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ABSTRACT

The traditional objective in regression is generalization. That is, learning a func-
tion from training data that performs well beyond the training data. Symbolic
regression adds another objective, namely, interpretability of the regressor. In the
context of regression, interpretability means that the representation of the regres-
sor facilitates insights into mechanisms that underlie the functional dependence.
State-of-the-art symbolic regressors provide such insights. However, the state of
the art predominantly incurs high costs at inference time. The recently proposed
transformer-based end-to-end approach is orders of magnitude faster at inference
time. It does not, however, achieve state-of-the-art performance in terms of in-
terpretability, which is typically measured by the ability to recover ground truth
formulas from samples. Here, we show that the recovery performance of the end-
to-end approach can be boosted by carefully selecting the training data. We con-
struct a synthetic dataset from first principles and demonstrate that the capacity to
recover ground truth formulas scales with the available computational resources.

1 INTRODUCTION

Given labeled training data, regression is the task to estimate a functional dependency between
independent variables, typically denoted as x, and dependent variables, typically denoted as y. The
key objective in regression is, as in most of machine learning, generalization, that is, achieving small
prediction errors beyond the training data.

Symbolic regression adds a second objective, namely interpretability of the underlying model. In-
specting and interpreting the symbolic expression of a functional dependence can facilitate funda-
mental insights into its underlying mechanisms. Therefore, symbolic regression has found applica-
tions in almost all areas of the natural sciences (Udrescu & Tegmark, 2021; Cornelio et al., 2023;
Camps-Valls et al., 2023), in engineering (Wu & Zhang, 2023; Abdusalamov et al., 2023; Tsoi et al.,
2024), and in medicine (Christensen et al., 2022; La Cava et al., 2023b; Zhang et al., 2024).

We discuss both objectives on the bar magnets example by Strogatz (2000) from the field of ordi-
nary differential equations (ODEs). It is given by two bar magnets on a common pin joint in the

Figure 1: Bar magnets example.

plane, attracted by spatially opposing north and south
poles. From four different starting orientations of the
magnets, we observe rotation angles x0 and x1 of the
north poles of the two bar magnets and the change y of
the first magnet’s angle over time. Solving the regression
problem, means using the observations to find a function
f that satisfies

y = dx0/dt = f(x0, x1).

We use the observations to train a symbolic and a polynomial regressor. The generalization abilities
of both regressors are illustrated in Figure 2. While both models perform well when predicting on
unseen data, the symbolic model

y = − sin(x0) + 0.3 sin(x0 − x1)

can be interpreted: The term sin(x0 − x1) can be interpreted as the value of the torque that drives
the north poles of the two bar magnets apart. It is counteracted by the term − sin(x0), that models
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Figure 2: Comparing the generalization ability of a polynomial and a symbolic regressor. Both
regressors perform well on test data, however, in different regimes of x0 and x1.

the value of the torque induced by the outer magnet. The polynomial model

y =− 0.00903x3
0 − 0.162x2

0x1 − 0.042x2
0 + 0.09x0x

2
1

+ 1.26x0x1 + 0.917x0 − 0.029x3
1 − 0.258x2

1 − 2.36x1 − 1.77

is simply a linear combination of polynomials, which does not allow such an interpretation.

Given a problem instance, state-of-the-art symbolic regression methods either implicitly (Landa-
juela et al., 2021) or explicitly (Kahlmeyer et al., 2024) search a space of small expressions that
are built from a predefined set of operations, usually represented by expression trees. Notably, the
search is done at inference time and starts anew for each problem instance. Although symbolic re-
gression aims for small expressions, because large expressions lose interpretability, search costs can
be substantial, mostly because the space of expression trees grows exponentially with the number of
variable and operator nodes in the expression trees (Virgolin & Pissis, 2022).

