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Abstract

Overparameterization refers to the important phenomenon where the width of a
neural network is chosen such that learning algorithms can provably attain zero loss
in nonconvex training. The existing theory establishes such global convergence
using various initialization strategies, training modifications, and width scalings. In
particular, the state-of-the-art results require the width to scale quadratically with
the number of training data under standard initialization strategies used in practice
for best generalization performance. In contrast, the most recent results obtain
linear scaling either with requiring initializations that lead to the “lazy-training”, or
training only a single layer. In this work, we provide an analytical framework that
allows us to adopt standard initialization strategies, possibly avoid lazy training,
and train all layers simultaneously in basic shallow neural networks while attaining
a desirable subquadratic scaling on the network width. We achieve the desiderata
via Polyak-t.ojasiewicz condition, smoothness, and standard assumptions on data,
and use tools from random matrix theory.

1 Introduction

Training a neural network involves solving a nonconvex optimization problem, which, in theory, might
trap first-order methods such as gradient descent to fall in bad local minima or saddle points. However,
empirical evidence suggests that first-order methods with random initialization can consistently find
a global minimum, even with randomized labels [43]. Demystifying this observation is of central
interest to deep learning.

Recently, a line of research [45, 4, 11, 29, 39, 12, 38] suggests that such an empirical success can
possibly be explained by the overparameterization of neural networks, whose number of parameters
exceeds the number of training data n. In particular, gradient descent converges linearly fast to a
global optimum in a number of problems with models that have wide hidden layers [45, 12, 39].

Despite of these remarkable results, the natural key question “How much should we overparameterize
a neural network?” remains open even for the toy example of two-layer neural networks. On one
hand, it is widely accepted that, for two-layer neural networks, the number of parameters should
grow linearly with n (e.g., [21, 38]). On the other hand, theoretical results either require much more
parameters, or they are established under restrictive settings. Specifically,
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Table 1: Scaling with the number of training data in the overparameterization regime. QL=quadratic loss,
CLL=convex and Lipschitz loss, SD=separable data.

Depth Algorithm Setting Activation  Scaling Reference
2 GD on layer 1 QL ReLU (n?)  Oymak and Soltanolkotabi [38]
L GD on layer L CLL ReLU Q(n) Kawaguchi and Huang [21]
2 GD SD ReLU Q(n?) Song and Yang [39]
2 GD SD and QL ReLU Q(nS) Du et al. [12]
L GD SD and QL ReLU Q(nSL?) Zou and Gu [44]
2 GD QL Smooth Q(n?) This paper

» Kawaguchi and Huang [21] has proven the ideal Q(n) scaling for deep neural networks. However,
they apply gradient descent only to the last layer, which is not the case in practical scenarios.

* A similar issue exists in [39, 38], where the authors have shown that Q(n2) parameters suffice for
two-layer neural networks, but only the first layers are trained. Furthermore, even with infinite width,
Oymak and Soltanolkotabi [38] cannot guarantee zero training error with probability approaching
to one.

The goal of this paper is to close the gap between theory and practice, without resorting to unrealistic
assumptions such as those discussed above. We sharpen the results of Oymak and Soltanolkotabi
[38] by proving that, with proper random initialization of each layer, training error approaches to
zero with high probability, exponentially fast in the width of the network. In addition, we show that
only Q(n%) parameters suffice such that gradient descent converges to a global minimum with linear

rate, which improves upon the state-of-the-art by a factor of O(n% ). We summarize the bounds on
the number of parameters in terms of n in Table 1.

While our analysis on gradient descent focuses on training error, it has been observed that overparam-
eterization can lead to poor generalization. In particular, [7, 42, 15] have observed the phenomenon
of lazy training. Chizat et al. [7] has explained lazy training as a model behaves similar to its
linearization around the initialization. It is known that an overparameterized neural network is likely
to be trapped in the lazy regime since the parameters will hardly vary over the course of training
with gradient descent [12, 29, 45]. The same phenomenon has been observed for infinitely wide
neural networks [19]. In this paper, we provide theoretical guidance to possibly avoid lazy training
through proper initialization. Experimental results confirm that lazy training might be avoided with
our theoretically inspired initialization so that the issues reported in [7] do not apply.

