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Abstract

The advancement of autonomous driving is increasingly reliant on high-quality1

annotated datasets, especially in the task of 3D occupancy prediction, where the2

occupancy labels require dense 3D annotation with significant human effort. In3

this paper, we propose SytheOcc, which denotes a diffusion model that Synthesize4

photorealistic and geometric-controlled images by conditioning Occupancy labels5

in driving scenarios. This yields an unlimited amount of diverse, annotated, and6

controllable datasets for applications like training perception models and simu-7

lation. SyntheOcc addresses the critical challenge of how to efficiently encode8

3D geometric information as conditional input to a 2D diffusion model. Our ap-9

proach innovatively incorporates 3D semantic multi-plane images (MPIs) to pro-10

vide comprehensive and spatially aligned 3D scene descriptions for conditioning.11

As a result, SyntheOcc can generate photorealistic multi-view images and videos12

that faithfully align with the given geometric labels (semantics in 3D voxel space).13

Extensive qualitative and quantitative evaluations of SyntheOcc on the nuScenes14

dataset prove its effectiveness in generating controllable occupancy datasets that15

serve as an effective data augmentation to perception models.16

1 Introduction17

With the rapid development of generative models, they have shown realistic image synthesis and18

diverse controllability. This progress has opened up new avenues for dataset generation in autonomous19

driving [5, 12, 23, 30]. The task of dataset generation is usually modeled as controllable image20

generation, where the ground truth (e.g. 3D Box) is employed to control the generation of new datasets21

in downstream tasks (e.g. 3D detection). This approach helps to mitigate the data collection and22

annotation effort as it can generate labeled data for free. However, a novel task of vital importance,23

occupancy prediction [24, 27], poses new challenges for dataset generation compared with 3D24

detection. It requires finer and more nuanced geometry controllability, which refers to use the25

occupancy state and semantics of voxels in the whole 3D space to control the image generation.26

We argue that solving this problem not only allows us to synthesize occupancy datasets, but also27

empowers valuable applications such as editing geometry to generate rare data for corner case28

evaluation, as shown in Fig. 1. In the following, we first illustrate why prior work struggles to achieve29

the above objective, and then demonstrate how we address these challenges.30

In the area of diffusion models, several representative works have displayed high-quality image31

synthesis; however, they are constrained by limited 3D controllability: they are incapable of editing 3D32

voxels for precise control. For example, BEVGen [23] generates street view images by conditioning33

BEV layouts using diffusion models. MagicDrive [5] extend BEVGen and additionally converts the34

3D box parameters into text embedding through Fourier mapping that is similar to NeRF [19], and35

uses cross-attention to learn conditional generation. Although these methods achieve satisfactory36

results in image generation, their 3D controllability is inherently limited. These approaches are37
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Figure 1: A showcase of application of SytheOcc. We enable geometric-controlled generation that
conveys the user editing in 3D voxel space to generate realistic street view images. In this case, we
create a rare scene that traffic cones block the way. This advancement facilitates the evaluation of
autonomous systems, such as the end-to-end planner VAD [9], in simulated corner case scenes.

restricted to manipulating the scene in types of 3D boxes and BEV layouts, and hardly adapt to finer38

geometry control such as editing the shape of objects and scenes. Meanwhile, they usually convert39

conditional input into 1D embedding that aligns with prompt embedding, which is less effective in40

3D-aware generation due to lack of spatial alignment with the generated images. This limitation41

hinders their utility in downstream applications, such as occupancy prediction and editing scene42

geometry to create long-tailed scenes, where granular volumetric control is paramount in both tasks.43

ControlNet [41] and GLIGEN [14] is another type of prominent method in the field of controllable44

image generation. These approaches exhibit several desirable attributes in terms of controllability.45

They leverage conditional images such as semantic masks for control, thereby offering a unified46

framework to manipulate both foreground and background. However, despite its precise spatial47

control, ControlNet does not align with our specific requirements. Their conditions of pixel-level48

images differ fundamentally from what we require in 3D contexts. Our experimental results also find49

that ControlNet struggles to handle overlapping objects with varying depths (see Fig. 6 (a)), as it only50

utilizes an ambiguous 2D semantic map as conditional input. As a result, it is non-trivial to extend51

the ControlNet framework and convey their desirable attributes for 3D conditioning.52

To address the above challenges, we propose an innovative representation, 3D semantic multi-plane53

images (MPIs), which contribute to image generation with finer geometric control. In detail, we54

employ multi-plane images [43] to represent the occupancy, where each plane represents a slice of55

semantic label at a specific depth. Our 3D semantic MPIs not only preserve accurate and authentic 3D56

information, but also keep pixel-wise alignment with the generated images. We additionally introduce57

the MPI encoder to encode features, and the reweighing methods to ease the training with long-tailed58

cases. As a collection, our framework enables 3D geometry and semantic control for image generation59

and further facilitates corner case evaluation as depicted in Fig. 1. Finally, experimental results60

demonstrate that our synthetic data achieve better recognizability, and are effective in improving the61

perception model on occupancy prediction. In summary, our contributions include:62

• We present SytheOcc, a novel image generation framework to attain finer and precise 3D63

geometric control, thereby unlocking a spectrum of applications such as 3D editing, dataset64

generation, and long-tailed scene generation.65

• Incorporating the proposed 3D semantic MPI, MPI encoder, and reweighing strategy, we66

deliver a substantial advancement in image quality and recognizability over prior works.67

• Our extensive experimental results demonstrate that our synthetic data yields an effective68

data augmentation in the realm of 3D occupancy prediction.69

2 Related Work70

2.1 3D Occupancy Prediction71

The task of 3D occupancy prediction aims to predict the occupancy status of each voxel in 3D space,72

as well as its semantic label if occupied. Compared with previous perception methods like 3D object73
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detection, occupancy prediction offers a more detailed and nuanced understanding of the environment,74

as it provides finer geometric details, is capable of handling general, out-of-vocabulary objects, and75

finally, enriches the planning stack with comprehensive 3D information. Early methods exploited76

LiDAR as inputs to complete the 3D occupancy of the entire 3D scene [18, 33]. Recent methods77

began to explore the more challenging vision-based 3D occupancy prediction [24, 25, 27, 29]. By78

predicting the geometric and semantic properties of both dynamic and static elements, 3D occupancy79

prediction offers a more comprehensive understanding of the surrounding environment.80

2.2 Diffusion-based Image Generation81

Recent advancements in diffusion models (DMs) have achieved remarkable progress in image82

generation. In particular, Stable Diffusion (SD) [21] employs DMs within the latent space of83

autoencoders, striking a balance between computational efficiency and high image quality. Beyond84

text control, there is also the introduction of additional control signals. A noteworthy work is85

ControlNet [41], which incorporates a trainable copy of the SD encoder to extract the feature of86

conditional images and adds it to the UNet feature. It significantly enhances the controllability and87

unlocking pathways for advanced applications. We refer readers to recent survey [35] for more details.88

