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Abstract

The global rise in wildfire frequency and intensity over the past decade underscores
the need for improved fire monitoring techniques. To advance deep learning re-
search on wildfire detection and its associated human health impacts, we introduce
SmokeViz, a large-scale machine learning dataset of smoke plumes in satellite
imagery. The dataset is derived from expert annotations created by smoke analysts
at the National Oceanic and Atmospheric Administration, which provide coarse
temporal and spatial approximations of smoke presence. To enhance annotation
precision, we propose pseudo-label dimension reduction (PLDR), a generalizable
method that applies pseudo-labeling to refine datasets with mismatching temporal
and/or spatial resolutions. Unlike typical pseudo-labeling applications that aim to
increase the number of labeled samples, PLDR maintains the original labels but
increases the dataset quality by solving for intermediary pseudo-labels (IPLs) that
align each annotation to the most representative input data. For SmokeViz, a parent
model produces IPLs to identify the single satellite image within each annotations
time window that best corresponds with the smoke plume. This refinement process
produces a succinct and relevant deep learning dataset consisting of over 160,000
manual annotations. The SmokeViz dataset is expected to be a valuable resource
to develop further wildfire-related machine learning models and is publicly avail-
able athttps://noaa-gsl-experimental-pds.s3.amazonaws.com/index|
html#SmokeViz/.

1 Introduction

Due in part to public policy, average fine particulate matter (PM; s) levels in the United States have
declined over recent decades [1]]. However, from 2010 to 2020, the contribution of wildfire smoke to
PM, 5 concentrations more than doubled, accounting for up to half of total PM, 5 exposure in Western
United States [2]]. This is particularly concerning, as ambient PM, s is a leading environmental risk
factor for adverse health outcomes and premature mortality [3]]. These trends/risks highlight the
urgent need for scalable and timely smoke monitoring systems to mitigate public health risks.

Satellite imagery offers the spatial coverage and temporal frequency needed for large-scale smoke
monitoring. In comparison to polar-orbiting satellites like Suomi or Sentinel, geostationary satellites
such as the GOES series [4] are especially well-suited to this task, providing persistent observation
over fixed regions, essential for capturing the dynamic behavior of wildfire smoke plumes. The
high temporal resolution and wide coverage of GOES imagery enable real-time tracking of smoke
concentration and movement, supporting air quality assessments and early warning systems.

Even with the advances in remote sensing, existing deep learning satellite datasets for wildfire smoke
detection face several limitations. They are often small in scale, restricted to specific regions or events,
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and focus on scene-level classification rather than pixel-level segmentation. Most do not differentiate
between smoke density levels, are not publicly available, and lack standardized benchmarks for
semantic segmentation. While NOAA’s Hazard Mapping System (HMS) provides a large-scale,
expert-labeled dataset, its annotations span multi-hour time windows that vary in duration. This
creates a temporal mismatch between the labels and individual satellite frames, complicating their
direct use for supervised learning.

To address these challenges, we introduce SmokeViz, a large-scale satellite dataset for semantic
segmentation of wildfire smoke plumes. SmokeViz includes over 160,000 annotated samples derived
from GOES-East and GOES-West imagery, aligned with HMS analyst annotations. To resolve the
temporal ambiguity in the original labels, we propose a semi-supervised method called pseudo-label
dimension reduction (PLDR), which uses intermediary pseudo-labels to select the satellite image
that best matches each smoke annotation. The resulting dataset provides one-to-one image-to-label
pairs with ordinal smoke density masks, suitable for supervised deep learning.

SmokeViz serves as a benchmark for wildfire smoke segmentation and as a resource for the broader
machine learning community working with geospatial, temporal, and remote sensing data. It supports
new directions in ordinal segmentation, semi-supervised learning with temporal uncertainty, and
pre-training for Earth observation tasks involving dynamic atmospheric phenomena.

The contributions presented in this paper include SmokeViz, the largest satellite-based dataset for
wildfire smoke segmentation, with over 160,000 samples from GOES imagery, our proposed PLDR,
a physics-guided semi-supervised method for aligning coarse human annotations with temporally
optimal satellite imagery and benchmark segmentation baselines with standardized training splits to
support reproducibility and future studies.

2 Related Work

2.1 Smoke Detection and Labeling Methods

Multi-channel thresholding remains a widely used method for distinguishing smoke from similar
atmospheric signatures such as dust or clouds using channel-specific radiance values [5]. These
thresholds are typically derived from labeled historical data and are fine-tuned to specific regions and
fuel types, limiting their generalizablity [6]. In contrast, the SmokeViz dataset spans a wide range of
biogeographies across North America and can serve as a source of refined analyst-labeled examples
for developing more generalizable thresholding techniques.

Large parameterized numerical models are used for forecasting smoke dispersion, but not for smoke
detection itself. Systems such as HRRR-Smoke and RRFS [7, (8] rely on computationally intensive
forecasts requiring nearly 200 dynamic meteorological inputs. A key limitation of these models is
the absence of a real-time smoke analysis product for data assimilation, resulting in delayed model
spin-up and compounded forecast errors. Model predictions from SmokeViz could help fill this gap,
offering a real-time, satellite-driven alternative to support data assimilation for operational smoke
dispersion forecasting.

Manual smoke labeling is performed by trained analysts through visual inspection of satellite imagery.
NOAA'’s Hazard Mapping System (HMS) provides a analyst-labeled wildfire smoke dataset [9,[10].
HMS analysts examine GOES imagery sequences to track smoke plume movement and annotate the
approximate spatial extent and qualitative density of smoke (light, medium, heavy), as illustrated
in Figure 2.1] Annotations are issued on a rolling basis and span time windows ranging from
instantaneous to over 20 hours [11]. While HMS provides high-quality expert annotations, its
operational format introduces challenges for supervised learning: annotations are temporally coarse,
vary in length, and lack one-to-one correspondence with satellite frames. SmokeViz refines HMS
annotations into temporally resolved, frame-aligned labels, enabling real-time, continuous predictions
of smoke extent and density.
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Figure 1: HMS smoke annotations overlaid on GOES imagery. Yellow, orange, and red contours
indicate light, medium, and heavy smoke density, respectively. (a) and (b) show canonical smoke
plumes; (c)—(e) illustrate density label variation across scenes.