1.1 Summary of contributions

* We first focus on a general minimization problem assuming that the loss function satisfies Polyak-
Lojasiewicz (PL) condition. We find sufficient conditions in terms of initialization for the conver-
gence of gradient flow and gradient descent to a global minimum.

* We then focus on the special problem of training a two-layer neural network with quadratic loss and

smooth activation, and show that Q(n%) parameters are sufficient for gradient descent to converge
to a global minimum with linear rate and probability approaching to one. We achieve linear scaling

for the width when the number of input features is in Q(y/n).

* We theoretically guide how to initialize the parameters of a neural network in the overparameterized
regime of interest while possibly avoiding lazy training.

1.2 Further related work

In terms of techniques, our paper is closely related to [37, 38]. Similar to our Theorem 3, Oymak
and Soltanolkotabi [38, Theorem 2.1] showed that gradient descent converges with linear rate when
the Jacobian of the nonlinear mapping has smooth deviations, and the number of parameters grows
quadratically with n. However, Oymak and Soltanolkotabi [38] assumed that gradient descent updates
only the first layer. In this paper, we consider the case where gradient descent updates both layers

simultaneously, and show that it suffices to have Q(n%) parameters with a linear rate of convergence.



ReLU is an important instance of activation functions that does not satisfy the smoothness assumption.
A line of research aims to relax this assumption by instead assuming the data is separable. For shallow
neural networks, Du et al. [12] proved that gradient descent finds a global minimum if the width of
the network scales ©(n®) assuming that no two data points are parallel. In a similar setting, Song

and Yang [39] established convergence to a global minimum with the sufficient width of Q(nz) Asa
result, in the absence of the smoothness assumption, these papers require substantially more number
of parameters to guarantee convergence to a global minimum.

The theoretical bounds for deep neural networks are even worse. For instance, Allen-Zhu et al. [1]
required the total number of parameters of Q(n?4L'2) where L is the number of layers. Zou and Gu
[44] improved the scaling to Q(n®L12). In our setting, i.e., L = 2, these bounds become vacuous
in most interesting regimes. Further, in [21], the authors showed that (2(n) parameters is enough to
achieve global convergence under the assumption that gradient descent updates only the last layer,
which essentially reduces the problem to a simple least-squares regression.

Recently, Ji and Telgarsky [20], Chen et al. [5] showed that a polylogarithmic width suffices to
achieve convergence for shallow and deep neural networks in an ergodic sense. We note that this is a
weaker notion of convergence compared to the one we consider.

Li et al. [28] showed that gradient descent along with early stopping are robust to label noise on a
constant fraction of labels in an overparameterized network. However, only the first layer is optimized
in [28]. For possibly overparameterized and linear networks, Eftekhari [14] showed that gradient
flow can successfully avoid lazy training assuming that the network has a layer with a single neuron.
We note that our analysis does not require those restrictions.

Under an assumption similar to PL condition, Zou et al. [45] studied the problem of binary classifica-
tion for a deep network with ReLLU activation, which is a different problem compared to ours. In [40],
the authors proved that gradient descent with overparameterization achieves zero-approximation
when the underlying function that generates the labels has low-rank approximation. Their scaling
requires perfect information about the target function, which is not the case in our paper. Under a
variant of Xavier initialization, Daniely [9] found near optimal scaling for a binary classification
problem trained by stochastic gradient descent. We note that the setting considered in our paper
is more challenging than binary classification. Our results establish a new state-of-the-art on the
required number of parameters in a nonrestrictive setting when both layers are trained at the same
time. Recently, Nguyen and Mondelli [34] obtained subquadratic scaling for a deep neural network
with pyramidal structure under an initialization that leads to lazy training. Our results do not have
such restrictions.

Mean-field analysis was used to approximate a target distribution of parameters of a neural network
by the empirical distributions [33, 32]. However, these results do not provide useful bounds on the
scaling in terms of n, which is our focus in this paper.

Liu et al. [31] established global convergence when the function to minimize satisfies a variant of PL.
condition (local PL condition) assuming the map is Lipschitz continuous, which is not the case in our
paper. Liu et al. [30] characterized the constancy of the neural tangent kernel via scaling properties
of the norm of the Hessian matrix of the network. In this work, we focus on obtaining a sufficient
number of parameters for gradient descent to converge to a global minimum with linear rate.