2.3 Image Generation in Autonomous Driving89

As training neural networks relies heavily on labeled data, numerous studies are delving into dataset90

generation to boost training. Lift3D [12] designs generative NeRF to synthesize labeled datasets91

for 3D detection for the first time. Several other works employ BEV layouts to synthesize image92

data, proving beneficial for perception models. For example, BEVGen [23] conditions BEV layouts93

to generate multi-view street images, while BEVControl [34] separately generates foregrounds and94

backgrounds from BEV layouts. MagicDrive [5] generates images with 3D geometry controls by95

independently encoding objects and maps through a text encoder or map encoder. Compared with96

MagicDrive, our geometry control is characterized by a more detailed and lossless representation of97

3D scenes for control, which poses significant challenges than projected layout or box embedding.98

Recently, DriveDreamer [26], DrivingDiffusion [13], Drive-WM [28] and Panacea [30] use a Con-99

trolNet framework, which involves projecting bounding boxes and road maps onto 2D FoV images as100

a conditioning input. This approach has proven to be effective for geometric control. However, it is101

limited in that it only achieves alignment at the 2D-pixel level. Consequently, this method falls short102

in capturing the depth hierarchy and fails to account for the occlusion relationships present in the 3D103

real world. Besides, adding a depth channel like Panacea [30] may address the limitations of depth104

order, but it discards the occluded part and only contains partial observation. UrbanGiraffe [37] train105

a generative NeRF to perform image generation. WoVoGen [17] creates a 4D world volume feature106

using occupancy to guide the generation, but seems to rely on object mask guidance.107

As described above, most of the prior work is restricted by only modeling a projected primitive of 3D108

boxes and road maps as conditions. They suffer from ill-posed un-projection ambiguity. In contrast,109

we model 3D occupancy labels as conditions, as they provide finer geometric details and semantic110

information. However, designing an input representation of 3D occupancy labels into a 2D diffusion111

model is challenging. In this paper, we propose a novel representation: 3D semantic Multi-Plane112

Images (MPIs) as conditional inputs, which not only provide spatial alignment that improves visual113

consistency, but also encode comprehensive 3D geometric information including occluded parts.114

3 Method115

Overview The overview of our method is depicted in Fig. 2. Built upon the SD pipeline, we116

aim to perform geometry-controlled image generation by conditioning on 3D geometry labels with117

semantics (occupancy labels). One requirement is that the images should faithfully align with the118

given label. This task is more challenging than conditioned on 3D box due to the sparse and irregular119

nature of occupancy. We first discuss how to efficiently represent occupancy in Sec. 3.2, followed120

by our designed MPI encoder to enhance generation quality in Sec. 3.3, and reweighing strategy to121

handle the long-tailed depth and category in Sec. 3.5.122

3.1 Representation of Condition: Local Control Aligns Better than Global Control123

One of the key challenges is how to represent our conditional occupancy input. A straightforward124

method [3, 5] is to convert the 3D occupancy voxel to 1D global embedding that is similar to text125

embedding, and then use cross-attention to learn controllable generation. However, these global126

methods can be less effective when dealing with dense or irregular data due to the following reasons:127
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Figure 2: The overall architecture of SytheOcc. We achieve 3D geometric control in image generation
by utilizing our proposed 3D semantic multiplane images to encode scene occupancy. In our
framework, we can edit the occupied state and semantics of every voxel in 3D space to control the
image generation, thereby opening up a wide spectrum of applications as shown in the top right.

(i) They perform controllable generation through hard encoding the spatial relationship between 1D128

global embedding and 2D UNet features. (ii) Ignore the underlying geometry alignment between the129

conditional input and the generated image. In contrast, local methods like ControlNet, directly add130

spatial features to the UNet features, providing 2D local control with pixel-level spatial alignment.131

They are better than the global method (see Tab. 1), but suffer from 3D ambiguity (see Fig. 6 (a)).132

Consequently, this comparison motivates us to seek a more compact and efficient manner to encode133

and condition our 3D occupancy labels.134

3.2 Represent Occupancy as 3D Semantic Multiplane Images135

It is non-trivial to design a 3D representation for conditioning. To efficiently store both the semantic136

and geometric information of the irregular occupancy input, we propose to use multiplane images137

(MPIs) [43] as representation. An MPI is composed of a series of fronto-parallel RGBA layers within138

the frustum of the source camera with a specific viewpoint. These planes are arranged at varying139

depths, from dmin to dmax, starting from the nearest to the farthest. Each layer of these images140

contains both an RGB image and an alpha map, which collectively capture the visual and geometric141

details of the scene at the respective depth. In our work, instead of storing RGB value and alpha map142

in the original MPI, we store our 3D semantic labels. Each layer of MPI represents the semantic143

index at the corresponding depth. We display the colored MPI in the top row of Fig. 2 for visual144

clarity, but we actually use the integer index for learning. We obtain our 3D semantic MPI by:145

Pl = (u× dl, v × dl, dl)
T , dl = dmin + (dmax − dmin)× l/D, (1)

MPIn,l = Interpolate(Occupancy, Tn ·K−1
n · Pl), (2)

MPI = Concatenate(MPIi,j), i ∈ (0, N), j ∈ (0, D), (3)

where (u, v) is a pixel coordinate in image space, dl is depth value of the lth layer, n denotes the nth146

camera view. This equation implies we first back project points P in camera frustum space (u, v, d)147

to Euclid space (x, y, z) by multiplying inverse intrinsic K−1. Then we use transformation matrix T148

to map points from camera coordinates to occupancy coordinates. We then use the point coordinates149

to interpolate the nearest semantic index from the dense occupancy voxel to form a slice of MPI.150

Finally, we concatenate all slices to form MPI ∈ RN×D×H×W , where D is the number of layers that151

is set at 256, N is the number of camera views in the case of batch size = 1.152

By representing occupancy as 3D semantic MPI, every pixel in MPI contains geometry and semantic153

information with implicit depth, seamlessly integrating occluded elements, and ensuring a precise154

spatial alignment with the generated images.155

3.3 3D Semantic MPI Encoder156

To enable local control with spatially aligned conditions, we develop a simple but effective MPI157

encoder that aligns the 3D multi-plane feature to the latent space of the diffusion model. The158

purpose of the MPI encoder is to obtain features from multi-plane images to perform 3D-aware159
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Figure 3: Visualizations of geometric controlled generation. Top row: Fusion of 3D semantic MPI.
Bottom row: our generation concatenated from neighboring views.

image synthesis. Unlike the original ControlNet which downsampling conditional input through 3×3160

convolutions with padding, we design a 1×1 convolutional encoder without downsampling to encode161

features. In detail, the 3D multiplane features which have the sample resolution with latent features,162

are transformed by a 1×1 convolution layer and ReLU activation [1] in the MPI encoder.163

After obtaining the multi-scale feature after the MPI encoder, we add the feature to the decoder of164

diffusion UNet to provide spatial features. Experimental results in Tab. 3 will show that our 1×1 conv165

in MPI encoder is more effective than 3×3 conv, as the 1×1 conv with receptive field = 1 provides a166

spatial align feature to the latent feature in the diffusion UNet. In contrast, 3×3 conv is conducted167

in a camera frustum space rather than Euclid space, making an imprecise correspondence between168

