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Abstract

Recent studies suggest that deep learning models’ inductive bias towards favoring
simpler features may be one of the sources of shortcut learning. Yet, there has
been limited focus on understanding the complexity of the myriad features that
models learn. In this work, we introduce a new metric for quantifying feature
complexity, based on V-information and capturing whether a feature requires
complex computational transformations to be extracted. Using this V-information
metric, we analyze the complexities of 10,000 features—represented as directions
in the penultimate layer—that were extracted from a standard ImageNet-trained
vision model. Our study addresses four key questions: First, we ask what features
look like as a function of complexity and find a spectrum of simple-to-complex
features present within the model. Second, we ask when features are learned
during training. We find that simpler features dominate early in training, and
more complex features emerge gradually. Third, we investigate where within
the network simple and complex features “flow”, and find that simpler features
tend to bypass the visual hierarchy via residual connections. Fourth, we explore
the connection between features’ complexity and their importance in driving the
network’s decision. We find that complex features tend to be less important.
Surprisingly, important features become accessible at earlier layers during training,
like a “sedimentation process,” allowing the model to build upon these foundational
elements.

“It is necessary to have on hand a method of measuring the complexity of calculating
devices which in turn can be done if one has a theory of the complexity of functions, some
partial results on this problem have been obtained by Shannon.”

Darmouth Workshop proposal [70]

Measuring complexity is one of the core problems described by Shannon & McCarty in the famous
1956 proposal of the Dartmouth workshop. This problem—and the question, “How can a set of
(hypothetical) neurons be arranged to form concepts?”[70]—encapsulate what we investigate: how
do neural networks form features and concepts [53], and how can their complexity be quantified?

Recent studies [97, 48] reveal that models often favor simpler features, which may contribute to
shortcut learning [6, 71, 36, 100]. For example, CNNs privilege texture over object shape [10, 37,
46] and single diagnostic pixels over semantic content [69]. Moreover, models tend to prefer input
features that are linearly rather than nonlinearly related to task labels [47, 97]. However, there
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Figure 1: A) Simple vs. Complex Features. Shown is an example of three features extracted using
an overcomplete dictionary on the penultimate layer of a ResNet50 trained on ImageNet. Although
all three features can be extracted from the final layer of a ResNet50, some features, such as z1,
seem to respond to color, which can be linearly extractable directly from the input. In contrast, z2, z3
visualization appear more “Complex”, responding to more diverse stimuli. In this work, we seek
to study the complexity of features. We start by introducing a computationally inspired complexity
metric. Using this metric, we inspect both simple and complex features of a ResNet50. B) Feature
Evolution Across Layers. Each row illustrates how a feature from the penultimate layer (z1, z2, z3)
evolves as we decode it using linear probing at the outputs of blocks 1, 5, and 10 of the ResNet50.
Simpler features, like color, are decodable throughout the network. The feature in the middle shows
similar visualization at block 10 and the penultimate layer, whereas the most complex feature is only
decodable at the end. Our complexity metric, based on V-information [115], measures how easily a
model extracts a feature across its layers.

has not been a comprehensive quantitative framework for assessing the complexities of features
learned by large-scale, natural image-trained vision models used in practice. Leveraging recent
observations and advances in feature (also called “concept”) extraction from the area of Explainable
AI [83, 8, 25, 29, 32, 77, 19, 32, 42], we extract a large set of features from an ImageNet-trained
model [45], and analyze their complexity.

Our contributions are as follows:
• We build upon V-information [115]—which measures the mutual information between two

variables, considering computational constraints—to introduce a measure of feature complexity.
We use this measure to quantify the complexity of over 10,000 features in an ImageNet model
[45] at each epoch of training.

• We visualize the differences between simple and complex features on a spectrum to understand
which features are readily available to our model and which ones require more computation and
transformation to retrieve.

• We investigate where sensitivity to simple versus complex features emerges during a forward
pass through the model. Our findings suggest that residual connections “teleport” simple features,
computed in early layers, to the final layer. The main branch naturally facilitates the layer-wise
construction of more complex features.

• We examine feature learning dynamics, revealing when different concepts emerge over the course
of training, and find that complex concepts tend to appear later than simpler ones.

