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ABSTRACT

To mitigate the privacy leakages and reduce the communication burden of Fed-
erated Learning (FL), decentralized FL (DFL) discards the central server and
each client only communicates with its neighbors in the decentralized commu-
nication network. However, existing DFL algorithms tend to feature high incon-
sistency among local models, which results in severe distribution shifts across
clients and inferior performance compared with centralized FL (CFL), especially
on heterogeneous data or with sparse connectivity of communication topology.
To alleviate this challenge, we propose two DFL algorithms named DFedSAM
and DFedSAM-MGS to improve the performance. Specifically, DFedSAM lever-
ages gradient perturbation to generate local flatness models via Sharpness Aware
Minimization (SAM), which searches for model parameters with uniformly low
loss function values. In addition, DFedSAM-MGS further boosts DFedSAM by
adopting the technique of Multiple Gossip Steps (MGS) for a better model con-
sistency, which accelerates the aggregation of local flatness models and better
balances the communication complexity and learning performance. In the theo-
retical perspective, we present the improved convergence rates O

( 1
T + 1

T 2(1−λ)2
)

and O
( 1
T + λQ+1

T 2(1−λQ)2

)
in the stochastic non-convex setting for DFedSAM and

DFedSAM-MGS, respectively, where 1−λ is the spectral gap of the gossip matrix
W and Q is the gossip steps in MGS. Meanwhile, we empirically confirm that our
methods can achieve competitive performance compared with CFL baselines and
outperform existing DFL baselines.

1 INTRODUCTION
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Figure 1: Illustrations of the types of communication
CFL (a) and DFL (b) framework. For decentralized set-
ting, the various communication network topologies are
illustrated in Appendix A.

Federated learning (FL) (Mcmahan et al., 2017;
Li et al., 2020b) allows distributed clients to
collaboratively train a shared model under the
orchestration of the cloud without transmitting
local data. However, almost all FL paradigms
employ a central server to communicate with
clients, which faces several critical challenges,
such as computational resources limitation,
high communication bandwidth cost, and pri-
vacy leakage (Kairouz et al., 2021). Compared
to the centralized FL (CFL) framework, decen-
tralized FL (DFL, see Figure 1), in which the
clients only communicate with their neighbors without a central server, offers communication ad-
vantage and further preserves the data privacy (Kairouz et al., 2021; Wang et al., 2021).

However, DFL suffers from bottlenecks such as severe inconsistency of local models due to hetero-
geneous data and model aggregation locality caused by the network connectivity of communication
topology. This inconsistency results in severe over-fitting in local models and model performance
degradation. Therefore, the global/consensus model may bring inferior performance compared with
CFL, especially on heterogeneous data or in face of the sparse connectivity of communication net-
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(a) Loss landscape of FedAvg (b) Loss landscape of DFedAvg
Figure 2: Loss landscapes comparison between CFL and DFL with the same setting. FedAvg has a more flat
landscape, whereas DFedAvg has a sharper landscape than FedAvg with poorer generalization ability.

works. Similar performance pattern of DFL has also been demonstrated by Sun et al. (2022). To
explore the reasons behind this phenomenon, we present the structure of the loss landscapes (Li
et al., 2018) for FedAvg (Mcmahan et al., 2017) and decentralized FedAvg (DFedAvg, Sun et al.
(2022)) on Fashion-MNIST (Xiao et al., 2017) with the same setting in Figure 2 (a) and (b). It is
clearly seen that DFL method has a sharper landscape than CFL method.

Motivation. Most FL algorithms face the over-fitting issue of local models on heterogeneous data.
Many recent works (Sahu et al., 2018; Li et al., 2020c; Karimireddy et al., 2020; Yang et al., 2021;
Acar et al., 2021; Wang et al., 2022) focus on the CFL and mitigate this issue with various effec-
tive solutions. In DFL, this issue can be exacerbated due to sharp loss landscape caused by the
inconsistency of local models (see Figure 2 (a) and (b)). Therefore, the performance of decentral-
ized schemes is usually worse than that of centralized schemes with the same setting (Sun et al.,
2022). Consequently, an important research question is: can we design a DFL algorithm that can
mitigate inconsistency among local models and achieve the similar performance to its centralized
counterpart?

To address this question, we propose two DFL algorithms: DFedSAM and DFedSAM-MGS. Specif-
ically, DFedSAM overcomes local model over-fitting issue via gradient perturbation with SAM
(Foret et al., 2021) in each client to generate local flatness models. Since each client aggregates
the flatness models from its neighbors, a potential flat aggregated model can be generated, which
results in high generalization ability. To further boost the performance of DFedSAM, DFedSAM-
MGS integrates multiple gossip steps (MGS) (Ye et al., 2020; Ye & Zhang, 2021; Li et al., 2020a)
to accelerate the aggregation of local flatness models by increasing the number of gossip steps of
local communications. It realizes a better trade-off between communication complexity and learn-
ing performance by bridging the gap between CFL and DFL, since DFL can be roughly regarded as
CFL with a sufficiently large number of gossip steps (see Section 5.4). Theoretically, we present
the convergence rates for our algorithms in the stochastic non-convex setting. We show that the
bound can be looser when the connectivity of the communication topology λ is sufficiently sparse,
or the data homogeneity β is sufficiently large, while as the consensus/gossip steps Q in MGS in-
crease, it is tighter as the impact of communication topology can be alleviated (see Section 4). The
theoretical results directly explain why the application of SAM and MGS in DFL can ensure bet-
ter performance with various types of communication network topology. Empirically, we conduct
extensive experiments on CIFAR-10 and CIFAR-100 datasets in both the identical data distribution
(IID) and non-IID settings. The experimental results confirm that our algorithms achieve competi-
tive performance compared to CFL baselines and outperform DFL baselines (see Section 5.2).

Contribution. Our main contributions can be summarized as three-fold:

• We propose two DFL algorithms DFedSAM and DFedSAM-MGS. DFedSAM alleviates
the inconsistency of local models through getting local flatness models, while DFedSAM-
MGS achieves a better consistency based on DFedSAM via the aggregation acceleration
and has a better trade-off between communication and generalization.

• We present the convergence ratesO
( 1
T + 1

T 2(1−λ)2
)

andO
( 1
T + λQ+1

T 2(1−λQ)2

)
for DFedSAM

and DFedSAM-MGS in the non-convex settings, respectively, and show that our algorithms
can achieve the linear speedup for convergence.
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• We conduct extensive experiments to verity the efficacy of our proposed DFedSAM and
DFedSAM-MGS, which can achieve competitive performance compared with both CFL
and DFL baselines.

2 RELATED WORK

Decentralized Federated Learning (DFL). In DFL, clients only communicate with their neigh-
bors in various communication networks without a central server in comparison to CFL, which
offers communication advantage and preserves the data privacy. Lalitha et al. (2018; 2019) take a
Bayesian-like approach by introducing a belief over the model parameter space of the clients in a
fully DFL framework. Roy et al. (2019) propose the first server-less, peer-to-peer approach Brain-
Torrent to FL and apply it on medical application in a highly dynamic peer-to-peer FL environment.
Sun et al. (2022) apply the multiple local iteration with SGD and quantization method to further re-
duce the communication cost, and provide the convergence results in various convexity setting. Dai
et al. (2022) develop a decentralized sparse training technique to further save the communication
and computation cost.

Sharpness Aware Minimization (SAM). SAM (Foret et al., 2021) is an effective optimizer for
training deep learning models, which leverages the flatness geometry of the loss landscape to im-
prove model generalization ability. Recently, Andriushchenko & Flammarion (2022) study the prop-
erties of SAM and provide convergence results of SAM for non-convex objectives. As a powerful
optimizer, SAM and its variants have been applied to various machine learning (ML) tasks (Zhao
et al., 2022; Kwon et al., 2021; Du et al., 2021; Liu et al., 2022; Abbas et al., 2022). Specifically,
Qu et al. (2022) and Caldarola et al. (2022) integrate SAM to improve the generalization, and thus
mitigate the distribution shift problem and achieve a new SOTA performance for CFL. However, to
the best of our knowledge, no efforts have been devoted to the empirical performance and theoretical
analysis of SAM in the DFL setting.