2.2 Deep Learning Datasets and Models for Wildfire Smoke

Recent efforts have applied deep learning to wildfire smoke detection using a variety of satellite
sources and label strategies. SmokeNet employs a convolutional neural network (CNN) to classify
MODIS image scenes as containing smoke or not, using student-provided labels. SatlasPretrain
includes a small set of Sentinel-2 images labeled for smoke as part of a larger multi-label pre-training
dataset. While scene classification methods can provide wildfire detection information, they do not
capture spatial characteristics of smoke plumes that segmentation would be more appropriate to
capture.

Several datasets have been developed for smoke segmentation, but they are limited in scope. Wen et al.
trained a CNN on GOES-East imagery over California and Nevada using HMS annotations from
the 2018 wildfire season. Larsen et al. [15] used Himawari-8 data to detect smoke at the pixel level for
a single fire event, using a threshold-based algorithm as ground truth. Table[T|compares these datasets
in terms of scale, source, and labeling. SmokeViz stands out by offering over 160,000 samples with
analyst-generated, frame-aligned labels covering multiple fire seasons, regions, and biogeographies.
Not only do we use geostationary satellites with persistent observations, but we choose either GOES-
East or GOES-West based on which satellite has optimal observational conditions of the event. It is,
to our knowledge, the largest and most diverse dataset for smoke plume segmentation.

Table 1: Comparison of satellite smoke plume datasets, detailing the number of smoke plume samples,
satellite source (polar orbiting (P) or geostationary (G)), number of spectral bands, labeling method,
classification type - scene classification (SC) or semantic segmentation (SS), and public availability.

reference  # samples satellite # bands label task avail.
[12] 1016 MODIS (P) 5 students  SC no
125 Sentinel-2 (P) 3 crowd sourced SC  yes
4095 GOES-East (G) 5 HMS analysts SS no
975 Himiwari-8 (G) 7 algorithm  SS no

SmokeViz 163,479  GOES-East+West (G) 3 HMS analysts SS  yes

In addition to its relevance for wildfire applications, SmokeViz contributes a challenging benchmark
for general-purpose remote sensing vision tasks. Unlike many existing datasets that avoid cloudy
scenes [[16, or focus on sharply bounded features such as cropland [17]], infrastructure [18]], or
oceanic clouds [19,20], smoke has amorphous, fading boundaries in both space and time. Incorpo-
rating smoke segmentation into large-scale pre-training corpora, such as SatlasPretrain [13]], could
enhance generalizable models for Earth observation.

2.3 Pseudo-labeling and Semi-Supervised Learning

Semi-supervised learning techniques such as pseudo-labeling have been widely used to expand
training data by leveraging unlabeled samples [21]]. Typically, a parent model is trained on labeled
data and then used to generate pseudo-labels for an unlabeled dataset, which are in turn used to train
subsequent models in an iterative process.



In contrast, we propose a non-iterative variation focused not on data expansion, but dataset data-to-
label precision. Our method, pseudo-label dimension reduction (PLDR), generates intermediary
pseudo-labels (IPLs) for each satellite frame within the HMS annotation window. Rather than using
these labels for training, we use them to identify the satellite image with the greatest alignment to
the analyst annotation. This enables the construction of SmokeViz, a temporally disambiguated,
one-to-one image-to-label dataset. The resulting dataset methodically pairs the analyst-generated
smoke plume labels with selected GOES imagery, enabling high-resolution, temporally accurate
segmentation model training.

Beyond wildfire smoke segmentation, PLDR offers a general framework for aligning coarse or
weakly matched datasets. This is particularly useful in domains such as remote sensing, medical
imaging, and video analysis, where annotations often span temporal or spatial intervals rather than
individual frames. In Earth observation specifically, atmospheric parameters are often combined
from disparate sources with inconsistent spatial and temporal resolutions, making it difficult to
integrate them into unified training datasets. By using intermediary pseudo-labels to identify the
most representative input sample, PLDR transforms many-to-one or one-to-many supervision into
clean one-to-one mappings. This enables more precise alignment between data and labels, facilitating
integration across heterogeneous sources without requiring additional hand-labeling. As presented,
PLDR serves as a practical preprocessing strategy for repurposing historical legacy datasets with
temporal ambiguity into precise training resources for modern deep learning models.

3 Methods

3.1 Datasets

We use imagery from the latest GOES satellites: GOES-16 (East), GOES-17, and GOES-18 (West),
each equipped with the Advanced Baseline Imager (ABI), which captures 16 spectral bands from
visible to infrared wavelengths every 10 minutes. We process bands 1-3 using PyTroll [22]] to generate
1km true-color composites [23]], matching the imagery reviewed by HMS analysts. These bands
correspond to the shortest wavelengths available on ABI and yield the highest signal-to-noise ratio
(SNR).

To approximate the dynamic movement of smoke, HMS analysts annotate plumes using multi-frame
satellite animations. These annotations span varying time windows, averaging three hours. Since the
HMS annotations are designed to reflect overall plume extent during a time window rather than at
any specific moment, smoke boundaries in individual frames may not align well with the annotation
(Figure[2). A naive modeling approach would use all frames within each time window as input, but
this introduces non-uniform sequence lengths and significantly increases memory and computational
demands and complicates the use of CNN architectures. Instead, we establish a one-to-one mapping
by identifying the single satellite frame that best matches each analyst annotation.

19:10 UTC 20:10 UTC 21:10 UTC 22:10 UTC 23:00 UTC

Figure 2: True color GOES-East imagery from May 5th, 2022, Southeast New Mexico (31.38°N,
107.87°W) during the start of the Foster Fire. The red, orange and yellow lines represent the heavy,
medium and low density HMS smoke annotations that span 19:10-23:00 UTC.

