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Abstract

Self Supervised Learning (SSL) produces versatile representations from unlabeled
datasets, while supervised learning produces overly specialized representations
from labeled datasets. While this has been empirically observed many times, it
remains to be theoretically explained. To that end, we bring forward a supervised
theory of SSL: we prove that (i) the training objective of supervised and self super-
vised learning are identical, but (ii) they use different labeling of the data. While
supervised learning operates on explicitly given task labels, SSL operates on im-
plicitly defined labels that maximize the worst-case downstream task performance.
As such, the observed benefit of SSL for downstream task generalization stems
from the labels being used as targets, rather than its loss function. In other words,
both SSL and supervised learning can be made specialized or versatile solely by
varying the training labels. Our proofs and findings only rely on minimal assump-
tions thus providing numerous practical insights. For example, we demonstrate
how different constraints put on the supervised learning classifier head and label
imbalance equate to different SSL objectives such as VICReg, opening new doors
to actively modify them based on a priori knowledge on the data distribution.

1 Introduction

A recent–and deeply transformative–paradigm shift for representation learning has been to move away
from per-sample labeling, i.e., supervised learning, to positive view sampling, i.e., Self Supervised
Learning (SSL) [2]. From a bird’s eye, Self Supervised methods learn by comparing samples
predictions to each other instead of comparing sample-level predictions to sample-level targets, or
labels. As of today, those two giants seem to roam the world without stepping into each other–as if
their respective territories had already been established. Such geographic segregation however poses
numerous problems. First, it is inefficient as research and engineering done for one rarely find their
way to the other. Second, it is confusing as most real-world scenarios do not fall precisely in any of
the two territories hence leaving practitioners without clear guidance. Third, and most importantly,
we will prove that it is incorrect as supervised learning and SSL not only co-exist, but are equivalent
to each other in terms of losses–they simply operate on different labeling of the data.

In order to take a step towards a truly unified representation learning paradigm for Artificial In-
telligence, we have to disrupt that supervised-SSL dichotomy. We do so by bringing forward and
establishing a supervised theory of SSL.

Supervised Theory of Self Supervised Learning (SSL): SSL objectives–that compare samples
amongst themselves (definition 2)–emerge from considering supervised objectives–that compare
sample predictions to targets (definition 1)–equipped with labeling of the data maximizing the
worst-case downstream task performance.
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To better explain our theory and findings, we first need to introduce the definitions of relative and
absolute objectives.
Definition 1 (Absolute objective). An absolute objective compares a prediction of sample xn to the
target yn independently from the other samples.
Definition 2 (Relative objective). A relative objective compares a N × N inter-sample relation
matrix (e.g., fθ(X)⊤fθ(X)) to a N ×N inter-label relation matrix G (e.g. G = Y ⊤Y ).

Equipped with the above, we can express our supervised theory of SSL as follows. In that framing,
we prove how SSL corresponds to doing supervised learning with the dataset labeling that maximize
the worst-case downstream task performance. In fact, we prove precisely looking at

A crucial benefit of eq. (2) is that it only requires G which could be built from Y –or without labels at
all. For example, in a classification setting, definition 1 requires the categorical label for each sample,
while definition 2 only requires to know which samples are from the same class but not what that
class is. It is clear that building G directly instead of Y is easier and cheaper to get as it reduces the
amount of expert knowledge needed.

2 Better Supervised Learning Means Self Supervised Learning

2.1 Equivalence Between Losses

Let’s denote the input data as the matrix X ≜ [x1, . . . ,xN ] the targets or labels as the matrix
Y ≜ [y1, . . . ,yN ] where for classification each yn is a one-hot vector at the corresponding class, and
the model’s prediction as fθ(X) ≜ [fθ(x1), . . . , fθ(xN )]. Finally, let’s denote the N -dimensional
centering matrix by H ≜ I − 1

N 1N1⊤
N .

