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ABSTRACT

Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to
enhance the factuality of Large Language Models (LLMs). However, existing
RAG systems often suffer from an unfaithfulness issue, where the model’s re-
sponse contradicts evidence from the retrieved context. Existing approaches to
improving contextual faithfulness largely rely on external interventions, such as
prompt engineering, decoding constraints, or reward-based fine-tuning. These
works treat the LLM as a black box and overlook a crucial question: how does
the LLM internally integrate retrieved evidence with its parametric memory, par-
ticularly under knowledge conflicts? To address this gap, we conduct a probing-
based analysis of hidden-state representations in LLMs and observe three findings:
knowledge integration occurs hierarchically, conflicts manifest as latent signals
at the sentence level, and irrelevant context is often amplified when aligned with
parametric knowledge. Building on these findings, we propose CLEAR (Conflict-
Localized and Enhanced Attention for RAG), a framework that (i) decomposes
context into fine-grained sentence-level knowledge, (ii) employs hidden-state
probing to localize conflicting knowledge, and (iii) introduces conflict-aware fine-
tuning to guide the model to accurately integrate retrieved evidence. Exten-
sive experiments across three benchmarks demonstrate that CLEAR substantially
improves both accuracy and contextual faithfulness, consistently outperforming
strong baselines under diverse conflict conditions. The related resources are avail-
able at https://anonymous.4open.science/r/CLEAR-CF6B.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) has rapidly evolved as a powerful paradigm to enhance
Large Language Models (LLMs) by leveraging external knowledge bases (Guu et al., 2020a; Feng
et al., 2024; Zhang et al., 2025a). Despite its success, RAG often struggles with context faithful-
ness (Bi et al., 2024a;b), which requires the model to generate responses strictly grounded in external
context. Achieving faithfulness is particularly challenging in scenarios involving knowledge con-
flicts, where discrepancies between the retrieved context and the model’s internal knowledge often
lead to inaccurate or inconsistent generations (Xu et al., 2024a; Zhang et al., 2025c).

Previous studies on improving contextual faithfulness in RAG can be broadly classified into three
categories. The first category utilizes specially designed instructions to guide the model’s reasoning
process, encouraging it to verify or filter retrieved content before generating a response (Zhou et al.,
2023a; Asai et al., 2023; Ying et al., 2024; Zhang et al., 2025b). While this strategy can indeed
improve factual grounding, its effectiveness is often highly sensitive to the design of the instructions
and may not generalize robustly across different domains or tasks. Moreover, the second category
involves modifying the generation process itself by introducing constraints or consistency checks
during decoding to ensure alignment with the retrieved context (Shi et al., 2023a; Yuan et al., 2024).
However, these methods are often tightly coupled with specific decoding strategies and may struggle
when the retrieved content contains irrelevant knowledge. Furthermore, the third category focuses
on training the model with explicit objective functions that reward faithful response, thereby framing
the task as an end-to-end optimization problem (Si et al., 2025; Bi et al., 2024a). Although this
approach supports flexible end-to-end learning, it also relies heavily on carefully designed reward
mechanisms and large-scale preference datasets.
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Despite these advances, existing approaches share a fundamental limitation: they treat LLMs as
black boxes, focusing on external interventions without investigating the internal knowledge inte-
gration mechanism, i.e., how LLMs internally process and integrate conflicting knowledge. Con-
sequently, their effectiveness is often sensitive to prompt design, decoding strategies, or reward
functions, and it always fails to generalize to real-world scenarios with complex and noisy contexts.
In this paper, we argue that a comprehensive understanding of faithfulness requires moving beyond
these external interventions to directly investigate the internal cognitive processes of LLMs.

To this end, we conduct an in-depth analysis, investigating how LLMs internally fuse external
knowledge with their parametric memory and how models represent and reconcile knowledge con-
flicts within their latent space. Through systematic knowledge probing and detailed representation
analysis, we uncover three key insights: (i) Hierarchical integration: Faithfulness is not broken at
the output layer of language models; it is compromised much earlier. We found that LLMs integrate
knowledge in a progressive and hierarchical manner (token → sentence → passage). The critical
failure occurs at the sentence-level abstraction in intermediate layers, where the model constructs
and reconciles factual representations. (ii) The latent conflict signal: At the sentence level, the
hidden states of the LLM contain a discernible “conflict signal”, a representational bias that pre-
dicts eventual unfaithfulness. This signal is a latent precursor to the error manifested in the output.
Knowledge fusion occurs hierarchically, with critical conflict resolution happening at the sentence-
level in intermediate layers, not merely at the output layer. (iii) Amplification of irrelevant context.
LLMs disproportionately amplify context that is irrelevant to the query but consistent with their
parametric knowledge, leading to confident yet erroneous generations.

Motivated by these findings, we propose a framework for RAG faithfulness, named Conflict-
Localized and Enhanced Attention for RAG (CLEAR). Specifically, CLEAR consists of three key
components: (i) Fine-grained knowledge pruning, which extracts knowledge from the context and
filters out irrelevant items; (ii) Hidden-state probing for conflict detection, which trains a probing
model for detecting knowledge conflict by observing hidden state; (iii) Conflict-Aware Fine-tuning,
which regularizes the LLM’s attention distribution via an attention guidance loss during fine-tuning.

In general, our contributions are summarized as follows:

• We conduct an in-depth analysis and reveal that LLMs integrate external knowledge
through a hierarchical mechanism, and that conflicting and aligned knowledge exhibit dis-
tinct distributional patterns within sentence-level representations.

• We propose CLEAR, a novel framework designed to enhance contextual faithfulness in
RAG systems. It employs probing techniques to accurately detect conflicting knowledge
and incorporates a conflict-aware fine-tuning strategy to guide the model to accurately in-
tegrate retrieved evidence with its parametric memory.

• We extensively evaluate the effectiveness of our framework on multiple RAG bench-
marks and diverse LLM architectures, demonstrating that CLEAR consistently outperforms
strong baselines across all evaluation metrics.

2 PRELIMINARY STUDY

2.1 EXISTING CHALLENGES ON RAG FAITHFULNESS

We conducted a preliminary study to investigate the causes of contextual unfaithfulness in RAG. Two
key factors are hypothesized to underlie this issue: (i) irrelevant retrieval content, where passages
loosely related to the query introduce misleading information; (ii) knowledge conflict between the
context and the internal knowledge of the model, which leads the model to prioritize its parametric
memory over the retrieved evidence. To assess contextual faithfulness, we designed two controlled
scenarios. In the first scenario, the original context is augmented with passages that are semantically
aligned with the query but topically irrelevant, introducing unrelated knowledge. In the second
scenario, selected entities in the context are altered to incorporate counterfactual knowledge, thereby
inducing knowledge conflict with the model’s internal knowledge acquired during pretraining.
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Table 1: Case study illustrating two representative sources of contextual unfaithfulness in RAG. The
first case shows an error caused by focusing on irrelevant context. The second case demonstrates an
error caused by over-reliance on parametric knowledge.