We select either GOES-East or GOES-West based on the solar zenith angle (SZA) to optimize
for forward Mie scattering, which enhances smoke visibility in satellite imagery. Smoke particles
(100nm-10um) scatter light predominantly via Mie scattering when A < d, favoring short wavelengths
and forward angles (Figure3). To generate the Mie-derived dataset, we evaluate the available satellite
platforms for each annotation time window and choose the satellite (East or West) that is expected



to observe the strongest forward scattering geometry based on sun-satellite alignment. This ensures
selection of the satellite view with the highest potential smoke SNR if smoke were present. Therefore,
we select (1) the satellite expected to yield the strongest Mie forward scattering (Figures [(a) vs
Hb)) and (2) the three shortest wavelength ABI bands (C01-C03: 0.47, 0.64, and 0.865um) (Figures

c)ffe)).
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Figure 3: If the particle size is < 1—10 the A of the interacting light, then the primary scattering will be
Rayleigh. Mie scattering is the predominant scattering mechanism when the particle size is larger
than the A of light. This schematic demonstrates that when the sun is setting in the West, the Mie
scattering will predominately forward scatter towards GOES-East.
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Figure 4: True color (a) GOES-WEST and (b) GOES-EAST imagery from March 237¢, 2022 centered
at (31.1°, —93.8°) in Texas, USA taken at 23:20 UTC. The GOES-EAST raw band imagery for (c)
blue, (d) red and (e) vegetation bands show variations in the SNR for smoke detection in relation to
the \ of light being measured.

3.1.1 From Full Dataset D to Mie-Derived Dataset D,

Let D = {X, Y} be the original dataset, where each label y; € ) corresponds to multiple satellite
images [m(mo), e x(i,tN)} € X over a given time window. Using Mie scattering principles, we select
the image T(itar) with the highest expected smoke SNR to form a one-to-one dataset Dp; = {Xas, YV}
such that X3y C X and |Xas| = |)|. Based on forward scattering criteria, the trivial strategy would
be to pull imagery from GOES-West right after sunrise and from GOES-East right before sunset
when the SZA is closest to 90°. To avoid image artifacts caused by extreme SZA, we exclude scenes
with SZA> 88° [24]. The resulting dataset D) (Table[3) contains over 200,000 samples where the
satellite image is chosen based on which frame within the annotation time window would exhibit
the strongest forward scattering geometry and thus the highest potential smoke SNR if smoke were
present.

3.1.2 PLDR Dataset D,

The D), data selection process introduces a potential bias for resulting models to limit smoke
identification to higher SZAs. Additionally, D), is limited to providing the timestamp for maximum
possible smoke SNR, it does not give information to point to which image aligns best with the
smoke label. To address these limitations, we propose using D), as a intermediary dataset in the
PLDR workflow (Figure[5)) that will predict the satellite image that best matches the analyst’s smoke
annotation to produce D,,.
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Figure 5: PLDR applied to create the SmokeViz dataset. Green boxes indicate dataset stages. (a) For
original dataset D - analyst annotation y; corresponds to /N satellite images across time window ¢
so that ([2(; ¢y), -, Z(i,tn))s i) € D (b) use Mie scattering to find the time, ¢/, that corresponds
with satellite image x(; ;,,) that would produce the highest possible SNR if smoke was present;
(c) resulting Dy is one-to-one (z(;¢,,),¥i) € Dar; (d) parent model f, is trained on Dy, such
that fo(2(;,+,,)) = ¥i; (€) apply a greedy algorithm fo ([ (; 40, s Z(ien)]) = [yz*l.’to)7 ey y?i,tw)] to
create IPLs y* for each candidate image; (f) compute the intersection over union (IoU) between
y™ and y; to identify the time ¢,, where the IPL and analyst annotation have the maximum IoU; (g)
match ¢, to its corresponding image z(; + ) that is predicted to best match the analyst annotation; (h)
SmokeViz dataset D,, created; (i) child model f. is trained on D,, such that fc(x(iytp)) = y; is used
to detect and classify the density of wildfire smoke plumes in GOES imagery.

maximum loU

Table 2: A comparison of how smoke density
would be represented by one-hot encoding
commonly used for categorical data to ther-
mometer encoding often used for ordinal data.

Table 3: Dataset split for Ds and D,,, samples for
2024 go up to November 1st. We use an entire
year of data for both validation and testing sets to
capture year-long wildfire trends.

density  one-hot  thermometer

dataset Dm D, years
none Eg 0 (H Eg 0 (H training 158,391 127,197 2018-21, 24
T i B S validation ~ 20,056 17,793 2023

tesing 21,542 18,489 2022

heavy [1 0 0] [11 1]

To build the parent model f,, that will create the intermediary pseudo-labels (IPLs), we implement
Segmentation Models PyTorch with EfficientNetV2 [26] as the encoder and PSPNet
as the decoder. Input images are 256x256x3 true-color snapshots; the output is a 256x256x3
classification map predicting categorical smoke density. We use thermometer encoding (Table [2)



and apply binary cross-entropy loss across density levels. Thermometer encoding is chosen over
one-hot encoding because it captures the ordinal structure of smoke density categories (none < light <
medium < heavy). In thermometer encoding, each higher class includes all lower class activations
(e.g., heavy = [1 1 1]), allowing the model to learn not just class distinctions, but the relative severity
of smoke. After performing a confidence threshold analysis discussed in the Supplementary Materials
Section H, we use a confidence threshold of IoU > 0.1 to exclude samples with negligible overlap.

Figures [6|and|[7] give statistical information on SmokeViz as well as highlight the possible influence
of agricultural burns on the dataset distribution and possible model performance. Figure [6]shows
that sample counts in SmokeViz peak in March and April, corresponding to agricultural burning
rather than wildfire activity. During these months, IoU performance is relatively low in comparison
to the scores observed from May through September which align with peak wildfire activity. Figure[7]
further supports this trend, showing that the southeastern (SE) quadrant, where agricultural burns are
prevalent, contributes 55% of all samples but exhibits relatively low IoU performance. These patterns
suggest that agricultural burns, which are typically smaller in spatial extent and less visually distinct
than large wildfires, present a greater challenge for accurate detection and segmentation by the model.
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Figure 6: Monthly distribution of samples in the

full dataset D), (left), and monthly IoU scores
between f. predictions and analyst annotations
on the D), test set (right).

