over their counter- 1021

parts, as discussed in Section 6.1. 1022

For both the 7B and 13B models, ShareA and 1023

ShareAqkv configurations maintain higher average 1024

accuracy compared to the traditional LoRA setup. 1025

Specifically, ShareA demonstrates consistent per- 1026

formance improvements, particularly in the stabil- 1027

ity of accuracy over different steps. This indicates 1028

that ShareA is more robust and less prone to fluctu- 1029

ations compared to LoRA. 1030

The analysis in Figure 3 further enriches our re- 1031

sults by incorporating confidence intervals which 1032

map the performance stability of LoRA, QLoRA, 1033

ShareA, and QShareA. From these plots, it is ev- 1034

ident that while LoRA occasionally outperforms 1035

QLoRA, the overall performance trends of LoRA 1036

and QLoRA are closely aligned in LLaMA 7B. In 1037

particular, for the LLaMA 13B, the performance 1038

of ShareA and QShareA after 5000 steps is com- 1039

pletely superior than LoRA and QLoRA. It is cru- 1040

cial to highlight that both LoRA and QLoRA dis- 1041

play larger fluctuations in performance compared 1042

to ShareA and QShareA, underscoring a potentially 1043

greater variability in model outcomes across differ- 1044

ent experimental seeds. 1045

C Convergence Analysis 1046

In Figure 5, we analyze the convergence trends 1047

across both the MNLI and CoLA datasets for the 1048

RoBERTa-large model, demonstrating differing be- 1049

haviors among the sharing strategies and others. 1050

Notably, while ShareA begins with slightly lower 1051

performance compared to LoRA, it progressively 1052

matches LoRA’s accuracy on the MNLI dataset. 1053

ShareB and ShareAB, in contrast, consistently un- 1054

derperform relative to both LoRA and ShareA. This 1055

pattern is similarly observed with the CoLA dataset, 1056

where ShareA’s performance is robust, closely com- 1057

peting with LoRA. Both ShareB and ShareAB are 1058

worse than LoRA alone. 1059

13

LLaMA 7B LLaMA 13B

LLaMA 7B LLaMA 13B

Steps Steps

Steps Steps

Figure 3: LLaMA 7B & 13B on LoRA / ShareA (upper) and on QLoRA / QShareA (down) MMLU Dev Performance
with the standard deviation error distribution of different seeds

Figure 4: Average Performance Plot for Various LLaMA Models on the Alpaca-MMLU Dev Dataset

At the same time, LoRA-FA only reaches per-1060 formance levels comparable to ShareB, lagging 1061

14

Figure 5: Convergence Performance for MNLI and CoLA datasets

behind both ShareA and LoRA. This suggests1062

that ShareA not only sustains competitive conver-1063

gence capabilities but also outperforms LoRA-FA1064

in terms of robustness and eventual alignment with1065

LoRA’s top performance.1066

In term of training loss, all models exhibit a sim-1067

ilar declining trend over the training epochs. How-1068

ever, ShareA distinguishes itself by slightly lagging1069

behind LoRA initially in terms of speed of con-1070

vergence but substantial surpassing both ShareB1071

and LoRA-FA overall. This differential suggests1072

that ShareA offers a balanced approach, effectively1073

managing a slower initial convergence for consis-1074

tent long-term gains.1075

15

Figure 6: Distribution of Singular Values for LLaMA 13B: SVD Decomposition Analysis of LoRA (left) and
ShareA (right) across All Layers.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

Batch Size (per device) 16 16 16 32 32 16 32 16
Epochs 30 60 30 80 25 25 80 40

RoBERTa base Learning Rate 5E-04 5E-04 4E-04 4E-04 4E-04 5E-04 5E-04 4E-04
ShareLoRA LoRA Config. rq = rv = 8

LoRA α 8
Max Seq. Len. 512
seed 0,1,2,3,4

Batch Size (per device) 4
Epochs 10 10 20 20 10 20 20 10

RoBERTa large Learning Rate 3E-04 4E-04 3E-04 2E-04 2E-04 3E-04 4E-04 2E-04
ShareLoRA † LoRA Config. rq = rv = 8

LoRA α 8
Max Seq. Len. 512
seed 0,1,2,3,4

Table 6: Configuration and training details for RoBERTa base LoRA on different datasets.

Parameters Batch size LR Steps Source Length Target Length

7B 16 2e-4 10000 384 128
13B 16 2e-4 10000 384 128

Table 7: Training hyperparameters for LLaMA and QLLaMA.

Parameters MMLU Source Length Temperature Top P Beam size

7B 2048 0.7 0.9 1
13B 2048 0.7 0.9 1

Table 8: Evaluation hyperparameters for LLaMA and QLLaMA.

16