Wrongly Based on
Irrelevant Context

Question: Is ibuprofen suitable for pregnant women?
Context: Ibuprofen is a commonly used over-the-counter pain reliever, often
used to alleviate headaches, toothaches, muscle aches, and menstrual cramps.
Reasoning: Based on the context, Ibuprofen is widely used among adults.
Answer: Ibuprofen is suitable for most people, including pregnant women.
Expected: Ibuprofen is not suitable for pregnant women.

Stubborn on Parametric
Knowledge

Question: Who is the current president of the United States?
Context: As of 2025, the President of the United States is Barack Obama,
reinstated following a vote by the Supreme Court to nullify the outgoing ad-
ministration’s election results... (manually modified)
Reasoning: I still think Joe Biden is the president. (trained on data up to 2023)
Answer: Joe Biden is the president of the United States.
Expected: According to the given context, Barack Obama is the current pres-
ident of the United States. (faithful to the context)

Figure 1: Preliminary analysis of contextual un-
faithfulness in RAG reveals that all models de-
grade when (i) exposed to irrelevant knowledge
or (ii) confronted with conflicting knowledge.

Performance Degradation in Both Scenar-
ios. Experimental results are presented in Fig-
ure 1. As shown, all models exhibit a de-
cline in accuracy under both conditions. In the
scenario with irrelevant retrieval content added
to the context, the accuracy of all three mod-
els dropped by over 10%, indicating that such
noisy inputs can mislead the models and neg-
atively affect their outputs. In contrast, the
introduction of conflicting knowledge resulted
in an even more pronounced performance de-
cline: LLaMA-3.1-8B-Instruct experi-
enced a 31% drop, and Mistral-7B-v0.3
decreases by 24%. These results suggest
that contextual information contradicting the
model’s parametric knowledge has a substan-
tially greater impact on performance.

Error Analysis. Table 1 summarizes the pri-
mary causes of these errors. When the context contains irrelevant information, the model often
allocates attention to distracting noise, resulting in incorrect responses. Additionally, when context
conflicts with internal knowledge, the model tends to favor parametric memory over provided evi-
dence. These observations highlight two distinct yet complementary challenges for RAG systems:
sensitivity to irrelevant context and over-reliance on internal knowledge in the presence of conflict.

2.2 HIERARCHICAL KNOWLEDGE INTEGRATION MECHANISM OF LLMS

To further explore how LLMs integrate external knowledge, we analyze hidden-state representa-
tions in the middle layers of LLMs. Inspired by hierarchical feature extraction in computer vision,
which also applies to language modeling, we observe that lower layers of LLMs primarily capture
token-level information, while deeper layers integrate sentence-level and passage-level semantics.
Our analysis reveals that most knowledge conflicts tend to manifest at the sentence-level factual rep-
resentations, where the hidden states of LLMs demonstrate discriminative features. Following the
method of (Xie et al., 2024), we extract the model’s parametric knowledge Ka for a given question,
and use an external LLM to construct corresponding conflicting knowledge Kc. Each knowledge
pair ⟨Ka,Kc⟩ into the model separately. We extract the hidden states from the final decoder layer,
and perform a two-dimensional visualization using t-SNE (van der Maaten & Hinton, 2008). Totally,
we construct approximately 700 such samples and analyze six different model architectures.

As shown in Figure 2, the hidden-state distributions corresponding to aligned and conflicting knowl-
edge are distinguishable, forming distinct clusters represented by red and blue points. These results
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(a) LLaMA-3.1-8B-Instruct (b) Qwen3-8B (c) Mistral-7B-v0.3

(d) LLaMA-2-7B (e) Qwen2.5-7B-Instruct (f) Vicuna-7B-v1.5

Figure 2: t-SNE visualization of hidden-state patterns between aligned and conflicting knowledge.
There is a clear distinction in the distribution of hidden states between aligned and conflicting knowl-
edge. This observation provides empirical support for detecting knowledge conflicts based on hidden
state representations.

suggest that knowledge conflicts frequently occur at the sentence level and can be detected through
the analysis of intermediate-layer hidden states. Inspired by this insight, we could train a probe
P (HK), where HK denotes the hidden state induced by input knowledge K, and P can be imple-
mented as a Multi-Layer Perceptron (MLP) model (Rumelhart et al., 1986), to detect whether input
knowledge conflicts with parametric knowledge of the model. This requires only a single forward
pass to extract relevant hidden states, eliminating the need for explicit knowledge extraction.

3 METHODOLOGY

3.1 OVERVIEW

In this section, we introduce our proposed framework, CLEAR. As illustrated in Figure 3, CLEAR
comprises three principal modules: (i) Fine-Grained Knowledge Pruning: the retrieved context
is partitioned into fine-grained sentence-level knowledge, and irrelevant knowledge are pruned to
improve contextual fidelity and facilitate subsequent detection of knowledge conflicts; (ii) Hidden-
State Probing for Conflict Detection: an MLP probe is trained on hidden states extracted from
selected open-source LLMs to determine whether an input knowledge conflicts with the model’s
parametric knowledge; (iii) Conflict-Aware Fine-Tuning: the model is fine-tuned under a conflict-
aware supervision signal that conditions the model to appropriately reweight attention to conflicting
knowledge, thereby improving the faithfulness of generation. The following subsections provide
detailed descriptions of each module.

3.2 FINE-GRAINED KNOWLEDGE PRUNING

Since knowledge conflicts typically manifest at the sentence level, we adopt a fine-grained decom-
position of the context to enable more precise conflict identification. At the same time, to mitigate
the influence of irrelevant knowledge, we apply a pruning strategy to remove semantically unrelated
content. Specifically, we treat knowledge as the minimal processing granularity, where each cor-
responds to an independent, complete sentence-level statement that cannot be further decomposed.
For example, the sentence: “Riyad Mahrez is a professional footballer of Algerian descent who cur-
rently plays as a winger for Premier League club Leicester City and the Algeria national team.” is
decomposed into three atomic knowledge items: 1. “Riyad Mahrez is a professional footballer of
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Figure 3: The overview of our proposed framework CLEAR, which consists of three main com-
ponents: (i) Fine-Grained Knowledge Pruning, which extracts knowledge from the context and
filters out irrelevant items; (ii) Hidden-State Probing for Conflict Detection, which trains a
probing model for detecting knowledge conflict by observing hidden state; (iii) Conflict-Aware
Fine-Tuning, which regularizes the LLM’s attention distribution on conflict content by fine-tuning
through an auxiliary attention loss.