Notation. We use || - || to represent the Euclidean norm of a vector and Frobenius norm of a matrix.
We use V to denote the Jacobian of a vector-valued and gradient of a scalar-valued function and
V®(a){b} to represent the directional derivative of ® along b. We use ® and ® to denote the
Hadamard (entry-wise) product and Kronecker product, respectively. For A € R™*" and t € Z., we
denote A*' € R™ %" with its a-th column defined as vee(T, @ - Q@) € R™'. We use lower-case
bold font to denote vectors. Sets and scalars are represented by calligraphic and standard fonts,
respectively. We use [n] to denote {1, --- ,n} for an integer n. We use O and {2 to hide logarithmic
factors and use < to ignore terms up to constant and logarithmic factors.

2 Problem, definitions, and assumptions

In this section, we set up a general compositional optimization problem. Then we focus on the special
case of shallow neural networks in Section 5.



Let w € R? denote a parameter vector where d denotes the number of parameters. In a neural
network, w consists of weights and biases of all layers. We consider the minimization problem

min h(w) (1)

weRd

where h : R — R is the composition of a loss function f : R? — R, and a nonlinear and
nonconvex function ® : R — R:

h(w) = f(®(w)) = f(2) 2)
where z = ®(w).
Before providing the details, let us highlight the simple idea behind the argument (see also [37]). Let

wo and W denote the initial point and limit point when the gradient descent algorithm is run with
some learning rate, respectively. The precise formulation of gradient descent is provided in Section 4.

Let V&* (W) : R? — R? denote the adjoint operator of V®(W). Since W is a first-order stationary
point of h, we have

0 = Vh(w) = Vo' (W) {V[(2)}

where Z = ®(W). Suppose that V®* (W) is a nonsingular operator.Then Vf(z) = 0. If Z is a global
minimizer of f, then W is a global minimizer of h. To prove global convergence, it suffices to show
that V®* is nonsingular within a neighborhood of the initialization wy, and that points reached by
gradient descent remain within this neighborhood. We will prove that both statements hold with high
probability for shallow neural networks.

We first define two notions that are useful to state a key lemma for our main results:
Definition 1 (Near-isometry). A linear mapping T : R® — R% is (u, v)-near-isometry if there
exist 0 < p < v such that

1% S Umin(T) S Jmax(T) S V. (3)

Definition 2 (Smoothness). Let By > 0. A function v : R¥ — R% js By-smooth, if for all
u,v e R we have

Tmax (VY (1) — Vi) (v)) < Bd)”u = v C))

The following lemma shows that a smooth function, which is near-isometry at initialization, remains
near-isometry for all nearby points of the initialization.

Lemma 1. Suppose that ® is Bg-smooth and N®*(wy) is (1o, Ve )-near-isometry. Then, for all
w € ball(wy, pa), we have

B2 < i (VO (W) € O (V" (w)) < 220 5)
where
e
po= o 6)

Intuitively, if V®*(wy) is a (e, Ve )-near-isometry, then one would expect V®* to remain near-
isometry for all nearby points.

Definition 3 (PL condition [3]). A function ¢ : R% — R satisfies the PL condition if there exists
awy > 0 such that, for allu € R we have

[V (w)|?
Y(u) < W. @)

‘We note that strongly convex functions satisfy a minor variation of the PL condition in (7).

In our analysis, we will assume that ® and f satisfy the following properties:

Assumption 1 (Basic assumptions for @, f).



* O is twice-differentiable and B-smooth.
* f is twice-differentiable, satisfies the PL condition with oy, and min f(z) = 0.

Despite f satisfies the PL condition, the nonconvex ® can render h nonconvex, and hence difficult to
minimize in theory. However, we show that fast convergence of gradient descent to a global minimum
can be established with appropriate initialization.

The intuition behind these assumptions is that to achieve nonsingularity of V®*, we approximate
V®*(wy) at initialization and bound V®* (wg) — V®*(w;) at iteration ¢ using the fact that ||wo—w,||
is sufficiently small by the overparameterization. In the special case of shallow neural networks, we
expect a similar argument applies even when the activation function is ReLU. Adapting our analysis
for such extensions is an interesting area of future work.

3 Gradient flow

In this section, we consider gradient flow, which can be viewed as the limit of gradient descent for
infinitesimally small learning rates. Inspired by the analysis of gradient flow, we provide an upper
bound on the length of the trajectory traversed by gradient descent iterates and then find a sufficient
condition in terms of initialization to establish its convergence to a global minimum. We focus on
gradient descent in Section 4.

