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Abstract

Due to the inherent structure of language, prior studies of language model
memorization have struggled to disentangle memorization from generaliza-
tion. We formally separate memorization into two components: unintended
memorization, the information a model contains about a specific dataset,
and generalization, the information a model contains about the true data-
generation process. When we completely eliminate generalization, we can
compute the total memorization, which provides an estimate of model capac-
ity: our measurements estimate that GPT-style models have a capacity of
approximately 3.6 bits per parameter. We train language models on datasets
of increasing size and observe that models memorize until their capacity fills,
at which point “grokking” begins, and unintended memorization decreases
as models begin to generalize. We train hundreds of transformer language
models ranging from 500K to 1.5B parameters and produce a series of
scaling laws relating model capacity and data size to membership inference.

1 Introduction

For the past several years, modern language models have been trained on increasingly large
amounts of data, while parameter counts stay stagnant in the billions. For example, one
recent state-of-the-art model (Dubey & et al, 2024) has 8 billion parameters (around 32GB
on disk) but is trained on 15 trillion tokens (around 7TB on disk).

A long line of work (Carlini et al., 2019; Mireshghallah et al., 2022; Nasr et al., 2023;
Zhang et al., 2023; Carlini et al., 2023b; Schwarzschild et al., 2024) questions whether such
pretrained language models memorize their training data in a meaningful way. Most research
approaches this problem either through the lens of extraction, aiming to recover full training
data points from model weights, or membership inference, classifying whether a training
point was present in the training data of a given model.
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Figure 1: Unintended memorization of
uniform random data (Section 3). Memo-
rization plateaus at the capacity of different-
sized models from the GPT-family.
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Figure 2: Unintended memorization of
text across model and dataset sizes (Section
4). All quantities are calculated with respect
to a large oracle model (1B params).
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Studies of language model extraction argue that a data point is memorized if we can induce
the model to generate it (Carlini et al., 2023b; Nasr et al., 2023; Schwarzschild et al.,
2024). We argue that such generation does not necessarily serve as a proof of memorization.
Language models can be coerced to output almost any string (Geiping et al., 2024); hence
the fact that a model outputs something is not necessarily a sign of memorization.

We propose a novel definition of memorization that quantifies the extent to which a model
retains information about a specific datapoint. Our approach leverages the concept of
compression rate in bits, where a model is considered to have memorized an input if
it can be compressed to a significantly shorter encoding in the presence of the model.
This framework draws inspiration from Kolmogorov information Kolmogorov (1963) and
Shannon information Shannon (1948), but can be easily measured in practice using model
likelihoods. We tackle the fundamental challenge of distinguishing between memorization
and generalization (Prashanth et al., 2024) by decomposing memorization into two distinct
components: unintended memorization, which captures the information a model stores about
a particular dataset, and generalization, which represents the knowledge a model has acquired
about the underlying data-generating process.

To understand our new quantities, we measure unintended memorization and generalization by
training language models of varying capacity on datasets of different sizes. We first eliminate
the question of generalization entirely by training on a dataset of random uniformly-sampled
bitstrings. In this setting, we can exactly measure the amount of information contained
about the data inside the model. This gives us a principled way to measure language model
capacity when trained on uniform datasets of exact known information content. We find
that GPT-style transformers can store between 3.5 and 4 bits of information in each model
parameter, depending on model architecture and precision.

We then repeat our experiments with real text, where generalization is possible and even
beneficial for learning. On real text, language models memorize up to a certain capacity, at
which point they substitute unintended memorization for generalization, and begin to learn
general, reusable patterns as opposed to sample-level specifics. Our framework shows that
double descent phenomenon begins to occur at this point, when the data size exceeds the
model capacity in bits.

Finally, we use our results to predict a scaling law for membership inference performance
based on model capacity and dataset size. We show that membership inference follows a
clean relationship based on model capacity and dataset size: bigger models can memorize
more samples, and making datasets bigger makes membership inference harder. Our scaling
laws extrapolate to larger models, and predict most modern language models are trained on
too much data to do reliable membership inference on the average data point.

2 Memorization, intended and unintended

When a model θ = L(x) is trained using a training algorithm L and a dataset x ∼ X,
some information is transferred from the sample x to the model θ. A key question in the
memorization literature is determining how much of this stored information is intended
versus unintended. In this work, we aim to provide a rigorous definition of memorization
that satisfies certain properties:

1. Separation from generalization. Our notion of unintended memorization must be
distinct from intended memorization, which we refer to as generalization. For
example, consider a language model trained on the sample: Q: What is 2100? A:
1267650600228229401496703205376. When assessing how much of this training
sample is memorized, we must account for the fact that performing simple math
operations is expected from a language model.

2. Sample-level memorization. We need to define memorization for realizations of
random variables, not the random variables themselves. Specifically, we want to
determine how much unintended memorization of a sample x occurs in a model θ.

3. Independence from training algorithm. Our definition should be independent of the
training algorithm L and only a function of the final model θ and the sample x.
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This is crucial for language models, where we often only have access to the final
model and target sample.

Previous works have attempted to define memorization for machine learning models. We
aim to provide precise definitions of memorization that meet our criteria, and offer ways to
measure it. See Appendix A.3 for a broader discussion on definitions of memorization.

2.1 A statistical view of memorization

Notation. In this section, we use capital letters (e.g. X, Θ) to refer to random variables and
lowercase letters to refer to instances of a random variable (e.g. x ∼ X and θ ∼ Θ).