Multiple Gossip Steps (MGS). The advantage of increasing the times of local communications
within a network topology is investigated in Ye et al. (2020), in which FastMix is proposed with
multi-consensus and gradient tracking and they establish the optimal computational complexity and
a near optimal communication complexity. DeEPCA (Ye & Zhang, 2021) integrates FastMix into a
decebtralized PCA algorithm to accelerate the training process. DeLi-CoCo (Hashemi et al., 2022)
performs multiple compression gossip steps in each iteration for fast convergence with arbitrary
communication compression. Network-DANE (Li et al., 2020a) uses multiple gossip steps and
generalizes DANE to decentralized scenarios. In general, by increasing the number of gossip steps,
local clients can approach to a better consensus model towards the performance in CFL. Thus, the
use of MGS can also potentially mitigate the model inconsistency in the DFL setting.

The work most related to this paper is DFedAvg and DFedAvg with momentum (DFedAvgM) in
Sun et al. (2022), which leverages multiple local iterations with the SGD optimizer and significantly
improve the performance of classic decentralized parallel SGD method D-PSGD (Lian et al., 2017).
However, DFL may suffers from inferior performance due to the severe model inconsistency issue
among the clients. Another related work is FedSAM (Qu et al., 2022), which integrates SAM
optimizer into CFL to enhance the flatness of local model and achieves new SOTA performance
for CFL. On top of the aforementioned studies, we are the first to extend the SAM optimizer to
the DFL setting and simultaneously provide its convergence guarantee in the nonconvex setting.
Furthermore, we bride the gap of CFL and DFL via adopting MGS in DFedSAM-MGS, which
largely mitigates the model inconsistency in DFL.

3 METHODOLOGY

In this section, we try to solve this issue in the DFL setting. Below, we first initialize the problem
setup in DFL and then describe the proposed DFedSAM and DFedSAM-MGS in detail.

3.1 PROBLEM SETUP

In this work, we are interested in solving the following finite-sum stochastic non-convex minimiza-
tion problem in the DFL setting:
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min
x∈Rd

f(x) :=
1

m

m∑
i=1

fi(x), fi(x) = Eξ∼DiFi(x; ξ), (1)

where Di denotes the data distribution in the i-th client, which is heterogeneous across clients, m
is the number of clients, and Fi(x; ξ) is the local objective function associated with the training
data samples ξ. Problem (1) is known as empirical risk minimization (ERM) and models many
applications in ML. As shown in Figure 1(b), we model the communication network in the decen-
tralized network topology between clients as an undirected connected graph G = (N ,V,W ), where
N := {1, 2, . . . ,m} represents the set of clients, and V ⊆ N × N represents the set of commu-
nication channels, each connecting two distinct clients. Furthermore, we emphasis that there is no
central server in the decentralized setting and all clients only communicate with their neighbors with
respect to the communication channels V . In addition, we assume Problem (1) is well-defined and
denote f∗ as the minimal value of f , i.e., f(x) ≥ f(x∗) = f∗ for all x ∈ Rd.

3.2 DFEDSAM AND DFEDSAM-MG ALGORITHMS

Instead of searching for a solution via SGD (Bottou, 2010; Bottou et al., 2018), SAM (Foret et al.,
2021) aims to seek a solution in a flatness region through adding a small perturbation to the models,
i.e., x+δ with more robust performance. As shown in Figure 2, decentralized schemes has a sharper
landscape with poorer generalization ability than centralized schemes. However, the study focus on
this issue remains unexplored. In this paper, we extend to SAM optimizer into DFL for investigating
this issue, dubbed DFedSAM, whose local loss function is defined as:

fi(x) = Eξ∼Di max
∥δi∥22≤ρ

Fi(y
t,k(i) + δi; ξi), i ∈ N (2)

where yt,k(i) + δi is viewed as the perturbed model, ρ is a predefined constant controlling the
radius of the perturbation and ∥ · ∥22 is a l2-norm, which can be simplified to ∥ · ∥2 in the rest.
Similar with CFL methods, in DFL, DFedSAM allows that clients can update the local model pa-
rameters with multiple local iterates before communication are performed. Specifically, for each
client i ∈ {1, 2, ...,m}, each local iteration k ∈ {0, 1, ...,K − 1} in each communication round
t ∈ {0, 1, ..., T − 1}, the k-th inner iteration in client i is performed as:

yt,k+1(i) = yt,k(i)− ηg̃t,k(i), (3)

where g̃t,k(i) = ∇Fi(y
t,k + δ(yt,k); ξ) and δ(yt,k) = ρgt,k/

∥∥gt,k
∥∥
2
. Following by (Foret et al.,

2021), using first order Taylor expansion around yt,k for a small value of ρ. After K inner iterations
in each client, parameters are updated as zt(i) ← yt,K(i) and sent to its neighbors l ∈ N (i) after
local updates. Then each client averages its parameters with the information of its neighbors:

xt+1(i) =
∑

l∈N (i)

wi,lz
t(l). (4)

On the other hand, we use multiple gossip steps (MGS) technique (Ye et al., 2020; Ye & Zhang,
2021; Hashemi et al., 2022) to achieve a better consistency among local models based on DFedSAM,
dubbed DFedSAM-MGS, thereby further boosting the performance. DFedSAM-MGS provides a
balance between the communication cost and generalization ability in DFL setting. Specifically, the
produce of MGS at the q-th step (q ∈ {0, 1, ..., Q − 1}) can be viewed as two steps in terms of
exchanging messages and local gossip update as follows:

xt,q+1(i) =
∑

l∈N (i)

wi,lz
t,q(l), and zt,q+1(i) = xt,q+1(i). (5)

At the end of MGS, xt+1(i) = xt,Q(i). Both DFedSAM and DFedSAM-MGS are summarized
in Algorithm 1 (see Appendix C). It is clearly seen that DFedSAM may generate the trade-off be-
tween the local computation complexity and communication overhead via multiple local iterations,
whereas the local communication is only performed at once. While DFedSAM-MGS performs
multiple local communications with a larger Q to make all local clients synchronized. Therefore,
DFedSAM-MGS can be viewed as compromising between DFL and CFL.

Compared with existing SOTA DFL methods: DFedAvg and DFedAvgM (Sun et al., 2022), the
benefits of DFedSAM and DFedSAM-MGS lie in three-fold: (i) SAM is introduced to first alleviate
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local over-fitting issue caused by the inconsistency of local models via seeking a flatness model
at each client in DFL, and also contribute to make consensus model flat; (ii) MGS in DFedSAM-
MGS is used to further accelerate the aggregation of local flatness models for a better consistency
among local models based on DFedSAM and properly balances the communication complexity
and learning performance; (iii) Furthermore, we also present the theories unifying the impacts of
gradient perturbation ρ in SAM, several times of local communications Q in MGS, and various
network typologies λ, along with data homogeneity β upon the convergence rate in Section 4.

4 CONVERGENCE ANALYSIS

In this section, we show the convergence results of DFedSAM and DFedSAM-MGS for general
non-convex FL setting, and the detailed proof is presented in Appendix E. Below, we first give
several useful and necessary notations and assumptions.

Definition 1 (The gossip/mixing matrix). (Sun et al., 2022, Definition 1) The gossip matrix W =
[wi,j ] ∈ [0, 1]m×m is assumed to have these properties: (i) (Graph) If i ̸= j and (i, j) /∈ V , then
wi,j = 0, otherwise, wi,j > 0; (ii) (Symmetry) W = W⊤; (iii) (Null space property) null{I −
W} = span{1}; (iv) (Spectral property) I ⪰ W ≻ −I. Under these properties, eigenvalues
of W can be shown satisfying 1 = |λ1(W))| > |λ2(W))| ≥ · · · ≥ |λm(W))|. Furthermore,
λ := max{|λ2(W)|, |λm(W))|} and 1− λ ∈ (0, 1] is the denoted as spectral gap of W.