Biggio et al. (2021) proposed scalable neural symbolic regression with transformers to address the
problem of compute-intensive inference by shifting the heavy lifting into a training phase. Indeed,
inference with the resulting symbolic regressor can be orders of magnitude faster than state-of-the-
art symbolic regressors. Kamienny et al. (2022) extends this work from three to up to ten input
variables. Their approach performs well in terms of the standard regression measures model fit
and model complexity. It does, however, perform poorly in terms of the standard measure of inter-
pretability, namely, the ability to recover formulas, up to symbolic equivalence, from sampled data.
On the established symbolic regression benchmark SRBench (La Cava et al., 2021), the transformer
approach as presented by Kamienny et al. (2022) recovers only a maximum of 1.59% of the ground
truth formulas, whereas state-of-the-art symbolic regressors can recover up to 55% percent. Shojaee
et al. (2023) trade off learning against search-based approaches by using a transformer to guide the
search for symbolic expressions, which improves recovery at the cost of increased inference time.
However, while being much slower at inference time, it still does not achieve state-of-the-art recov-
ery. Follow-up work on pure transformer approaches by Lalande et al. (2023) and Vastl et al. (2024)
again performs well in terms of standard regression performance measures, but poorly in terms of
recovery. Given that even better accuracy can be achieved by conventional methods such as poly-
nomial regression or neural networks, which are not designed to be interpretable, the question of
whether transformers can also recover interpretable expressions is still open.

Here, we show that the subpar recovery rate achieved by the end-to-end symbolic regressor of Kami-
enny et al. (2022) is not a problem of the overall architecture, but of the training data. By systemati-
cally designing a synthetic training dataset that covers a diverse set of functions, we demonstrate that
the recovery performance of the end-to-end approach is limited only by the available computational
budget, while preserving the advantage of fast inference.
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2 TRAINING DATA GENERATION

Data in a standard regression task is a set of labeled data points that is split into training and test data,
or sometimes into training, validation, and test data. Standard regressors are typically evaluated by
assessing their generalization ability, which is measured in terms of their prediction accuracy on the
test data. Generalization is also important for symbolic regressors, but another important objective
is interpretability. Interpretability can be measured in terms of model complexity, for instance, by
the number of nodes in an expression tree. A more direct measure of interpretability is the ability
of a symbolic regressor to recover a ground truth formula. However, just having labeled data is not
enough to measure recovery. The function from which the labeled data have been sampled must
also be explicitly known. Therefore, data for symbolic regression tasks are explicitly given functions
together with labeled data that have been sampled from the functions. Moreover, the transformer-
based end-to-end approach to symbolic regression does not only need the functions in the evaluation
phase but also in the training phase.

Generating data for training and evaluating symbolic regressors thus comprises two tasks, namely,
selecting a set of explicitly given functions and computing representative samplings from these
functions. In the following, we describe how we address the two tasks.

2.1 REGISTER MACHINE PROGRAMS

The most commonly used representation of formulas in symbolic regression are expression
trees (Lample & Charton, 2019; Kommenda et al., 2020; Petersen et al., 2021; Virgolin et al., 2021).
In their end-to-end approach, Kamienny et al. (2022) also randomly sample expression trees. Ex-
pression trees, however, are not a particularly compact representations, mostly because common
sub-expressions are not factored out. A more succinct representation that effectively handles com-
mon sub-expressions are expression DAGs (Kahlmeyer et al., 2024). Expression DAGs thus have the
advantage of being expressive while remaining short. Here, we represent symbolic expressions by
register machine programs (RMPs) that are structurally equivalent to expression DAGs. In compar-
ison to expression DAGs, RMPs have the advantage that they are naturally represented in sequential
form, which facilitates their straightforward integration into the transformer architecture.

Register Machine Programs (RMPs). Given a set of unary and binary instructions I (see the sup-
plement for details), input variables x0, . . . , xD−1 and registers a0, . . . , aL−1. A register machine
program with input x ∈ RD, output y ∈ R, and L lines is a sequence of the form

y = RMP(x) =
[
ai := inst(Ai)

]L−1

i=0
,

where inst ∈ I and Ai ⊆ {x0, . . . , xD−1} ∪ {a0, . . . , aL−1}. At each line of the RMP, an
intermediate result, designated ai, is generated, where i is the line number. The final intermediate
result is then treated as the output of the RMP. As an example, consider the symbolic expression
x2
0 + x0x1, which can be written as the following RMP with dimension D = 2 and L = 3 lines,

a0 := sq({x0}), a1 := mult({x0, x1}), a2 := add({a0, a1}).