Information theory has developed well understood notions of information for random variables.
For a random variable X, we often use H(X), the entropy of X, to define the amount of
information present in X. Moreover, for two distinct random variables X,Y , we can define
X | Y to be the uncertainty left in X after fixing Y . Having defined this quantity, we can
now measure mutual information between X and Y by subtracting the leftover information
from the total information: I(X,Y ) = H(X)−H(X | Y ).

Now assume we have a machine learning pipeline. We have a prior Θ on the underlying
model that captures our dataset distribution X. And we have a learning algorithm L that
maps samples from X to a trained model Θ̂. To understand how much information about X
is stored in Θ̂, we can use the notion of mutual information:

mem(X, Θ̂) = I(X, Θ̂) = H(X)−H(X | Θ̂).

Note that this captures all the information about X that is stored in Θ̂. As we discussed, we
need our notion of memorization to account for generalization as well. So when measuring
unintended memorization, we are only interested in the information that is present in
X | Θ, which is the uncertainty left in X after fixing Θ. Hence, we can define unintended
memorization as

memU (X, Θ̂,Θ) = I([X | Θ], Θ̂) = H(X | Θ)−H(X | (Θ, Θ̂)).

and then the generalization (or intended memorization) must be

memI(Θ̂, X,Θ) = mem(X,Θ)−memU (X, Θ̂,Θ) = I(X, Θ̂)− I(X | Θ, Θ̂)

Now that we have defined our notions of intended and unintended memorization we turn
our attention to practically measuring them. Let us first state a proposition that enables
measurement of unintended memorization:

Proposition 1 (Super-additivity of Unintended Memorization). Assume X = (X1, . . . , Xn) is
a dataset of n i.i.d. samples. We have∑

i∈[n]

memU (Xi, Θ̂,Θ) ≤ memU (X, Θ̂,Θ) ≤ H(Θ̂).

This proposition shows that to measure a lower bound on the unintended memorization on
the dataset level, we can sum per-sample memorization. On the other hand, the entropy
of the information content of the trained model itself servers as an upper bound on the
unintended memorization. Another implication of this implies that unintended memorization
should scale with the dataset size but cannot exceed the total capacity of the model.

2.2 Measuring unintended memorization with Kolmogorov Complexity

Our definitions of memorization and generalization so far are defined using an “entropy-based”
notion of information. This means our definitions can only be used for random variables.
This brings big challenges in measuring memorization. All our variables in the definition of
memorization are singletons. We have a single underlying model θ, we have a single dataset
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x = (x1, . . . , xn) and we have a single trained model θ̂1. It is impossible to measure the
entropy (let alone conditional entropy) of the underlying variables using a single sample.

To this end, we switch to another notion of information based on compression, then later
we show how this notion closely approximates the notion of memorization defined above.
Kolmogorov complexity defines the information content of a string x, denoted as HK(x), to
be the length of shortest representation of x in a given computational model. Similarly, we
can define the leftover information x | θ, to be the shortest representation of x, when we have
θ available as a reference. And the information content of x | θ, denoted by HK(x | θ), is
the length of such description. Then, we can define mutual information in a similar fashion:

Definition 2 (Kolmogorov complexity). Let f be an arbitrary computational model that
takes a set of inputs and returns an output (e.g. universal Turing machine). The shortest
description of x with respect to computational model f is defined as HK(x) = minf(p)=x |p|.
Also, the Kolmogorov complexity of x relative to another string θ is defined as HK(x |
θ) = minf(p,θ)=x |p|. And we define the Kolmogorov mutual information between x and θ by

IK(x, θ) = HK(x)−HK(x | θ). We assume inputs are bitstrings and |p| is the bit length of
the input.

Definition 3 (Kolmogorov memorization). Let θ be a reference model that approximates the

true distribution of data, and θ̂ be a model trained on a dataset x = (x1, . . . , xn). For each

xi we define the memorization of xi in θ̂ as memK(θ̂, x) = IK(θ̂, x). We also define intended
and unintended variants of memorization:

memK
U (x, θ, θ̂) = HK(x | θ)−HK(x | (θ, θ̂)), and memK

I (x, θ, θ̂) = memK(x, θ̂)−memK
U (x, θ, θ̂).

There are known connections between Kolmogorov complexity and Shannon Entropy (Grun-
wald & Vitanyi, 2004). These results point at the conceptual connection between the two
notions and imply that Ex∼X [HK(x)] ≈ H(X). Interestingly, this implies that our notion of
Kolmogorov memorization closely approximates Shannon memorization.

Proposition 4. Let X = (X1, . . . , Xn) be an i.i.d, dataset distribution parametrized by

ground-truth model θ. Let L be a training algorithm mapping X to Θ̂. Assume H(Θ̂) = ℓ

and H(Xi) = ℓ′ 2. Then we have
∣∣∣E x∼X

θ̂∼L(x)

[
memK

U (xi, θ̂, θ)]
]
− memU (Xi, Θ̂, θ)

∣∣∣ ≤ ϵ. for

some constant ϵ independent of θ, ℓ, ℓ′ and n.

2.3 Estimating Kolmogorov with likelihoods

Fixing our notion of Kolmogorov memorization, we now describe how we can estimate HK

in different setups. Note that exact calculation of Kolmogorov complexity is known to be
uncomputable (the decision version of is undecidable). However, we can still approximate it
using the best available compression schemes. Below, we summarize how we approximate
each term in our definition.