Definition 2 (Homogeneity parameter). (Li et al., 2020a, Definition 2) For any i ∈ {1, 2, . . . ,m}
and the parameter x ∈ Rd, the homogeneity parameter β can be defined as:

β := max
1≤i≤m

βi, with βi := sup
x∈Rd

∥∇fi(x)−∇f(x)∥ .

Assumption 1 (Lipschitz smoothness). The function fi is differentiable and ∇fi is L-Lipschitz
continuous, ∀i ∈ {1, 2, . . . ,m}, i.e., ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.

Assumption 2 (Bounded variance). The gradient of the function fi have σl-bounded variance, i.e.,

Eξi ∥∇Fi(y; ξi)−∇fi(x)∥2 ≤ σ2
l ,∀i ∈ {1, 2, . . . ,m},

the global variance is also bounded, i.e., 1
m

∑m
i=1 ∥∇fi(x) −∇f(x)∥2 ≤ σ2

g for all x ∈ Rd. It is
not hard to verify that the σg is smaller than the homogeneity parameter β, i.e., σ2

g ≤ β2.

Assumption 3 (Bounded gradient ). For any i∈{1, 2, . . . ,m} and x∈Rd, we have ∥∇fi(x)∥≤B.

Note that above mentioned assumptions are mild and commonly used in characterizing the conver-
gence rate of FL (Sun et al., 2022; Ghadimi & Lan, 2013; Yang et al., 2021; Bottou et al., 2018;
Yu et al., 2019; Reddi et al., 2021). Difference with classic decentralized parallel SGD methods
such as D-PSGD (Lian et al., 2017), the technical difficulty is that zt(i)− xt(i) fails to be an unbi-
ased gradient estimation∇fi(xt(i)) after multiple local iterates, thereby merging the multiple local
iterations is non-trivial. Furthermore, the various topologies of communication network in DFL
are quite different with SAM in CFL (Qu et al., 2022). Below, we adopt the averaged parameter
xt= 1

m

∑m
i=1 x

t(i) of all clients to be the approximated solution of Problem (1).

Theorem 4.1 Let Assumptions 1, 2 and 3 hold, and the parameters {xt(i)}t≥0 is generated via
Algorithm 1. Meanwhile, assume the learning rate of SAM in each client satisfy 0 < η ≤ 1

10KL . Let
xt = 1

m

∑m
i=1 x

t(i) and denote Φ(λ,m,Q) as the metric related with three parameters in terms of
the number of spectral gap, the clients and multiple gossip steps,

Φ(λ,m,Q) =
λQ + 1

(1− λ)2m2(Q−1)
+

λQ + 1

(1− λQ)2
, (6)

Then, we have the gradient estimation of DFedSAM or DFedSAM-MGS for solving Problem (1):

min
1≤t≤T

E
∥∥∇f(xt)

∥∥2 ≤ 2[f(x1)− f∗]

T (ηK − 32η3K2L2)
+ α(K, ρ, η) +Φ(λ,m,Q)β(K, ρ, η, λ), (7)
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where T is the number of communication rounds and the constants are given as

α(K, ρ, η) =
ηL2K2

ηK − 32η3K2L2

(4K3L2η2ρ4

2K − 1
+ 8Kη2(L2ρ2 + σ2

g + σ2
l ) +

2Kρ2

2K − 1

)
,

β(K, ρ, η, λ) =
64η5K3L4

ηK−32η3K2L2

(4K3L2ρ4

2K−1
+ 8K(L2ρ2 + σ2

g + σ2
l ) + 8KB2 +

ρ2

η2(2K−1)
)
.

With Theorem 4.1, we state following convergence rates for DFedSAM and DFedSAM-MGS.

Corollary 4.1.1 Let the local adaptive learning rate satisfy η = O(1/L
√
KT ). With the similar

assumptions required in Theorem 4.1.1, and setting the perturbation parameter ρ = O( 1√
T
). Then,

the convergence rate for DFedSAM satisfies:

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2=O(f(x1)−f∗
√
KT

+
K(β2+σ2

l )

T
+

KB2

T 2(1−λ)2
+
K3/2L4

T 2
+

L2

T 2(1−λ)2
+
K(β2+σ2

l )

T 2(1−λ)2
)
.

Remark 1 DFedSAM can achieve a linear speedup on the general non-convex setting as long as
T ≥ K, which is significantly better than the state-of-the-art (SOTA) bounds such as O

(
1√
T
+

σ2
g√
T
+

σ2
g+B2

(1−λ)2T 3/2

)
in (Sun et al., 2022). Note that the bound can be tighter as λ decreases, which is

dominated by K(β2+σ2
l )

T 2(1−λ)2 terms as λ ≤ 1− K1/4

T 3/2 , whereas as β increases, it can be degraded.

Corollary 4.1.2 Let Q > 1, T be large enough and η = O(1/L
√
KT ). With the similar as-

sumptions required in Theorem 4.1.1 and perturbation amplitude ρ being ρ = O( 1√
T
), Then, the

convergence rate for DFedSAM-MGS satisfies:

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2=O(f(x1)−f∗
√
KT

+
K(β2+σ2

l )

T
+
K3/2L4

T 2
+Φ(λ,m,Q)

L2+K(β2+σ2
l +B2)

T 2

)
.

Remark 2 The impact of the network topology (1 − λ) can be alleviated as Q increases and the
number of clients m is large enough, the term λQ+1

(1−λ)2m2(Q−1) of Φ(λ,m,Q) can be neglected, and

the term λQ+1
(1−λQ)2

is close to 1. That means by using the proposed Q-step gossip procedure, model
consistency among clients can be improved, and thus DFL in the various communication topologies
can be roughly viewed as CFL. Thus, the negative effect of the gradient variances σ2

l and β2 can be
degraded especially on sparse network topology where λ is close to 1. In practice, a suitable steps
Q > 1 is possible to achieve a communication-accuracy trade-off in DFL setting.

5 EXPERIMENTS

In this section, we evaluate the efficacy of our algorithms compared to six baselines from CFL and
DFL settings. In addition, we conduct several experiments to verify the impact of the communication
network topology in Section 4. Furthermore, several ablation studies are conducted.

5.1 EXPERIMENT SETUP

Dataset and Data Partition. The efficacy of the proposed DFedSAM and DFedSAM-MGS is eval-
uated on CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) in both IID and non-IID
settings. Specifically, Dir Partition (Hsu et al., 2019) is used for simulating non-IID across federated
clients, where the local data of each client is partitioned by splitting the total dataset through sam-
pling the label ratios from the Dirichlet distribution Dir(α) with parameters α = 0.3 and α = 0.6.

Baselines. The compared baselines cover several SOTA methods in both the CFL and DFL settings.
Specifically, centralized baselines include FedAvg (Mcmahan et al., 2017) and FedSAM (Qu et al.,
2022). For decentralized setting, D-PSGD (Lian et al., 2017), DFedAvg and DFedAvgM (Sun et al.,
2022), along with DisPFL (Dai et al., 2022), are used for comparison.

6



Under review as a conference paper at ICLR 2023

Implementation Details. The total number of clients is set as 100, among which 10% clients par-
ticipates in communication. Specifically, all clients perform the local iteration step for decentralized
methods and only participated clients can perform local update for centralized methods. We initialize
the local learning rate as 0.1 with a decay rate 0.998 per communication round for all experiments.
For CIFAR-10 and CIFAR-100 datasets, VGG-11 (He et al., 2016) and ResNet-18 (Simonyan &
Zisserman, 2014) are adopted as the backbones in each client, respectively. The number of com-
munication rounds is set as 1000 in the experiments for comparing with all baselines and studying
on topology-aware performance. In addition, all the ablation studies are conducted on CIFAR-10
dataset and the number of communication rounds is set as 500.