Algerian descent.” 2. “Riyad Mahrez currently plays as a winger for Premier League club Leicester
City.” 3. “Riyad Mahrez currently plays as a winger for the Algeria national team.” Each item
preserves the subject–predicate–object structure with necessary modifiers, ensuring no information
is lost during decomposition. To extract knowledge {K1,K2, . . . ,Kn} from a given context D, we
leverage the decomposition capabilities of an external LLM (we choose GPT-4o (OpenAI, 2024) for
its strong reasoning and text-processing abilities). Formally, we define this process as:

Decompose(D) = {K1,K2, . . . ,Kn}
where Ki denotes the i-th knowledge item. Detailed prompt is provided in Appendix A.2.

After decomposition, we filter irrelevant knowledge to reduce contextual noise. For each knowledge
item Ki, we compute its semantic similarity with the query Q:

f(Q,Ki) = ⟨q, ki⟩
where q = Enc(Q) and ki = Enc(Ki) are vector embeddings of the query and the knowledge
item, respectively, and ⟨·, ·⟩ denotes cosine similarity. We employ the all-MiniLM-L6-v21 encoder
for embedding generation. Finally, the knowledge items are ranked by similarity, and the top-k
results are selected as the pruned context.

3.3 HIDDEN-STATE PROBING FOR CONFLICT DETECTION

To effectively handle knowledge conflicts, it is essential to first detect which retrieved knowledge
items contradict the model’s internal knowledge. To this end, we introduce a hidden-state prob-
ing module designed to detect knowledge items that contradict the model’s parametric knowledge.
Specifically, we adopt an MLP as the probing classifier, which takes as input the hidden represen-
tations from the final layer of the frozen LLM decoder. The probe consists of three fully connected
layers with non-linear activation functions, and outputs a binary prediction indicating whether a
knowledge item conflicts with the model’s internal knowledge. For training the probing classifier,
we leverage the MQuAKE dataset (Zhong et al., 2023), which is widely used in knowledge editing
research. We assume that the edited knowledge in MQuAKE inherently conflicts with the model’s
original parametric knowledge, thereby providing natural pairs of aligned and conflicting knowledge
⟨Ka,Kc⟩. Importantly, the data format and textual granularity in MQuAKE align closely with the
knowledge items extracted in our framework, making it a suitable source for supervision.

During inference, each filtered knowledge item is passed through the model to obtain its hidden state
representation, which is subsequently classified by the probe:

M(Ki) ∈ RdM , P
(
M(Ki)

)
∈ {0, 1},

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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where M(Ki) denotes the hidden state of knowledge item Ki produced by frozen model M with
dimension dM . P is the probing classifier that outputs a binary label indicating whether the knowl-
edge item conflicts with the model’s parametric knowledge. We mark the knowledge items identified
as conflicting with special tokens, i.e., wrapping them within ⟨conflict⟩ and ⟨/conflict⟩. This ex-
plicit annotation enables the subsequent fine-tuning stage to be aware of which knowledge items are
in conflict with the model’s internal knowledge.

3.4 CONFLICT-AWARE FINE-TUNING

To explicitly encourage the model to allocate greater attention to conflicting knowledge items, we
propose Conflict-Aware Fine-Tuning. Unlike conventional Supervised Fine-Tuning, Conflict-Aware
Fine-Tuning incorporates an additional attention-guidance loss term that explicitly regularizes the
model’s attention distribution. Specifically, for each conflicting knowledge item Ki, we denote its
token sequence as T (i) = {t(i)1 , t

(i)
2 , . . . , t

(i)
m }. The positions of these tokens in the input context

are represented by S = {j | ∃P(M(Ki)) = 1, xj ∈ T (i)}, where P(M(Ki)) = 1 indicates
that knowledge item Ki is judged as conflicting by the probe, and xj denotes the j-th token of the
context. In practice, these positions in S can be directly identified via the previously introduced
special tokens ⟨conflict⟩ and ⟨/conflict⟩.
Based on this alignment, we extract the attention weights from subsequent tokens attending to the
conflict-related tokens and compute the attention loss as:

LAttn =
1

|P |
∑

(i,j)∈P

(1− αij), (i, j) ∈ P, P = {(i, j) | i ≥ j; j ∈ S}

where αij denotes the attention weight of token i on token j. Finally, we combine the attention loss
with the standard language modeling objective through a weighted sum:

LTotal = (1− λ)LLM + λLAttn,

where λ ∈ [0, 1] balances the trade-off between language modeling fidelity and attention guidance.
This joint objective ensures that the model not only learns to generate faithful outputs but also
explicitly attends to conflicting knowledge items during training.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

In this section, we conduct a series of experiments to evaluate the effectiveness of CLEAR. We pro-
vide a comprehensive analysis of the experimental results, highlighting both the overall performance
improvements and the detailed behaviors of the model under different conditions.

Datasets. We evaluate CLEAR on three datasets. ConFiQA (Bi et al., 2024a) is a benchmark de-
signed to assess contextual faithfulness in question answering, particularly under real-world RAG
scenarios involving knowledge conflicts. It consists of three subsets: QA (Question Answering), MR
(Multi-hop Reasoning), and MC (Multi-Conflicts). The QA subset is a single-hop question answer-
ing task where the context contains a corresponding counterfactual, while MR and MC are multi-hop
reasoning tasks in which the context includes one and multiple counterfactuals, respectively. The
second dataset, Faitheval (Ming et al., 2024), introduces conflicts at the level of logical reasoning:
inconsistencies arise not from direct factual contradictions, but from reasoning chains that lead to
conflicting conclusions. Finally, we also evaluate on SQuAD (Rajpurkar et al., 2016), following the
version curated in KRE (Ying et al., 2023), which also incorporates fact-level knowledge conflicts.

Models and Baselines. For our experiments, we adopt several mainstream open-source models,
including Llama-3.1-8B-Instruct, Qwen3-8B, and Mistral-7B-v0.3. We compare CLEAR against
representative baseline methods from three major categories in the field of contextual faithfulness:
prompt-based approaches, decoding-based approaches, and training-based approaches. Among the
prompt-based methods, we include Opin(Instr) (Zhou et al., 2023a), KRE (Ying et al., 2023), and
FaithfulRAG (Zhang et al., 2025b). For decoding-based methods, we evaluate COIECD (Yuan
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Table 2: Performance comparison of methods grouped by Baseline, Prompt-Based, Decoding-
Based, and Training-Based. CLEAR consistently achieves the SOTA results.