3D multiplane features and 2D image features. Moreover, using 3×3 conv to process 3D semantic169

MPI will introduce a large computational burden as the channel number increases from 3 channels of170

RGB to 256 planes. We display our 3D geometry and semantic control property in Fig. 3.171

In summary, we chose MPIs as the representation because they (i) Incorporate lossless 3D information,172

including scene geometry rather than 2.5D depth. (ii) Provide spatially aligned conditional features173

that naturally extend the ControlNet framework from image level to 3D level. (iii) Capable of174

representing geometry and semantics including occluded elements.175

3.4 Cross-View and Cross-Frame Attention176

The sensor arrangement in a self-driving car usually requires a full surround view of cameras to capture177

the entire 360-degree environment. To effectively simulate the multi-view and subsequent multi-frame178

generation, zero-initialized [41] cross-view and cross-frame attention are integrated into the diffusion179

model to maintain consistency between views and frames. Following prior work [5, 28, 30, 31],180

each cross-view attention allows the target view to access information from its neighboring left and181

right views, thus training cross-view attention using multi-view consistent images will enforce it to182

generate the same instance in the overlapping region of multi-view cameras.183

Attention(Q,K, V ) = softmax(QKT

√
d
) · V , (4)

hout = hin +
∑

i∈{l,r}Attention(Qin,Ki, Vi), (5)

where l, and r is the camera view of left and right. Qin and hin denotes the query and the hidden184

state of input view. Similarly, we add cross-frame attention that attend previous frame and future185

frame to enable video generation. In this case, we use the same formulation while i ∈ {f, h}, where186

f and h is the camera view of future and history frames.187

3.5 Importance Reweighing188

0 200 400 600 800 1000

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00m = 3, n = 700
m = 3, n = 1000
m = 2, n = 1000

Figure 4: Visualizations of the reweighing
function in Eq. 6.

To deal with the extreme imbalance problem between189

foreground, background, and object categories, and190

also to ease the training, we propose three types of191

reweighting methods to improve the generation quality192

of foreground objects.193

Progressive Foreground Enhancement To miti-194

gate the complexity of the learning task, we propose a195

progressive reweighting method that incrementally en-196

hances the loss associated with the foreground regions197

(based on semantic class) as the training progresses.198

The detailed formulation is:199

w(x,m, n) =
(m− 1)

2
·(1+cos(

x

n
·π+π))+1, (6)
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(a) Top: Fusion of 3D semantic MPI. Bottom: GT

(b) Generation1: Ordinary scenes. Red rectangle denotes geometry alignment of trees

(c) Generation2, Weather variation: Snow (top) and Sandstorm (bottom) 

(d) Generation3, Style control: Minecraft style (top) and Diablo style (bottom) 

CAM_FRONT_LEFT CAM_FRONT CAM_FRONT_RIGHT CAM_BACK_RIGHT CAM_BACK CAM_BACK_LEFT

Figure 5: Visualizations of generated multi-view images. The generation conditions (occupancy
labels) are from nuScenes validation set. We highlight that (i) Geometry alignment of trees in red
rectangle in (b). (ii) Use text prompt to control high-level appearance in (c,d).

where x is the current training step, m is the maximum value of weights that set at 2, and n is the200

total training steps. This approach is engineered to facilitate a learning trajectory that progresses201

from simplicity to complexity, thereby aiding in the convergence of the model. This curve can be202

interpreted as a cosine annealing but inverted to amplify the importance of the foreground region.203

Depth-aware Foreground Reweighing In the meantime, we acknowledge the learning difficulty204

in different depth places in 3D scenes. Following GeoDiffusion [3], we perform depth reweighing to205

foreground objects by adaptively assigning higher weights to farther foreground areas. This enables206

the model to focus more thoroughly on hard examples with depth-aware importance reweighting.207

Instead of using their exponential function to increase weights, we use our designed cosine function208

Eq. 6 for stability. Here x is the input depth value, and n is the maximum depth that set at 50.209

CBGS Sampling To deal with the class imbalance problem in driving scenarios, where cer-210

tain object categories appear infrequently, we employ the Class-Balanced Grouping and Sampling211

(CBGS) [44] to better handle the long-tailed classes. CBGS addresses the challenge of class imbal-212

ance by grouping and re-sampling training data to ensure each group has a balanced distribution of213

sample frequency across different object categories. This method reduces the bias towards more214

frequent classes and enables better generalization to rare scenarios.215

3.6 Model Training216

To ease the training of the MPI encoder and added attention module, we use a two stage training217

pipeline. We first train MPI encoder and cross-view attention in a multi-view image generation setting.218

Then we train cross-frame attention and freeze other components in a video generation setting.219
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Oracle (FB-Occ [15]) Real Real 39.3 45.4 28.2 44.1 49.4 25.9 28.8 28.0 27.7 32.4 37.3 80.4 42.2 49.9 55.2 42.0 37.7
SytheOcc-Aug Real+Gen Real 40.3 45.4 27.2 46.6 49.5 26.4 27.8 28.4 29.4 34.0 37.2 81.3 46.0 52.4 56.5 43.3 38.9

MagicDrive Real Gen 13.4 0.7 0.0 11.8 32.4 0.0 6.6 2.8 0.3 2.6 19.6 60.1 12.1 26.2 23.4 15.5 12.8
ControlNet Real Gen 17.3 17.7 0.2 13.6 21.0 0.6 0.8 8.6 10.4 6.9 11.9 67.4 18.8 36.4 36.9 20.8 22.4
ControlNet+depth Real Gen 17.5 19.3 0.3 14.0 23.7 1.0 0.6 9.2 9.2 5.7 12.1 68.8 19.2 36.0 35.3 19.8 22.8
SytheOcc-Gen Real Gen 25.5 32.6 13.8 27.7 33.4 7.5 6.5 15.7 16.5 16.5 25.6 74.3 24.5 39.4 40.5 28.6 28.8

Table 1: Downstream evaluation on the nuScenes-Occupancy validation set. Based on the used train
and val data, two types of settings are reported. The first is to use generated training set to augment the
real training set, and evaluate on the real validation set, denoted as Aug. The second is to use pretrained
models trained on the real training datasets to test on the generated validation set, denoted as Gen.