Unconstrained linear classifier. We are now minimizing the usual supervised mean squared error
between the affinely transformed backbone output W fθ(X) + b1⊤

N and the targets Y as in

L(W , b,θ) ≜
1

N

∥∥W fθ(X) + b1⊤
N − Y

∥∥2
F
+ λ∥W ∥2F . (1)

Our goal will be to minimize that loss with respect to W , b and to perform some algebraic manip-
ulations to demonstrate how that absolute objective–comparing the prediction of sample n to the
label of sample n–turns into a relative objective–comparing pairwise predictions to pairwise labels.
The following derivations do not rely on any assumptions about the input X , the network fθ, or the
targets Y . We will also denote the Singular Value Decomposition of fθ(X) as UΣV ⊤, and the
diagonal of Σ as σ1, . . . , σK .
Lemma 1. The optimum of eq. (1) w.r.t. W , b can be obtained in closed-form as

min
W ,b,θ

L(W , b,θ) = min
θ

− 1

N
Tr

(
V ⊤Y ⊤Y V D

)
+ cst, (2)

with D positive diagonal (for any X and fθ) given by Dk,k =
s2k

s2k+λN
. (Proof in appendix A.1.)

Theorem 1. Minimizing the absolute supervised objective (eq. (1) and definition 1) with labels Y is
equivalent to minimizing the relative SSL objective (eq. (2) and definition 2) with graph G = Y ⊤Y .

In the relative objective, one no longer tries to predict yn from xn, but instead tries to make the
pairwise comparison of predictions V DV ⊤ aligned with the pairwise comparison of labels Y ⊤Y .
In particular, we clearly see that the left singular vectors of fθ(X) no longer contribute to the loss–as
expected since the optimal W automatically maps them to the left singular vectors of Y . Hence, we
are left with the right singular vectors V of fθ(X) and its singular values that appear within D.

Objective boundedness. A first insightful investigation of eq. (2) is to notice how a priori, the
objective lead to unbounded representations, i.e., |minW ,b,θ L(W , b,θ)| 7→ ∞. In fact, while V
are orthogonal matrices, hence bounded, nothing seems to prevent D to simply grow beyond reason.
This apparent issue is akin to the one of the XEnt-softmax objective that only “fully” saturates with
unbounded representations. However–and in similar spirit to the XEnt-softmax setting–the gradients
of eq. (2) w.r.t. D actually vanish quickly hence preventing such divergence. We formalize that result
below.
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Figure 1: Visual depiction of the gradient of the
loss eq. (2) w.r.t. σk (from theorem 2) assuming
(V ⊤GV )k,k = 1. We clearly observe that the
gradient always vanishes as σk increases, i.e., it
only enforces representations to reach a certain
amount of variability. Also, as λ 7→ 0 as the gra-
dient vanishes quickly, in the limit only enforcing
that σk ̸= 0.

Theorem 2. The gradient of the relative loss (eq. (2)) w.r.t. σk is given by (V ⊤GV )k,k × −2σkλ
(σ2

k+λN)2

and thus vanishes as σk increase, preventing from learning unbounded representations. (Proof in
appendix A.2.)

To better illustrate the above theorem 2, we provide in fig. 1 the actual gradient value of the loss w.r.t.
σk. We observe that as λ goes to 0, i.e., the linear classifier is less and less ℓ2-regularized, as the
gradient vanishes. In fact, the entire role of σk is to spread or contract the learned representation
dimensions for the linear classifier. But as σk only acts as a rescaling of the dimension, it doesn’t
provide any benefit in terms of better separability of the underlying class representations.

Recovering VICReg and Whitening-MSE. We further obtain the following result demonstrating
how the emergence of SSL from lemma 1 produces the VICReg objective exactly in the case where
G has only one nonzero eigenvalue–which is the case of current SSL graphs or with balanced class
labels.
Corollary 1. The relative objective from eq. (2) recovers VICReg and Whitening-MSE up to a
rescaling of the dimension.