Category Method FaithEval ConFiQA (MC) ConFiQA (MR) ConFiQA (QA) SQuAD

F1 EM F1 EM F1 EM F1 EM F1 EM

LLaMA-3.1-8B-Instruct

Baseline No-Context 27.7 6.0 5.0 2.1 6.1 1.9 6.1 1.3 8.9 1.2
Full-Context 66.9 53.1 28.0 22.5 50.3 41.3 58.5 49.0 64.5 46.0

Prompt-Based Opin(Instr) (Zhou et al., 2023a) 34.9 15.1 67.4 57.3 65.9 54.0 76.9 67.4 66.0 47.7
KRE (Ying et al., 2023) 59.1 12.1 68.2 59.8 68.7 58.9 84.0 74.7 59.8 43.7

Decoding-Based COIECD (Yuan et al., 2024) 56.1 41.3 28.5 24.0 50.9 43.3 67.1 60.1 67.0 50.3
CAD (Shi et al., 2023a) 59.4 42.7 16.0 11.4 40.0 31.3 48.3 38.1 60.3 41.8

Training-Based
Context-DPO (Bi et al., 2024a) 67.2 53.7 76.9 67.7 78.5 66.9 83.7 76.7 64.4 45.8
CANOE (Si et al., 2025) 71.6 56.3 80.9 74.2 80.2 72.6 82.3 77.7 65.4 49.7
CLEAR(ours) 74.4 64.4 89.2 87.7 89.7 87.0 93.1 91.7 68.4 53.3

Qwen3-8B

Baseline No-Context 22.8 4.1 7.6 3.6 8.0 2.8 7.8 1.4 6.7 0.4
Full-Context 55.5 23.8 59.6 50.2 66.1 55.1 72.5 64.2 63.8 44.9

Prompt-Based Opin(Instr) (Zhou et al., 2023a) 35.0 13.9 70.7 61.1 69.7 59.5 78.8 69.2 63.8 46.1
KRE (Ying et al., 2023) 58.1 12.3 67.5 59.1 68.4 59.0 80.4 67.3 48.6 29.7

Decoding-Based COIECD (Yuan et al., 2024) 66.6 56.4 66.7 60.8 71.5 63.8 78.5 73.6 69.7 55.2
CAD (Shi et al., 2023a) 57.0 28.7 57.7 48.3 64.8 53.3 71.0 62.0 63.6 44.5

Training-Based
Context-DPO (Bi et al., 2024a) 55.2 24.0 59.6 50.1 65.9 55.0 72.3 63.9 63.8 44.9
CANOE (Si et al., 2025) 70.3 60.2 85.2 81.7 84.6 80.7 92.2 86.5 69.4 53.4
CLEAR(ours) 74.9 61.6 90.7 89.7 91.3 89.0 95.7 94.3 71.5 55.7

Mistral-7B-v0.3

Baseline No-Context 26.2 4.4 4.4 0.9 4.9 0.5 6.1 1.0 8.1 1.0
Full-Context 68.8 37.7 25.6 12.5 37.8 21.5 58.5 44.0 56.4 37.5

Prompt-Based Opin(Instr) (Zhou et al., 2023a) 35.7 14.1 58.8 44.1 57.8 52.5 76.4 65.5 58.1 37.4
KRE (Ying et al., 2023) 64.8 16.5 58.7 45.0 60.9 45.3 84.5 72.8 52.6 33.9

Decoding-Based COIECD (Yuan et al., 2024) 64.4 29.5 26.1 14.5 39.3 26.3 58.9 45.1 59.2 39.7
CAD (Shi et al., 2023a) 68.9 33.3 16.7 5.9 27.5 12.8 53.5 36.9 51.4 32.1

Training-Based
Context-DPO (Bi et al., 2024a) 64.9 31.8 44.8 28.3 50.9 31.9 66.4 52.7 56.6 37.6
CANOE (Si et al., 2025) 64.1 44.9 87.2 85.7 84.7 81.9 92.5 90.7 57.8 42.5
CLEAR(ours) 74.9 62.9 91.2 89.7 90.8 88.2 95.1 93.7 68.1 53.6

et al., 2024) and CAD (Shi et al., 2023a). For training-based methods, we compare against Con-
textDPO (Bi et al., 2024a) and CANOE (Si et al., 2025). Specifically, we partition the ConFiQA
dataset into training and test sets. All baselines that require training (including our proposed frame-
work) are trained on the ConFiQA training set, and evaluation is consistently performed on the test
set. Additional implementation details are provided in the Appendix A.2.

4.2 MAIN RESULTS

In this section, we present the main experimental results. As shown in Table 2, our proposed method
CLEAR consistently achieves state-of-the-art performance across all datasets and model backbones.
On FaithEval and ConFiQA (MC, MR, QA), CLEAR demonstrates strong generalization ability to
both factual and logical conflicts, while on SQuAD, it further shows clear improvements in tradi-
tional retrieval-augmented settings. Moreover, the consistent gains under different backbone models
(LLaMA-3.1-8B-Instruct, Qwen3-8B, and Mistral-7B-v0.3) highlight the robustness
and generalizability of our approach.

Specifically, on LLaMA-3.1-8B-Instruct, CLEAR achieves an F1 score of 74.4% and an EM
score of 64.4% on FaithEval, outperforming the strongest baseline CANOE (71.6% F1 / 56.3% EM)
by approximately +3% F1 and +8% EM. On ConFiQA sub-tasks, CLEAR improves over existing
methods by 3%–10% across MC, MR, and QA, further confirming its robustness in handling conflict
scenarios. Similarly, for Qwen3-8B, CLEAR attains 74.9% F1 and 61.6% EM on FaithEval, yield-
ing substantial gains compared with prior methods, and reaches 90.7% F1 and 89.7% EM on the MC
task, which sets a new performance benchmark. On Mistral-7B-v0.3, CLEAR achieves 74.9%
F1 / 62.9% EM on FaithEval and strong improvements across ConFiQA and SQuAD, surpassing the
best training-based baselines by a clear margin.

Taken together, these results demonstrate that CLEAR not only excels on datasets designed to eval-
uate contextual faithfulness under knowledge conflicts but also delivers significant benefits in stan-
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Table 3: Ablation study result. As shown in the figure, the ablation of each module significantly
impacts the results. Among them, the Conflict Detection module has the most substantial influence
on the entire framework.