Communication Configurations. For a fair comparison between decentralized and centralized set-
ting, we apply a dynamic time-varying connection topology for decentralized methods to ensure that
in each round, the number of connections are no more than that in the central server. In specific, the
number of clients communicating with their neighbors can be controlled to keep the communication
volume consistent with centralized methods. Following earlier works, the communication complex-
ity is measured by the times of local communications. The more experiments setup are presented in
Appendix B due to the limited space.

Table 1: Train accuracy (%) and test accuracy (%) on two data in both IID and non-IID settings.

Algorithm
CIFAR-10 CIFAR-100

Dirichlet 0.3 Dirichlet 0.6 IID Dirichlet 0.3 Dirichlet 0.6 IID
Train Validation Train Validation Train Validation Train Validation Train Validation Train Validation

FedAvg 99.99 82.39 99.99 84.17 99.99 84.70 99.99 48.36 99.99 53.06 99.99 54.16
FedSAM 99.75 82.49 99.89 85.04 99.98 84.98 99.99 51.98 99.99 54.88 99.99 59.60
D-PSGD 98.59 68.23 99.09 70.58 99.75 73.23 90.72 27.98 90.15 30.62 92.19 33.64
DFedAvg 99.75 73.55 99.93 74.67 99.95 75.55 99.56 27.62 99.56 32.82 99.68 36.77

DFedAvgM 99.93 79.96 99.95 81.56 99.95 82.07 99.56 45.11 99.60 45.50 99.78 47.98
DisPFL 99.90 72.19 99.93 74.43 99.95 85.30 97.20 30.15 99.48 32.44 99.69 35.98

DFedSAM 99.41 82.04 99.44 84.38 99.44 85.30 99.87 48.66 99.85 50.70 99.97 53.12
DFedSAM-MGS 99.53 84.26 99.65 85.14 99.69 86.47 99.92 52.37 99.95 54.91 99.97 56.15
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Figure 3: Test accuracy of all baselines from both CFL and DFL with (a) CIFAR-10 and (b) CIFAR-100
datasets in both IID and non-IID settings.

5.2 PERFORMANCE EVALUATION

Performance with compared baselines. In Table 1 and Figure 3, we evaluate DFedSAM and
DFedSAM-MGS (Q = 4) with ρ = 0.01 on CIFAR-10 and CIFAR-100 datasets in both settings
compared with all baselines from CFL and DFL. From these results, it is clearly seen that our
proposed algorithms outperform other decentralized methods on this two datasets, and DFedSAM-
MGS outperforms and roughly achieves the performance of SOTA centralized baseline FedSAM on
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CIFAR-10 and CIFAR-100, respectively. Specifically, the training accuracy and testing accuracy
are presented in Table 1 to show the generalization performance. We can see that the performance
improvement is more obvious than all other baselines on CIFAR-10 with the same communication
round. For instance, the difference between training accuracy and test accuracy on CIFAR-10 in IID
setting is 14.14% in DFedSAM, 13.22% in DFedSAM-MGS, 15.29% in FedAvg and 15% in Fed-
SAM. That means our algorithms achieve a comparable generalization than centralized baselines.

Impact of non-IID levels (β). In Table 1, we can see our algorithms are robust to different
participation cases. Heterogeneous data distribution of local client is set to various participation
levels from IID, Dirichlet 0.6 and Dirichlet 0.3, which makes the training of global/consensus
model is more difficult. For instance, on CIFAR-10, as non-IID levels increases, DFedSAM-
MGS achieves better generalization than FedSAM as the difference between training accuracy
and test accuracy in DFedSAM-MGS {15.27%, 14.51%, 13.22%} are lower than that in FedSAM
{17.26%, 14.85%, 15%}. Similarly, the difference in DFedSAM {17.37%, 15.06%, 14.10%} are
lower than that in FedAvg {17.60%, 15.82%, 15.27%}. These observations confirm that our algo-
rithms are more robust than baselines in various degrees of heterogeneous data.

5.3 TOPOLOGY-AWARE PERFORMANCE

We verify the influence of various communication topologies and gossip averaging steps in DFed-
SAM and DFedSAM-MGS. Different with the comparison of CFL and DFL in Section 5.2, we
only need to verify the key properties for the DFL methods in this section. Thus, the communi-
cation type is set as “Complete”, i.e., each client can communicate with its neighbors in the same
communication round.

Table 2: Testing accuracy (%) in various network topolo-
gies compared with decentralized algorithms on CIFAR-10.

Algorithm Ring Grid Exponential Full-connected

D-PSGD 68.96 74.36 74.90 75.35
DFedAvg 69.95 80.17 83.13 83.48

DFedAvgM 72.55 85.24 86.94 87.50
DFedSAM 73.19 ↑ 85.28↑ 87.44 ↑ 88.05 ↑

DFedSAM-MGS 80.55 ↑ 87.39↑ 88.06 ↑ 88.20 ↑

The degree of sparse connectivity λ
is: ring > grid > exponential > full-
connected in DFL. From Table 2, our al-
gorithms are obviously superior to all de-
centralized baselines in various communi-
cation networks, which is coincided with
our theoretical findings. Specifically, com-
pared with DFedAvgM, DFedSAM and
DFedSAM-MGS can significantly improve the performance in the ring topology with 0.64% and
8.0%, respectively. Meanwhile, the performance of DFedSAM-MGS in various topologies is al-
ways better than that of other methods. This observation confirms that multiple gossip steps Q can
alleviate the impact of network topology with a smaller Q = 4. Therefore, our algorithms can
generate the better generalization and model consistency in various communication topologies.

5.4 ABLATION STUDY

Below, we verify the influence of each component and hyper-parameter in DFedSAM where Q = 1.
All the ablation studies are conducted in “exponential” topology except the study for Q in three
topologies, and the communication type is the same as Section 5.3: “Complete”.

Figure 4: Test accuracy with the number of local communications in various values of Q.

Consensus/gossip steps Q. In Figure 4, we investigate where the balance between learning per-
formance and communication complexity in three network topologies is. We choose four multiple
steps Q = {1, 2, 3, 4} and study the different balance points under the different steps in three net-
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work topologies in Figure 4 (a), (b) and (c). As the number of local communications increases,
model performance is also improved but the communication complexity increases too. It is clearly
seen that the balance point is different but with the same tendency in different topologies. And a
relatively larger Q can bring better performance for a given communication complexity. Therefore,
we select Q = 4 in DFedSAM-MGS under 1000 communication rounds for a better balance.
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Figure 5: Impact of hyper-paramerters: local iteration steps K, participated clients m, perturbation radius ρ.

Local iteration steps K. Large local iteration steps K can help the convergence in previous DFL
work (Sun et al., 2022) with the theoretical guarantees. To investigate the acceleration on T by
adopting a larger local iteration steps K, we fix the total batchsize and change local training epochs.
As shown in Figure 5 (a), our algorithms can accelerate the convergence in theoretical results (see
Section 4.1) as a larger local iteration steps K is adopted.

Number of participated clients m. As shown in Figure 5 (b), we compare the performance be-
tween different number of client participation m = {50, 100, 150} with the same hyper-parameters.
Compared with larger m = 150, the smaller m = {50, 100} can achieve better convergence and test
accuracy as the number of local data increases, which makes indirectly local model more general-
ization, thereby improving the performance of consensus model.

Perturbation radius ρ. Perturbation radius ρ has the impact on performance as the adding pertur-
bation is accumulated when the communication round T increases. It is a trade-off between test
accuracy and the generalization. To select a proper value for our algorithms, we conduct some ex-
periments on various perturbation radius from the set {0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}
in Figure 5 (c). As ρ = 0.01, we achieve a better convergence and performance. Meanwhile,
ρ = O( 1√

T
) can make a linear speedup on convergence (see Section 4.1).

Table 3: Test accuracy of DFedAvg and DFedSAM along
with DFedSAM-MGS.