In the example, we have A0 = {x0}, A1 = {x0, x1}, and A2 = {a0, a1}.

Since many formulas in the application domains of symbolic regression include constants, we also
allow constants in our RMPs. In principle, it is enough to include only one constant from which
additional constants can be computed.

For training a transformer-based symbolic regressor, we should not use all RMPs, because there are
many redundant RMPs that compute the same function f : RD → R. RMPs that compute the same
function f are called equivalent.

Equivalence classes of RMPs. Let f : RD → R be a function. The equivalence class of f is the
following set of RMPs, {

RMP | ∀x ∈ RD, RMP(x) = f(x)
}

For instance, the RMPs

[a0 := add(x0, x0), a1 := add(x0, a0)] and [a0 := mult(x0, 2), a1 := add(x0, a0)]

both belong to the equivalence class of the function f(x0) = 3x0.
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Of course, it is enough to consider only one RMP from an equivalence class. Conceptually and
practically, it makes sense to choose an element of minimal length from each equivalence class.

Minimal RMPs. An RMP is called minimal for its equivalence class if it has minimal length L
among all the RMPs in the class. Still, minimal RMPs need not be unique. If, for a given equivalence
class, several minimal RMPs exist, then we call these programs minimal alternatives.

Our basic approach thus becomes to generate minimal RMP alternatives up to a given length, such
that every equivalence class is covered at most once and thus, for a given computational budget, the
number of covered functions is maximized.

2.2 SAMPLING AND STANDARDIZATION

For most RMPs, the corresponding functions f : RD → R do not have a “representative” data
sample. Therefore, we are facing the problem to sample the data samples themselves. Here, we adapt
the sampling approach by Kamienny et al. (2022), who already recognized the need to maximize the
diversity of data samples. A sample with N data points in D dimensions is generated as follows:

1. Sample a number of clusters k ∼ U
(
{1, . . . , kmax}

)
and k weights wi ∼ U

(
[0, 1]

)
, and

normalize the weights so that
∑

i wi = 1.

2. For each cluster i ∈ Nk, sample a centroid µi ∼ N (0, 1)D, a vector of variances σi ∼
U
(
[0, 1]D

)
, and a distribution shape Di ∈ {N ,U} (Gaussian or uniform).

3. For each cluster i ∈ {1, . . . , k}, sample ⌊wi · N⌋ input points from Di(µi, σi), apply a
random rotation sampled from a Haar distribution, and scale the input points such that their
axis-aligned bounding box becomes [−a, a]D, for a given scaling parameter a > 0.

4. Use the RMP to compute the function values yi = f(xi) at all sample points xi, i ∈ N .
5. Standardize the set of all sample points, that is, the inputs xi and outputs yi, by subtracting

their mean and dividing by the standard deviation along each dimension.

Our sampling approach differs from Kamienny et al. (2022) in the last step. Kamienny et al. (2022)
only standardize the input points {xi}Ni=1 but not the output points {yi}Ni=1. Their model predicts
an intermediate function f̂ , which is subsequently mapped back to the target domain via the inverse
of the standardization process. However, as demonstrated in previous work, end-to-end symbolic
regression approaches are prone to domain overfitting (d’Ascoli et al., 2022; 2023). That is, the
performance of these models often drops significantly when evaluated on data outside the training
domain. To mitigate this issue, we standardize both the inputs and the outputs by subtracting their
mean and dividing by the standard deviation for each feature and for the output.

As a consequence of standardization, we cannot distinguish samples from RMPs that differ by input
and output translations and scalings. Therefore, we call two RMPs affinely equivalent when they
differ only by such translations and scaling.

Affinely equivalent RMPs. Two RMPs are called affinely equivalent if their outputs are identical
up to scaling and translation transformations. Specifically, two register machine programs RMP1

and RMP2 are called equivalent if there exist constants c1, c2, c3 ∈ R and c4 ∈ RD such that, for
any input x ∈ RD, the output of RMP1 can be transformed into the output of RMP2 as follows

RMP2(x) = c1 · RMP1(c3 · x+ c4) + c2.