• We explore the link between complexity and importance in driving the model’s decisions. We
find a preference for simpler features over more complex ones. This simplicity bias emerges
during training, and, surprisingly, the model simplifies its most important features over time.
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That is, during training, important features become accessible at an earlier layer (via a shorter
computational graph).

1 Related Work

Feature analysis. Large vision models learn a diversity of features [77, 84] to support performance
on the training task and can exhibit preferences for certain features over others, for example textures
over shapes [10, 37, 46]. These preferences can be related to their use of shortcuts [36, 100] which
compromise generalization capabilities [74, 73]. Hermann et al. [48] suggest that a full account of a
model’s feature preferences should consider both the predictivity and availability of features, and
identify image properties that induce a shortcut bias. Relatedly, work shows that models often prefer
features that are computationally simpler to extract—a “simplicity bias” [107, 87, 91, 7, 97, 47].

Explainability. Attribution methods [99, 117, 9, 33, 88, 80, 41, 102, 106] seek to attribute model
predictions to specific input parts and to visualize the most important area of an image for a given
prediction. In response to the many limitations of these methods [2, 38, 101, 27, 54, 79], Feature
Visualization [78, 84, 44] methods have sought to allow for the generation of images that maximize
certain structures in the model – e.g., a single neuron, entire channel, or direction, providing a clearer
view features learned early [82, 96], as well as circuits present in the models [83, 62]. Recently,
work has scaled these methods to deeper models [31]. Another approach, complementary to feature
visualization, is automated concept extraction [39, 119, 30, 32, 1, 112], which identifies a wide
range of concepts – directions in activations space – learned by models, inspired by recent works
that suggest that the number of learned features often exceeds the neuron count [29]. This move
towards over-complete dictionary learning for more comprehensive feature analysis represents a
critical advancement.

Complexity. On a theoretical level, the complexity of functions in deep learning has long been a
subject of interest, with traditional frameworks like VC-dimension falling short of adequacy with
current results. In particular, deep learning models often have the capacity to memorize the entire
dataset, yet still generalize [118]; the reason is often suggested to be a positive benefit of simplicity
bias [3, 51, 110]. Measures of the complexity of neural network functions are hard to make tractable
[93]. Recent work has proposed various methods to evaluate this complexity. For instance, [17]
proposed a score of non-linearity propagation, while [52] introduced a measure of local complexity
based on spline partitioning. Additionally, [111] demonstrated that models tend to learn functions
with low sensitivity to random changes in the input. The role of optimizers in complexity has also
been explored. It has been shown that different optimizers impact the features learned by models; for
example, [105] found that sharpness-aware minimization (SAM) [34] learns more diverse features,
both simple and hard, whereas stochastic gradient descent (SGD) models tend to rely on simpler
features. Furthermore, [24] utilized category theory to propose a metric based on redundancy, which
consist in merging neurons until a distance gap is too large, with this distance gap acting as a
hyperparameter. Concurrent work by Lampinen et al. [58] studies representations induced by input
features of different complexities when datasets are carefully controlled and manipulated. Finally,
Okawa et al. [81], Park et al. [85] investigated the development of concepts during the training process
on toy datasets and revealed that the sequence in which they appear, related to their complexity, can
be attributed to the multiplicative emergence of compositional skills.

Concerning algorithmic complexity, Kolmogorov complexity [103, 56, 21], later expanded by Levin
[63] to include a computational time component, offers a measure for evaluating the shortest programs
capable of generating specific outputs on a Turing machine [22, 43]. This notion of complexity is
at the roots of Solomonoff induction [104], which is often understood as the formal expression of
Occam’s razor and has received some attention in deep learning community [94, 95, 16]. Further
developing these concepts, V-information [115] introduces computational constraints on mutual
information measures, extending Shannon’s legacy. This methodology enables the assessment of
a feature’s availability or the simplicity with which it can be decoded from a data source. We will
formally introduce this concept in Section 2.