Let t > 0 and consider the gradient flow, which is initialized at wg € R< and traverses the curve
v :R. — R, given by

V() = —= = =Vh(y(1)) (®)
where (0) = wyo.

We now calculate the length of the curve . Suppose that V®*(wy) is (¢, Ve )-near-isometry. Using
Lemma 1, in the following lemma, we control the length inside of ball (wq, ps ). See Appendix B for
the proof.

Lemma 2. Lett > 0 and let {(t) denote the length of the curve vy in (8), restricted to the interval
[0,t]. Let tg € (0, 00] be the smallest value such that ~(tg) ¢ ball(wo, ps). Suppose VO*(wyq) is
(1o, vo )-near-isometry. Then, for all t < tg, we have

(t)=0 (V‘I’ Vh(wO)) )
Ho/af

Lemma 2 implies that if the objective value at initialization, h(wy), is sufficiently small, then we
can localize gradient flows to a region around wy. Combining with Lemma 1, we show that the limit
point of gradient flow is a global minimum. This theorem is formally stated below.

Theorem 1 (Gradient flow). Let wo € R?. Suppose that ® and f satisfy Assumption 1 and V®*(wy)
is (e, Vo )-near-isometry. If wq satisfies

el

h(wO>=0( §’:§), ©)
Ve

then the gradient flow ~y in (8) converges to a global minimum.

Proof of Theorem 1. Proper initialization in (9) ensures ¢(t¢) < ps, which implies that

[7(te) — woll = [lv(te) = 7(0)[| < po. (10)
Therefore, v(t) € ball(wg, pg) for all ¢ > 0, and the length of v is upper bounded by ps using
Lemma 2. Hence, the gradient flow « converges, i.e., the limit point w € R4 exists and satisfies
W —woll < ps. (11)
Combining (5) and (11), we have
3
B < 0in(VO* (W) < 0o (VO (W) < .

In particular, we note that V®*(W) is nonsingular. So we have Vf(z) = 0. Since f satisfies the PL
condition in (7), z is a global minimizer of f, and W is a global minimizer of  in (1). O



4 Gradient descent

We now view gradient descent as the discretization of gradient flow, and show that a similar argument
as in Section 3 holds for gradient descent.

Let > 0 denote the learning rate and let 7 > 0. The gradient descent update rule is given by
Wiy1 = w; — nVh(w;). (12)
To study gradient descent, in addition to the previous assumptions on ¢ and f for the case of gradient

flow described in Theorem 1, we also assume that f is smooth, i.e., there exists 5y > 0 such that, for
all z,z' € R, we have

B;
2

Iz — 2.

f(z) = f(2) < (22, Vf())+
Smoothness of f allows safe discretization of gradient flow without deviating too much from its

trajectory. The following result is the analogue of Theorem 1 for gradient descent; see Appendix C
for the proof.

Theorem 2 (Gradient descent). Let wo € R%. Suppose that ® and f satisfy Assumption 1, f is 3 -
smooth, and V®*(wy) is (ua, Ve )-near-isometry. Suppose that gradient descent is executed with
sufficiently small learning rate

1
1= e £ ) )
and w satisfies (9).
Then the sequence of iterates {w; };>o converges to a global minimum of h exponentially fast.
In addition, the rate of convergence is given by
h(w;) < (1 = Cnagug) h(wo) (14)

where C'is a universal constant.

To prove Theorem 2, we first compute the length of the trajectory traversed by gradient descent iterates.
We then use the smoothness of f and follow the descent inequality to lower bound f(z;) — f(z;+1).
Finally, we compute the local Lipschitz constant of f.

Remark 1. The idea of initializing a nonconvex problem close to a global minimum has a long
history in nonconvex optimization, particularly in matrix factorization; see [6] and references
therein. The observation that the length of the learning trajectory is short in the overparameterization
regime has a precedent in [12, 37]. From an algorithmic perspective, the idea of linearizing ® when
minimizing h = f o ® is studied in nonlinear regression and the Gauss-Newton method [35].

In order to apply Theorem 2, the key step is to verify that h(w) satisfies (9). In Section 5, we focus
on the special case of shallow neural networks and improve the state of the art.