That is, c1 represents an output scaling factor, c2 represents an output translation, c3 represents an
input scaling factor, and c4 represents an input translation vector.

2.3 REGISTER MACHINE PROGRAM SELECTION

In practice, we face computational limitations that hinder finding minimal RMPs. For instance, our
equivalence definitions cannot be tested in practice, because an infinite number of points has to be
checked. For that reason, we weaken the definitions and only require functional equivalence on a
fixed finite number of sample points that are sampled uniformly at random from the interval [−a, a],
where a > 0 is the same scaling factor as before. Another practical limitation is that the number of
minimal RMPs grows so fast in the input dimension and the program length that restricting ourselves
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Figure 3: RMP sampling procedure. The sampling procedure has three steps: enumeration of
minimal RMPs under the computational constraints, generating additional candidate RMPs by re-
combining existing RMPs, and verifying the succinctness of the candidates by various tests.

to minimal RMPs that can be enumerated in practice excludes many practically interesting functions
from the training set.

There are, of course, infinitely many RMPs. Therefore, we have to restrict ourselves to RMPs up to
some maximal length. However, the number of RMPs of length at most L still grows exponentially
in L. Specifically, for D-dimensional inputs, the number of RMPs with L lines satisfies the recursion

SD(1) = D |I1|+
(
D

2

)
|I2|

SD(L) = S(L− 1)

(
(D + L− 1)|I1|+

(
D + L− 1

2

)
|I2|

)
,

where |I1| and |I2| are the numbers of unary and binary instructions in the instruction set I . If we
unroll this recursion, we get the following closed-form expression,

SD(L) =

L−1∏
j=0

(D + j)

(
|I1|+ |I2|

D + j − 1

2

)
,

which grows exponentially in L. Moreover, any RMP with input dimension D has length at least
D − 1.

Remember that we want to build our training set from minimal RMPs. To make sure that an RMP is
minimal, we need to know all RMPs with the same input dimension but smaller length. Assume that,
in practice, we can look at only 109 RMPs. Then, for input dimension D = 1, we can exhaustively
enumerate RMPs up to length L = 7, and for input dimension D = 6 RMPs up to length L = 5.
Enumerating RMPs with input dimension D > 6 is not feasible. See the supplementary material for
more details.

For our training dataset, we enumerate all minimal RMPs that can be found by enumerating 109

RMPs for each dimension D ∈ {1, . . . , 6}. However, that does not cover all RMPs describing
interesting phenomena in physics, such as, for instance, Washburn’s formula (Washburn, 1921),

L(γ,D, t, θ, η) =

√
γ ·D · t · cos(θ)

2 · η
,

which has input dimension D = 5 and length L = 7. It is not included in our training set, because
for input dimension D = 5, we can only exhaustively enumerate RMPs up to length L = 5 if
we enumerate at most 109 RMPs for any input dimension. Therefore, we add another sampling
procedure that non-exhaustively samples succinct, but not necessarily minimal, RMPs of length
L > 5.

The extended sampling procedure is illustrated in Figure 3. It works as follows: Sample two min-
imal RMPs uniformly at random from the set of minimal RMPs of length up to five that we have
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exhaustively enumerated before. Assume that the second RMP has input dimension D. Connect
the output of the first RMP to a randomly selected input variable of the second RMP. Then sample,
again uniformly at random, D − 1 variables from the set of input and intermediate variables of the
first RMP, and connect them to the remaining D − 1 input variables of the second RMP. The result
is again an RMP. We discard this RMP if its length exceeds a maximum value Lmax. Otherwise,
for every non-output variable of the new RMP, we make sure that its derivative with respect to ev-
ery input variable does not vanish. A vanishing gradient indicates that the instruction line of the
RMP corresponding to the non-output variable eliminates input variables. As for instance in x/x or
sin2(x) + cos2(x), which both evaluate to the constant 1. Similarly, for the output variable, make
sure that the derivatives with respect to all intermediate variables do not vanish, because otherwise,
we know that an intermediate variable does not contribute to the program and therefore is redundant,
which means that an equivalent shorter RMP exists. Finally, use the equivalence test to ensure that
the function represented by the newly sampled RMP is not covered by another RMP in the sample
set. If it is already covered, keep the smaller RMP. We sample new RMPs until a given maximum
number of equivalence classes is covered.