Models Modules Faitheval ConFiQA (MC) ConFiQA (MR) ConFiQA (QA) SQuAD
F1 EM F1 EM F1 EM F1 EM F1 EM

LLaMA-3.1-8B-Instruct

CLEAR 74.4 64.4 89.2 87.7 89.7 87.0 93.1 91.7 68.4 53.3
w/o Knowledge Pruning 62.1 48.4 81.1 79.4 84.4 80.8 88.5 87.5 59.2 45.0
w/o Conflict Detection 61.7 47.6 81.4 79.3 83.9 79.9 87.6 86.4 58.1 44.1
w/o Fine-Tuning 61.5 50.9 83.8 80.4 85.0 81.0 87.5 86.4 58.2 40.2

Qwen3-8B

CLEAR 74.9 61.6 90.7 89.7 91.3 89.0 95.7 94.3 71.5 55.7
w/o Knowledge Pruning 62.6 50.9 86.1 85.3 86.7 85.2 88.8 87.8 66.3 51.3
w/o Conflict Detection 61.0 49.8 85.4 84.6 86.6 85.1 88.6 87.5 66.1 51.0
w/o Fine-Tuning 64.0 54.2 86.2 84.8 86.1 84.3 89.6 88.5 66.1 51.5

Mistral-7B-v0.3

CLEAR 74.9 62.9 91.2 89.7 90.8 88.2 95.1 93.7 68.1 53.6
w/o Knowledge Pruning 69.5 58.5 86.6 85.5 86.2 84.7 88.4 87.1 62.9 48.7
w/o Conflict Detection 68.4 56.4 85.2 84.1 84.4 82.9 87.4 86.2 61.8 47.6
w/o Fine-Tuning 69.3 57.6 88.8 86.1 86.3 81.8 81.4 77.4 59.7 49.8

dard QA tasks. The consistent improvements across multiple datasets, conflict types, and backbone
LLMs underscore the effectiveness, robustness, and general applicability of our method.

4.3 ABLATION STUDY

To assess the contribution of each component in our framework, we conducted ablation exper-
iments by individually removing the knowledge pruning, conflict detection, and Conflict-Aware
Fine-Tuning modules. The results across each benchmark are summarized in Table 3. Overall, we
observe that all three components play a non-negligible role: removing any single module consis-
tently reduces performance, typically by around 10% on both F1 and EM.

When the knowledge pruning module is removed, the model is forced to judge conflicts against every
sentence in the context. Such coarse-grained filtering leads to incomplete contextual information
and degrades the model’s ability to resolve fine-grained conflicts, thereby diminishing contextual
faithfulness. More critically, removing the conflict detection module results in the most significant
performance drop. Without explicit conflict detection, the downstream Conflict-Aware Fine-Tuning
becomes ineffective, since there are no identified conflicting items to which the model can attend,
making the training process indistinguishable from standard SFT. Finally, removing Conflict-Aware
Fine-Tuning also results in substantial degradation. Even when conflicts are annotated, the model
struggles to prioritize them during inference due to its inherent tendency to rely on its parametric
knowledge. This indicates that Conflict-Aware Fine-Tuning is essential for effectively aligning the
model’s attention to conflicting knowledge and improving contextual faithfulness.

4.4 IMPACT OF α ON ATTENTION WEIGHTS

To further investigate the effect of the hyperparameter α introduced in the Conflict-Aware Fine-
Tuning module, we conduct experiments with multiple values of α and analyze both the attention
weights assigned to conflicting knowledge and the corresponding model performance. As shown in
Figure 4, increasing α consistently raises the model’s attention to conflicting knowledge, with the
growth curve gradually flattening and stabilizing around 0.5. However, model performance does
not follow the same trend. Instead, performance peaks when α is in the range of 0.1 to 0.3, after
which it declines as α continues to increase. This observation indicates that higher attention to con-
flicting knowledge does not necessarily lead to better performance. While attending to conflicting
knowledge is crucial, the model must also balance its focus on the question itself and other rele-
vant contextual information. Excessive emphasis on conflicting knowledge can ultimately harm the
model’s ability to generate accurate answers.

5 RELATED WORK

Due to space limitations, we provide only a concise overview of the related work here, while a more
detailed discussion can be found in Appendix E.
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Figure 4: Impact of α on accuracy (blue) and attention weight on conflicting knowledge (red) across
different models. Results show that increasing α consistently increases the attention weight assigned
to conflicting knowledge. Model performance peaks at smaller α values (0.1 to 0.3) and then de-
clines, indicating that excessive focus on conflicting knowledge can negatively affect performance.

Retrieval-Augmented Generation. Retrieval-Augmented Generation (RAG) has emerged as a
prominent paradigm for enhancing the factual accuracy and temporal relevance of Large Language
Models (LLMs) by incorporating external knowledge sources. Early works such as REALM (Guu
et al., 2020c) and RAG (Lewis et al., 2020) introduced end-to-end frameworks that retrieve relevant
passages from large corpora to assist generation. Subsequent research has explored improvements
in both the retriever and generator modules, including dense retrieval techniques (Karpukhin et al.,
2020; Izacard et al., 2023), adaptive retrieval strategies (Sun et al., 2022), and hybrid models com-
bining retrieval with parametric memory (Shi et al., 2023b).

Contextual Faithfulness. Contextual faithfulness refers to the alignment between the generated
output and the provided context, which is especially critical in RAG settings. Prompt-based methods
design templates or self-reflection mechanisms to encourage faithful use of context (Asai et al., 2023;
Ying et al., 2024). Decoding-based methods modify generation strategies to enhance the influence of
the retrieved context (Yuan et al., 2024; Shi et al., 2023a). Reinforcement learning frameworks such
as CANOE (Si et al., 2025) and Context-DPO (Bi et al., 2024a) employ an end-to-end paradigm to
optimize the generation process and reward contextual faithful response.

Knowledge Conflict. Knowledge conflict refers to scenarios in RAG or related settings where
the retrieved external information contradicts a model’s internal parametric knowledge, or where
different external sources conflict with one another. Astute RAG (Wang et al., 2025a) proposes
a framework to consolidate internal and external knowledge with source-awareness and reliability
estimation; FaithfulRAG (Zhang et al., 2025b) introduces fact-level conflict modeling and a self-
thinking process to resolve contradictions; Swin-VIB (Wang et al., 2025b) uses information bottle-
neck techniques to guide preference in ambiguous conflict settings; and broader surveys like Xu
et al. (2024b) clarify conflict categories and recommend robust evaluation frameworks.