Objective Function Our final objective function can be formulated as a standard denoising220

objective with reweighing:221

L = EE(x),ϵ,t∥ϵ− ϵθ(zt, t, τθ(y))∥2 ⊙ w, (7)
where w is the multiplication of progressive reweighing and depth-aware reweighing.222

4 Experiments223

4.1 Dataset and Setups224

We conduct our experiments on the nuScenes dataset [2], which is collected using 6 surrounded-view225

cameras that cover the full 360° field of view around the ego-vehicle. It contains 700 scenes for226

training and 150 scenes for validation. We resize the original image from 1600 × 900 to 800 × 448 for227

training. In our work, we use the occupancy label with a resolution of 0.2m from OpenOccupancy [27]228

as condition input, while the benchmark of occupancy prediction uses a resolution of 0.4m from229

Occ3D [24] dataset for its popularity.230

Networks We use Stable Diffusion [21] v2.1 checkpoint as initialization and only train occupancy231

encoder, cross-view attention. We additionally add cross-frame attention if in video experiments. We232

adopt FB-Occ [15] as the target model for occupancy prediction for its SOTA performance in this task.233

The pretrained checkpoint of the network is obtained from their official repository. Since FB-Occ234

predicts occupancy using only single frame images, we thus train SyntheOcc without cross-frame235

attention in related experiments. For video generation, we provide experimental results in appendix.236

Metrics We use Frechet Inception Distance (FID) [6] to measure the perceptual quality of generated237

images, and use mIoU to measure the precision of occupancy prediction.238

Hyperparameters We set D = 256, dmin = 0 and dmax = 50. The depth resolution of MPI is239

thus higher than occupancy voxel. We train our model in 6 epochs with batch size = 8. The learning240

rate is set at 2e−5. The training phase takes around 1 day using 8 NVIDIA A100 80G GPUs. We use241

UniPC scheduler [42] with the classifier-free guidance (CFG) [7] that is set as 7.0. During inference,242

we use 20 denoising steps for dataset generation.243

Baselines We compare our method with prior methods in Tab. 1. ControlNet denotes we train244

a ControlNet using an RGB semantic mask as the condition. ControlNet+depth denotes we add a245

depth channel after the semantic mask to provide 2.5D depth information. The depth map rendered246

by occupancy is normalized to [0-255] to accommodate the RGB value. The ControlNet+depth can247

be regarded as a degradation of SytheOcc which is reduced to a single plane. Then we evaluate248

MagicDrive since it is the only open-sourced method in this area. MagicDrive separately encodes249

foreground and background using prompt and BEV layout. Furthermore, we evaluate the image250

quality (FID [6]) of our method in Tab. 2. Compared with prior methods, we use a unified 3D251

representation that seamlessly handles foreground and background, surpassing them by a large margin.252

4.2 Qualitative Results253

High-level Control using Prompt In Fig. 5 (c,d) and Fig. 6 (c), we demonstrate the capability254

to employ user-defined prompts to generate images with specific weather conditions and high-level255
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(a0) Fusion of MPI (a1) Occupancy in 3D space (a4) Ground truth(a3) Ours generation(a2) ControlNet generation

(b) A scene with human

(d) A scene with hinged-articulated trucks

(c) A scene of seasonal changes use prompt control

(e) A scene with excavator use geometry control

Figure 6: Top row: Comparison with ControlNet. We achieve a precise alignment between condi-
tional labels and synthesized images, while ControlNet generates objects with incorrect pose due
to ambiguous 2D condition. Mid and Bottom row: Visualizations of geometry-controlled image
generation. We can faithfully generate objects with the desired topology in a specific 3D position.

style. Although the nuScenes dataset doesn’t contain rare weather images like snow and sandstorms,256

our method successfully conveys prior knowledge pretrained from stable diffusion to our scenes.257

Compared with visualization results in prior work like Fig. 8 of MagicDrive, our method shows better258

alignment with the text prompt, demonstrating the cross-domain generalization ability of our method.259

3D Geometric Control Our flexible framework enables us to create novel scenes by manipulating260

voxels as displayed in Fig. 1 and Fig. 3. Basically, we can edit the occupied state and semantics of261

every voxel in our scenes for generation. We highlight that we can create a hinged-articulated truck262

and an excavator as shown in Fig. 6 (d,e). The generated excavator image exhibits a remarkable263

alignment with the input occupancy that is delineated by a black outline.264

Long-tailed Scene Generation The flexibility of 3D semantic MPI has conferred significant265

advantages upon our approach. In the following, we create long-tail scenes that rarely occur in266

our real world for evaluation. In Fig. 1, we show that we manually add parallel traffic cones in267

front of the ego vehicle. This scene has never happened in the training dataset, but our geometric268

controllability provides us the capability to create such data. We then use the created scene to test269

autonomous driving systems such as end-to-end planner VAD [9] to validate its effectiveness. In270

this case, VAD successfully predicts correct waypoints with the high-level command ‘turn left’.271

Moreover, in appendix Sec. B, we generate long-tailed scenes with extreme weather such as snow272

and sandstorms, and evaluate perception model on it to examine its generalizability of rare weather.273

Comparison with Baselines In Fig. 6 (a), we visualize a comparison with ControlNet. We find274

that ControlNet struggles to distinguish the overlapping instances in 2D-pixel space. This leads to the275

two parked cars being merged into a single car with incorrect pose. In contrast, our 3D semantic MPIs276

contain more than 2D semantic mask, but also account for complete scene geometry with occluded277

Method Condition Type FID
BEVGen [23] BEV map 25.54
BEVControl [34] BEV map 24.85
DriveDreamer [26] Box + FoV map 52.60
MagicDrive [5] Box + BEV map 16.20
Panacea [30] Box + FoV map 16.96
Ours 3D Semantic MPI 14.75

Table 2: Comparison of FID with previous methods
on the nuScenes dataset.

MPI Encoder Reweighing Method Metric
design Progressive Depth CBGS mIoU

3×3 - - - 21.96
1×1 - - - 23.05
1×1 ✓ - - 23.63
1×1 ✓ ✓ - 24.40
1×1 ✓ ✓ ✓ 25.50

Table 3: Ablation of different designs of the MPI encoder and
reweighing methods.
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parts. Together with our proposed MPI encoder and reweighing strategy, our framework yields a278

realistic image generation with high-quality label alignment. More comparison is provided in Sec. D.279

4.3 Quantitative Results280

Recognizability, Realism and Controllability Evaluation To evaluate whether our generated281

images aligned with given annotations, we provide Gen experiment in Tab. 1. Using the annotation of282

val set, we synthesize a copy of val set’s images, then use perception model trained on real training set283

to perform evaluation. The performance will be more effective as it is close to the oracle performance.284

We find that local method (ControlNet) perform better than global method (MagicDrive). Furthermore,285

SytheOcc generalizes the locality for 3D conditioning to yield better performance.286

Data Augmentation for 3D Occupancy Prediction Notably, we conduct experiments using our287

synthesized dataset to enhance the real training set in Tab. 1. We first use the occupancy labels from288

training set to create a synthetic training set. Then we modify the loading pipeline in perception model289

to randomly sample images from real dataset or synthetic dataset and train network from scratch.290

Therefore, our approach preserves the inherent training dynamics of the neural network by solely291

modifying the training images, without any alteration to the number of training iterations or epochs.292

As MagicDrive-Aug exhibits numerical overflow when training FB-Occ, which may attributed to293

unsatisfactory recognizability, we have to omit it and only provide MagicDrive-Gen experiments.294

As shown in Tab. 1, where SytheOcc-Aug denotes the augmentation experiments using our generated295

dataset, shows a satisfactory improvement over the prior state of the art. We emphasize that surpassing296

the performance of the original dataset is not the primary objective of our work; rather, it is an297

ancillary benefit that emerges from our framework for geometry-controlled generation.298