2.4 SAMPLING OF TRAINING DATA

For training a transformer-based symbolic regressor with stochastic gradient descent, we need to
sample batches of RMPs and then input-output examples from the sampled RMPs. Since the number
of RMPs grows exponentially in L, sampling from all RMPs uniform at random would be biased
towards large RMPs. For an unbiased sampling, generated RMPs are placed in (D,L) buckets,
where D ranges from 1 to 10 and L from 1 to 12. Remember, that buckets with L < D − 1 cannot
hold an RMP. Feasible (D,L) buckets contain minimal alternative RMPs from different equivalence
classes. Now, we can sample batches of RMPs by first sampling a feasible (D,L) bucket uniformly
at random and then an RMP from the bucket. In the sampled RMPs, constant placeholders are
replaced with constants drawn uniformly at random from a finite interval (−b, b). For each sampled
RMP, input-output examples are then sampled as described in Section 2.2.

3 EXPERIMENTS

The goal of the experiments is examining the impact of our training dataset on the recovery perfor-
mance of transformer-based symbolic regression. First, in Section 3.1 we explain our experimental
setup. Then, in Section 3.2, we benchmark the recovery of a model trained on our training dataset
against the state-of-the-art. Finally, in Section 3.3, we perform ablation studies to assess how the
model components affect the recovery.

3.1 EXPERIMENTAL SETUP

All experiments were conducted on a single NVIDIA RTX A6000 GPU.

Tokenization, embedding, and architecture. The encoder-decoder transformer architecture em-
ployed in our experiments follows the one described in Kamienny et al. (2022). For the encoding
of the data points (x, y) ∈ RD × R, numbers are represented in base 10 floating-point notation,
rounded to four significant digits, and encoded as sequences of three tokens Charton (2021). These
tokens are the sign, the mantissa (between 0 and 9999), and the exponent (from E-100 to E100).
For example, the number 0.3 is encoded as [+, 3, E-1]. Therefore, each data point (xi, yi) is
represented by 3(D + 1) tokens.

RMPs are written sequentially line by line from the first instruction to the last instruction. Instruc-
tions from the instruction set and intermediate results ai are each represented by a single token.
Constants are represented by placeholders without any indication of their numerical value. For ex-
ample, the RMP for the function f(x0, x1) = − sin(x0) + 0.3 sin(x0 − x1) is encoded as:

[neg, x 1, =, a 0, add, x 0, a 0, =, a 1, sin, a 1, =, a 2,

mult, c 0, a 2, =, a 3, sin, x 0, =, a 4, neg, a 4, =, a 5,

add, a 3, a 5, =, a 6 ]

Since each RMP line has at most five tokens, and we only consider RMPs of length at most twelve,
we need 60 tokens for the RMP, or 62 tokens when we also include start and end tokens.
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As in Kamienny et al. (2022), the tokens for each data point (xi, yi) are first concatenated and then
fed into a two-layer perceptron, which projects each data point down into the embedding dimension
demb, with demb = 512 in our experiments. The resulting N embeddings of dimension demb are
then fed into a standard transformer encoder stack with four layers. Given that input points for a
multivariate regression problem do not naturally adhere to sequential order, we do not use positional
embeddings within the encoder.

The RMP tokens are embedded into demb-dimensional space using a standard embedding layer.
The embeddings are then fed into a standard transformer decoder stack. During the experiments,
the decoders are varied from one to 16 layers. Moreover, experiments were conducted with input
lengths of 192, 448, and 960 data points, respectively. The largest model has 86M parameters.