Algorithm Train (%) Validation (%) Differential value (%)

DFedAvg 98.86 82.10 16.76
DFedSAM 92.26 84.70 ↑ 7.56 ↓

DFedSAM-MGS 92.55 85.56 ↑ 6.99↓

The effectiveness of SAM and MGS.
To validate the effectiveness of SAM and
MGS, respectively, we compare four al-
gorithms including DFedAvg, DFedSAM
and FedSAM-MGS with the same setting.
From Table 3, DFedSAM can achieve the
performance improvement and better generalization compared with DFedAvg as SAM optimizer is
adopted. DFedSAM-MGS can further boost the performance compared with FedSAM as MGS can
also make models consistent among clients and accelerate the convergence rates.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we focus on the model inconsistency challenge caused by heterogeneous data and
network connectivity of communication topology in DFL and overcome this challenge from the per-
spectives of model generalization. We propose two DFL frameworks: DFedSAM and DFedSAM-
MGS with better model consistency among clients. DFedSAM adopts SAM to achieve the flatness
model in each client, thereby improving the generalization by generating a consensus/global flatness
model. Meanwhile, DFedSAM-MGS further improves the model consistency based on DFedSAM
by accelerating the aggregation of local flat models and reaching a better trade-off between learning
performance and communication complexity. For theoretical findings, we confirm a linear speedup
and unify the impacts of gradient perturbation in SAM, local communications in MGS, and network
typology, along with data homogeneity upon the convergence rate in DFL. Furthermore, empirical
results also verify the superiority of our approaches. For future work, we will continue towards
understanding of the effect of SAM and MGS for more desira ble generalization in DFL.
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Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends in Machine Learning,
pp. 1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905–5914. PMLR, 2021.

10



Under review as a conference paper at ICLR 2023

Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. Fully decentralized
federated learning. In Third workshop on Bayesian Deep Learning (NeurIPS), 2018.

Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-peer federated
learning on graphs. arXiv preprint arXiv:1901.11173, 2019.

Boyue Li, Shicong Cen, Yuxin Chen, and Yuejie Chi. Communication-efficient distributed opti-
mization in networks with gradient tracking and variance reduction. Journal of Machine Learning
Research, JMLR, pp. 180:1–180:51, 2020a.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, pp. 50–60, 2020b.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, pp. 429–450, 2020c.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 5330–5340, 2017.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360–12370, 2022.

H Brendan Mcmahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera Y Arcas.
Communication-efficient learning of deep networks from decentralized data. pp. 1273–1282,
2017.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
via sharpness aware minimization. In International Conference on Machine Learning, ICML, pp.
18250–18280, 2022.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
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Figure 6: An overview of the various communication network topologies in decentralized setting.

B MORE DETAILS ON ALGORITHM IMPLEMENTATION

B.1 DATASETS AND BACKBONES.

CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) are labeled subsets of the 80 million images
dataset. They both share the same 60, 000 input images. CIFAR-100 has a finer labeling, with 100
unique labels, in comparison to CIFAR-10, having 10 unique labels. The VGG-11 as the backbone
is used for CIFAR-10, and the ResNet is chose for CIFAR-100, where the batch-norm layers are
replaced by group-norm layers due to a detrimental effect of batch-norm.

B.2 MORE DETAILS ABOUT BASELINES.

FedAvg is the classic FL method via the vanilla weighted averaging to parallel train a global model
with a central server. FedSAM applies SAM to be the local optimizer for improving the model
generalization performance. For decentralized schemes, D-PSGD is a classic decentralized parallel
SGD method to reach a consensus model 1, DFedAvg is the decentralized FedAvg, and DFedAvgM
uses SGD with momentum based on DFedAvg to train models on each client and performs multiple
local training steps before each communication. Furthermore, DisPFL is a novel personalized FL

1In this work, we focus on decentralized FL which refers to the local training with multiple local iterates,
whereas decentralized learning/training focuses on one-step local training. For instance, D-PSGD (Lian et al.,
2017) is a decentralized training algorithm, which uses the one-step SGD to train local models in each commu-
nication round.
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framework in a decentralized communication protocol, which uses a decentralized sparse training
technique, thus for a fair comparison, we report the global accuracy in DisPFL.

B.3 HYPERPARAMETERS.

The total client number is set to 100, and the number of connection s in each client is restrict at most
10 neighbors in decentralized setting. For centralized setting, the sample ratio of client is set to 0.1.
The local learning rate is set to 0.1 decayed with 0.998 after each communication round for all ex-
periments, and the global learning rate is set to 1.0 for centralized methods. The batch size is fixed to
128 for all the experiments. We run 1000 global communication rounds for CIFAR-10 and CIFAR-
100. SGD optimizer is used with weighted decayed parameter 0.0005 for all baselines except Fed-
SAM. Other optimizer hyper-parameters ρ = 0.01 for our algorithms (DFedSAM and DFedSAM-
MGS with Q = 1) via grid search on the set {0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} and the
value of ρ in FedSAM is followed by (Qu et al., 2022), respectively. And following by (Sun et al.,
2022), the local optimization with momentum 0.9 for DFedAvgM. For local iterations K, the train-
ing epoch in D-PSGD is set to 1, that for all other methods is set to 5.

B.4 COMMUNICATION CONFIGURATIONS.

Specifically, such as (Dai et al., 2022), the decentralized methods actually generate far more com-
munication volume than centralized methods because each client in the network topology needs
to transmit the local information to their neighbors. However, only the partly sampled clients can
upload their parameter updates with a central server in centralized setting. Therefore, for a fair com-
parison, we use a dynamic time-varying connection topology for decentralized methods in Section
5.2, we restrict each client can communicate with at most 10 neighbors which are random sampled
without replacement from all clients, and only 10 clients who are neighbors to each other can per-
form one gossip step to exchange their local information in DFedSAM. In DFedSAM-MGS, the
gossip step is performed Q times, 10×Q clients are sampled without replacement can perform one
gossip step to exchange their local information.

C ALGORITHMS

D PRELIMINARY LEMMAS

Lemma D.1 [Lemma 4, (Lian et al., 2017)] For any t ∈ Z+, the mixing matrix W ∈ Rm satisfies
∥Wt − P∥op ≤ λt, where λ := max{|λ2|, |λm(W )|} and for a matrix A, we denote its spectral
norm as ∥A∥op. Furthermore, 1 := [1, 1, . . . , 1]⊤ ∈ Rm and

P :=
11⊤

m
∈ Rm×m.

In [Proposition 1, (Nedic & Ozdaglar, 2009)], the author also proved that ∥W t − P∥op ≤ Cλt for
some C > 0 that depends on the matrix.

Lemma D.2 [Lemma A.5, (Qu et al., 2022)] (Bounded global variance of ∥∇fi(x+ δi)−∇f(x+
δ)∥2.) An immediate implication of Assumptions 1 and 2, the variance of local and global gradients
with perturbation can be bounded as follows:

∥∇fi(x+ δi)−∇f(x+ δ)∥2 ≤ 3σ2
g + 6L2ρ2.

Lemma D.3 [Lemma B.1, (Qu et al., 2022)] (Bounded Eδ of DFedSAM). the updates of DFedSAM
for any learning rate satisfying η ≤ 1

4KL have the drift due to δi,k − δ:

Eδ =
1

m

m∑
i=1

E[∥δi,k − δ∥2] ≤ 2K2β2η2ρ2.

where δ = ρ ∇F (x)
∥∇F (x)∥ , δi,k = ρ ∇Fi(y

t,k,ξ)
∥∇Fi(yt,k,ξ)∥ .
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Algorithm 1: DFedSAM and DFedSAM-MGS
Input : Total number of clients m, total number of communication rounds T , the number of consensus

steps per gradient iteration Q, learning rate η, and total number of the local iterates are K.
Output: Generate consensus model xT after the final communication of all clients with their neighbors.