• HK(x | θ̂): Here, θ̂ is the trained target model, which does not necessarily capture the
true data distribution. Because compression rate is inherently tied to the likelihood

under a predictive model model (Shannon, 1950), we can easily estimate HK(x | θ̂)
using p(x | ˆtheta), the likelihood of x under the target model.

• HK(x | θ̂, θ): In this case, the compression algorithm has access to both target and

reference models. We simply compute max{p(x | θ̂, p(x | θ)}. In practice, our choice
of reference model is a larger model with the same architecture as θ trained for many
steps on a much wider data distribution.

1Note the switch to lowercase variables because we are now working with instances, not random
variables.

2The trained model and each data sample can be presented using ℓ and ℓ′ bits respectively.
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3 Model Capacity for Memorization

Unintended memorization provides us a principled way of measuring the precise number of
bits a model θ knows about a datapoint x. If we add up the information for each datapoint in
a dataset, we can measure the total amount of bits a model knows about the dataset. And in
cases where generalization is not possible because each datapoint is completely independent,
we can estimate the capacity of a given model θ by summing per-datapoint unintended
memorization.

3.1 Defining model capacity

We first formalize this notion of memorization capacity for a particular language model
θ. Capacity is the total amount of memorization that can be stored in θ across all its
parameters.

Definition 5 (Capacity). Let X be a distribution and L : X → Θ a learning algorithm. We
define the capacity of the learning algorithm L to be

Capacity(L) = max
X

mem
(
X,L(X)

)
When the model capacity is reached, mem(X,L(X)) will no longer increase with dataset
size. In practice, we can compute capacity by training to saturation on varying sizes of X
and computing the maximum memorization.

3.2 Measuring model capacity with synthetic sequences

In this section we measure the capacity of Transformer language models. Our goal is to
instantiate multiple datasets and distributions and measure the memorization of them when
training a single model θ. Then, we take the maximum over all datasets to approximate of
the model’s capacity. For instantiating our datasets, each token is uniformly sampled from a
predefined set of tokens independent of the previous tokens.

To approximate Hk(x | θ, θ̂), we can directly compute entropy under the trained model to

calculate the shortest description of the dataset conditioning on θ̂. Subtracting the two,
we can approximate the unintended memorization memU (X,L(X)). Since the process for

sampling the data is completely random, there is no generalization to be stored within θ̂
(that is, memU (X,L(X)) ≈ mem(X,L(X))).

Observe that when we sample synthetic sequences from a uniform distribution, we can
compute their Shannon information exactly. Given a dataset size N , we construct a dataset
of N sequences, each of S tokens. Given a vocabulary size V , we can calculate the total
entropy of a dataset xi with such parameters by H(xi) = NS log2 V . Then we calculate the

compressed form xi using entropy under θ̂i to compute the code length and use this as an

approximation of HK(xi | θ̂j). Then we calculate the mem(xi, θ̂i) = H(xi) −HK(xi | θ̂j)
and compute a model’s capacity as the maximum amount of memorization over all datasets.

Experimental details. In accordance with Kaplan et al. (2020), we train models with
the GPT-2 architecture (Radford et al., 2019) initialized from scratch. Our models have
between 1 and 8 layers, hidden dimensions scaled from 32 to 512, and from 100K to 20M
parameters. We train models for 106 steps with a batch size of 2048. We use the Adam
optimizer. All models are trained on a single A100 GPU in bfloat16 precision, and we use
gradient accumulation if a batch cannot fit in memory. Unless otherwise noted, we set
vocabulary size V = 2048, sequence length S = 64 and vary only the number of points in a
dataset. We train each model on each dataset size over five random seeds, which affect both
model initialization and the dataset sampling.

Results. We plot memorization across model and data sizes in Figure 1. This allows us to
visualize unintended memorization amounts (y-axis) across dataset sizes (x-axis) grouped
by model size (line color). We observe a striking plateau once a model reaches its capacity.
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Figure 3: In our experiments on synthetic
bitstrings, double descent occurs exactly
when the dataset size begins to exceed the
model’s capacity, when unintended memo-
rization is no longer beneficial for lowering
the loss.
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Figure 4: Train and test losses of different
model and dataset sizes trained on text.
Double descent occurs when dataset size
exceeds model capacity.

Given the dataset is large enough, models exhibit an upper bound in net memorization,
regardless of data size. Small datasets are completely memorized by all models with enough
capacity.

We estimate the capacity of each model as the maximum amount of unintended memorization
in bits measured across all dataset sizes. We then compare this capacity to the model size in
Figure 9. Interestingly, even at this small scale, we see a very smooth relationship between
observed capacity (maximum memorization measured over all datasets) and model parameters.
We plot this relationship in Figure 9: under these settings, our models consistently memorize
between 3.5 and 3.6 bits per parameter. This corroborates the findings of prior work such
as (Roberts et al., 2020; Lu et al., 2024), which noticed that fact storage scales linearly
with model capacity. Ours is a slightly larger estimate than Allen-Zhu & Li (2024), which
estimated via quantization that models can store around 2 bits per parameter.

Since our models are learned via gradient descent, they are not guaranteed to find the global
optima; thus, we are only ever measuring a lower bound on model capacity. We take a closer
look at the training curves to analyze the convergence of our 8M parameter language model.
We plot model convergence throughout training in Figure 8.