5 Shallow neural networks

In this section, we consider the problem of training shallow neural networks with gradient descent.
Our strategy is to cast this problem as a special case of problem (1) and then apply Theorem 2 to
establish global convergence. We start with the formal problem statement.

5.1 Setup, assumptions, and initialization

Consider a shallow neural network with dj inputs, one hidden layer that consists of d; hidden nodes,
and do outputs. This shallow network is specified by the map
R% y R%

x = V- p(Wx), (1)



where W € R%1xdo /¢ R¥%*4 and ¢ : R — R is an activation function, which is applied
entry-wise. Let x; € R% and y; € R9 denote the i-th training data and label, respectively, for
i € [n]. By concatenating the training data and their labels, we form the matrices X € R%*" and
Y € R%*" Letdenote © = (W, V) € Rf1xdo x R¥2Xd1i and Z = ®(0) = V - (W X) € R¥zx",
The fitting problem can be cast as (1) where

h(©) = f(2(©)) = [VH(WX) - Y| (16)

Remark 2. We assume that the activation function ¢ : R — R is twice-differentiable. Despite this
assumption excludes the popular ReLU, it is still possible to apply our results to smooth approxi-
mations of ReLU such as the softplus or Gaussian error Linear Units (GeLU) [18, 34]. We note
that softplus [13] or GeLU [10] often achieve similar or superior performance compared to the
ReLU [8, 16, 23, 22, 41].

Definition 4 (Hermite norm [36]). Let ¢ : R — R. The Hermite norm of ¢ is given by ||¢||y =
\/ Zioio 012 where c; denotes the i-th Hermite coefficients of ¢ given by:

ci = (b, qi)n = \/% /¢(w)qi($)e><p (—22) dx

and q; : R — R is the i-th Hermite polynomial for ¢ > 0.

In this section, we assume that ¢, f, and data satisfy the following properties:

Assumption 2 (Assumptions for shallow neural networks).

« ¢ is twice-differentiable, $(0) = 0, sup, |$(a)| = Pmax < 00, sup, [p(a)| = Gmax < 00, and
||l < oo. The loss function f is quadratic (16).

* il =1,

Y| <1, and opmax (Vi) = O (%) fori € [n]andk > 0.

The assumption on ¢ hold for GeLU, sigmoid, and tanh. The assumption ¢(0) = 0 is to simplify the
derivations and we suspect that it can be removed at the expense of more complicated expressions.
The bounded Hermite norm is a mild assumption, which is used to obtain an upper bound on
Omax(@(WPX)) in terms of the Hermite coefficients of ¢. See Appendix E.1 for details. The
assumption on the data is fairly mild and standard in the overparameterization literature as we can
always normalize the data [29, 20]. Similar boundedness assumptions to the last assumption are
commonly used in nonconvex optimization to guarantee convergence [24]. Moreover, such a bound
naturally holds by applying a projection step to the gradient descent update rule, which we plan to
adopt as a future work.

Initialization. We first consider the initialization scheme:
Wo ~N(0,w3), Vo ~N (0,w3) . (17)

In Section 6, we study the implications of our initialization and show how to possibly avoid lazy
training by varying (wy, ws).

5.2 Main results for shallow neural networks

For shallow networks as described above, we verify in Appendix D that the key conditions in
Lemma 1 hold with high probability. Combining with Theorem 2, we establish the global convergence
guarantees. The proof in Appendix E uses standard tools from random matrix theory to control
the random variables involved with initialization. We first estimate variables ug, Ve defined in
Definition 1 and 8¢ in (4) for the neural network described in Section 5.1.

Lemma 3 (Estimation of ug, v, Be). Suppose that a shallow neural network, which is constructed
in Section 5.1, satisfies Assumption 2. Then we have

he = Umin(¢(W0X)),
Vp = Qi)maxo—max(X)o—max(VO) + Umax(¢(WOX)), (]8)
B<I> - \/iamax(X) (d’max + &mameax)

where Xmax = SUPy Tmax (V).



Remark 3. The terms omin(¢(WoX)) and omax(¢(Wo X)) in (18) play a critical role in our
analysis. In [12, 39], strictly positiveness of the eigenvalues of Gram matrix is the primary tool to
show the convergence. Oymak and Soltanolkotabi [38] also followed a similar argument using the
neural network covariance matrix. The underlying intuition seems similar to Lemma 3. However, the
resulting bounds are different since gradient descent updates (W, V') simultaneously in our problem
setup, which is more realistic.