1 Initialization: Randomly initialize each client’s model x0(i).
2 for t = 0 to T − 1 do
3 for node i in parallel do
4 for k = 0 to K − 1 do
5 Set yt,0(i)← xt(i), yt,−1(i) = yt,0(i)

6 Sample a batch of local data ξi and calculate local gradient gt,k(i) = ∇Fi(y
t,k; ξi)

7 g̃t,k(i) = ∇Fi(y
t,k + δ(yt,k); ξi) with δ(yt,k) = ρgt,k/

∥∥gt,k
∥∥
2

8 yt,k+1(i) = yt,k(i)− ηg̃t,k(i)
9 end

10 zt(i)← yt,K(i)

11 Receive neighbors’ models zt(l) from neighborhood set Sk,t with adjacency matrix W .

12 xt+1(i) =
∑

l∈N (i) wi,lz
t(l)

13 for q = 0 to Q− 1 do
14 xt,q+1(i) =

∑
l∈N (i) wi,lz

t,q(l) (zt,0(i) = zt(i)) (Exchanging messages)

15 zt,q+1(i) = xt,q+1(i) (Local gossip update)
16 end

17 xt+1(i) = xt,Q(i)

18 end
19 end

E CONVERGENCE ANALYSIS FOR DFEDSAM AND DFEDSAM-MGS

In the following, we present the proof of convergence results for DFedSAM and DFedSAM-MGS,
respectively. Note that the proof of Theorem 4.1 is thoroughly introduced in two sections E.2 and
E.3 as follows, where Q = 1 and Q > 1, respectively.

E.1 PRELIMINARY LEMMAS

Lemma E.1 Assume that Assumptions 1 and 2 hold, and (yt,k(i) + δi,k)t≥0, (xt,k(i))t≥0 are gen-
erated by DFedSAM for all i ∈ {1, 2, ...,m}. If the client update of DFedSAM for any learning rate
η ≤ 1

10KL , it then follows:

1

m

m∑
i=1

E
∥∥(yt,k(i) + δi,k)− xt(i)

∥∥2 ≤ 2K(
4K3L2η2ρ4

2K − 1
+ 8Kη2(L2ρ2 + σ2

g + σ2
l )

+
8Kη2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2) + 2Kρ2

2K − 1
,

(8)

where 0 ≤ k ≤ K − 1.
Proof.
For any local iteration k ∈ {0, 1, ...,K − 1} in any node i, it holds

1

m

m∑
i=1

E
∥∥(yt,k(i) + δi,k)− xt(i)

∥∥2 =
1

m

m∑
i=1

E
∥∥yt,k−1(i) + δi,k − η∇Fi(y

t,k−1(i) + δi,k−1)− xt(i)
∥∥2

=
1

m

m∑
i=1

E∥yt,k−1(i) + δi,k−1 − xt(i) + δi,k − δi,k−1 − η
(
∇Fi(y

t,k−1(i) + δi,k−1)−∇Fi(y
t,k−1)

+∇Fi(y
t,k−1)−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)

)
∥2

≤ I + II,
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where I = (1 + 1
2K−1 )

1
m

∑m
i=1

(
E
∥∥yt,k−1(i) + δi,k−1 − xt(i)

∥∥2 + E∥δi,k − δi,k−1∥2
)

and

II =
2K

m

m∑
i=1

E∥ − η
(
∇Fi(y

t,k−1(i) + δi,k−1)−∇Fi(y
t,k−1)

+∇Fi(y
t,k−1)−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)

)
∥2,

With Lemma D.3 and Assumptions, the bounds are

I = (1 +
1

2K − 1
)
1

m

m∑
i=1

(
E
∥∥yt,k−1(i) + δi,k−1 − xt(i)

∥∥2 + 2K2L2η2ρ4
)
,

and

II =
8Kη2

m

m∑
i=1

(
L2ρ2 + σ2

l + σ2
g + E

∥∥∇f(xt)
∥∥2 ),

where E ∥δi,k−1∥2 ≤ ρ2.
Thus, we can obtain

E
∥∥(yt,k(i) + δi,k)− xt(i)

∥∥2 ≤ (1 +
1

2K − 1
)E

∥∥(yt,k−1(i) + δi,k−1)− xt(i)
∥∥2

+
4K3L2η2ρ4

2K − 1
+ 8Kη2(L2ρ2 + σ2

g + σ2
l ) +

8Kη2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2 ,
where E ∥∇f(xt)∥2 = 1

m

∑m
i=1 E ∥∇f(xt(i))∥2, f(x) := 1

m

∑m
i=1 fi(x), and ∇fi(xt) :=

∇f(xt(i)).
The recursion from τ = 0 to k yields

1

m

m∑
i=1

E
∥∥(yt,k(i) + δi,k)− xt(i)

∥∥2 ≤ 1

m

m∑
i=1

K−1∑
τ=1

(1 +
1

2K − 1
)τ
(4K3L2η2ρ4

2K − 1
+ 8Kη2(L2ρ2 + σ2

g + σ2
l )

+
8Kη2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2 )+ (1 +
1

2K − 1
)ρ2

≤ 2K(
4K3L2η2ρ4

2K − 1
+ 8Kη2(L2ρ2 + σ2

g + σ2
l )

+
8Kη2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2) + 2Kρ2

2K − 1
.

This completes the proof.

Lemma E.2 Assume that Assumption 3 holds and the number of local iteration K is large enough.
Let {xt(i)}t≥0 be generated by DFedSAM for all i ∈ {1, 2, ...,m} and any learning rate η > 0, we
have following bound:

1

m

m∑
i=1

E[∥xt,k(i)− xt∥2] ≤ C2η
2

(1− λ)2
,

where C2 = 2K( 4K
3L2ρ4

2K−1 + 8K(L2ρ2 + σ2
g + σ2

l ) + 8KB2) + 2Kρ2

η2(2K−1) .
Proof.
Following [Lemma 4, (Sun et al., 2022)], we denote Zt :=

[
zt(1), zt(2), . . . , zt(m)

]⊤ ∈ Rm×d.
With these notation, we have

Xt+1 = WZt = WXt − ζt, (9)

where ζt := WXt −WZt. The iteration equation (9) can be rewritten as the following expression

Xt = WtX0 −
t−1∑
j=0

Wt−1−jζj . (10)
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Obviously, it follows
WP = PW = P. (11)

According to Lemma D.1, it holds
∥Wt −P∥ ≤ λt.

Multiplying both sides of equation (10) with P and using equation (11), we then get

PXt = PX0 −
t−1∑
j=0

Pζj = −
t−1∑
j=0

Pζj , (12)

where we used initialization X0 = 0. Then, we are led to

∥Xt −PXt∥ = ∥
t−1∑
j=0

(P−Wt−1−j)ζj∥

≤
t−1∑
j=0

∥P−Wt−1−j∥op∥ζj∥ ≤
t−1∑
j=0

λt−1−j∥ζj∥.

(13)

With Cauchy inequality,

E∥Xt −PXt∥2 ≤ E(
t−1∑
j=0

λ
t−1−j

2 · λ
t−1−j

2 ∥ζj∥)2

≤ (

t−1∑
j=0

λt−1−j)(

t−1∑
j=0

λt−1−jE∥ζj∥2)

Direct calculation gives us

E∥ζj∥2 ≤ ∥W∥2 · E∥Xj − Zj∥2 ≤ E∥Xj − Zj∥2.

With Lemma E.1 and Assumption 3, for any j,

E∥Xj − Zj∥2

≤ m
(
2K(

4K3L2ρ4

2K − 1
+ 8K(L2ρ2 + σ2

g + σ2
l ) + 8KB2) +

2Kρ2

η2(2K − 1)

)
η2.

Thus, we get

E∥Xt −PXt∥2

≤
m
(
2K( 4K

3L2ρ4

2K−1 + 8K(L2ρ2 + σ2
g + σ2

l ) + 8KB2) + 2Kρ2

η2(2K−1)

)
η2

(1− λ)2
.

The fact that Xt −PXt =


xt(1)− xt

xt(2)− xt

...
xt(m)− xt

 then proves the result.

Lemma E.3 Assume that Assumption 3 holds and the number of local iteration K is large enough.
Let {xt(i)}t≥0 be generated by DFedSAM-MGS for all i ∈ {1, 2, ...,m} and any learning rate
η > 0, we have following bound:

1

m

m∑
i=1

E[∥xt,k(i)− xt∥2] ≤ C2η
2
( λQ + 1

(1− λ)2m2(Q−1)
+

λQ + 1

(1− λQ)2

)
,

where C2 = 2K( 4K
3L2ρ4

2K−1 + 8K(L2ρ2 + σ2
g + σ2

l ) + 8KB2) + 2Kρ2

η2(2K−1) .
Proof.