In this case, all datasets from 16,000 to 4M samples fall within a range of 3.56−3.65×106 bits
memorized. This indicates that our measurements are robust within an order of magnitude,
and we do not expect to memorize significantly more information by training for more steps.
This finding also confirms our hypothesis that capacity scales roughly with parameter count.
The two largest datasets (4M and 8M samples, respectively) converge to total memorization
of 2.95× 106 and 1.98× 106 bits memorized. We expect that their memorization rates would
continue to increase toward the capacity had we trained for more epochs.

How does precision affect capacity? One natural question is how our estimates for α
depend on the precision of language model training. In fact, although most software defaults
to training in 32-bit precision, recent work has shown that language models can be quantized
to fewer than 2 bits per parameter and still retain much of their utility. Since all other
experiments have been conducted in bfloat16 precision, rerun our experiments in full fp32
precision to analyze the effect on capacity. Across model sizes, we observe a small increase
in capacity, and an increase in α from 3.51 to 3.83 bits-per-parameter on average. This is far
less than the actual 2x increase in the bits of θ, indicating that most of the extra model
bits added when increasing precision from bfloat16 to float32 are not used for
raw storage.
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Capacity(θ) [bits] α [bpp]
nlayer dmodel Params fp32 bf16 fp32 bf16

1

32 8.04×104 3.39×105 3.16×105 4.23 3.93

64 1.85×105 7.27×105 6.93×105 3.92 3.74

128 4.69×105 1.71×106 1.69×106 3.65 3.61

256 1.33×106 4.15×106 3.83×106 3.12 2.88

2

32 9.31×104 3.87×105 3.31×105 4.16 3.56

64 2.35×105 9.60×105 9.27×105 4.08 3.94

128 6.67×105 2.66×106 2.60×106 3.99 3.89

256 2.12×106 8.49×106 7.76×106 4.01 3.66

4

32 1.18×105 4.65×105 3.99×105 3.92 3.37

64 3.35×105 1.34×106 1.14×106 3.98 3.39

128 1.06×106 4.02×106 3.75×106 3.78 3.53

256 3.70×106 1.36×107 1.30×107 3.68 3.51

8

32 1.69×105 5.12×105 4.85×105 3.02 2.86

64 5.35×105 2.05×106 1.71×106 3.83 3.19

128 1.86×106 7.23×106 6.49×106 3.89 3.49

256 6.86×106 2.71×107 2.51×107 3.96 3.65

Mean (±0.1):
3.83 3.51

Table 1: Model capacity estimates across
different widths and depths in full and
half-precision. Doubling precision from
bfloat16 to float32 only increases model
capacity from 3.51 to 3.83 bits-per-
parameter.
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Figure 5: Scaling law curves for mem-
bership inference overlaid with empirical
data, shown in circles.

4 Disentangling Unintended Memorization from Generalization

Our previous experiments analyzed the memorization and membership inference properties
of synthetic bitstrings. We now turn to measuring memorization of text. Unlike randomly
generated sequences, learning from text data is a mix of both unintended memorization
(sample-level) and generalization (population-level).

Experimental details. We repeat the experiments from 3.2, substituting our synthetic
datapoints for real text. To obtain a distribution of real-world text data, we could use
any pre-training scale text dataset; we use the recently proposed FineWeb dataset (Penedo
et al., 2024) as it follows state-of-the-art deduplication practices. We use sequences of
64 tokens but perform an additional deduplication step to ensure perfect deduplication
(otherwise, that 1− 2% of sequences become duplicates when truncating to 64 tokens). We
find careful deduplication extremely important for faithfully measuring extraction rates.
As in the previous subsection, we pretrain models of varying sizes on different-sized text
datasets and measure the unintended memorization of each model-dataset pair. In addition
to memorization, we measure membership inference performance according to a standard
loss-based membership inference procedure; we also compute exact extraction rates by
greedily decoding prefixes of different lengths.

Results. We first observe that the sample-level unintended memorization increases with
model parameters and decreases with training set size (Figure 4). When we measure
unintended memorization with respect to an oracle reference model (Figure 2), memorization
steadily increases as our smaller model is able to learn more about the small training set
than the oracle, and then decreases as our model starts to generalize and perform on average
worse than the (higher-capacity) oracle.

Dataset-to-capacity ratio predicts double descent. We observe from the train and
test loss that for larger datasets the model only begins to generalize (i.e. evaluation loss
decreases) once its capacity is reached, which takes approximately 105 samples, depending
on parameter count. As in Nakkiran et al. (2019) we plot the ratio between the dataset size
and model capacity (Figure 3). Unlike prior work, in our experiments we can compute the
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102 103 104 105 106 107

Training set size
(number of datapoints)

0.5

0.6

0.7

0.8

0.9

1.0

M
em

be
rs

hi
p

in
fe

re
nc

e
sc

or
e

(F
1)

Model size
1711968
3620544
8027520
19200768

Figure 7: Membership inference F1 across
dataset sizes. In this case, F1 score of 0.5
implies random guessing.

exact dataset size (based on the compression rates of the reference model) and exact model
capacity (based on our estimate of α).

We clearly observe double descent evaluation performance decreases as the training set size
nears model capacity, and then rapidly drops as the dataset capacity exceeds the capacity of
the model. Our observations offer an intuitive explanation for double descent (Belkin et al.,
2019; Nakkiran et al., 2019): double descent begins exactly when the data capacity
exceeds the model capacity. One theory is that once the model can no longer memorize
datapoints individually, it is forced to share information between datapoints to save capacity,
which leads to generalization.