6 CONCLUSION

In this work, we tackled the persistent challenge of contextual faithfulness in RAG, with a focus
on how LLMs internally reconcile retrieved evidence with their parametric memory under knowl-
edge conflicts. Through probing-based analysis of hidden-state representations, we uncovered three
key insights: knowledge integration occurs hierarchically, conflicts are encoded as latent signals at
the sentence level, and irrelevant context can be amplified when aligned with parametric knowl-
edge. Building on these findings, we introduced CLEAR, a framework that combines fine-grained
knowledge pruning, hidden-state probing, and conflict-aware fine-tuning to enhance both robustness
and contextual fidelity. Comprehensive experiments across multiple benchmarks and large language
models demonstrate that CLEAR consistently outperforms strong baselines, achieving state-of-the-
art performance under diverse conflict conditions. Beyond advancing the accuracy of RAG systems,
our framework highlights the importance of explicitly modeling and mitigating knowledge conflicts,
offering a principled direction for future research on reliable knowledge integration in LLMs.
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7 ETHICS STATEMENT

This work does not involve any experiments with human subjects, sensitive personal data, or infor-
mation that could identify individuals. All datasets used in our experiments are publicly available
and commonly adopted in prior research. We carefully follow dataset licenses and ensure that no
proprietary or private information is disclosed. Our proposed method is designed for advancing
the understanding of retrieval-augmented generation and does not raise foreseeable risks of harmful
applications. We acknowledge potential concerns regarding bias and fairness in language models
and retrieval corpora, and we provide detailed dataset descriptions and preprocessing steps in the
appendix to facilitate transparent evaluation.

8 REPRODUCIBILITY STATEMENT

We make significant efforts to ensure the reproducibility of our work. The details of model ar-
chitectures, hyperparameters, and training settings are provided in Section 4.1 of the main paper.
Additional implementation details and full experimental setups are provided in Appendix A.2. To
further support reproducibility, we release anonymized source code and configuration files as sup-
plementary materials. Together, these resources allow researchers to fully reproduce our results and
extend our findings.
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A FREQUENTLY ASKED QUESTIONS (FAQS)

A.1 ALGORITHMIC DESCRIPTION OF CLEAR

The following presents the algorithmic description of the CLEAR framework, which is implemented
as a three-step pipeline. First, the retrieved context is decomposed into fine-grained knowledge,
from which the most relevant ones are selected based on query–knowledge similarity. Second,
a hidden-state probing classifier detects conflicts between the selected knowledge and the model’s
internal knowledge, and conflicting knowledge is explicitly annotated with special tokens. Third, we
introduce conflict-aware supervised fine-tuning (CA-SFT), which reinforces the model’s attention on
the annotated conflict tokens by incorporating an auxiliary attention-guidance loss into the training
objective. The fine-tuned model then generates the final answer conditioned on the pruned and
annotated context, enabling more faithful response generation.

Input: Question Q, retrieved context D = {d1, d2, . . . , dn}, model M
Output: Answer A

Step 1: Fine-Grained Knowledge Pruning
Decompose retrieved context into atomic knowledge:

{K1,K2, . . . ,Km} = Decompose(D)

Compute similarity between query and each knowledge item:

f(Q,Ki) = ⟨Enc(Q), Enc(Ki)⟩

Select top-k knowledge items by similarity:

D′ = {K ′
1,K

′
2, . . . ,K

′
k}

Step 2: Hidden-State Probing for Conflict Detection
foreach K ′

i ∈ D′ do
Obtain hidden representation from frozen model:

hi = M(K ′
i) ∈ RdM

Classify conflict via probing model P:

yi = P(hi) ∈ {0, 1}

if yi = 1 then
Mark K ′

i with special tokens ⟨conflict⟩K ′
i⟨/conflict⟩

end
end
Step 3: Conflict-Aware Supervised Fine-Tuning (CA-SFT)
foreach conflicting knowledge item K ′

i do
Identify token positions S = {j | xj ∈ T (i)}
Compute attention-guidance loss:

LAttn =
1

|P |
∑

(i,j)∈P

(1− αij), P = {(i, j) | i ≥ j; j ∈ S}

end
Combine with language modeling loss:

LTotal = (1− λ)LLM + λLAttn

Final Answer Generation
Generate final answer A using fine-tuned model MCA-SFT conditioned on pruned and
annotated context D′.

Algorithm 1: CLEAR: Conflict-Localized and Enhanced Attention for RAG
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Figure 5: Context decomposition prompt used in the Fine-Grained Knowledge Pruning module.

A.2 IMPLEMENTATION DETAILS

Detail of CLEAR. For the implementation of CLEAR, we configure the experimental settings as
follows. In the Fine-Grained Knowledge Pruning module, we employ gpt-3.5-turbo to decompose
the retrieved context into fine-grained knowledge using the prompt template illustrated in Figure 5.
We then compute semantic similarity among the decomposed knowledge with all-MiniLM-L6-v2
and retain the top-10 most relevant knowledge item.

In the Hidden-State Probing for Conflict Detection module, the selected knowledge items are fed
into the model, from which we extract hidden states of the decoder. These representations are passed
to a trained MLP-based probe for binary classification. The probe consists of three fully connected
layers with ReLU activation, followed by a sigmoid normalization. For training, we sample 1,000
instances with a learning rate of 0.001 and train the probe for 10 epochs.

For the Conflict-Aware Fine-Tuning module, we set the weighting hyperparameter λ = 0.1. On
the ConFiQA dataset, we allocate 13,500 instances for training (with 4,500 samples each from the
MC, MR, and QA subsets), while the remaining data are reserved for evaluation. We fine-tune the
model using LoRA, where the rank r is set to 16, the scaling factor α to 16, and the learning rate to
3×10−5, training for a total of 5 epochs. Finally, during inference, we set the temperature parameter
to 0 to ensure reproducibility of results.

Detail of Baseline. For all baselines reported in the main experiments, we adopt a sampling tem-
perature of 0 and a maximum generation length of 128 tokens. For CAD, we set the hyperparameter
α = 0.9. For all prompt-based methods, we directly employ the prompt templates provided in the
original papers. For all training-based methods, we use the same training data as CLEAR, sam-
pled from ConFiQA. Specifically, for Context-DPO, we apply the same LoRA configuration during
training. For CANOE, we follow the original training setup and perform full-parameter fine-tuning
on four NVIDIA A100 GPUs.

Detail of Ablation Study. For the w/o Knowledge Pruning variant, we partition the input context
directly into sentences and subsequently apply the conflict detection module to determine whether
each sentence conflicts with the model’s parametric knowledge. For the w/o Conflict Detection
variant, we fine-tune the model using the decomposed knowledge directly. Since conflicting knowl-
edge is not explicitly identified, only the loss term LLM is active during CA-SFT fine-tuning. For
the w/o CA-SFT variant, we remove the LAttn term, which reduces the training objective to standard
SFT without attention-level supervision.
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Table 4: Supplementary experimental results on additional model architectures.

Method FaithEval ConFiQA (MC) ConFiQA (MR) ConFiQA (QA) SQuAD

F1 EM F1 EM F1 EM F1 EM F1 EM

LLaMA-2-7B-Chat-HF
Context-DPO 63.2 50.7 57.9 32.0 58.5 32.7 73.7 64.7 62.4 41.8
CANOE 70.6 52.3 73.9 70.2 75.2 72.6 74.3 72.7 63.2 45.6
CLEAR 68.3 54.4 79.1 69.7 80.2 77.0 86.1 81.7 65.4 52.1

Qwen2.5-7B-Instruct
Context-DPO 65.1 50.2 62.7 53.7 71.1 58.8 75.0 66.3 55.2 36.4
CANOE 68.1 53.9 68.7 61.1 71.7 67.8 70.6 66.9 59.4 41.3
CLEAR 63.5 48.9 88.8 86.2 89.6 86.2 94.3 91.5 61.6 46.2

Table 5: Accuracy and Attention Weight across different α values for three models.