Figure 7: Sample percent contribution by region
in the full D), dataset and IoU performance of f.
on the D, test set across quadrants centered at

(40°N, —105°W).

3.2 Benchmark Models

We benchmark the SmokeViz dataset D, using PSPNet [27] with EfficientNetV2 [26], DPT [28]
with ViT [29], Segfomer and UperNet with EfficientVit [32]]. Each model is trained for 100
epochs while limited to 24 hours using a batch size of 256 and the Adam optimizer on 2 94GB Nvidia
H100-NVL GPUs. These semantic segmentation architectures are selected for their relatively low
memory requirements and effectiveness in segmenting multi-scale objects such as smoke plumes.

4 Results

We evaluate the performance of the parent ( f,) and child (f.) models using Intersection over Union
(IoU), precision and recall metrics on the test sets of both Dy, and SmokeViz (D,,), as shown in
Table[d] For each smoke density class, IoU is calculated as the pixel-level intersection between model
predictions and HMS analyst labels, divided by their union, aggregated over all test samples.



Table 4: Segmentation metrics comparing f, and f. on the Dy, and D, test sets.

fo Je
Metric D D, | Du D,
Heavy IoU 0.2600 0.2909 | 0.2685 0.3804
Medium IoU  0.3465 0.3765 | 0.3496 0.4776

Light IoU 0.5067 0.5675 | 0.5276 0.7301
OverallIoU  0.4574 0.5076 | 0.4831 0.6532

Precision 0.7452  0.8221 | 0.7319 0.8204
Recall 0.5422 0.5702 | 0.5869 0.7622

As shown in Table E in terms of IoU, f, that was trained on D, consistently outperform f,, that
was trained on D)/, across all smoke density categories. For both f, and f., IoU improves when
evaluated on D,,. The highest overall IoU = 0.6532, is achieved by f. on D,, indicating that PLDR
improves image-label alignment and reduces training noise.

The increase in recall across both models, particularly for f. on D,, indicates that the PLDR-based
dataset improves the model’s ability to detect true smoke pixels. This suggests that training on the
PLDR dataset enhances the model’s sensitivity without a significant sacrifice in precision. In the
context of smoke plume detection, favoring recall over precision can be desirable, as undetected
smoke plumes can lead to errors in atmospheric and air-quality assessments.

Figure §]illustrates a case in which the PLDR-selected frame better represents the HMS annotation
than the Mie-derived selection. Here, the heavy smoke IoU improves from 0.01 to 0.59. While the
Mie-derived image is selected based on its proximity to sunrise, PLDR chooses the frame with the
highest overlap between the model-generated intermediary pseudo-label and the analyst annotation.
This example highlights PLDR’s advantage in resolving temporal ambiguity.
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Figure 8: GOES-West imagery from June 8, 2022, over Alaska (61.06°N, 156.12°W). Daylight
spanned 12:43-7:53 UTC. The single static HMS annotation (top row) spans 18:50-23:50 UTC is
compared with f,-generated per-frame smoke predictions (bottom row). The leftmost frame (dotted)
represents the Mie-derived image; the rightmost frame (solid) was selected via PLDR and achieves
higher IoU.

To further examine the performance of f., we can qualitatively compare its predictions against HMS
annotations for samples from D, in FigureEl The model outputs capture more spatially detailed and
coherent smoke boundaries compared to the coarser, polygon-based analyst labels.



Table 5: Comparison of segmentation benchmark model IoU metrics on the SmokeViz dataset. Note
that the first column is f,.

encoder EfficientNet[26] EfficientViT[32]] ViT
decoder PSPNet[27]] Segformer[30]  UPerNet DPT[28]
Heavy 0.3804 0.2602 0.3156 0.3292
Medium 0.4776 0.4378 0.4602 0.4420
Light 0.7301 0.6857 0.6960 0.7115
Overall 0.6532 0.6051 0.6173 0.6309

To benchmark performance across segmentation architectures, we evaluate several encoder-decoder
models trained on D,,. Table|§|reports IoU scores by smoke density and overall. PSPNet yields the
best performance per density and overall. Results across models are relatively consistent, highlighting
the robustness of the SmokeViz dataset for training diverse architectures.
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Figure 9: Examples of HMS annotations (top row) vs f.. output (bottom row) on D, samples. The
overall IoU score is reported at the bottom of each column.

5 Limitations

Additional discussion and analysis of the primary limitations is provided in the Supplementary
Materials. For traditional pseudo-labeling methods, the parent model may propagate biases into
downstream models. In our case, as discussed in Section F, the increased detectability of forward-
scattered light from smoke particulates may bias the model toward higher performance at larger solar
zenith angles. Additionally, the HMS annotations do not distinguish between fire types and include a
large number of controlled agricultural burns, which may limit the dataset’s applicability for targeting
large-scale wildfires, see Section D for more details.

Several additional limitations remain important directions for future work such as evaluating the
model’s ability to distinguish smoke from dust and investigating uncertainty in the analyst annotations.

6 Conclusion

In this study, we present SmokeViz, a refined satellite imagery dataset for semantic segmentation of
wildfire smoke plumes. Starting from the original NOAA HMS annotations of coarse, many-to-one
approximations of smoke boundaries, we transform the dataset into a one-to-one mapping between
satellite frames and smoke annotations. While the Mie-derived dataset selection process maximized
the potential for detecting smoke if present, it did not account for whether smoke was actually visible
in the selected image, leading to a high incidence of label-image mismatch and associated training
noise. To address this, we introduce pseudo-label dimension reduction (PLDR), a physics-guided,
semi-supervised method that uses a parent model trained on the Mie-derived dataset (D)) to generate



pseudo-labels across each annotation’s time window. We then select the image with the highest spatial
overlap between the intermediary pseudo-label and the HMS annotation to construct a refined dataset
(Dp). A child model trained on D), achieves higher segmentation performance than the original parent
model, as measured by IoU on both test sets, demonstrating the value of pseudo-label-based temporal
alignment.