We observe in Appendix E that our complexity measure is also correlated with this category theory based
complexity metric.
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Figure 2: Qualitative Analysis of “Meta-feature” (cluster of features) Complexity. (Left) A 2D
UMAP projection displaying the 10,000 extracted features. The features are organized into 150
clusters using K-means clustering applied to the feature dictionary D⋆. 30 clusters were selected for
analysis of features at different complexity levels. (Right) For each Meta-feature cluster, we compute
the average complexity score. This allows us to classify the features based on their complexity
according to the model. Notably, simple features are often akin to color detectors (e.g., grass, sky)
and detectors for low-frequency patterns (e.g., bokeh detector) or lines. In contrast, complex features
encompass parts or structured objects, as well as features resembling shapes (such as ears or curve
detectors). Visualizations of individual Meta-features are presented in Appendix B.

2 Method

Before we measure feature complexity, we define what is meant by features, explain how they are
extracted, and then introduce the complexity metric.

Model Setup. We study feature complexity within an ImageNet-trained ResNet50 [45]. We train the
model for 90 epochs with an initial learning rate of 0.7, adjusted down by a factor of 10 at epochs
30, 60, and 80, achieving a 78.9% accuracy on the ImageNet validation set, which is on par with
reported accuracy in similar studies [45, 114]. Focusing on one model reduces architectural variables,
creating a controlled environment to analyze feature complexities and provide insights for broader
model hypotheses.

Feature Extraction. We operate within a classical supervised machine learning setting on (Ω,F ,P)
– the underlying probability space – where Ω is the sample space, F is a σ-algebra on Ω, and P is a
probability measure on F . The input space is denoted X ⊆ Rd. Let the input data x : Ω → X be
random variables with distributions Px. We will explore how, from x and using a neural network, we
extract a series of k features. We will assume a classical vision neural network that admits a series of
n intermediate spaces, such that:

fℓ : X → Aℓ with ℓ ∈ {1, . . . , n}.
Initially, one might suggest that a feature is a dimension of the model, meaning, for example, that
a feature could be a neuron in the last layer of the model z = fn(x)i, i ∈ {1, . . . , |An|}, thus each
of the neurons would be a feature. However, several recent studies [83, 8, 25, 29, 32] have shown
that our models actually learn a multitude of features, far more than the number of neurons, which
explains, for example, why they are not mono-semantic [77, 19], which could also hinder our study
of features. Therefore, we use a recent explainability method, Craft [30], to extract more features
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than neurons and avoid this problem of superposition – or feature collapse. With fn(x) being the
penultimate layer, we extract a large number of features, five times more than the number of neurons,
using an over-complete dictionary of concepts D⋆ ∈ Rk×|An|, with k ≫ |An|. This dictionary is
obtained by optimization over the entire training set and contains a total of k = 10, 000 features.
Thus, for a new point x, we obtain the value of the k features – we recall that the number of features
is greater than the number of neurons, k ≫ |An| – by solving the following optimization problem:

z = argmin
z≥0

||fn(x)− zD⋆||F

With z ∈ Rk being the value for each feature of the image x, in particular, and from now on for ease
of notation, we consider zi ∈ R, i ∈ {1, . . . , k} that we will simply denote z for the rest of the paper,
as a specific feature for which we want to compute a complexity score. Thus, in our work, a feature
refers to a random scalar value extracted by a dictionary learning method on the activations. More
details and full derivation regarding the training of D⋆ are available in the Appendix A.

Complexity through the Lens of Computation. To formalize this, still on (Ω,F ,P), we denote
the output space Z , and z : Ω→ Z are random variables of a feature of interest with distributions Pz.
The joint random vector (x, z) representing an image x and the value of its feature z on (Ω,F) has a
joint distribution P defined over the product space X × Z . Furthermore, P(Z) denotes the set of all
probability measures on Z . We can now associate, for an x which we recall is a real-valued random
variable, a corresponding feature z, another real-valued random variable, and we seek to correctly
evaluate the complexity of the mapping from x to z. For this, we turn to the V-Information [115] that
generalizes and extends the classical mutual information I(·, ·) from Shannon’s theory by overcoming
its inability to take into account the computational capabilities of the decoder. Indeed, for two (not
necessarily independent) random variables x and z, and for any bijective mapping γ : X → X ,
Shannon’s mutual information remains unchanged: I(x, z) = I(γ(x), z).
Consider, for instance, γ as a cryptographic function that encrypts an image x using a bijective
key-based algorithm (e.g., the AES encryption algorithm). If x represents the original image, and
γ(x) represents the cipherimage, the mutual information between x and z remains unchanged. This
is because the encryption is a bijective process, and the information content is preserved. However,
in practice, the encrypted images would be much harder to decode and use for training a model
compared to the original one, without access to the decryption key. Another example we may think of
is γ as a pixel shuffling operation. The information carried by x does not disappear after processing
by γ. However, it may be harder to extract in practice.