Ablations In Tab. 3, we present ablation studies across several design spaces of our model, analo-299

gous to the Gen experiment in Tab. 1. We find that our designed MPI encoder of 1×1 conv have sig-300

nificant improvement when compared to the conventional 3×3 conv approach. Besides, our proposed301

three types of reweighing methods demonstrate a consistent improvement over the baseline. As a302

result, the improved image quality and label alignment enable higher precision in downstream tasks.303

5 Limitation and Broader Impacts304

Layout Genereation Our method is restricted in a conditional generation framework that should305

have a conditional input at first. Our condition signal is from the original dataset annotation. Thus306

most of the augmented data is generated using the same occupancy layout, or with minimal human307

editing. Future research can incorporate the recent research [10, 17, 32, 40] that generates occupancy308

descriptions of the scenes to synthesize images with novel occupancy layouts.309

Closed-loop Simulation Given the underlying diverse and controllable image generation of our310

method, it would be advantageous and valuable to extend our work to a broader domain such as closed-311

loop simulation [16, 38], to enable high-fidelity autonomous systems testing. This line of work can312

be conducted by utilizing motion conditions to generate future frames as in world model [17, 28, 36],313

or by explicitly modeling scene graph as in the case of UniSim [20, 38] and NeuroNCAP [16].314

Long-tailed Scene Generation In this paper, we only investigate a limited number of long-tailed315

scene generation and corner case evaluations such as rare layout in Fig. 1 and extreme weather in316

Sec. B. Future work can extend our framework to (i) Synthesize more samples for tail classes to boost317

performance. (ii) Generate or replicate large-scale databases of corner cases [11] for robust perception.318

6 Conclusion319

In this paper, we propose SytheOcc, an innovative image generation framework that is empowered320

with geometry-controlled capabilities using occupancy. We introduce a novel 3D representation,321

3D semantic MPIs, to address the critical challenge of how to efficiently encode occupancy. This322

representation not only preserves the authentic and complete 3D geometry details with semantics, but323

also provides a spatial-align feature representation for 2D diffusion models. With this property, our324

method enjoys photorealistic appearances and fine-grained 3D controllability, serves as a generative325

data engine to enable a broad range of applications. Extensive experiments demonstrate that our326

synthetic data facilitate the training for perception models on occupancy prediction, and provide327

valuable corner case evaluation in a simulated world.328
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Appendix434

In the appendix, we provide the following content:435

Sec. A: Statement of Geometric Control. Sec. E: Results of Video Generation.
Sec. B: Long-Tailed Scene Evaluation. Sec. F: Generalize to New Cameras.
Sec. C: Ablation of plane number in MPIs. Sec. G: Impact of Amount of Augment Data.
Sec. D: Additional Qualitative Comparison. Sec. H: Visualization of Failure Cases.

A Statement of Geometric Control436

In our paper, we refer the geometric controllable generation as using a voxel grid in 3D space to437

control the image generation. Although the voxel is a quantized representation of the 3D world,438

when the resolution goes larger, it can already faithfully represent the geometry detail of scenes.439

Currently, we are limited by the precision of ground truth labels. The 0.2m occupancy grid is a tensor440

of 500×500×40 that cover a space in x-axis spanning [−50m, 50m], y-axis spanning [−50m, 50m],441

z-axis spanning [−5m, 3m]. In the future, we plan to explore a higher resolution of geometric control442

to refine our generation.443

Except for occupancy, several other 3D representations can be expressed by 3D semantic MPI,444

such as mesh, dense point clouds, and even 3D boxes or HD maps. The underlying mechanism is445

to cast several slices of multi-plane images at different depths to retrieve geometric information.446

Thus, our 3D semantic MPI can be regarded as a general 3D conditioning representation to benefit447

a wide spectrum of practical systems. These encompass but are not limited to 3D generation such448

as text2room [8], RoomDreamer [22], WonderJourney [39], and LucidDreamer [4], each of which449

stands to benefit from the rich geometric context provided by our approach.450

B Long-Tailed Scene Evaluation451

In this section, we explore to use SytheOcc to create long-tailed scenes for downstream evaluation.452

This also stands for evaluating our model using several corner cases. Similar to the SytheOcc-Gen453

experiment in Tab. 1, we generate a synthetic validation set but use prompts control to manipulate454

weather patterns or the intensity of illumination.455

As depicted in Fig. 7. We create a variety of weather conditions including sandstorms, snow, foggy,456

rainy, day night, and day time. The motivation behind the creation of these scenes lies in their extreme457

rarity compared to the ordinary scenes we have captured. The generation of such data is of significant458

value, as it aids in addressing the long-tailed distribution of scenes, thereby enriching the diversity of459

our dataset. More visualization is provided in Fig. 13 to Fig. 14.460

In Tab. 4, we observe that all kinds of extreme weather lead to a degradation in performance. This461

observation underscores the limitations of the perception model in terms of its generalizability to462

infrequent weather scenarios. Among them, we find that foggy, rainy, and day night exert the most463

severe impact, as they contribute to a large reduction in visibility as shown in Fig. 7. To improve the464

generalizability to handle various weather conditions, future work can leverage our generated data to465

cover the long-tailed scenes, or use adversarial search to find severe scenes based on our framework.466

Scenes Sandstorm Snow Foggy Rainy Day night Day time (raw data)

FB-Occ mIOU 22.88 18.25 10.29 9.71 9.95 25.50

Table 4: Experiments of downstream evaluation on long-tailed scenes with extreme weather.

Furthermore, we perform long-tailed scene evaluation in Fig. 8. We display the failure of the467

downstream model VAD [9] in our synthetic long-tailed scene. In this case, we simulate a foggy468

environment that the dense fog obscures the majority of the ego view. Our experiment reveals that469

due to the lack of training images of foggy scenes, VAD erroneously predicts waypoints that would470

result in a collision with the bus. This experiment elucidates the boundaries and failure cases of the471

VAD model [9]. It exposes the limitations of the system under certain conditions, thereby providing472

insights into scenarios where the model’s performance may be compromised.473
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Figure 7: From top to bottom, we display images of fusion of 3D semantic MPI, synthesized images
of sandstorm, snow, foggy, rainy, day night, day time, and ground truth.

Testing
End-to-end

Planner

VAD

Corner
Case

Evaluation

Predicted waypoints (Static)

Predicted waypointsGenerated image

Raw image

Prompt-level
Control: 
Add fog

SyntheOcc

User Editing 
To Create

Corner Case

Scene geometry

Figure 8: Use SytheOcc to create long-tailed scenes for testing. Top: In the ordinary scene of a
bus placed in front of the ego vehicle, the end-to-end planner VAD [9] predicts future waypoints
without movement, thus not plotted in the image. Bottom: By harnessing the prompt-level control in
our framework, we simulate a scene with the same layout but filled with fog. VAD predicts wrong
waypoints that will collide with the bus.

C Ablation of plane number of MPIs474

In our proposed 3D semantic MPIs, the number of planes is a hyperparameter that affects the precision475

of 3D representation. The plane number can be regarded as the 3D resolution in depth axis. The476

larger the plane number, the MPI will contain more details. We find that an increase in the number of477

planes is associated with improved accuracy in downstream tasks. This finding denotes that more478

condition information leads to better downstream task performance.479
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Fusion of MPIs MagicDrive ControlNet ControlNet+depth SyntheOcc GT

Figure 9: Comparison with baselines.