SmokeViz serves as a robust and representative dataset for training models to detect wildfire smoke in
GOES imagery at the frame level. In addition to supporting real-time smoke segmentation, this dataset
has potential applications in early wildfire detection, air quality monitoring, and as a smoke analysis
product for data assimilation into dispersion models. It also provides a challenging benchmark for
remote sensing models tasked with segmenting diffuse, low-contrast features like smoke. More
generally, this work illustrates how PLDR can be used to resolve resolution mismatches between data
and labels, especially in settings with time-series or video data paired with coarse annotations. The
dataset is publicly available at https://noaa-gsl-experimental-pds.s3.amazonaws.com/
index.html#SmokeViz/|with code available at https://github. com/reykoki/SmokeViz,
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims of using intermediary pseudo-labels to create a more robust dataset
is reflected in the paper’s contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address limitations of the dataset.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results are presented.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code to create the datasets along with the final dataset hosted
on AWS by NOAA.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The SmokeViz dataset is released along with code used to develop it.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Dataset splits, hyperparameters, optimizer are specified.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The results are represented in by the intersection over union values, there are
no error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mention 8 16GB P100 GPUs and limit to 24 hours of run time.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There are no conflicts between the research and the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: There are no negative, but there are positive that are mentioned in the paper
such as better tools for public health decision making.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There are no risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The raw NOAA datasets used to create SmokeViz do not have licenses while
the python packages used do, we list these in the appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The dataset, supporting code and user-friendly Notebooks to play with the
dataset/model all support the assets accessibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: There are no LLM components to this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Original Data and Software Licenses

The HMS smoke product does not have a license attached to it. For GOES imagery, NOAA states:
"There are no restrictions on the use of this data". PyTroll is distributed under the GNU General
Public License v3.0, and Segmentation Models PyTorch is distributed under the MIT License.

B Satellite and Band Selection

To evaluate the impact of viewing geometry we show imagery from both GOES-East and GOES-West
satellites (Figure [T0). In this example, GOES-West provides great plume visibility near sunrise,
consistent with Mie scattering physics, where forward-scattered light enhances aerosol contrast under
favorable solar geometry.

True Color 0.47um 0.64um 0.865um

Figure 10: (a) True color GOES-EAST (top) and GOES-WEST (bottom) imagery from May 18",
2022 centered at (35.6°, —105.0°) in New Mexico, USA taken at 12:50 UTC. The GOES-East and
West raw band imagery for (c) blue, (d) red and (e) veggie bands show variations in the SNR for
smoke detection in relation to the A of light being measured.

GOES-EAST

GOES-WEST

As described in the main paper, Advanced Baseline Imager (ABI) bands 1-3 were selected for their
high signal-to-noise ratio (SNR) and relevance to visible smoke. Figure[IT|presents a smoke plume in
a cloudy scene across all 16 ABI bands described in Table[6] The smoke signal is prominent in Bands
1-3 but diminishes in subsequent NIR channels. Band C07 (3.9 pm), which is sensitive to thermal
anomalies, shows a strong fire signal at the source of the plume. While useful for active fire detection,
including CO7 for smoke segmentation may bias models toward learning fire-smoke co-location,
reducing generalization to detached or low opacity smoke plumes, especially those classified as light
density that have traveled far from the source. This concern supports the decision to limit input
channels in SmokeViz to those that reflect the analyst operational view while minimizing potential
modeling shortcuts and dataset size. The SmokeViz dataset development code is designed to be easily
adapted to incorporate any desired spectral bands and/or composites.

20



Figure 11: GOES-EAST imagery for all 16 bands from June 5, 2022 centered at (33.0°, —106.0°)
in New Mexico, USA taken at 00:56 UTC.
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Table 6: The GOES-Series Advanced Baseline Imager (ABI) provides data at 16 channels that cover
visible (C01-C02), near-IR (C03-C06) and IR (C0O7-C16) bands.

Band Description Center Wavelength (um) Spatial Resolution (km)
Co1 Blue visible 0.47 1
C02  Red visible 0.64 0.5
Co3 Veggie near IR 0.865 1
Cco04 Cirrus 1.378 2
C05 Snow/Ice 1.61 1
C06 Cloud particle 2.24 2
Co7 Shortwave IR 39 2
CO08 Upper-level water vapor 6.2 2
Cc09 Mid-level water vapor 6.9 2
C10 Lower-level water vapor 7.3 2
Cl1 IR cloud phase 8.5 2
C12 Ozone 9.6 2
C13 Clean longwave IR 10.35 2
Cl4 Longwave IR 11.2 2
C15 Dirty longwave IR 12.3 2
C16 COq 13.3 2

C Statistical Dataset Visualizations

Figures [I2}{T4] summarize key statistical characteristics of the SmokeViz dataset.

Figure[I2] presents a histogram of the number of GOES satellite frames associated with each HMS
annotation. Since frames are available every 10 minutes, this visualization reflects the variability in
annotation time window duration. Most annotations span between 5 and 50 frames, corresponding
to 50 minutes to just over 8 hours, underscoring the need for resolving temporal ambiguity during
dataset refinement.

x104
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Figure 12: The number of annotations that span a number of satellite frames that are generated at a
10-minute interval.

Figure[I3]shows the number of SmokeViz samples per year, stratified by smoke density. The year
2020 exhibits the highest sample count, aligning with an exceptionally active wildfire season across
North America [33]]. The density distribution across years also varies, with some years showing a
higher relative proportion of light or medium smoke annotations.

Lastly, SmokeViz includes annotations across North America, Figure E] summarizes the dataset’s
geographic coverage by country, including the United States, Canada, and Mexico.
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Figure 13: Annual sample counts in the Smoke- Figure 14: Geographic distribution of Smoke-
Viz dataset, broken down by smoke density class. Viz samples by center-pixel location: Canada
Percentages within each column indicate the rela- (16,601), U.S. (103,547), Mexico (21,429), and
tive frequency of each density level for that year. others (24,886).

D Agricultural Burns

The monthly peak in sample counts, shown in Figure 6 and[I3] occurs in March and April, preceding
the typical wildfire season, which spans from late spring through fall. This early-season spike is likely
due to prescribed agricultural burns, which are commonly conducted before vegetation exits winter
dormancy [34]. Since HMS annotations do not distinguish between prescribed burns and wildfires,
both event types are included in the dataset.