By combining Lemma 3 and the results on global convergence of gradient descent in Section 4, we
establish global convergence for shallow neural network.

Theorem 3 (Shallow network with gradient descent). Consider the shallow network described in
Section 5.1 that satisfies Assumption 2 and 7| $(a)| < |p(Ta)| < 772|p(a)| foralla, 0 < T < 1,
and some constants r1,73.> Suppose that ©q is randomly initialized as in (17) with wy and wo, which
satisfy

Wiwsa < (19)

1
~Y /dodl’
and suppose that the hidden layer width d; satisfies
max X 2
W) (20)

dy = Q <£(C§7ta¢’ {Ci}iZO) Ot (X*t)S

where Cs is a set of constants, £ is a term independent to dy,n, t is a constant such that n ~ db, and
X+ e Rboxn s derived from Khatri-Rao product with its a-th column defined as vec(2,®- - -Q1,) €
R%. Then gradient descent converges to a global minimum exponentially fast with probability at
least 1 — (¢, €, dy,dy, da, X).*See Appendix E.6 for the exact expressions of & and ).

Remark 4. Theorem 3 shows that, with sufficient degree of overparameterization, gradient descent
finds a global minimum, except with an arbitrary small probability. Note that we need two conditions
for Theorem 3 to hold, both of which are related to the overparameterization of the network. The
condition (19) is for the concentration of random matrices, to make ) arbitrary small, and (20) is for
the locality of gradient descent.

5.3 Order analysis

We first decompose the random matrix (X "W, )¢(Wy X) into independent random matrices. We
then apply concentration inequalities to establish an upper bound on o, (¢(Wp X)) and a lower
bound on oy, (¢(Wo X)) through the Hermite decomposition of ¢(Wy X ) and note that with high

probability,
2
C *
\/t—’;dlamin(X ") < omin(d(Wo X)) < Omax(0(Wo X)) < \/c2dn.

We also find an upper bound on h(©g) at initialization. Substituting v, i, Se into (9), we obtain
the sufficient condition in (20). We note that £(Cs, t, ¢, {c; }i>0) can be viewed as a constant w.r.t.
dy, di, and n. For t = 1, it requires n ~ dy, which is not a common setting in practice. For

t > 2, we suppose that n ~ dt, which is the case in practice and estimate oyax(X) ~ /% and

Omin (X ) = /d% =~ 1 along the lines of [38, Section 2.1]. Substituting oy,ax (X ) and oy, (X**)

into (20), we have
3
nz2
dy 2 —. 21
12 2D
Therefore, the overall overparameterization degree becomes dyd; ~ Q(n% ), which is sufficient for
gradient descent to find a global minimum at a linear rate except with an arbitrary small probability.
We note that an optimal linear scaling for the width d; ~ O(n) is sufficient when the number of
input features is sufficiently large dy ~ Q(y/n), which improves upon the results of [38] by a factor
of O(n% ). Furthermore, unlike [38], we adopt standard initialization strategies in Theorem 3.

3The last assumption holds for popular activation functions such as sigmoid, tanh, and ELU, and can be
relaxed if w; = 1in (17).
41 can be arbitrary small.



6 Lazy training and experimental evaluation

Following the theoretically motivated initial-
. . . ~ 1

1za.t10n. in Theorem 3, we set c.ulwg = Jaod
This gives rise to a broad family of initializa-
tion schemes as one varies the ratio wo /wy . In-
terestingly, we note that popular initialization

Accuracy
o
©
(o9

------- He initialization

v e g —— Training accuracy
0.97 A
s;hemes such as LeC}ln [2§] and He initializa- Test accuracy
tion [171 bel.ong to th.IS. famlly. Thg purpose of 0.96 :
this section is to empirically investigate the im- 0.00 0.02 0.04 0.06 0.08

w2

pact the choice of this ratio has on generalization
of shallow networks.

Figure 1: Training and test error on MNIST for different
wa. Error bars indicates the 95% confidence interval
computed over 5 independent runs. The setup details
are provided in Appendix G.