Training. The overall training strategy follows Kamienny et al. (2022). Here, we only highlight
the differences, but a summary of all important training parameters can be found in the supplement.
To avoid bias in the validation dataset, we withhold four equivalence classes for each dimension-
length combination (D,L) with L > 1. This provides us with a validation and a test dataset with
82 equivalence classes and 164 RMPs each. Models are trained until the cross-entropy loss on the
validation set is saturated.

Inference. In contrast to Kamienny et al. (2023), we have to standardize the input and output
dimensions of the data points, before they are tokenized and fed into the transformer. Then, k
candidate RMPs are generated by a beam search with beam size k. If a generated RMP contains a
constant placeholder, then the placeholder is replaced by a constant that is fitted with the adapted
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm by Nawi et al. (2006). To correct for the
standardization, scaling and translation constants are also fitted by the adapted BFGS algorithm.
After, fitting the constants, the k candidate RMPs are ranked based on the R2-score (Pearson, 1909).
The highest scoring RMP is returned as the result of the inference.

3.2 SRBENCH RESULTS

We benchmark the transformer-based symbolic regressor that is trained on our dataset against the
state-of-the-art symbolic regression methods from the SRBench test suite (La Cava et al., 2021).
SRBench supports the evaluation of symbolic regressors on a set of 252 regression problems and
provides results for 14 state-of-the-art regressors. The regression problems themselves are divided
into two groups: 130 ground truth problems, where the true underlying formula is known, and 122
black box problems, where only the samples are given.

Here, we focus on the recovery of ground truth formulas, because we regard recovery as the most di-
rect measure of interpretability for symbolic regressors. We take the 130 ground truth formulas from
the Feynman Symbolic Regression Database (Udrescu & Tegmark, 2020b) and the ODE-Strogatz
Repository (La Cava et al., 2023a). Following the practice of La Cava et al. (2021), a ground truth
formula f is considered recovered by a regressor f̂ if either f − f̂ can be resolved symbolically to
a constant, or f̂ is non-zero and f/f̂ can be resolved symbolically to a constant. We also report the
complexity of expressions, which is measured by the number of nodes in corresponding expression
trees. All symbolic checks are delegated to the Python library SymPy (Meurer et al., 2017).

Recovery performance. Figure 4 shows the recovery performance and complexity for the regres-
sors included in the SRBench and the transformer approach trained with and without our training
dataset. By using our training dataset while keeping the architecture fixed, the recovery perfor-
mance of the transformer approach improves from 1.59% (E2E) to 34.02% (E2E-RMP). It now
ranks third only behind the state-of-the-art search-based approaches UDFS (Kahlmeyer et al., 2024)
and AIFeynman (Udrescu & Tegmark, 2020a), which require inference times that are orders of mag-
nitude larger. More specifically, as can be seen in Figure 5, the average inference time per formula of
the Feynman dataset is 0.32 seconds, which is three orders of magnitude faster than state-of-the-art
search-based approaches. The training data also impact the complexity of the formulas generated
by the transformer approach. When not using our training data, the transformer approach gener-
ates complex formulas with multiple constants, whereas it generates formulas of lowest complexity
among all regressors when using our dataset. Moreover, our training data makes the transformer
approach more robust with respect to noise.
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Figure 4: SRBench results. Left: Recovery rate of different state-of-the-art approaches for four
noise levels. Right: Complexity of the predicted expressions as evaluated by the SRBench test suite.

3.3 ABLATION STUDIES

We perform ablation studies to assess the influence of the parameter size, the size of the training
dataset, the beam size, and the input length on recovery performance. We compare the results on
three datasets: 164 test RMPs sampled uniformly at random from all feasible (D,L) buckets not
used for training, 164 training RMPs sampled uniformly at random from the feasible buckets, and
the 119 formulas from the Feynman Symbolic Regression Database. Results are shown in Figure 5.