Model performance over time, shown in Figure 6 and [I3] reveals that the highest IoU values for f.
on the D,, test set occur during the peak wildfire season (May—September), not during the months
with the highest sample counts. This suggests that prescribed burns that are typically smaller and less
visually distinct (Light density) than large wildfires, are more difficult for the model to segment.
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Figure 15: Monthly distribution of SmokeViz samples by smoke density class (Light, Medium,
Heavy; bars; left axis) and corresponding overall IoU scores (blue line; right axis).

A spatial breakdown of sample density further supports this interpretation. Figure 7 in the main
paper shows that the states with the highest number of samples are California, Georgia, and Florida.
The elevated sample counts in southeastern states are consistent with regional practices of frequent
prescribed burns. To investigate regional effects more explicitly, we divide the dataset into four
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geographic quadrants: Northwest (NW), Southwest (SW), Northeast (NE), and Southeast (SE),
centered around a continental midpoint at (40°N, —105°W).

Table 7| reports test IoU and sample counts for each quadrant. Despite containing the largest share
of training samples, the Southeast quadrant exhibits modest model performance. This degradation
is likely due to the abundance of prescribed burns, which may produce smaller, low-opacity smoke
plumes that are harder to detect. For SmokeViz users whose objective is to train models specifically
for large wildfire detection, this highlights a limitation of the dataset: a substantial portion of the
training data originates from controlled burns, which may not be representative of the intended
task. One possible mitigation strategy is to filter out short-duration, light-density annotations (e.g.,
single-day events), though this is complicated by variability in analyst-defined time windows and
labeling cadence per fire event.

Table 7: SmokeViz dataset sample distribution and f, test performance across geographic quadrants.

Quadrant SmokeViz Test Set IoU  SmokeViz Test Set Samples  SmokeViz Samples
Northwest (NW) 0.6765 3,895 26,440
Southwest (SW) 0.6445 1,753 22,218
Northeast (NE) 0.7337 1,016 14,791
Southeast (SE) 0.6480 11,825 100,030

E Satellite Analysis

Figure shows the distribution of samples from GOES-East and GOES-West in both the full
SmokeViz dataset and the D), test set, along with their respective segmentation performance using
fe. Although GOES-East contributes nearly three-quarters of all samples, model performance is

substantially better on GOES-West test samples, with an IoU of 0.7270 compared to 0.6186 for
GOES-East.

Test Set Distribution Full Dataset Distribution
GOES-WEST
GOES-WEST
loU: 0.7270 21.54%
31.47% (35208)
(5818)
68.53%
(12671) 78.46%
GOES-EAST (128271)
loU: 0.6186
GOES-EAST

Figure 16: SmokeViz test set (left) and full dataset (right) sample distributions by satellite. GOES-
West samples account for a smaller portion of the dataset but yield higher test ToU.

This discrepancy may stem from several factors. First, the observed signal quality varies between
satellites depending on diurnal lighting, seasonal solar angles, and atmospheric conditions. GOES-
West best captures forward-scattered sunlight during early morning hours over the western U.S.,
enhancing smoke visibility via Mie scattering and possibly boosting model accuracy. Additionally,
sensor calibration, viewing geometry, and line-of-sight differences between the two platforms could
contribute to systematic performance variation.
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Another relevant factor is the operational transition between satellites. On June 18, 2022, GOES-17
was replaced by GOES-18 as the operational West satellite. While GOES-17 samples in the test set
yield an IoU of 0.7380, GOES-18 samples yield a lower performance at 0.7003. This is likely due to
the limited exposure of GOES-18 data during model training: training years (2018-2021) include
only GOES-17, while GOES-18 is only present in the 2024 training data. This temporal imbalance
may partially explain the drop in IoU for GOES-18.

Overall, these results suggest that while GOES-East offers broader coverage, the more favorable
observational geometry of GOES-West, combined with consistent training data, produces stronger seg-
mentation results. Future work may explore satellite-specific fine-tuning or normalization techniques
to reduce these performance gaps.

F Sunset/Sunrise Bias

As discussed in the main paper’s limitations, there exists a potential observational bias toward imagery
captured near sunrise or sunset. This bias may originate from both our Mie-derived dataset (Dj;) and
the original HMS annotations. Due to Mie scattering, the sun-satellite-smoke geometry results in a
higher signal-to-noise ratio (SNR) when the solar zenith angle is near 90°, typically around sunrise
and sunset. This light configuration enhances the visual detectability of smoke plumes, guiding our
initial selection method and potentially the analyst annotations.

In contrast, diurnal fire activity patterns . Wildfires tend to exhibit peak fire radiative power around
solar noon due to increased temperature and wind [35]], meaning that smoke intensity and spread
are often greatest in midday imagery. The tension between observational clarity and fire behavior
complicates dataset curation.

Figure|l'/|compares the performance of models trained on D, (left) and the refined PLDR-generated
dataset D), (right), segmented by image with proximity to sunrise/sunset versus midday. The Mie-
derived dataset favors high-SZA imagery, reflected in stronger IoU for morning/evening frames. In
contrast, the SmokeViz dataset (D,,), which selects the frame with the best overlap between model
prediction and annotation, shows higher IoU for midday images, suggesting it more accurately aligns
with fire dynamics rather than SNR optimization bias.

Mie-Derived Dataset SmokeViz Dataset
=70° SZA
loU: 0.6639
32.35%
(52884)
<70° SZA 49.69% 50.31% =70° SZA
loU: 0.4793 (99382) (100607) loU: 0.4471
67.65%
(110595)
<70° SZA
loU: 0.6661

Figure 17: Distribution of data samples in the Mie-derived dataset (D, left) and SmokeViz dataset
(D,, right), split by if the solar zenith angle (SZA) is less than or greater than 70°. >70° SZA
corresponds with the first/last =~ 20% of daylight, the remaining ~ 60% of midday daylight is
represented in <70° SZA. The PLDR refinement leads to large distribution and improved performance
for midday samples.