Generalization explains nonzero extraction rates. We measure extraction rates on
the full training set and 10,000 non-overlapping test samples (Figure 16). We note that
for 32-token prefixes, 100% are extractable for very small training set sizes; predictably, all
extraction numbers decrease with training set size. When the dataset sizes grows sufficiently
large, the extraction rate does not go fully to zero; however, it converges to nearly exactly
the test extraction rate. In other words, when our (deduplicated) dataset grows sufficiently
large, all successful training data extraction is attributable to generalization.

5 Memorization and Membership

Our training settings allow total control over the train and test data and come with perfect
deduplication. This makes our setting ideal for studying the relationship between model size,
dataset size, and membership inference success rate.

All of our membership inference results come from a standard loss-based membership inference
(Yeom et al., 2018; Sablayrolles et al., 2019). The method is very simple: we set a cutoff loss
value to predict whether a sample is or is not a member of the training dataset.

5.1 Membership in synthetic and text data

Synthetic data. For each of our models trained on synthetic data, we plot the success rate
of the membership inference attack attack across dataset sizes. We show results in Figure 13.
Above a certain dataset size, membership inference starts to fail in the average case. This
finding indicates that if the dataset size is too large compared to the model, membership
inference of an average training sample may not be possible.

Text. For each of our models trained on text, we use unused non-overlapping data from
FineWeb to perform a standard loss-based membership inference (Yeom et al., 2018; Sablay-
rolles et al., 2019) on each model and plot performance across dataset sizes (7). For a fixed
model size, membership inference gets more difficult as the size of the data increases. When
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comparing membership inference to extraction (Figure 6), membership inference is strictly
higher in every case; in some cases we can infer training dataset membership quite well (score
of 0.97) with an extraction rate of 0.

5.2 Scaling laws for Membership

In this section we develop a set of predictive models for memorization. Specifically, we predict
the F1 score of a loss-based membership attack given token count, number of examples, and
model parameter count. We then validate our predictions on models from 500K to 1.5B
parameters.

5.2.1 Functional forms

We observe that for a fixed model capacity, membership inference follows a roughly sigmoidal
form with respect to dataset size. The intuitive explanation is that M.I. is easy for large
models overfit to tiny datasets, so its score begin at 1; as dataset size increases, differentiating
train from test data by loss becomes more and more difficult, eventually decaying toward 0.5.

We reuse the data collected in our text experiments (Section 4) to solve for constants c1, c2, c3
in the following equation:

MembershipF1
(θ,D) =

1

2
(1 + c1σ(c2(

Capacity(θ)

|D|
+ c3))

where σ(x) = 1
1+e−x .

Limiting behavior. We observe that as |D| → ∞, performance of our membership
inference attack decreases to 0.5 (essentially random performance). For a model trained
on an infinite dataset, our law predicts both membership inference and extraction to be
impossible.

Fitting. We use a non-linear least squares solver to find optimal values for c1, c2, c3.
Solutions found are c1 = 1.34, c2 = −0.034, and −33.14. We plot the scaling laws along with
observed data in Figure 5. Although the sigmoidal function is slightly simplistic (the points
do not perfectly fit) our fit produces estimates within 1− 2% of observations.

5.2.2 Validation on larger models

We note that all contemporary language models trained with a tokens-per-parameter ratio
of 102 or higher, which according to our laws would imply membership inference score of 0.5
– that is, within our formulation, statistically significant loss-based membership inference is
not possible.

To validate our predictions, we train models with expected membership F1 scores of 0.55,
0.75, and 0.95. For model sizes we select GPT-2 small (125M params) and GPT-2 XL (1.5B
params). Using our scaling law, we solve for the dataset size required to get the desired
membership inference score for the given model size. We train models on the estimated
dataset size and measure F1 score (Figure 5). Our predictions are generally within 1.5 points
of the true F1 score; the score is most inaccurate for estimated F1 of 0.75, which is the
point where the sigmoid is steepest. In general, the accuracy of our results indicates that
our empirical model of membership inference is relatively accurate and provides evidence for
why membership inference attacks fail on models trained on extremely large datasets (Das
et al., 2024; Duan et al., 2024; Maini et al., 2024).

6 Conclusion

We propose a new definition of memorization that allows us to measure the exact number
of bits a model knows about a dataset. We use our definition to measure the capacity of
modern transformer language models and analyze how measurements such as extraction and
F1 score scale with model and dataset size. We also propose a scaling law for membership
inference and validate it on larger models.

9
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A Appendix

A.1 Related Work

Language models and compression. Shannon’s source coding theorem (Shannon, 1948)
first formalized the duality between prediction and compression. The connection between
language modeling and compression was studied as far back as Shannon (1950), which
observed that more accurate models of English can compress text in fewer bits. Other works
note the connection between Kolmogorov complexity (Kolmogorov, 1965) and Shannon
information in detail (Grunwald & Vitanyi, 2004). Delétang et al. (2024) investigate using
modern transformer-based language models as compressors. We use compression as a tool to
measure memorization in models.

Language model capacity. (Arpit et al., 2017) formalize the idea of effective capacity of
a model and its training procedure; they also observe that both representation capacity and
training time have a strong impact on empirical model capacity. Several other works measure
language model capacity in the number of facts or random labels that can be memorized by a
network such as an RNN (Collins et al., 2017; Boo et al., 2019) or transformer (Roberts et al.,
2020; Heinzerling & Inui, 2021; Allen-Zhu & Li, 2024), sometimes under quantization. A few
research efforts (Yun et al., 2019; Curth et al., 2023; Mahdavi et al., 2024; Kajitsuka & Sato,
2024) have developed theoretical estimates for the capacity of different model architectures,
although none have yet scaled to multi-layer modern transformers. We are the first to
measure a clear upper-bound in model capacity.