α
LLaMA-3.1-8B-Instruct Qwen3-8B Mistral-7B-v0.3

Accuracy Attention Accuracy Attention Accuracy Attention

0.0 0.552 0.020 0.512 0.115 0.631 0.070
0.1 0.644 0.105 0.604 0.022 0.663 0.193
0.2 0.632 0.188 0.573 0.195 0.598 0.203
0.3 0.635 0.231 0.639 0.283 0.559 0.211
0.4 0.554 0.331 0.495 0.415 0.611 0.314
0.5 0.482 0.442 0.443 0.390 0.538 0.463
0.6 0.333 0.464 0.430 0.381 0.289 0.543
0.7 0.201 0.483 0.153 0.474 0.171 0.549
0.8 0.214 0.481 0.211 0.444 0.117 0.459
0.9 0.210 0.464 0.207 0.457 0.194 0.538

B ADDITIONAL EXPERIMENT

B.1 ADDITIONAL MODEL ARCHITECTURE FOR MAIN EXPERIMENT

Table 4 presents supplementary results on two additional model architectures, LLaMA-2-7B-Chat-
HF and Qwen2.5-7B-Instruct, evaluated across multiple benchmarks. Consistent with the main
findings, CLEAR demonstrates notable improvements over both Context-DPO and CANOE, partic-
ularly on conflict-sensitive datasets such as ConFiQA and FaithEval. For LLaMA-2-7B-Chat-HF,
CLEAR achieves the highest scores on most ConFiQA variants, while also maintaining competitive
performance on FaithEval and SQuAD.

On Qwen2.5-7B-Instruct, the advantage of CLEAR becomes even more pronounced: it consistently
outperforms both baselines across all ConFiQA settings, with substantial gains in F1 and EM. Al-
though CANOE occasionally remains competitive on less conflict-intensive benchmarks, CLEAR
shows strong generalization in resolving conflicting knowledge. These results confirm that the effec-
tiveness of CLEAR extends beyond a single backbone, underscoring its robustness across different
instruction-tuned LLMs.

B.2 SUPPLEMENTARY EXPERIMENTAL RESULTS ON ATTENTION ANALYSIS

Table 5 reports the detailed numerical results corresponding to Figure 4, including both the model
accuracy and the attention weight assigned to conflicting knowledge across different values of α
for LLaMA-3.1-8B-Instruct, Qwen3-8B, and Mistral-7B-v0.3. Consistent with the trends shown in
the figure, attention weights increase steadily with larger α, saturating around α = 0.5. In contrast,
accuracy peaks within a smaller range of α (0.1–0.3) and then declines as α continues to grow. These
results highlight that while higher α values encourage stronger focus on conflicting knowledge, this
emphasis can come at the cost of overall performance. The tabulated results thus provide a more
fine-grained view of the trade-off between model attention allocation and accuracy under varying α
values.
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Table 6: Case Study. This table displays the knowledge extracted from the context and the results
of identifying knowledge conflicts. Based on the conflicting knowledge, the model can correctly
answer questions (even when the golden answer is counterfactual).

Question A group of engineers wanted to know how different building designs would respond during an
earthquake. They made several models of buildings and tested each for its ability to withstand
earthquake conditions. Which will most likely result from testing different building designs?

Context Seismic testing of building models is crucial for understanding how structures will behave dur-
ing earthquakes. Engineers approach these tests with a myriad of designs, each aiming to im-
prove certain aspects of building performance, such as safety, aesthetic appeal, and construction
speed...

Knowledge
Extracted

(1) Seismic testing of building models is crucial for understanding structural behavior during
earthquakes.
(2) Engineers approach tests with a myriad of designs aiming to improve safety, aesthetic ap-
peal, and construction speed.
(3) ⟨conflict⟩ Implementation of efficient techniques can enhance building times by up to
30%. ⟨/conflict⟩
(4) Seismic testing aligns efficiency with safety in contemporary civil engineering practices.
(5) ⟨conflict⟩ Speed of construction is a dominant benefit of testing building designs un-
der earthquake simulation conditions. ⟨/conflict⟩
(6) Optimization of construction speed guarantees resilience and rapid realization of new build-
ings through continued innovation and testing.
...

Model Answer Buildings will be built faster.

C CASE STUDY

In this section, we present a case study to further illustrate how our proposed framework CLEAR
enforces contextual faithfulness under knowledge conflicts. We conduct the analysis on the Faithe-
val dataset using the LLaMA-3.1-8B-Instruct model, and the results are shown in Table 6.
CLEAR first decomposes the retrieved context into fine-grained knowledge, followed by filtering
and conflict detection. As indicated in the table, the context explicitly states that construction speed
is the dominant benefit of seismic testing, whereas the model’s prior knowledge typically associates
seismic testing with structural safety. Through our conflict detection probe, CLEAR successfully
identifies such conflicts and, with the aid of CA-SFT, reinforces the model’s attention to the con-
flicting knowledge (3) and (5). As a result, CLEAR generates the correct answer, “Buildings will
be built faster,” which faithfully reflects the contextual evidence rather than relying on the model’s
internal knowledge. This case study highlights the effectiveness of our framework in ensuring con-
textual faithfulness in scenarios involving knowledge conflicts.

D LIMITATIONS

While CLEAR demonstrates strong improvements in textual RAG scenarios, its applicability to mul-
timodal RAG systems remains limited. The current framework is designed around sentence-level
textual decomposition and hidden-state probing, which are not directly transferable to modalities
such as images, audio, or structured data. In multimodal contexts, knowledge conflicts may mani-
fest in non-textual representations, requiring new strategies for knowledge decomposition, conflict
detection, and attention guidance. Extending CLEAR to handle heterogeneous modalities would
thus require substantial redesign of its probing mechanism and fine-tuning objectives, which we
leave as an important direction for future research.

E RELATED WORK

In this appendix, we provide an extended review of related work on RAG, contextual faithfulness,
and knowledge conflict, complementing the concise overview in Section 5.
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Retrieval-Augmented Generation RAG has become a cornerstone paradigm for improving the
factual reliability and adaptability of LLMs by explicitly integrating external information during
the generation process. Early contributions such as REALM (Guu et al., 2020c) and RAG (Lewis
et al., 2020) pioneered the idea of end-to-end frameworks in which a retriever component selects
relevant passages from large-scale corpora, which are then consumed by a generator to produce re-
sponses grounded in retrieved evidence. This framework demonstrated clear advantages over purely
parametric models, particularly in tasks requiring factual precision or knowledge of recent events.