17
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Following [Lemma 4, (Sun et al., 2022)] and Lemma E.2, we denote Zt :=[
zt(1), zt(2), . . . , zt(m)

]⊤ ∈ Rm×d. With these notation, we have

Xt+1 = WQZt = WQXt − ζt, (14)

where ζt := WQXt −WQZt. The iteration equation (14) can be rewritten as the following
expression

Xt = (Wt)QX0 −
t−1∑
j=0

W(t−1−j)Qζj . (15)

Obviously, it follows
WQP = PWQ = P. (16)

According to Lemma D.1, it holds
∥Wt −P∥ ≤ λt.

Multiplying both sides of equation (15) with P and using equation (16), we then get

PXt = PX0 −
t−1∑
j=0

Pζj = −
t−1∑
j=0

Pζj ,

where we used initialization X0 = 0. Then, we are led to

∥Xt −PXt∥ = ∥
t−1∑
j=0

(P−WQ(t−1−j))ζj∥

≤
t−1∑
j=0

∥P−WQ(t−1−j)∥op∥ζj∥

≤
t−1∑
j=0

λt−1−j∥W(t−1−j)(Q−1)∥∥ζj∥

≤
t−1∑
j=0

λt−1−j∥Wt−1−j −P+P∥Q−1∥ζj∥.

With Cauchy inequality,

E∥Xt −PXt∥2 ≤ (

t−1∑
j=0

λt−1−j(λ(Q−1)(t−1−j) +
1

mQ−1
)

t−1∑
j=0

λt−1−j(λ(Q−1)(t−1−j) +
1

mQ−1
)E∥ζj∥2)

≤ (

t−1∑
j=0

(λQ(t−1−j) +
λt−1−j

mQ−1
)

t−1∑
j=0

(λQ(t−1−j) +
λt−1−j

mQ−1
)E∥ζj∥2)

≤ E∥ζj∥2
( 1

(1− λ)2m2(Q−1)
+

1

(1− λQ)2

)
.

Direct calculation gives us

E∥ζj∥2 ≤ ∥WQ∥2 · E∥Xj − Zj∥2

≤ ∥W −P+P∥2Q∥Xj − Zj∥2

≤ (∥W −P∥2Q + ∥P∥2Q)E∥Xj − Zj∥2

≤ (λQ + 1)E∥Xj − Zj∥2.

With Lemma E.1 and Assumption 3, for any j,

E∥Xj − Zj∥2

≤ m
(
2K(

4K3L2ρ4

2K − 1
+ 8K(L2ρ2 + σ2

g + σ2
l ) + 8KB2) +

2Kρ2

η2(2K − 1)

)
η2.
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Thus, we get

E∥Xt −PXt∥2 ≤ mC2η
2
( λQ + 1

(1− λ)2m2(Q−1)
+

λQ + 1

(1− λQ)2

)
,

where C2 = 2K( 4K
3L2ρ4

2K−1 + 8K(L2ρ2 + σ2
g + σ2

l ) + 8KB2) + 2Kρ2

η2(2K−1) .

The fact that Xt −PXt =


xt(1)− xt

xt(2)− xt

...
xt(m)− xt

 then proves the result.

E.2 PROOF OF CONVERGENCE RESULTS FOR DFEDSAM.

Noting that PXt+1 = PWZt = PZt, that is also

xt+1 = zt,

where X := [x(1),x(2), . . . ,x(m)]
⊤ ∈ Rm×d and Z := [z(1), z(2), . . . , z(m)]

⊤ ∈ Rm×d.
Thus we have

xt+1 − xt = xt+1 − zt + zt − xt = zt − xt, (17)

where zt :=
∑m

i=1 zt(i)

m and xt :=
∑m

i=1 xt(i)

m . In each node,

zt − xt =

∑m
i=1(

∑K−1
k=0 yt,k+1(i)− yt,k(i))

m

=

∑m
i=1

∑K−1
k=0 (−ηg̃t,k(i))

m

=

∑m
i=1

∑K−1
k=0 (−η∇Fi(y

t,k + ρ∇Fi(y
t,k; ξ)/

∥∥∇Fi(y
t,k; ξ)

∥∥
2
); ξ)

m
.

(18)

The Lipschitz continuity of∇f :

Ef(xt+1) ≤ Ef(xt) + E⟨∇f(xt), zt − xt⟩+ L

2
E∥xt+1 − xt∥2, (19)

where we used (17).
And (18) is used:

E⟨K∇f(xt), (zt − xt)/K⟩ = E⟨K∇f(xt),−η∇f(xt) + η∇f(xt) + (zt − xt)/K⟩

= −ηKE
∥∥∥∇f(xt)

∥∥∥2 + E⟨K∇f(xt),
η

mK

m∑
i=1

K−1∑
k=0

(
∇f(xt(i))−∇Fi(y

t,k + δi,k; ξ)
)
⟩

a)

≤ ηE
∥∥∥∇f(xt)

∥∥∥ · ∥∥∥∥∥ L

m

m∑
i=1

K−1∑
k=0

(xt(i)− yt,k − δi,k)

∥∥∥∥∥
b)

≤ ηK

2
E
∥∥∥∇f(xt)

∥∥∥2 + ηL2K2

2K

(
2K(

4K3L2η2ρ4

2K − 1
+ 8Kη2(L2ρ2 + σ2

g + σ2
l )

+
8Kη2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2) + 2Kρ2

2K − 1

)
,

(20)

where a) uses the Lipschitz continuity, b) uses Lemma E.1. Meanwhile, we can get

L

2
E
∥∥∥xt+1 − xt

∥∥∥2 =
L

2
E
∥∥∥zt − xt

∥∥∥2 ≤ L

2

1

m

m∑
i=1

∥∥yt,K(i)− xt(i)
∥∥2

≤ L

2
E

∥∥∥∥∥−η
∑m

i=1

∑K−1
k=0 ∇Fi(y

t,k + δi,k; ξ)

m

∥∥∥∥∥
2

a)

≤ L

2
η2K2B2,

(21)
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where a) uses Assumption 3.
Furthermore, (19) can be represented as

Ef(xt+1) ≤Ef(xt)− ηK

2
E
∥∥∥∇Ef(xt)

∥∥∥2 + ηL2K

2
C1

+
8η3K2L2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2 + L

2
η2K2B2,

(22)

where C1 = 2K( 4K
3L2η2ρ4

2K−1 + 8Kη2(L2ρ2 + σ2
g + σ2

l ) +
2Kρ2

2K−1 .
Thus, with Lemma E.2, we can get

1

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2 ≤ 2L2

∑m
i=1

∥∥∥xt(i)− xt
∥∥∥2

m
+ 2E

∥∥∥∇f(xt)
∥∥∥2

a)

≤ 2L2 C2η
2

(1− λ)2
+ 2E

∥∥∥∇f(xt)
∥∥∥2 ,

(23)

where a) uses Lemma E.2 and C2 = 2K( 4K
3L2ρ4

2K−1 + 8K(L2ρ2 + σ2
g + σ2

l ) + 8KB2) + 2Kρ2

η2(2K−1) .
Therefore, (19) is

Ef(xt+1) ≤ Ef(xt)− ηK

2
E
∥∥∥∇f(xt)

∥∥∥2 + ηL2KC1

2

+ 8η3K2L2(2L2 C2η
2

(1− λ)2
+ 2E

∥∥∥∇f(xt)
∥∥∥2)

≤ Ef(xt) + (16η3K2L2 − ηK

2
)E

∥∥∥∇f(xt)
∥∥∥2

+
ηL2KC1

2
+

16C2η
5K2L4

(1− λ)2
.