Number of Planes 96 128 256
FB-Occ mIOU 23.36 24.28 25.50

Table 5: Ablation of the number of multi-plane images.

D Qualitative Comparison with Baselines and SOTA480

In Fig. 9, we conduct a qualitative comparison of our method against MagicDrive, ControlNet, and481

ControlNet+depth. We find that all the methods display a satisfactory image quality, as they build upon482

the foundation of the stable diffusion model. The generation of MagicDrive fails to synthesize barriers483

as shown in the bottom row. ControlNet struggles to generate objects with the correct pose solely484

from only 2D conditions as shown in the second row. ControlNet+depth, a degradation of our method,485

an enhancement over ControlNet in terms of alignment, nevertheless suffers from a loss of finer detail486

in scenes with heavy occlusion, as shown in the human of the third row. Our method, in contrast, aims487

to address these challenges and provide a more nuanced and accurate generation of complex scenes.488

E Extend to Video Generation489

As described in the main paper Sec. 3.4, we further extend the cross-view attention to cross-frame490

attention to perform video generation. Our generation results are Fig. 11, Fig. 12 and Fig. 16.491

Our implementation is adopted from MagicDrive [5] which is similar to Tune-a-video [31]. The492

formulation of cross-frame attention is:493

Attention(Q,K, V ) = softmax(QKT

√
d
) · V , (8)

hout = hin +
∑

i∈{f,h}Attention(Qin,Ki, Vi), (9)

where f , and h are the camera view of future and history frames. Qin and hin denotes the query and494

the hidden state of input view. We train our model in a two-stage pipeline. We first train the MPI495

encoder and cross-view attention in a multi-view image generation setting. Then we train cross-frame496

attention and freeze other components in a video generation setting.497

In practice, we use the keyframe annotation of the nuScenes dataset to train our video model. We start498

with our pretrained MPI encoder and cross-view attention and only train our cross-frame attention499

while keeping others frozen. We employ a sequence of 7 frames as a batch, resulting in a batch size500

of 42 images for the training process.501

Given that our primary contribution does not lie in video generation, this experiment serves as a502

proof of concept, demonstrating the potential of our framework. Future research may extend our503

methodology to facilitate the generation of longer video sequences, thereby expanding the scope and504

applicability of our framework.505
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(a) Generation with original intrinsic

(b) Generation with intrinsic modification (focal length * 0.8)

(c) Generation with intrinsic modification (focal length * 1.2)

Figure 10: We demonstrate the generalizability of SytheOcc to new camera intrinsic. We multiply
factors to the focal length while keeping the resolution the same. In (b,c), focal length ×0.8 denotes
a camera with a larger field of view similar to zoom out, focal length ×1.2 denotes a camera with a
smaller field of view similar to zoom in.

F Generalize to New Cameras506

In this section, we investigate the adaptability of our method to a new set of cameras with different507

intrinsic. Given that our training set has a fixed camera intrinsic and extrinsic, generalizing to novel508

cameras indicates that our approach possesses robust generalization capabilities. As shown in Fig. 10,509

benefiting from our local type of condition, SytheOcc generates images that faithfully align with510

the new intrinsic, proving that SytheOcc do not over-fit certain parameters. Regarding extrinsic511

parameters, we can cast our MPI at the desirable locations to retrieve geometric information, thus512

inherently ensuring generalizability without doubt.513

G The Influence of the Amount of Augmented Data514

As SytheOcc is capable of generating an infinite number of synthetic data, we investigate the influence515

of the amount of augmented data on downstream tasks in Tab. 6. We find that when our augmented516

data is expanded from one-fold to two-fold of the training dataset, the performance of perception517

model slightly decreases. This may indicate the generated data has an optimal ratio for downstream518

tasks. Due to limited computational resources, we only experiment with a limited amount of ratio.519

Future work can conduct more thorough experiments to find a universal theorem.520

Amount of Augmented Data 0 (no augmentation) 1 2
FB-Occ mIOU 39.3 40.3 40.1

Table 6: Ablation of the amount of augmented data.
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Figure 11: Video generation results. In the temporal progression, the distant buildings maintain a
high degree of consistency, and objects retain their identical shapes and textures across different
views and frames.

Figure 12: Video generation results of large dynamics scenes. The white car comes across different
views and frames depicting consistent shapes with only a slight appearance change.
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Figure 13: From top to bottom, we display images of fusion of 3D semantic MPI, synthesized images
of sandstorm, snow, foggy, rainy, day night, day time, and ground truth.

Figure 14: Weather variation. Same structure with Fig. 13.
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Figure 15: Out of distribution generation. We use prompts to control the high-level appearance of
images with specific styles. From top to bottom, we display (1) fusion of 3D semantic MPI. (2) Sunny
day. (3) Science fiction style. (4) 8-bit pixel art style. (5) Snowfall. (6) Minecraft style. (7) Pokémon
style. (8) Diablo style. (9) Ghibli style. (10) Metropolis style. (11) Gotham style. (12) Ground truth.
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H Failure Cases521

We display several failure cases of our method. In Fig. 16, we show a crowd scenes. In this scenario,522

the excessive number of pedestrians presents a challenge to the cross-view attention and cross-frame523

attention modules. We find our method incapable of discerning individual entities with clarity. Future524

research can improve the model capacity or enrich high-quality data to mitigate this problem.525

Figure 16: Failure case of video generation results. Our cross-frame attention module is challenging
to distinguish a crowd of people across different views and frames.
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NeurIPS Paper Checklist526

The checklist is designed to encourage best practices for responsible machine learning research,527

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove528

the checklist: The papers not including the checklist will be desk rejected. The checklist should529

follow the references and follow the (optional) supplemental material. The checklist does NOT count530

towards the page limit.531

Please read the checklist guidelines carefully for information on how to answer these questions. For532

each question in the checklist:533

• You should answer [Yes] , [No] , or [NA] .534

• [NA] means either that the question is Not Applicable for that particular paper or the535

relevant information is Not Available.536

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).537

The checklist answers are an integral part of your paper submission. They are visible to the538

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it539

(after eventual revisions) with the final version of your paper, and its final version will be published540

with the paper.541

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.542

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a543

proper justification is given (e.g., "error bars are not reported because it would be too computationally544

expensive" or "we were unable to find the license for the dataset we used"). In general, answering545

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we546

acknowledge that the true answer is often more nuanced, so please just use your best judgment and547

write a justification to elaborate. All supporting evidence can appear either in the main paper or the548

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification549

please point to the section(s) where related material for the question can be found.550

IMPORTANT, please:551

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",552

• Keep the checklist subsection headings, questions/answers and guidelines below.553

• Do not modify the questions and only use the provided macros for your answers.554

1. Claims555

Question: Do the main claims made in the abstract and introduction accurately reflect the556

paper’s contributions and scope?557

Answer: [Yes]558

Justification: Please find this part in Sec. 3.559

Guidelines:560

• The answer NA means that the abstract and introduction do not include the claims561

made in the paper.562

• The abstract and/or introduction should clearly state the claims made, including the563

contributions made in the paper and important assumptions and limitations. A No or564