This demonstrates the practical importance of V-Information, as it considers the computational effort
required to decode the information, highlighting the difference between theoretical and practical
accessibility of information. Specifically, the V-information proposes taking into account the com-
putational constraint of the decoder by assuming it can only extract information using a predictive
family V ⊆ F = {η : X ∪ {�} → P(Z)}. The authors [115] then define the V-entropy and the
V-conditional entropy as follows:

HV(z) = inf
η∈V

EPz
(− log η(�; z)), HV(z|x) = inf

η∈V
EP (− log η(x; z)). (1)

Where η(·; ·) is a function from X ∪ {�} → P(Z) that returns a probability density η(x; ·) on Z
using side information x, or without side information �. The predictive family V summarizes the
computational capabilities of the decoder. When V contains all possible functions, V = F, it recovers
Shannon’s entropy as a special case. Intuitively, we seek the best possible prediction for z knowing x
by maximizing the log-likelihood. Continuing, we naturally introduce the V-information:

IV(x→ z) = HV(z)−HV(z|x).

The complexity of the mapping from x to z can now be assessed by examining a hierarchy of predictive
families V1 ⊂ . . . ⊂ Vn of increasing expressiveness, like explored in [61]. Each predictive family Vℓ
corresponds to a partial forward up to depth ℓ, followed by a decoding step. This involves determining
at which point we can decode or make the information from x to z available. Formally, we define the
complexity of the feature as dependent of the cumulative V-information across layers:
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Figure 3: Visualization of Meta-features, sorted by Complexity. We use Feature visualization [84,
31] to visualize the Meta-features found after concept extraction. The entire visualization for each
Meta-feature can be found in Appendix B.

K(z, x) = 1− 1

n

n∑
ℓ

IV(fℓ(x)→ z). (2)

Here, we define the predictive family V as a class of linear probes with Gaussian prior. Under this
hypothesis, the associated V-information of this class possesses a closed-form solution (see Appendix
C), which serves as the basis for our evaluation. A higher score implies that the feature z is readily
accessible and persists throughout the model’s layers. Conversely, a lower score suggests that the
feature z is unveiled only at the very end of the model, if at all.

Assumption. Crucially, the correctness of the computation of IV(fℓ(x)→ z) relies on the hypothesis
that each layer fℓ provides the optimal representation for the downstream linear probe η. In other
words, we assume that IV(fℓ(x)→ z) = IVℓ(x→ z), or again that η∗ℓ = η∗ ◦ fℓ. This hypothesis
is reasonable, since a neural network is essentially “linearizing” the training set—projecting the
training set into a space in which it is linearly separable. Thus, it makes sense to assume that each
layer attempts to make the feature linearly decodable as efficiently as possible. If this condition is
violated, the complexity measure may overestimate the true complexity of a feature (since we can
only underestimate the V-information). For example, this may happen if the optimal path to calculate
a feature requires deviating from the linear decoding to make it easier to decode later. While some
recent works have motivated a slightly different complexity metric based on redundancy [24], we
show in Appendix E that our complexity measure is inherently linked to redundancy.