Alternative definitions of memorization. Unintended memorization is deeply related
to the many other definitions of memorization proposed in the literature. We provide a
detailed comparison in and Section A.3.
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A.2 Related Work: Definitions of Memorization

Prior definitions of memorization. Carlini et al. (2019) defined a string m as memorized
by a language model θ if the second half of m can be generated greedily when prompting
the model with the first half. Following this, Nasr et al. (2023) introduced extractable
memorization, where model θ is said to memorize m if an adversarial prompt p can be
found that generates m. Mireshghallah et al. (2022) and Schwarzschild et al. (2024) refined
this definition by restricting p to a certain number of tokens, preventing it from containing
the entire m. However, even this definition has limitations: for example, generating the
sequence “cat cat cat ... cat” with the prompt ”repeat cat 1000 times” does not necessarily
indicate memorization. Carlini et al. (2019) use perplexity or likelihood, one measure of
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the compressibility of a sequence, in an effort to distinguish highly memorized sequences
from merely easy-to-compress ones. One additional definition of note is counterfactual
memorization (Zhang et al., 2023), which measures the impact of a single datapoint on
training; this can be seen as an instantiation of our definition where a different model of the
same family is used as a reference model. Overall, all these works regarded memorization in
terms that can be seen as forms of compression, although did not explicitly define it as such.

Finally, in an independent (but earlier) work of (Cohen et al., 2024), authors propose a
theoretical definition for memorization also relying on Kolmogorov complexity. This notion
is similar to us in using Kolmogorov complexity to measure information content but it does
not separate unintended from intended memorization.

Some of our findings also relate to the discovery of double descent in machine learning (Belkin
et al., 2019; Nakkiran et al., 2019) and language modeling (Xia et al., 2023), as well as
general discussions of memorization and generalization in deep learning (Zhang et al., 2017;
Tänzer et al., 2022).

Here, we discuss other definitions of memorization.

A.3 Other notions of memorization

In this section we list multiple other notions of memorization and compare it with our
definition. We specifically focus on why these notions do not satisfy all of our requirements.

• Stability-based notions of memorization. There are notions of privacy and
memorization that deal with “stability” of the training algorithm to small changes
in the training set. Most notably, differential privacy Dwork (2006) considers the
worst-cast drift of the model distribution when a single data point changes. Another
notion of memorization in Feldman (2020) is based on the change of the model
prediction on a point x, when we add the labeled pair (x, y) to the training set
of a classification/regression model. Both of these notions are crucially relying on
the learning algorithm and how it behaves. Moreover, the definition of differential
privacy is not ideal for our case because it is a worst-case definition and cannot
be applied at sample/model level. While the notion of memorization in Feldman
(2020) does not have this particular issue, it suffers from the fact that it only applies
to classification models and mostly deals with the memorization of the association
between the label (y) and input (x), and not the memorization of x itself. These
issues make these notions not ideal for our case.

• Extraction-based memorization. There are multiple works in the literature
(Carlini et al., 2019; Mireshghallah et al., 2022; Nasr et al., 2023; Zhang et al.,
2023; Carlini et al., 2023b; Schwarzschild et al., 2024) that define memorization
of samples in language models based on how easy it is to extract that sample.
Specifically, when trying to understand the extent of memorization of a sample
x in a model θ they measure some notion of complexity for the task of eliciting
the model to output x. Although these notions are great in that they only take
a model θ and a sample x, they still do not account for generalization. Consid-
ering our running example of the following training sample: ”What is 2100? (A:
1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376)”, this will be identified as highly
memorized by almost all of the extraction based notions of memorization. Another
issue with these definitions are that they are heavily dependent on the details of
decoding algorithm. This is not ideal as we do not expect the memorization of a
sample x in a model θ to depend on the detailed parameters we use to generate
samples using θ.

The work of Schwarzschild et al. (2024) in this category is the closest to ours. This
work which is based on prompt-optimization, optimizes a short prompt p to make
the model elicit x, then it calls the sample x memorized, if length of p is less than x.
Although this definition is close to our definition in using compression, it still does
not account for generalization of the model. Moreover, it focuses on a specific way
of compression through prompting. We posit that compression through prompting
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is an inferior compression scheme and can often lead to compression rates greater
than 1.

• Membership/attribute inference. Membership inference Shokri et al. (2017)
and attribute inference attacks Jayaraman & Evans (2022) have been used for
empirically measuring the privacy of machine learning algorithms. These notions
which usually aim at approximating the stability notions of memorization are
suffering from the same shortcomings. They rely heavily on the learning algorithm
and the data distribution. Moreover, they fail at providing a sample level notion
of memorization. For example, the obtained accuracy for membership inference
attack is only meaningful in the population level. This is because various attack may
have different true positives for membership, and the union of all these true positive
across different attack may cover the entire training set, rendering it unusable as a
sample level notion of memorization.

• Data copying in generative models. There are some interesting notions of
memorization designed specifically for generative modeling where a generative
model may output a certain portion of training samples (Bhattacharjee et al., 2023;
Carlini et al., 2023a). These notions are similar to extraction based definition of
memorization but they are more lenient in that they only require extraction of
part of the training data. However, they still suffer from the same challenges as of
extraction based definitions.