NA answer to this question will not be perceived well by the reviewers.565

• The claims made should match theoretical and experimental results, and reflect how566

much the results can be expected to generalize to other settings.567

• It is fine to include aspirational goals as motivation as long as it is clear that these goals568

are not attained by the paper.569

2. Limitations570

Question: Does the paper discuss the limitations of the work performed by the authors?571

Answer: [Yes]572

Justification: Please find this part in Sec. 5.573
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Guidelines:574

• The answer NA means that the paper has no limitation while the answer No means that575

the paper has limitations, but those are not discussed in the paper.576

• The authors are encouraged to create a separate "Limitations" section in their paper.577

• The paper should point out any strong assumptions and how robust the results are to578

violations of these assumptions (e.g., independence assumptions, noiseless settings,579

model well-specification, asymptotic approximations only holding locally). The authors580

should reflect on how these assumptions might be violated in practice and what the581

implications would be.582

• The authors should reflect on the scope of the claims made, e.g., if the approach was583

only tested on a few datasets or with a few runs. In general, empirical results often584

depend on implicit assumptions, which should be articulated.585

• The authors should reflect on the factors that influence the performance of the approach.586

For example, a facial recognition algorithm may perform poorly when image resolution587

is low or images are taken in low lighting. Or a speech-to-text system might not be588

used reliably to provide closed captions for online lectures because it fails to handle589

technical jargon.590

• The authors should discuss the computational efficiency of the proposed algorithms591

and how they scale with dataset size.592

• If applicable, the authors should discuss possible limitations of their approach to593

address problems of privacy and fairness.594

• While the authors might fear that complete honesty about limitations might be used by595

reviewers as grounds for rejection, a worse outcome might be that reviewers discover596

limitations that aren’t acknowledged in the paper. The authors should use their best597

judgment and recognize that individual actions in favor of transparency play an impor-598

tant role in developing norms that preserve the integrity of the community. Reviewers599

will be specifically instructed to not penalize honesty concerning limitations.600

3. Theory Assumptions and Proofs601

Question: For each theoretical result, does the paper provide the full set of assumptions and602

a complete (and correct) proof?603

Answer: [NA]604

Justification: The paper does not include theoretical results.605

Guidelines: Do not have theoretical results.606

• The answer NA means that the paper does not include theoretical results.607

• All the theorems, formulas, and proofs in the paper should be numbered and cross-608

referenced.609

• All assumptions should be clearly stated or referenced in the statement of any theorems.610

• The proofs can either appear in the main paper or the supplemental material, but if611

they appear in the supplemental material, the authors are encouraged to provide a short612

proof sketch to provide intuition.613

• Inversely, any informal proof provided in the core of the paper should be complemented614

by formal proofs provided in appendix or supplemental material.615

• Theorems and Lemmas that the proof relies upon should be properly referenced.616

4. Experimental Result Reproducibility617

Question: Does the paper fully disclose all the information needed to reproduce the main618

experimental results of the paper to the extent that it affects the main claims and/or conclu-619

sions of the paper (regardless of whether the code and data are provided or not)?620

Answer: [Yes]621

Justification: Please find this part in Sec. 4.622

Guidelines:623

• The answer NA means that the paper does not include experiments.624
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• If the paper includes experiments, a No answer to this question will not be perceived625

well by the reviewers: Making the paper reproducible is important, regardless of626

whether the code and data are provided or not.627

• If the contribution is a dataset and/or model, the authors should describe the steps taken628

to make their results reproducible or verifiable.629

• Depending on the contribution, reproducibility can be accomplished in various ways.630

For example, if the contribution is a novel architecture, describing the architecture fully631

might suffice, or if the contribution is a specific model and empirical evaluation, it may632

be necessary to either make it possible for others to replicate the model with the same633

dataset, or provide access to the model. In general. releasing code and data is often634

one good way to accomplish this, but reproducibility can also be provided via detailed635

instructions for how to replicate the results, access to a hosted model (e.g., in the case636

of a large language model), releasing of a model checkpoint, or other means that are637

appropriate to the research performed.638

• While NeurIPS does not require releasing code, the conference does require all submis-639

sions to provide some reasonable avenue for reproducibility, which may depend on the640

nature of the contribution. For example641

(a) If the contribution is primarily a new algorithm, the paper should make it clear how642

to reproduce that algorithm.643

(b) If the contribution is primarily a new model architecture, the paper should describe644

the architecture clearly and fully.645

(c) If the contribution is a new model (e.g., a large language model), then there should646

either be a way to access this model for reproducing the results or a way to reproduce647

the model (e.g., with an open-source dataset or instructions for how to construct648

the dataset).649

(d) We recognize that reproducibility may be tricky in some cases, in which case650

authors are welcome to describe the particular way they provide for reproducibility.651

In the case of closed-source models, it may be that access to the model is limited in652

some way (e.g., to registered users), but it should be possible for other researchers653

to have some path to reproducing or verifying the results.654

5. Open access to data and code655

Question: Does the paper provide open access to the data and code, with sufficient instruc-656

tions to faithfully reproduce the main experimental results, as described in supplemental657

material?658

Answer: [Yes]659

Justification: Please find this part in Sec. 4.660

Guidelines:661

• The answer NA means that paper does not include experiments requiring code.662

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/663

public/guides/CodeSubmissionPolicy) for more details.664

• While we encourage the release of code and data, we understand that this might not be665

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not666

including code, unless this is central to the contribution (e.g., for a new open-source667

benchmark).668

• The instructions should contain the exact command and environment needed to run to669

reproduce the results. See the NeurIPS code and data submission guidelines (https:670

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.671

• The authors should provide instructions on data access and preparation, including how672

to access the raw data, preprocessed data, intermediate data, and generated data, etc.673

• The authors should provide scripts to reproduce all experimental results for the new674

proposed method and baselines. If only a subset of experiments are reproducible, they675

should state which ones are omitted from the script and why.676

• At submission time, to preserve anonymity, the authors should release anonymized677

versions (if applicable).678
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• Providing as much information as possible in supplemental material (appended to the679

paper) is recommended, but including URLs to data and code is permitted.680

6. Experimental Setting/Details681

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-682

rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?683

Answer: [Yes]684

Justification: Please find this part in Sec. 4.685

Guidelines:686

• The answer NA means that the paper does not include experiments.687

• The experimental setting should be presented in the core of the paper to a level of detail688

that is necessary to appreciate the results and make sense of them.689

• The full details can be provided either with the code, in appendix, or as supplemental690

material.691

7. Experiment Statistical Significance692

Question: Does the paper report error bars suitably and correctly defined or other appropriate693

information about the statistical significance of the experiments?694

Answer: [Yes]695

Justification: Please find this part in Sec. 4.696

Guidelines:697

• The answer NA means that the paper does not include experiments.698

• The authors should answer "Yes" if the results are accompanied by error bars, confi-699

dence intervals, or statistical significance tests, at least for the experiments that support700

the main claims of the paper.701

• The factors of variability that the error bars are capturing should be clearly stated (for702

example, train/test split, initialization, random drawing of some parameter, or overall703

run with given experimental conditions).704

• The method for calculating the error bars should be explained (closed form formula,705

call to a library function, bootstrap, etc.)706

• The assumptions made should be given (e.g., Normally distributed errors).707

• It should be clear whether the error bar is the standard deviation or the standard error708

of the mean.709

• It is OK to report 1-sigma error bars, but one should state it. The authors should710