Following these foundational works, the research community has proposed a series of improve-
ments targeting both the retriever and generator components. For retrieval, dense retrieval meth-
ods (Karpukhin et al., 2020; Izacard et al., 2023) introduced learned embeddings that outperform
traditional sparse methods (e.g., BM25) in capturing semantic relevance. Subsequent refinements
incorporated multi-vector representations (Santhanam et al., 2021), passage reranking (Nogueira &
Cho, 2019), and adaptive retrieval strategies (Sun et al., 2022), where the retrieval budget is dynam-
ically allocated based on the complexity of the query or the uncertainty of the model’s predictions.

On the generator side, works have explored how to more effectively incorporate retrieved passages
during decoding. FiD (Fusion-in-Decoder) (Izacard & Grave, 2020) demonstrated the effectiveness
of late-fusion mechanisms, where a Transformer decoder attends jointly over multiple retrieved
documents. Later works extended this paradigm with hierarchical fusion (Ram et al., 2023), sparse
attention mechanisms (Shuster et al., 2022), and multi-hop retrieval pipelines (Xu et al., 2023).
Hybrid models such as RePlug (Shi et al., 2023b) and Retro (Borgeaud et al., 2022) further integrated
retrieval into pretraining or finetuning pipelines, blending parametric and non-parametric memories
to achieve both scalability and factual accuracy. More recently, adaptive frameworks (Chen et al.,
2024) proposed fine-grained controls over how retrieval signals are weighted depending on task
type, query ambiguity, or user intent.

In addition to architectural innovations, researchers have also investigated the evaluation and ef-
ficiency of RAG systems. Benchmarks such as KILT (Petroni et al., 2020) and ELI5 (Fan et al.,
2019) standardized evaluation across knowledge-intensive tasks, while efficiency-focused studies
(Guu et al., 2020b) highlighted the trade-off between retrieval accuracy, latency, and resource con-
sumption.

Contextual Faithfulness Contextual faithfulness, defined as the degree to which model outputs
remain consistent with retrieved or provided context, has emerged as a central concern in RAG
research. Without explicit mechanisms to enforce faithfulness, models may hallucinate, overgener-
alize, or generate outputs inconsistent with retrieved passages.

Prompt-based methods were among the earliest to address this challenge. Self-RAG (Asai et al.,
2023) introduced self-reflection mechanisms, where models generate justifications for retrieved con-
tent and use these to re-ground their outputs. Template-based prompting approaches (Ying et al.,
2024) designed structured query-response formats to encourage explicit grounding, though such
methods often struggle with generalization across tasks.

Decoding-based approaches tackle faithfulness by modifying the generation process itself. Con-
trastive Decoding (Yuan et al., 2024) and Context-Aware Decoding (CAD) (Shi et al., 2023a) ex-
plicitly re-weight token probabilities during beam search to favor outputs aligned with retrieved con-
text. Similarly, likelihood re-ranking techniques (Zhang et al., 2024) compare candidate responses
against retrieved evidence to penalize hallucinations. These approaches maintain the flexibility of
generation while reducing unfaithful responses.

Reinforcement learning (RL) has also been extensively applied to enhance contextual faithfulness.
CANOE (Si et al., 2025) integrates reward models that explicitly score the grounding of responses
in retrieved passages. Context-DPO (Bi et al., 2024a) extends direct preference optimization to
context-aware settings, allowing LLMs to directly learn from pairwise comparisons of faithful ver-
sus unfaithful outputs. Such RL-based frameworks emphasize end-to-end optimization, reducing
reliance on handcrafted prompts or decoding heuristics.

Beyond methodological innovations, recent surveys (Zhou et al., 2023b; Ji et al., 2023) highlight per-
sistent challenges in faithfulness evaluation. Automatic metrics such as factual consistency (Thorne
et al., 2018) or entailment-based scores (Falke et al., 2019; Guo et al., 2023) provide useful proxies
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but often fail to capture nuanced inconsistencies or omissions. Consequently, many works advocate
for human-in-the-loop evaluation frameworks to assess contextual grounding at scale.

Knowledge Conflict Knowledge conflict arises when the retrieved evidence contradicts either the
model’s internal parametric memory or other retrieved documents, creating ambiguity in determin-
ing which knowledge to trust. This problem is particularly acute in dynamic knowledge environ-
ments, where information evolves over time or when sources exhibit bias or factual inconsistency.

A growing body of work has investigated mechanisms to detect, represent, and resolve knowledge
conflicts. Astute RAG (Wang et al., 2025a) introduces a source-aware retrieval module, leveraging
reliability estimation to assess which sources are more trustworthy in the face of contradictions.
FaithfulRAG (Zhang et al., 2025b) explicitly models fact-level conflicts, decomposing retrieved
evidence into atomic claims and guiding the generation process through a self-thinking phase that
resolves inconsistencies.

Alternative approaches focus on information-theoretic principles. Swin-VIB (Wang et al., 2025b),
for example, applies a variational information bottleneck to modulate the trade-off between fidelity
to retrieved evidence and reliance on internal knowledge, thereby accommodating conflicts in a
principled manner. Other works (Xu et al., 2024b) propose categorizing conflicts into types—such
as temporal drift, factual contradiction, or perspective variance—and tailoring resolution strategies
accordingly.

Recent research also extends conflict resolution beyond the text domain. Multimodal RAG systems
(Gao et al., 2023; Xu et al., 2024c) face analogous challenges, as retrieved visual or audio evidence
may not align with textual outputs. This motivates broader frameworks for consistency checking
across modalities. Furthermore, evaluation efforts (Xu et al., 2024b) emphasize the need for stan-
dardized benchmarks that explicitly include conflict scenarios, enabling more systematic analysis of
models’ conflict-handling behaviors.

In summary, while significant progress has been made, knowledge conflict remains an open problem.
Robust handling of contradictory information is critical not only for improving factual accuracy but
also for building user trust in RAG-based systems deployed in real-world applications.

F THE USE OF LARGE LANGUAGE MODELS

In preparing this paper, we made limited use of Large Language Models (LLMs). Specifically,
LLMs were employed for two purposes: (i) to aid in polishing the writing by improving gram-
mar, readability, and clarity without altering the scientific content, and (ii) to assist in retrieval and
discovery tasks, such as identifying and organizing related work. No LLMs were used for generat-
ing novel research ideas, designing experiments, or analyzing results. All conceptual and technical
contributions presented in this paper are the sole work of the authors.
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