A.4 Compression with language models beyond arithmetic coding

Shannon (1948) noted that the optimal compression method for a given source is one that
assigns codes to symbols such that the average code length approaches the entropy of the
source. Arithmetic coding (Pasco, 1977; Rissanen, 1976) is known to be one optimal way to
compress text given a distribution over symbols; it was used in (Delétang et al., 2024) to
compress text using modern language models.

Although arithmetic coding is known to be optimal for samples generated from the random
process of choice, it may still be sub-optimal for cases where the compressed samples are
correlated with the choice of random process. Specifically, in language modeling, the training
data is highly correlated with the model itself and hence we might need to treat them
differently. For instance, we know from previous work that the models behavior on training
data points is different from random samples. A large portion of training data can be
generated using greedy decoding (Carlini et al., 2023b; Liu et al., 2025) which is a behavior
not expected for randomly sampled data. To this end, we design a new compression technique,
a generalization of arithmetic coding.

Ensemble compression. Sampling from language models involve two key parameters k
for topk selection and t for temperature. We design a compression method that sets these
parameters adaptively. For instance, for cases where we know we can decode the next 100
tokens in a greedy fashion, we set k = 1 to reduce the bit length of arithmetic code. Changing
the setup of the coding scheme itself requires a new token to be injected and wastes some
number of bits, but it could still be beneficial for the code length. Our compression program
uses dynamic programming to find the optimal code with injection of these new tokens in
the middle of the text. Notably, our algorithm runs in time O(n ∗ T ), where n is the number
of tokens and T is the number of possible setups (combination of t and k) that we allow.

A.5 How reliable are our linear estimates of capacity?

Instead of scaling the number of examples in a dataset, we scale model sequence length to
adjust the size of a dataset. We use the following measurement for expected memorization
of a model:

mem(X,L(X)) ≈ min(capacity(L), H(X))
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demb nlayer |θ| |D| Predicted F1 Observed F1

GPT2-XL 1600 48 1,556,075,200
170,654,583 0.55 54.61± 1.3
76,795,021 0.75 71.08± 0.4
18,851,574 0.95 95.85± 0.8

GPT2-Medium 768 12 123,702,528
13,566,442 0.55 53.44± 1.1
6,104,935 0.75 65.69± 0.6
1,498,634 0.95 97.98± 0.3

Table 2: Dataset sizes that our scaling law predicts will produce a given membership inference
F1, along with empirical values.

S Params. Memorized Expected Error

4 6.59× 105 1.73× 105 1.80× 105 4.19
8 6.60× 105 3.54× 105 3.60× 105 1.80

16 6.61× 105 7.15× 105 7.21× 105 0.84
32 6.63× 105 1.44× 106 1.44× 106 0.41
64 6.67× 105 2.29× 106 2.36× 106 2.97

128 6.75× 105 2.36× 106 2.39× 106 1.24
256 6.92× 105 2.44× 106 2.45× 106 0.44

Table 3: Model capacity estimates
across sequence length S, along with
error (%).

V Params. Memorized Expected Error

128 4.21× 105 1.49× 106 1.49× 106 0.36
512 4.71× 105 1.71× 106 1.67× 106 2.78

1024 5.36× 105 1.95× 106 1.90× 106 2.70
2048 6.67× 105 2.39× 106 2.36× 106 1.11
4096 9.29× 105 3.13× 106 3.15× 106 0.47

Table 4: Model capacity estimates
across vocab size V , along with error
(%).

we substitute our previous estimate of α = 3.642 and ensure to adjust the parameter count
for increases due to resizing the model’s embedding matrices. We fix the number of training
samples to 4096 and train a model with 2 layers and a hidden size of 128. Results are
illustrated in Figure 10 and Table 3. Our predictions of total memorization are accurate,
with an average error rate of 1.7% while scaling S and 1.8% when scaling V .

A.6 Additional memorization results

Our findings indicate that memorization of text data neatly plateaus near the model capacity
just as in the synthetic data case. When the dataset size increases by a factor of N , the model
divides its memorization between datapoints by an equal amount; the sum of memorization
is measured to be constant, presumably at the upper bound of the model’s capacity.

When the dataset is small enough for each model to fit – that is, below the capacity of the
smallest model – we observe very similar performance between the models. For larger data
sizes we notice an interesting trend: unintended memorization increases with dataset size for
to a point, presumably as a model fills its capacity with the available information, and then
decreases, as the model replaces sample-level information with more useful, generalizable
knowledge. A given model generalizes the most (and memorizes the least information about
any individual sample) when the dataset is maximally large.

A.7 Comparison of distributions memorized

Distribution-level analysis. Text sequences have very different properties than uniform
synthetic bitstrings. We explore how two models of equal capacity spread their memorization
across datapoints. We plot a histogram (Figure 14) of train and test compression rates
of training data from both synthetic random bitstrings and text. Random training data
follows a very normal distribution with a small amount of overlap between train and test
compression rates. Text loss is lower on average but more spread out, with low loss on some
training points and a long tail of higher losses. There is much more overlap between the
train and test loss distributions, which explains why membership inference is more difficult
for text data.
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Figure 10: Model memorization across se-
quence lengths for a fixed-length dataset.
Our predictions of total memorization are
accurate, with an average error rate of 1.7%.

Figure 11: Model memorization across vo-
cabulary size for a fixed-length dataset. Our
predictions of total memorization are accu-
rate, with an average error rate of 1.8%.
Note that, we do not observe a capacity
plateau, since increasing V also increases
parameters.
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Figure 12: Train and test losses for different-
sized language models trained on synthetic
data.
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Figure 13: Membership inference attack per-
formance decreases with dataset scale. In
the case of uniform synthetic data, member-
ship inference performance never falls below
0.54.