This shift in temporal preference is further quantified in Figure[I8] which shows the distribution of
frame differences between corresponding samples in Dy, and D,,. Over 75% of the annotations were
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assigned to different satellite frames between the two datasets. This illustrates the degree of temporal
refinement enabled by PLDR, which prioritizes semantic alignment over SNR.
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Figure 18: Histogram showing the shift in satellite frame selection between the Mie-derived dataset
Dy and the PLDR-selected SmokeViz dataset D,,. A value of 0 indicates the same frame was
selected in both datasets. Approximately 25% of samples (39,044) share the same frame, reflecting
substantial temporal reassignment between datasets.

G Qualitative Analysis on Performance

To complement the quantitative evaluation, we provide qualitative comparisons between the SmokeViz
model predictions and the original HMS analyst annotations. These examples illustrate strengths and
failure modes observed in the dataset.

Figure [T9| presents five cases where f, does not perform optimally. In the first column, the model
mistakenly identifies a smoke-like cloud as light-density smoke, a rare misclassification that reveals
a potential weakness in cloud/smoke differentiation under certain lighting and texture conditions.
In the remaining columns, SmokeViz underestimates the extent or density of visible smoke plumes.
These errors generally occur in scenes with faint or fragmented plumes, where the signal-to-noise
ratio is lower, or where overlapping atmospheric conditions make segmentation more difficult. In
some cases, partial occlusion or lower contrast in the plume edges may have limited the model’s
confidence.

2022/05/29 14:30 UTC 2022/10/01 23:50 UTC 2022/05/29 12:50 UTC

2022/01/22 13:50 UTC 03/27 13:40 UTC

HMS Label

SmokeViz

0.482 0333 ) 0.14 0.236 i 0.76

Figure 19: Challenging examples where SmokeViz underperforms. Top row: HMS annotations. Bot-
tom row: SmokeViz model predictions. Leftmost column shows a false positive (cloud misclassified
as smoke), remaining examples show under-segmentation or missed detection of smoke plumes. IoU
values for each column are shown below.
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In contrast, Figure 20| shows examples where SmokeViz closely matches the HMS labels or even
outperforms them in delineating plume boundaries. In these scenes, the model produces tighter
boundaries that conform well to the visible smoke extent, including fine structural details that the
coarser analyst polygons often miss.

Together, these examples show that while the model performs robustly across many diverse smoke
scenes, it still faces challenges in edge cases involving ambiguous cloud formations, light plumes, or
visually occluded conditions. These qualitative insights can help inform aspects of improvements in
future models.
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Figure 20: Examples of successful segmentation by SmokeViz. The model predictions (bottom) align
well with HMS annotations (top), capturing plume shape and density more precisely. IoU scores
shown below each sample indicate high overlap.

H Confidence Threshold

To identify the optimal IoU threshold for constructing a PLDR-derived dataset, we trained separate
segmentation models using datasets generated at a range of PLDR thresholds (y-axis) and evaluated
each model across all test-set thresholds (x-axis), as shown in Figure@ This full cross-evaluation
isolates how well models trained on data of differing label quality generalize to both cleaner and
noisier test conditions.
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Figure 21: Overall IoU scores from models trained on training datasets constructed using PLDR at
different IoU thresholds (y-axis) and evaluated across test sets generated with varying thresholds
(x-axis).

Rather than maximizing performance only along the diagonal (where training and test thresholds
match), this approach reveals which training threshold produces models that are robust to varying
levels of label noise. The model trained with a threshold of 0.1 achieves consistently high IoU across
a wide range of test thresholds, indicating strong generalization. Accordingly, an IoU threshold of 0.1
was selected for PLDR generation, as it yields models that maintain accuracy under both noisy and
clean evaluation conditions, balancing label inclusiveness and reliability.

I Machine Learning Reproducibility

All relevant code for dataset construction, model training, and evaluation is publicly available at
https://github.com/reykoki/SmokeViz|to ensure transparency and reproducibility.

The models presented in this study are not optimized for state-of-the-art performance but are designed
to serve two primary purposes: (1) generate pseudo-labels used in the PLDR workflow to construct
the SmokeViz dataset, and (2) evaluate the relative performance of models trained on the Mie-derived
dataset (D) versus the refined SmokeViz dataset (Dy,).

To select the parent model f,, we trained several encoder-decoder architectures on D), and selected
the one that achieved the highest overall Intersection over Union (IoU), as shown in Table@ The top-
performing model used EfficientNetV2 as the encoder and PSPNet as the decoder. This architecture
was then used to generate intermediary pseudo-labels for the PLDR process.
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Table 8: Comparison of segmentation model IoU metrics on the Mie-derived dataset (D). The
highest overall IoU model (EfficientNetV2 + PSPNet) was selected as fo.

encoder EfficientNet[26] EfficientViT[32] [132] ViT [29]
decoder PSPNet[27] Segformer[30] UperNet [31] DPTI[28]]
Heavy 0.2600 0.2266 0.1963 0.2220
Medium 0.3465 0.3067 0.3137 0.3647
Light 0.5067 0.4220 0.4406 0.4546
Overall 0.4574 0.3835 0.3970 0.4124

All models were trained distributed on 2 94GB H100s using the Adam optimizer with a learning rate
of 1 x 10™4, batch size of 256, and 100 training epochs. Hyperparameter values were chosen based
on memory constraints and general suitability for large-scale semantic segmentation tasks.
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I.1 Datasheet for SmokeViz

Questions from the https://arxiv.org/abs/1803.09010 paper, v7.

I.1.1 Motivation

The questions in this section are primarily intended to encourage dataset creators to clearly articulate
their reasons for creating the dataset and to promote transparencyabout funding interests.

For what purpose was the dataset created?

SmokeViz was created to serve as a large labeled dataset to be used in creating wildfire smoke plume
related machine learning models. Applications include wildfire smoke detection or smoke dispersion
modeling.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

Collaborators are dispersed across multiple entities (see author list).
Who funded the creation of the dataset?

CIRES at University of Colorado Boulder and the National Oceanic and Atmospheric Administration
Global Systems Laboratory funded this work.

Any other comments?

None.

I.1.2 Composition

Most of these questions are intended to provide dataset consumers with the information they need to
make informed decisions about using the dataset for specific tasks. The answers to some of these
questions reveal information about compliance with the EU’s General Data Protection Regulation
(GDPR) or comparable regulations in other jurisdictions.