To this end, we will look at the generalization
error of varying initializations in the more practi-
cal setting of stochastic gradient descent (SGD).
Specifically, we fix the product of the weight
initialization w;wso and then proceed by varying
wa. To ensure that perfect generalization is possible, we adopt the teacher-student setup, where, for
the teacher network, we train a two-layer fully connected neural network, on MNIST [25] until SGD
reaches zero training error. The student networks are trained for 300 epochs to ensure convergence.
The results are shown in Figure 1. We use mean-square loss and a smooth activation function (GeLU
[18]) for the student network to match the problem setup as closely as possible.

In Figure 1, we observe that while SGD achieves zero training error for every wo, as suggested by
Theorem 3 applicable in the full batch setting, the generalization ability increases as the ratio wy /w;
grows. It is also interesting to observe that the popular He initialization scheme corresponds to a
rather balanced ratio that lies at the boundary of the well-performing region. In our experiments, we
used He initialization to fix the value w;w,. This tendency suggests that a wide family of initialization
schemes could generalize well as long as the ratio wy/w; is not too small.

Comment on lazy training. It is important to address the so called lazy regime when generalization
is of concern. Let

h(©) := h(Bg) + (Vh(6y), 0 — Op)

be the linearized function of h around ©, and let ©; and @z denote the iterates of gradient descent at
time ¢. The lazy training regime refers to the case where the training trajectory stays close to this
linearization, i.e. |2(0;) — h(©,)| =~ 0 for all ¢ [7]. Such a linearization occurs in infinitely wide
neural networks [7], which have been shown to generalize well in some settings [2, 27]. However, in
our case of subquadratic (finite) width, the lazy regime might lead to poor generalization. To gain
insight on when we cannot avoid it with certainty, let us make a simple rewriting of our network
assuming ¢ is homogeneous:

() = aVh(WX)

with Vo ~ N(0,1) and Wy ~ N(0, 1) where the standard deviations are pulled out as a scaling
factor @ = wywy ~ 1/4/dod;. This seems to fit into an example in [7, Appendix A.2] suggesting
lazy training as d; — oo. However, their results require an odd activation function and infinite width,
while our activation function is required not to be odd (see the proof in Appendix E) and our results
are under subquadratic (finite) width. Instead, to study lazy training, we explicitly compute an upper
bound on ||h(©;) — h(©;)|| in Appendix F following [7, Theorem 2.3].

It turns out that the upper bound becomes oo when w; < ws, and it becomes zero when wy > wa. Our
analysis suggests that shallow neural networks can avoid lazy training provided that wy/w; — oco.
This analysis is corroborated by the empirical results showing that the generalization capability
improves as wy grows in Figure 1. On the other hand, if ws/wy — 0, then lazy training is bound to
happen asymptotically. For details, see Appendix F. Finally, we note that we have not theoretically
claimed that our initialization is guaranteed to be non-lazy, since doing so would require establishing
a lower bound on ||h(©;) — h(©;)]|, which is an interesting problem for future work. Instead, our
discussion above only provides a necessary condition for non-lazy training, and a sufficient condition
for lazy training.



7 Conclusions and future work

In this paper, we prove the linear convergence of first-order methods on subquadratically overpa-
rameterized two-layer neural networks with smooth activation functions. Our theoretical analysis
is compatible with standard initialization strategies, which can potentially avoid lazy training. We
train both layers simultaneously and achieve a desirable subquadratic scaling on the width of the
network. In particular, we note that a linear scaling for the width d; ~ O(n) is sufficient when
the number of input features is sufficiently large dy ~ Q(y/n). We use tools from random matrix
theory under standard assumptions on data and leverage on the assumption that the loss satisfies
Polyak-t.ojasiewicz condition. We carefully find an explicit upper bound and lower bound on singular
values of the outputs of the first layer at initialization with high probability under general initialization.

It is natural to ask whether we can attain similar degree of overparameterization with nonsmooth
activation functions such as ReLU. We plan to adapt our analysis for such extensions as a future
work. While our analysis provides a necessary condition for avoiding lazy training, it is interesting to
develop sufficient conditions in the future. In particular, developing lower bounds on ||2(©;)—h(O;)||
will be a key to fully characterize lazy training.

Finally, as a theoretical work, we do not anticipate any potential negative societal impacts of our
paper. However, the long-term impacts of our work may depend on how machine learning algorithms
are used in society.
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