Which datapoints are most memorized? Our distribution-level analysis indicates that
unlike in the random-bitstring case, models trained on a large amount of text are able to
memorize a small number of datapoints. Prior work has indicated that a large amount of
this memorization can be due to duplicated training points (Lee et al., 2022) but our dataset
is fully deduplicated so this cannot be an explanation in our case.

To quantitatively evaluate the number of rare words per document, we measure the TF-IDF
of each training document, plotted vs. unintended memorization in Figure 15. We use the
following equation for TF-IDF:

TF-IDF(d;D) =
1

|d|
∑
w∈d

log
|D|

tf(w,D)

where tf(d,D) indicates the total number of times word w appears in dataset D. Intuitively,
a higher TF-IDF score for document d indicates that d contains more words that are rare in
D.
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Figure 14: Distribution of compression rates for equal-sized transformers (nlayer = 4, dmodel =
128) trained on 214 sequences of equal-length random bitstrings (left) and text (right).
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Figure 15: Unintended memorization vs. TF-IDF for all training points of a 20M param
model trained past its capacity on 216 sequences of English text. The training documents
with rarest words are typically the most memorized.

We clearly observe for samples with positive unintended memorization there is a strong
correlation between trainset TF-IDF and memorization: examples with more rare words are
more memorized. In particular, the sample with highest TF-IDF out of the whole training
dataset (a sequence of Japanese words) has the third-highest measured memorization; even
though this is just one out of 260, 000 training samples, the model can regurgitate the entire
sequence given just a single token (囚). Out of the top twenty memorized sequences, all but
three contain sequences of tokens from other languages (Japanese, Chinese, and Hebrew).

Manual analysis (Table 5) indicates that the most memorized datapoints have extremely
rare tokens, typically ones not found in English.

A.8 Scaling law fit

Here we demonstrate the fit of our sigmoidal scaling law to experimental data. We show
points in tokens-per-parameter vs. fit in Figure 16. Although the sigmoidal function is
slightly simplistic (the points do not perfectly fit the curve) our fit produces estimates within
1− 2% of observations.

A.9 Proofs

In the section we provide the proofs missing from the main body.
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Table 5: Highest TF-IDF training examples from a 20M param model trained past its
capacity on 216 sequences of English text. All of the highest TF-IDF examples are considered
memorized, and contain text from non-English languages (Japanese, Chinese, Hebrew, and
Greek).

10 3 10 2 10 1 100 101 102 103

Capacity ratio

0.5

0.6

0.7

0.8

0.9

1.0

M
em

b
er

sh
ip

 In
fe

re
nc

e 
(F

1)

Prediction
Empirical

Figure 16: Our sigmoidal scaling law for membership inference fit to experimental data.

A.10 Proof of Proposition 1

Here we prove Proposition 1

Proof. we have

memU (X, Θ̂,Θ) = I(X | Θ, Θ̂)

= I((X1 | Θ, . . . , Xn | Θ), Θ̂).
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And since the data is sampled i.i.d., all random variables in {Ri = [Xi | Θ]}i∈[n] are

independent. 3 So we have,

I((X1 | Θ, . . . , Xn | Θ), Θ̂) ≥
∑
i∈[n]

I(Xi | Θ, Θ̂)

which implies

memU (X, Θ̂,Θ) ≥
∑
i∈[n]

memU (Xi, Θ̂,Θ).

On the other hand, we have

memU (X, Θ̂,Θ) = I(X | Θ, Θ̂)

= H(Θ̂−H(Θ̂ | (X | Θ))

≤ H(Θ̂)

A.11 Proof of Proposition 4

Proof. We first state a Lemma about connection between algorithmic (kolmogorov) mutual
information and mutual information.

Lemma 6. [Theorem 3.6 in Grunwald & Vitányi (2004)] Assume (X,Y ) be a pair of joint
random variables. Let f be the density function, f(x, y) = Pr[(X,Y ) = (x, y)]. Then we have

I(X,Y )−HK(f) ≤ E
(x,y)∼(X,Y )

[IK(x, y)]

≤ I(X,Y ) + 2HK(f).

Now we use this lemma to prove the statement of the Proposition. Let f be a the density

function for the joint distribution (Xi | θ, Θ̂). That is fi(xi, θ̂) = Pr[Xi = xi | θ and Θ̂ = θ̂].
Note that this function is independent of n and θ. By definition we have

memU (Xi, Θ̂, θ) = I(Xi | θ, Θ̂).

Now using Lemma 6 we have

I(Xi | θ, Θ̂)−HK(f) ≤ E
xi∼Xi|θ

[IK(xi, θ̂)]

≤ I(Xi | θ, Θ̂) + 2HK(f).

and this concludes the statement of Proposition by setting ϵ = 2HK(f)

A.12 Limitations

Our efforts to measure language model memorization come from a line of recent research to
discover whether models have analyzed certain texts, and if so, how much. However, our
main experimental contributions relate to the practice of training and evaluating language
models, including a new perspective on the phenomenon of grokking (Nakkiran et al., 2019)
and a new measurement of capacity. Our results are specific to the environment proposed
and do not necessarily generalize to other datasets, architectures, or training setups.

3Note that Xi themselves are not independent because they are sampled by first sampling an
underlying model Θ. However, they are conditionally independent once the underlying model Θ is
given.
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