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)?

Each instance is a 256x256x3 RGB image from GOES imagery with an accompanying 256x256x3
binary masks corresponding to density of smoke. There are 3 densities of smoke - Light, Medium
and Heavy.

How many instances are there in total (of each type, if appropriate)?

There are 163,479 samples - 111,621 for light, 33,570 for medium and 18,288 for heavy density
smoke.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set?

The entire possible number of samples between 2018/01/01 - 2024/11/01 is 210,702. The dataset is
reduced to 207,106 samples after filtering out any samples with no corresponding satellite imagery
available or imagery that is less than 10 or over 90 percent saturation. Total saturation is defined
when each pixel value is equal to 1. Mentioned in more detail in the paper, the dataset was further
reduced down to 163,479 samples after applying a 0.1 IoU threshold during the PLDR process.

What data does each instance consist of?

The data is processed to correct for Rayleigh scattering, solar zenith angle and projected so each pixel
is representative of the same area of land. The algorithm is referenced in the SmokeViz paper.

Is there a label or target associated with each instance?
Yes, there are no samples that are intended to not display any smoke.
Is any information missing from individual instances?

We have seen imagery where smoke is labeled but there’s adjacent smoke plumes that were unlabeled.
With human labels comes human errors.
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Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)?

Some instances can overlap in geographic location, there can be multiple smoke plumes in one
instance, but the index of the HMS smoke annotation is listed and can be mapped back to the original
dataset for geolocational information.

Are there recommended data splits (e.g., training, development/validation, testing)?

We recommend using full years of data for training, validation and testing to keep full year long
patterns of wildfire behavior. We use 2018-2021 and 2024 for training, 2023 for validation and 2022
for testing.

Are there any errors, sources of noise, or redundancies in the dataset?

The HMS smoke annotations that are used as truth are a source of noise as explained in the SmokeViz
paper. These include approximations of smoke polygons mismatching actual location and time
windows being too large that smoke moves during the time window. There is also noise caused by
atmospheric interactions with light. Redundancies occur when there more than one smoke plume and
annotation in one image.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient confidentiality, data that includes the content of
individuals’ non-public communications)?

No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety?

No.
Does the dataset relate to people?

No, not directly, although wildfires do affect people, these images are at 1km resolution and do not
show enough detail to relate to people or infrastructure.

Does the dataset identify any subpopulations (e.g., by age, gender)?
No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset?

No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)?

No.
Any other comments?

No.

L.1.3 Collection process
The answers to questions here may provide information that allow others to reconstruct the dataset

without access to it.

How was the data associated with each instance acquired?

31



The labels from HMS smoke product are not validated or verified but is used for AirNow air quality
assessments. The GOES imagery is collected by the ABI sensor and is corrected for any anomalies
and also converted from photon count to radiance values.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)?

Original low temporal resolution annotations were manual human analyst curated. To create the high
temporal resolution annotations, we use pseudo-labeling discussed in detail within the SmokeViz

paper.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

The HMS smoke analysts are only looking for smoke during the daytime and do avoid annotations
during heavy cloud cover.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?

The NOAA NESDIS employed analysts are compensated as salaried federal employees.
Over what timeframe was the data collected?

2018-2024

Were any ethical review processes conducted (e.g., by an institutional review board)?
No.

I1.1.4 Preprocessing/cleaning/labeling

The questions in this section are intended to provide dataset consumers with the information they
need to determine whether the “raw” data has been processed in ways that are compatible with their
chosen tasks. For example, text that has been converted into a “bag-of-words” is not suitable for tasks
involving word order.

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)?

The data was processed according to the GOES True Color paper referenced in the SmokeViz paper
methods section. This includes atmospheric, Rayleigh corrections and estimation of a Green band.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)?

The raw data is available from the NOAA AWS webpage. https://registry.opendata.aws/
noaa-goes/| The HMS smoke annotations are available here: https://www.ospo.noaa.gov/
products/land/hms.html

Is the software used to preprocess/clean/label the instances available?

Yes, Pytroll implements the algorithm discussed in the GOES True Color paper referenced in the
SmokeViz paper.

Any other comments? None.

I.1.5 Uses

These questions are intended to encourage dataset creators to reflect on the tasks for which the dataset
should and should not be used. By explicitly highlighting these tasks, dataset creators can help dataset
consumers to make informed decisions, thereby avoiding potential risks or harms.

Has the dataset been used for any tasks already?

It was used to train benchmark models mentioned in the paper that apply semantic segmentation to
identify and classify smoke in satellite imagery.

32


https://registry.opendata.aws/noaa-goes/
https://registry.opendata.aws/noaa-goes/
https://www.ospo.noaa.gov/products/land/hms.html
https://www.ospo.noaa.gov/products/land/hms.html

Is there a repository that links to any or all papers or systems that use the dataset?
No.
What (other) tasks could the dataset be used for?

A machine learning based smoke dispersion forecast model, automated wildfire smoke detection and
segementation, a smoke analysis product for data assimilation into smoke or air quality models.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

Are there tasks for which the dataset should not be used? No.

Any other comments? None

I.1.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?

No.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
https://noaa-gsl-experimental-pds.s3.amazonaws.com/index.html#SmokeViz/
When will the dataset be distributed?

It is currently available.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

No.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances?

No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?

No.
Any other comments?

None.

I.1.7 Maintenance

These questions are intended to encourage dataset creators to plan for dataset maintenance and
communicate this plan with dataset consumers.

Who is supporting/hosting/maintaining the dataset?

National Oceanic and Atmospheric Administration Global Systems Laboratory is hosting the dataset
on Amazon Web Services.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
rey.koki@colorado.edu

Is there an erratum?

No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?

Yes, only to add new instances.
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If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)?

Not applicable.
Will older versions of the dataset continue to be supported/hosted/maintained?
No, it is too large to keep multple versions.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so?

The code to extend/augment/build is publicly available https://github.com/reykoki/
SmokeViz. We encourage anyone that would like to contribute to SmokeViz to reach out to
rey.koki@colorado.edu. Any other comments?

None
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