(24)

Summing the inequality (24) from t = 1 to T , and then we can get the proved result as below:

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2 ≤ 2f(x1)− 2f∗

T (ηK − 32η3K2L2)
+

ηL2KC1

2 + 16C2η
5K2L4

(1−λ)2

ηK − 32η3K2L2
.

If we choose the learning rate η = O(1/L
√
KT ) and η ≤ 1

10KL , the number of communication
round T is large enough, we have

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2 =O
(f(x1)− f∗
√
KT

+
K3/2L2ρ4

T
+

K(L4ρ2 + σ2
g + σ2

l )

T
+

L2ρ2

T (1− λ)2
+

KB2

T 2(1− λ)2
+

K2L2ρ4

T 2(1− λ)2
+

K(L2ρ2 + σ2
g + σ2

l )

T 2(1− λ)2

)
.

When perturbation amplitude ρ proportional to the learning rate, e.g., ρ = O( 1√
T
), and then we

have:

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2 =O
(f(x1)− f∗
√
KT

+
K(σ2

g + σ2
l )

T
+

KB2

T 2(1− λ)2
+

K3/2L4

T 2

+
L2

T 2(1− λ)2
+

K(σ2
g + σ2

l )

T 2(1− λ)2

)
.

Under Definition 2, we can get

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2 =O
(f(x1)− f∗
√
KT

+
K(β2 + σ2

l )

T
+

KB2

T 2(1− λ)2
+

K3/2L4

T 2

+
L2

T 2(1− λ)2
+

K(β2 + σ2
l )

T 2(1− λ)2

)
.

This completes the proof.
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E.3 PROOF OF CONVERGENCE RESULTS FOR DFEDSAM-MGS

With multiple gossiping steps, x0 and z0 are represented as x and z, respectively. Meanwhile,
Zt,Q = Zt,0 ·WQ = Zt ·WQ. Noting that PXt+1 = PWQZt = PZt(Q > 1), that is also

xt+1 = zt,

where X := [x(1),x(2), . . . ,x(m)]
⊤ ∈ Rm×d and Z := [z(1), z(2), . . . , z(m)]

⊤ ∈ Rm×d.
Thus we have

xt+1 − xt = xt+1 − zt + zt − xt = zt − xt, (25)

where zt :=
∑m

i=1 zt(i)

m and xt :=
∑m

i=1 xt(i)

m . In each node,

zt − xt =

∑m
i=1(

∑K−1
k=0 yt,k+1(i)− yt,k(i))

m

=

∑m
i=1

∑K−1
k=0 (−ηg̃t,k(i))

m

=

∑m
i=1

∑K−1
k=0 (−η∇Fi(y

t,k + ρ∇Fi(y
t,k; ξ)/

∥∥∇Fi(y
t,k; ξ)

∥∥
2
); ξ)

m
.

(26)

The Lipschitz continuity of∇f :

Ef(xt+1) ≤ Ef(xt) + E⟨∇f(xt), zt − xt⟩+ L

2
E∥xt+1 − xt∥2, (27)

where we used (17).
And (18) is used:

E⟨K∇f(xt), (zt − xt)/K⟩ = E⟨K∇f(xt),−η∇f(xt) + η∇f(xt) + (zt − xt)/K⟩

= −ηKE
∥∥∥∇f(xt)

∥∥∥2 + E⟨K∇f(xt),
η

mK

m∑
i=1

K−1∑
k=0

(
∇f(xt(i))−∇Fi(y

t,k + δi,k; ξ)
)
⟩

a)

≤ ηE
∥∥∥∇f(xt)

∥∥∥ · ∥∥∥∥∥ L

m

m∑
i=1

K−1∑
k=0

(xt(i)− yt,k − δi,k)

∥∥∥∥∥
b)

≤ ηK

2
E
∥∥∥∇f(xt)

∥∥∥2 + ηL2K2

2K

(
2K(

4K3L2η2ρ4

2K − 1
+ 8Kη2(L2ρ2 + σ2

g + σ2
l )

+
8Kη2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2) + 2Kρ2

2K − 1

)
,

(28)

where a) uses the Lipschitz continuity, b) uses Lemma E.1. Meanwhile, we can get

L

2
E
∥∥∥xt+1 − xt

∥∥∥2 =
L

2
E
∥∥∥zt − xt

∥∥∥2 ≤ L

2

1

m

m∑
i=1

∥∥yt,K(i)− xt(i)
∥∥2

≤ L

2
E

∥∥∥∥∥−η
∑m

i=1

∑K−1
k=0 ∇Fi(y

t,k + δi,k; ξ)

m

∥∥∥∥∥
2

a)

≤ L

2
η2K2B2,

(29)

where a) uses Assumption 3.
Furthermore, (19) can be represented as

Ef(xt+1) ≤Ef(xt)− ηK

2
E
∥∥∥∇Ef(xt)

∥∥∥2 + ηL2K

2
C1

+
8η3K2L2

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2 + L

2
η2K2B2,

(30)
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where C1 = 2K( 4K
3L2η2ρ4

2K−1 + 8Kη2(L2ρ2 + σ2
g + σ2

l ) +
2Kρ2

2K−1 .
Thus, with Lemma E.3, we can get

1

m

m∑
i=1

E
∥∥∇f(xt(i))

∥∥2 ≤ 2L2

∑m
i=1

∥∥∥xt(i)− xt
∥∥∥2

m
+ 2E

∥∥∥∇f(xt)
∥∥∥2

a)

≤ 2L2C2η
2
( λQ + 1

(1− λ)2m2(Q−1)
+

λQ + 1

(1− λQ)2

)
+ 2E

∥∥∥∇f(xt)
∥∥∥2 ,

(31)

where a) uses Lemma E.3 and C2 = 2K( 4K
3L2ρ4

2K−1 + 8K(L2ρ2 + σ2
g + σ2

l ) + 8KB2) + 2Kρ2

η2(2K−1) .
Therefore, (19) is

Ef(xt+1) ≤ Ef(xt)− ηK

2
E
∥∥∥∇f(xt)

∥∥∥2 + ηL2KC1

2

+ 8η3K2L2(2L2C2η
2
( λQ + 1

(1− λ)2m2(Q−1)
+

λQ + 1

(1− λQ)2

)
+ 2E

∥∥∥∇f(xt)
∥∥∥2)

≤ Ef(xt) + (16η3K2L2 − ηK

2
)E

∥∥∥∇f(xt)
∥∥∥2

+
ηL2KC1

2
+ 16C2η

5K2L4
( λQ + 1

(1− λ)2m2(Q−1)
+

λQ + 1

(1− λQ)2

)
.

(32)

Summing the inequality (32) from t = 1 to T , and then we can get the proved result as below:

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2 ≤ 2f(x1)− 2f∗

T (ηK − 32η3K2L2)
+

ηL2KC1

2 + 16C2η
5K2L4

(
λQ+1

(1−λ)2m2(Q−1) +
λQ+1

(1−λQ)2

)
ηK − 32η3K2L2

.

If we choose the learning rate η = O(1/L
√
KT ) and η ≤ 1

10KL , the number of communication
round T is large enough with Definition 2 and Φ(λ,m,Q) = λQ+1

(1−λ)2m2(Q−1) + λQ+1
(1−λQ)2

is the
key parameter to the convergence bound with the number of spectral gap, the clients and multiple
gossiping steps. Thus we have

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2 = O
(f(x1)− f∗
√
KT

+
K3/2L2ρ4

T
+

K(L4ρ2 + β2 + σ2
l )

T
+

Φ(λ,m,Q)
(L2ρ2

T
+

K2L2ρ4

T 2
+

K(L2ρ2 + β2 + σ2
l +B2)

T 2

))
.

When perturbation amplitude ρ proportional to the learning rate, e.g., ρ = O( 1√
T
), and then we

have:

min
1≤t≤T

E
∥∥∥∇f(xt)

∥∥∥2 =O
(f(x1)− f∗
√
KT

+
K(β2 + σ2

l )

T
+

K3/2L4

T 2

+Φ(λ,m,Q)
L2 +K(β2 + σ2

l +B2)

T 2

)
.

This completes the proof.
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