The proof of the above statement is direct as per the result from [3] under which the trace term with
constraint that σk = 1 recovers Whitening-MSE [6], and σk ≥ 1 recovers VICReg [4]. As per
theorem 2, the relative objective of eq. (2) imposes that σk > 0 hence recovering both methods up to
a rescaling of the dimensions. In practice however, one wouldn’t deal with the singular vectors of fθ
directly, as those are prone to instability with gradient based learning. Instead, one would parametrize
fθ to directly predict those singular vectors as follows

min
θ

− 1

N
Tr

(
HGHfθ(X)⊤fθ(X)

)
+ α∥fθ(X)Hfθ(X)⊤ − I∥2F ,

using fθ(X)H to directly predict Vfθ(X)H hence enforcing to respect the orthogonality condition
through te barrier method regularization on the right-hand side. Note that we must keep the centering
operation onto fθ(X) as Vfθ(X)H ’s vector also have zero mean. Reorganizing some terms direclty
lead to the exact VICReg objective as

min
θ

1

N

∑
i,j

(G)i,j ∥fθ(X)i − fθ(X)j∥22 + α∥Cov(fθ(X))− I∥2F ,

where the graph G would be 1 whenever the samples (i, j) are in the same class, in the supervised
learning setting, or views of the same image, in the SSL setting. To highlight the importance of the
bridge made between absolute (supervised) objectives and relative (SSL) objectives in lemma 1, we
propose in appendix B the case where we add the constraint that W , the classifier head, must be
orthogonal. We will show that such constraint produce a different type of SSL method hence opening
new avenues to derive and explain SSL methods from a supervised learning viewpoint.

2.2 Maximizing the Worst Case Downstream Task Error

While the above section demonstrate that supervised and SSL abide by the same objective, i.e.,
minimizing the absolute loss eq. (1) with Y or minimizing the relative loss eq. (2) with G = Y Y ⊤
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is equivalent, it remains to show what G SSL is actually employing. The goal of this section is to
demonstrate that SSL employs labels treating each sample as its own class. In particular, we prove
how that strategy is beneficial to maximize the downstream performance across tasks.

We recall that in SSL setting, each sample is augmented V times to form V views. Hence we
now have G ∈ RNV×NV . And the loss aims at collapsing together the views of each sample, i.e.,
(G)i,j = 1{⌊i/V ⌋=⌊j/V ⌋}, assuming that the data samples are ordered based on their index first, and
augmentations second. The question that naturally arises is about the underlying Y that the loss is
considering. We formalize that result below.
Proposition 1. The SSL graph given by (G)i,j = 1{⌊i/V ⌋=⌊j/V ⌋} is recovered from considering the
labels Y ∈ RNV×N with (Y )n,j = 1{⌊n/V ⌋=1}.

that is, SSL is implicitly acting on a labeling of the dataset that attributes to each sample a unique
class. As such a labeling forces the model to maintain information about all its training samples–at
least enough to separate them– it is clear that this is what maximized the Mutual Information between
the original data X and the final learned representation fθ(X). As such, this is the labeling of the
dataset that ensures the best worst-case performance on downstream tasks given the class of function
in which fθ belongs to.

3 Conclusions

We brought forward a Supervised Theory of SSL under which we discovered that both paradigms
operate on the same objective but different labeling of the data. That discovery allows to pinpoint the
origin of SSL’s improved performances on downstream tasks that are more diverse than the usual
supervised settings. This provides a strong signal to the SSL community that the underlying reason
behind SSL success may not be the actual training objective being used or the many other techniques
such as teacher-student networks, but instead may be due to that optimal labeling.

Our finding also opens new avenues for practitioners as we can leverage proposition 1 to find cases
under which dataset would break that assumption. One example is the presence of duplicates in the
data or very noise datasets. This corroborates some recent findings in SSL under which it was shown
that data curation plays an important role into final performances [1, 8].
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A Proofs

A.1 Proof of lemma 1

Proof. The proof will involve a few different steps. First, we will solve the optimization objective
L(W , b,θ) for b and then for W . Once this is done, we will prove that the diagonal matrix D is
indeed positive.

Solving for b. Let’s first solve for the bias b directly since the loss is convex in b

∇bL(W , b,θ) = 0

⇐⇒ ∇b
1

N

∥∥W fθ(X) + b1⊤
N − Y

∥∥2
F
= 0

=⇒ 2

N

(
W fθ(X) + b1⊤

N − Y
)
1N = 0

⇐⇒ W fθ(X)1N + bN − Y 1N = 0

⇐⇒ b =
1

N
Y 1N − 1

N
W fθ(X)1N .