Number of parameters. The recovery performance on the Feynman dataset shows a linear in-
crease from the low 40% to 50% as the number of parameters increases. For attributing the recovery
performinance to the memorization and the generalization capabilities of the model, we observe
that 51% of the expressions of the Feynman dataset are in the training dataset. That is, successful
recovery becomes a mixture of memorization and generalization. Furthermore, 82.6% of the re-
covered formulas are in the training dataset and could thus be considered successfully memorized.
The remaining 17.4% of the recovered formulas are not among the training data and are therefore
the result of generalization. Memorization in our context is significantly more complex than mere
memorization of a fixed sample of inputs and corresponding outputs, because, for a given function,
input-output pairs are sampled with a highly diverse sampling strategy. This makes it improba-
ble that the model has encountered the test instance during training. Moreover, linearly increasing
recovery is also observed on both the test and training sets. The recovery scores, however, are sig-
nificantly lower than the score on the Feynman dataset. This likely is because the test and training
RMPs have been sampled uniformly from all feasible (D,L) buckets. We show in the supplement
that the difficulty of test instances increases with D and L. Therefore, there are more difficult test
instances among the test and training RMPs than among the Feynman formulas, which are typically
smaller.

Size of training dataset. As can be seen in Figure 5, recovery increases linearly with the number
of RMPs that ranges from one million to 16 million. That is, the number of RMPs and thus equiv-
alence classes of functions seen during training has a significant impact on recovery. For a better
understanding, we compare our data generation method to a generation method that samples RMPs
as random instruction sequences, and to the expression tree generation method by Kamienny et al.
(2022). For a comparison, we count the number of equivalence classes covered by the respective data
generation methods out of 10 000 sampled RMPs. The random instruction sequence method covers
only 760 different equivalence classes, and the expression tree sampling method by Kamienny et al.
(2022) covers about 6 400 equivalence classes.

Beam size and input length. As can be seen also in Figure 5, recovery improves significantly
when more than one beam is used. It saturates around 16 beams. Moreover, recovery degrades with
increasing input length.
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Figure 5: Ablation studies. Left: Comparison of the recovery performance on the Feynman, training
and test datasets. Right: Comparing the effects of dataset size, beam size, and input length on
recovery as well as inference times for a 16-layer transformer model.

3.4 FINDINGS

From our experimental results, we derive the following three findings that facilitate the training of
transformer-based symbolic regressors that perform well in terms of recovery.

Training data matter. Our experimental results show that the careful selection of synthetic data
is key to successful end-to-end learning. This supports similar findings in works on large language
models (LLMs), such as, for instance, in (Abdin et al., 2024). Moreover, in transformer-based
symbolic regression, data memorization is desirable, because it directly improves recovery.

Standardization is necessary. In application areas of symbolic regression, for instance, physics,
data are measured at vastly different scales and under different sampling conditions (Keren et al.,
2023). Deep learning methods, however, are known to be highly susceptible to overfitting to
the training domain and the sampling conditions. Therefore, standardization is necessary for
transformer-based symbolic regression to avoid overfitting to the training domain, that is, to the
domain from which the training data points are sampled.

Scaling works. While we were able to significantly boost recovery in transformer-based symbolic
regression, we still do not achieve state-of-the-art performance. However, our experimental setup
was limited to a single NVIDIA RTX A6000 GPU. Still, our experimental results provide evidence
that the recovery performance of transformer-based symbolic regression scales with the size of the
training dataset and with the number of model parameters. Since both the synthetic data generation
method and the underlying model architecture are also scalable, we are confident that better results
can be achieved with more resources.

4 CONCLUSION

The transformer-based approach to symbolic regression shifts computational effort from inference
to training. Inference with transformer-based symbolic regressors is up to three orders of magni-
tude more efficient than competing search-based state-of-the-art approaches. Therefore, invested
computational resources for training a transformer-based symbolic regressor more than amortize
when they are reused for inference, for instance, by distributing the trained regressor to users or by
providing inference as a service. However, hitherto the transformer-based approach was by far not
able to compete with state-of-the-art regressors in terms of recovery, an important measure of inter-
pretability. In this work, we have shown that recovery in transformer-based symbolic regression can
be boosted significantly by using a carefully designed training dataset. In our experiments, using
fairly limited computational resources, we have not yet reached the recovery performance of state-
of-the-art regressors. We have shown, however, that recovery scales favorably with the available
computational resources. Thus, it seems likely that state-of-the-art performance can be achieved
with larger computational budgets.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.
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