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis711

of Normality of errors is not verified.712

• For asymmetric distributions, the authors should be careful not to show in tables or713

figures symmetric error bars that would yield results that are out of range (e.g. negative714

error rates).715

• If error bars are reported in tables or plots, The authors should explain in the text how716

they were calculated and reference the corresponding figures or tables in the text.717

8. Experiments Compute Resources718

Question: For each experiment, does the paper provide sufficient information on the com-719

puter resources (type of compute workers, memory, time of execution) needed to reproduce720

the experiments?721

Answer: [Yes]722

Justification: Please find this part in Sec. 4.723

Guidelines:724

• The answer NA means that the paper does not include experiments.725

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,726

or cloud provider, including relevant memory and storage.727

• The paper should provide the amount of compute required for each of the individual728

experimental runs as well as estimate the total compute.729
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• The paper should disclose whether the full research project required more compute730

than the experiments reported in the paper (e.g., preliminary or failed experiments that731

didn’t make it into the paper).732

9. Code Of Ethics733

Question: Does the research conducted in the paper conform, in every respect, with the734

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?735

Answer: [Yes]736

Justification: It should be fine.737

Guidelines:738

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.739

• If the authors answer No, they should explain the special circumstances that require a740

deviation from the Code of Ethics.741

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-742

eration due to laws or regulations in their jurisdiction).743

10. Broader Impacts744

Question: Does the paper discuss both potential positive societal impacts and negative745

societal impacts of the work performed?746

Answer: [Yes]747

Justification: Please find this part in Sec. 5.748

Guidelines:749

• The answer NA means that there is no societal impact of the work performed.750

• If the authors answer NA or No, they should explain why their work has no societal751

impact or why the paper does not address societal impact.752

• Examples of negative societal impacts include potential malicious or unintended uses753

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations754

(e.g., deployment of technologies that could make decisions that unfairly impact specific755

groups), privacy considerations, and security considerations.756

• The conference expects that many papers will be foundational research and not tied757

to particular applications, let alone deployments. However, if there is a direct path to758

any negative applications, the authors should point it out. For example, it is legitimate759

to point out that an improvement in the quality of generative models could be used to760

generate deepfakes for disinformation. On the other hand, it is not needed to point out761

that a generic algorithm for optimizing neural networks could enable people to train762

models that generate Deepfakes faster.763

• The authors should consider possible harms that could arise when the technology is764

being used as intended and functioning correctly, harms that could arise when the765

technology is being used as intended but gives incorrect results, and harms following766

from (intentional or unintentional) misuse of the technology.767

• If there are negative societal impacts, the authors could also discuss possible mitigation768

strategies (e.g., gated release of models, providing defenses in addition to attacks,769

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from770

feedback over time, improving the efficiency and accessibility of ML).771

11. Safeguards772

Question: Does the paper describe safeguards that have been put in place for responsible773

release of data or models that have a high risk for misuse (e.g., pretrained language models,774

image generators, or scraped datasets)?775

Answer: [NA]776

Justification: Our paper poses no such risks.777

Guidelines:778

• The answer NA means that the paper poses no such risks.779
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• Released models that have a high risk for misuse or dual-use should be released with780

necessary safeguards to allow for controlled use of the model, for example by requiring781

that users adhere to usage guidelines or restrictions to access the model or implementing782

safety filters.783

• Datasets that have been scraped from the Internet could pose safety risks. The authors784

should describe how they avoided releasing unsafe images.785

• We recognize that providing effective safeguards is challenging, and many papers do786

not require this, but we encourage authors to take this into account and make a best787

faith effort.788

12. Licenses for existing assets789

Question: Are the creators or original owners of assets (e.g., code, data, models), used in790

the paper, properly credited and are the license and terms of use explicitly mentioned and791

properly respected?792

Answer: [Yes]793

Justification: Please find this part in Sec. 4.794

Guidelines:795

• The answer NA means that the paper does not use existing assets.796

• The authors should cite the original paper that produced the code package or dataset.797

• The authors should state which version of the asset is used and, if possible, include a798

URL.799

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.800

• For scraped data from a particular source (e.g., website), the copyright and terms of801

service of that source should be provided.802

• If assets are released, the license, copyright information, and terms of use in the package803

should be provided. For popular datasets, paperswithcode.com/datasets has804

curated licenses for some datasets. Their licensing guide can help determine the license805

of a dataset.806

• For existing datasets that are re-packaged, both the original license and the license of807

the derived asset (if it has changed) should be provided.808

• If this information is not available online, the authors are encouraged to reach out to809

the asset’s creators.810

13. New Assets811

Question: Are new assets introduced in the paper well documented and is the documentation812

provided alongside the assets?813

Answer: [NA]814

Justification: Our paper does not release new assets.815

Guidelines:816

• The answer NA means that the paper does not release new assets.817

• Researchers should communicate the details of the dataset/code/model as part of their818

submissions via structured templates. This includes details about training, license,819

limitations, etc.820

• The paper should discuss whether and how consent was obtained from people whose821

asset is used.822

• At submission time, remember to anonymize your assets (if applicable). You can either823

create an anonymized URL or include an anonymized zip file.824

14. Crowdsourcing and Research with Human Subjects825

Question: For crowdsourcing experiments and research with human subjects, does the paper826

include the full text of instructions given to participants and screenshots, if applicable, as827

well as details about compensation (if any)?828

Answer: [NA]829

Justification: Our paper does not involve crowdsourcing nor research with human subjects.830
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Guidelines:831

• The answer NA means that the paper does not involve crowdsourcing nor research with832

human subjects.833

• Including this information in the supplemental material is fine, but if the main contribu-834

tion of the paper involves human subjects, then as much detail as possible should be835

included in the main paper.836

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,837

or other labor should be paid at least the minimum wage in the country of the data838

collector.839

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human840

Subjects841

Question: Does the paper describe potential risks incurred by study participants, whether842

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)843

approvals (or an equivalent approval/review based on the requirements of your country or844

institution) were obtained?845

Answer: [NA]846

Justification: Our paper does not involve crowdsourcing nor research with human subjects.847

Guidelines:848

• The answer NA means that the paper does not involve crowdsourcing nor research with849

human subjects.850

• Depending on the country in which research is conducted, IRB approval (or equivalent)851

may be required for any human subjects research. If you obtained IRB approval, you852

should clearly state this in the paper.853

• We recognize that the procedures for this may vary significantly between institutions854

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the855

guidelines for their institution.856

• For initial submissions, do not include any information that would break anonymity (if857

applicable), such as the institution conducting the review.858
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