From that we can simplify the loss by injecting the optimal value of the bias parameter as

min
b

L(W , b,θ) = min
b

1

N

∥∥W fθ(X) + b1⊤
N − Y

∥∥2
F
+ λ∥W ∥2F

=
1

N

∥∥∥∥W fθ(X) +

(
1

N
Y 1N − 1

N
W fθ(X)1N

)
1⊤
N − Y

∥∥∥∥2
F

+ λ∥W ∥2F

=
1

N
∥W fθ(X)H − Y H∥2F + λ∥W ∥2F

with H the centering matrix H ≜ I − 1
N 1N1⊤

N .

Solving for W . Similarly to the derivation for b, we can now optimize for W again using the fact
that the loss is convex in W leading to the following

∇W min
b

L(W , b,θ) = 0

⇐⇒ ∇W
1

N
∥W fθ(X)H − Y H∥2F + λ∥W ∥2F = 0

=⇒ 2
1

N
W fθ(X)Hfθ(X)⊤ − 2

1

N
Y Hfθ(X)⊤ + 2λW = 0

⇐⇒ W = Y Hfθ(X)⊤
(
fθ(X)Hfθ(X)⊤ +NλI

)−1

from which we can again further simplify the loss as follows

min
W ,b

L(W , b,θ) = min
W

1

N
∥W fθ(X)H − Y H∥2F + λ∥W ∥2F

=
1

N

∥∥∥(Y Hfθ(X)⊤
) (

fθ(X)Hfθ(X)⊤ + λNI
)−1

fθ(X)H − Y H
∥∥∥2
F

+ λ∥
(
Y Hfθ(X)⊤

) (
fθ(X)Hfθ(X)⊤ + λNI

)−1 ∥2F

=
1

N

∥∥Y V S⊤(SS⊤ + λNI)−1SV ⊤ − Y H
∥∥2
F

+ λ∥Y V S⊤(SS⊤ + λNI)−1U⊤∥2F
where we used the singular value decomposition USV ⊤ of fθ(X)H . We will now do some
algebraic manipulations to simplify the above as follows

min
W ,b

L(W , b,θ) =
1

N
∥Y H∥2F − 2

1

N
Tr

(
H⊤Y ⊤Y V S⊤(SS⊤ + λNI)−1SV ⊤)

+
1

N
Tr

(
V ⊤Y ⊤Y V S⊤(SS⊤ + λNI)−1SS⊤(SS⊤ + λNI)−1S

)
+ λTr

(
V ⊤Y ⊤Y V S⊤(SS⊤ + λNI)−2S

)
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Figure 2: Empirical validation of lemma 1 comparing the value of the two losses for various N and
K values, here iwth λ = 0.

Now we use the fact that V ⊤H = V ⊤ whenever the SVD was done on the centered X (which is
the case here) to further simplify

min
W ,b

L(W , b,θ) =
1

N
∥Y H∥2F − 2

1

N
Tr

(
V ⊤Y ⊤Y V (S2 + λNI)−1S2

)
+

1

N
Tr

(
V ⊤Y ⊤Y V (S2 + λNI)−2S4

)
+ λTr

(
V ⊤Y ⊤Y V (S2 + λNI)−2S2

)
,

where we can further simplify − 2
N (S2 +λNI)−1S2 + 1

N (S2 +λNI)−2S4 +λ(S2 +λNI)−2S2

as

− 2

N

s2k
s2k + λN

+
1

N

s4k
(s2k + λN)2

+ λ
s2k

(s2k + λN)2
= − s2k

(s2k + λN)N
.

Positivity of D

ToDo

A.2 Proof of theorem 2

Proof. We can express the relative loss from eq. (2) as follows

min
θ

− 1

N
Tr

(
V ⊤GV D

)
= min

θ

K∑
k=1

(D)k,k(V
⊤GV )k,k.

Since the diagonal entries of D are independent from each other (each involving a singular value
from fθ(X)) we can obtain the derivative of each term as

∂
∑K

k=1(D)k,k(V
⊤GV )k,k

∂σk
= (V ⊤GV )k,k × (D)k,k

∂σk
. (3)
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We now proceed with the derivations of (D)k,k

∂σk
as follows

(D)k,k
∂σk

=
∂

∂σk

(
σ2
k

(σ2
k + λN)N

)
=− 2σk(σ

2
k + λN)N − σ2

kN2σk

(σ2
k + λN)2N2

=
(2σ3

k + 2σkλN)N − 2σ3
kN

(σ2
k + λN)2N2

=
2σkλN

2

(σ2
k + λN)2N2

=
2σkλ

(σ2
k + λN)2

.

Combining the above derivations with eq. (3) we obtain the follow final result:

∂
∑K

k=1(D)k,k(V
⊤GV )k,k

∂σk
= (V ⊤GV )k,k × −2σkλ

(σ2
k + λN)2

.

We directly obtain three observations:

• First, as the weight decay parameter λ goes to 0, i.e., the optimal linear classifier isn’t
regularized, as the gradient with respect to σk vanishes. That is the only role of σk is to
allow for more regularized classifier head to solve the task by expanding the features.

• Second, the gradient of σk scales linearly with the ability of vk to fit the graph G, i.e., σk

will automatically increase the amplitude of the dimensions that fullfil the positive pair
matching.

• Second, (V ⊤GV )k,k is always non-negative, hence, if λ > 0, the gradient will always push
σk to increase. However, the gradient will quickly vanish therefore preventing divergence of
the representation.

B Derivation with Orthogonal constrain

min
W∈R

1

P

P∑
n=1

∥W⊤fθ(xn)− yn∥22

=
1

P
Tr

((
fθ(X)Ufθ(X)⊤Y V ⊤

fθ(X)⊤Y − Y
)⊤ (

fθ(X)Ufθ(X)⊤Y V ⊤
fθ(X)⊤Y − Y

))
=

1

P
∥fθ(X)∥2F +

1

P
Tr

(
Y Y ⊤)− 2

P
Tr

(
Ufθ(X)⊤Y V ⊤

fθ(X)⊤Y

⊤
fθ(X)⊤Y

)
=

1

P
∥fθ(X)∥2F +

1

P
Tr

(
Y Y ⊤)− 2

P

K∑
k=1

σk(fθ(X)⊤Y )

=
1

P
∥fθ(X)∥2F +

1

P
Tr

(
Y Y ⊤)− 2

P

K∑
k=1

√
σk(fθ(X)⊤Y Y ⊤fθ(X))

=
1

P
∥fθ(X)∥2F +

1

P
Tr (G)− 2

P
Tr

(√
fθ(X)⊤Gfθ(X)

)
with W ∗ = Ufθ(X)⊤Y V ⊤

fθ(X)⊤Y from the SVD fθ(X)⊤Y = UΣV ⊤ and Tr is the trace operator
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B.1 Use of Graphs

[7] build a theoretical framework leveraging the existence of local, intra-class subgraphs, which
are either disjoint or poorly connected. On the contrary, we build a graph promoting inter-class
relationship based on different aspects of the semantics.

While [9, 12] show the ability of contrastive learning to implicitly learn the real affinity matrix, in our
method we propose to learn such affinity matrix explicitly. We experimentally show that incorporating
explicit similarity matrix into the objective yields better representations.

[10] studies the way the augmentation strength affects the connections in the implicit graph, and shows
that the best performance is achieved when the augmentations are neither too strong nor too weak.
The authors also introduce ACR – Average Confusion Rate – a metric to help tune augmentation
strengths. We argue that representing the graph explicitly allows for easier tweaking of the graph,
while the implicit graph is harder to visualize, necessitating proxy metrics like ACR to adjust the
training algorithm.

[11] shows that MAE methods also implicitly learn a graph where nodes are masked versions of
the same image. Again, the graph induced by this loss mostly focuses on the connections between
samples of the same class, while our method helps establish connections between more visually
distinct samples.

[5] shows that discrete tokenizer affects the underlying graph of the objective.
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