3 What Do Complex Features Look Like? A Qualitative Analysis

This section presents a qualitative investigation of relatively simple versus more complex features.
Drawing from critical insights of recent studies, which indicate a tendency of neural networks to
prefer input features that are both predictive and not overly complex [48], this analysis aims to
better understand the nature of features that are easily processed by models versus those that pose
more significant challenges. Indeed, understanding the types of features that are too complex for
our model can help us anticipate the types of shortcuts the model might rely on and, on the other
hand, design methods to simplify the learning of complex features. This section of the manuscript
is intentionally qualitative and aims to be exploratory. We applied our complexity metric to 10,000
features extracted from a fully trained ResNet50. For each feature, we computed the complexity score
K(z, x) using a subset of 20,000 images from the validation set. Recognizing the impracticality of
manually examining each of the 10,000 features, we employed a strategy to aggregate these features
into a more manageable number of groups that we called Meta-features.
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Method for Aggregating Features into Meta-features. To condense the vast array of features
into a reduced number of similar features, we applied K-means clustering to the feature dictionary
D⋆, resulting in 150 distinct clusters. These clusters represent collections of features, referred to as
Meta-features C = {v1, . . . ,v|C|}; we then computed an average complexity score for each group.
By selecting a diverse range of 30 clusters, chosen to cover a spectrum of complexity levels from
the simplest to the most complex features, we aimed to provide a comprehensive overview of the
diversity of feature complexity within the model. We propose to visualize the distance matrix in D⋆,
showing feature complexity in Figure 2. This approach offers preliminary insights into features seen
as simple or complex by the model.

Simple Features. Among the simpler features, we find elements primarily based on color, such
as sky and sea, as well as simple pattern detectors like line detectors and low-frequency detectors
exemplified by bokeh. Interestingly, features geared towards text detection, such as watermark, are
also included in this group. These findings align with previous studies [117, 96, 12, 82], which have
shown that neural networks tend to identify color and simple geometric patterns in the early layers
as well as low-frequency detectors. This suggests that these features are relatively easy for neural
networks to process and recognize. Furthermore, our findings detailed in Appendix 11 corroborate
the theoretical work posited in [11, 72]: robust learning possibly induces the learning of shortcuts or
reliance on “easy” features within the model.

Medium Complexity Features. Features with medium complexity reveal more nuanced and some-
times unexpected characteristics. We find, for example, low-quality detectors sensitive to low-
resolution images. Additionally, a significant number of concepts related to human elements were
observed despite the absence of a dedicated human class in ImageNet. Trademark-related features,
distinct from simpler watermark detectors, also reside within this intermediate complexity bracket.

Complex Features. Among the most complex features, we find several Meta-features that exhibit
a notable degree of structural coherence, including categories such as insect legs, curves, and ears.
These patterns represent structured configurations that are ostensibly more challenging for models to
process than more localized features, echoing the ongoing discussion about texture bias in current
models [10, 37, 46]. Intriguingly, the most complex Meta-features identified, namely whiskers and
insect legs, embody types of filament-like structures. Interestingly, we note that those types of features
are known to be challenging for current models to identify accurately [60], aligning with documented
difficulties in path-tracking tasks [66]. Such tasks have revealed current models’ limitations in tracing
paths, which parallels challenges in connectomics [89], particularly in filament segmentation—a
domain recognized for its complexity within deep learning research.

Now that we’ve browsed simple and complex features, another question arises: how does the model
build these features during the forward pass? For instance, where within the model does the formation
of a watermark detector feature occur? And for more complex features that require greater structure,
in which block of computation are these features formed within the model?

4 Where do Complex Features Emerge

Figure 4: Simple Features Teleported by Resid-
uals. (Left) CKA between residual branch acti-
vations fℓ and final concept value z. For simple
concepts, beyond a certain layer (block 3), the
residual already carries nearly all the information,
effectively teleporting it to the last layer. (Right)
Conversely, for complex features, both the main
and residual branches gradually construct the fea-
tures during the forward pass.

As suggested by previous work, simple features,
like color detectors and low-frequency detectors,
may already exist within the early layers of the
model. An intriguing question arises: how does
the model ensure the propagation of these fea-
tures to the final latent space fn, where features
are extracted? A key component to consider
in addressing this question is the role of resid-
ual connections within the ResNet [45] architec-
ture. The formulation of a residual connection
in ResNet blocks is mathematically represented
as:

fℓ+1(x) = fℓ(x)︸ ︷︷ ︸
“Residual” branch

+(gℓ ◦ fℓ)(x)︸ ︷︷ ︸
“Main” branch

This equation highlights two distinct paths: the
“Residual” branch, which facilitates the direct
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transfer of features from fℓ to the subsequent
layer ℓ + 1, and the “Main” branch, which in-
troduces additional transformations to fℓ through additional computation gℓ to enhance its repre-
sentational capacity. We aim to investigate the flow of simple and complex features through these
branches. In our analysis, we examine two subsets of features: 100 features of the highest complexity
(top-1 percentile) and 100 features of the lowest complexity (bottom-1 percentile). We measure
the Centered Kernel Alignment (CKA) [57] between the final concept values z and the activations
from (A) the “Residual” branch fℓ, and (B) the “Main” branch (gℓ ◦ fℓ), at each residual block,
as a proxy for concept information contained in each branch. The findings, illustrated in Figure 4,
reveal that simple features are efficiently “teleported” to later layers through the residual branches
– in other words, once computed, they are passed forward with little subsequent modification. In
contrast, complex concepts are incrementally built up through an interactive process involving the
“main” and “residual” branches. This understanding of feature evolution within network architectures
emphasizes the importance of residual connections. This insight, though expected, clarifies a common
conception by showing that simple features utilize the residual branch. The next step is to examine
the temporal dynamics of feature development, specifically investigating when complex and simple
concepts emerge during model training.

Figure 5: A) Complex features emerge later in training. There is a strong correlation between the
complexity of a feature and the requisite temporal span for its decoding. The temporal decoding score,
Λ, is derived as the mean V-information across epochs, with V representing the class encompassing
linear models. A low score indicates a feature is accessible earlier during the training continuum,
whereas a high score implies its tardy availability. The correlation between these scores suggests that
complex features tend to emerge later in training. B) Important features are being compressed
by the neural network: Levin Machine hypothesis. The average complexity of 10,000 features
extracted independently at each epoch increases rapidly before stabilizing (the black curve shows the
average). However, among the top-1% of features in terms of importance, complexity decreases over
time, as if the model is self-compressing or simplifying, akin to a sedimentation process.

5 When do Complex Features Arise

Figure 1 raises an important question: Does the complexity of a feature influence the time it takes to
develop during training? To explore this, we refer to the 10,000 features extracted at the final epoch
of our model as f (e)

n , and we use f
(i)
n to represent the penultimate layer of the model at any given

epoch i, where i ∈ {1, . . . , e} and e represents the total number of epochs. We aim to determine
how early each feature can be detected in previous epochs f (i)

n for i < e. This involves calculating a
specific decoding score; in our scenario, we define this score as IV—the measure of V-information
between the model’s penultimate activations across epochs and an ultimate feature values, where V is
the set of linear models. This metric helps us assess whether a feature was “readily available” at a
certain epoch i. The cumulative score Λ is calculated by averaging this measure across all epochs,
leading to our score:

Λ(x, z) = 1− 1

e

e∑
i

IV(f (i)
n (x)→ z).
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The results, as illustrated in Figure 5A, showcase the complexity of a feature (K) with it’s Time
to Decode (Λ) score. An observed correlation coefficient nearing 0.5 intimates that features of
heightened complexity are generally decoded later during the training epoch. This finding suggests a
nuanced interrelation between the layer for which a feature is available and the epoch of discovery: a
feature decoded later in the forward pass trajectory also came online later in training. This naturally
leads us to the question of the dynamics of model training. Can we get a deeper understanding of
how precisely complex concepts are formed within the model? Does the model develop complex
features solely upon necessity, thereby suggesting a correlation between the complexity of a feature
and its importance?

6 Complexity and Importance: A Subtle Tango

Numerous studies have proposed hypotheses regarding the relationship between the importance and
complexity of features within neural networks. A particularly notable hypothesis is the simplicity
bias [3, 51, 110], which suggests that models leverage simpler features more frequently. This section
aims to quantitatively validate these claims using our complexity metric paired with the importance
of each feature. Because features are extracted from the penultimate layer, a closed-form relationship
between features and logits can be derived due to the linear nature of this relationship. By analyzing
this relationship over training for features of different complexity, we identify a surprising novel
perspective: models appear to reduce the complexity of their important features. This process is
analogous to sedimentation and mirrors the operation of a Levin Universal Search [63]. The model
incrementally shifts significant features to earlier layers, taking time to identify simpler algorithms in
the process.

Figure 6: Simplicity bias appears during training. Complexity vs. Importance of 10,000 features
extracted from a ResNet50 at Epochs 1 and 90 of training. In Epoch 1, important features are not
necessarily simple and seem uniformly distributed. In contrast, by the end of training, there is a clear
simplicity bias, consistent with numerous studies: the model prefers to rely on simpler features.

Importance Measure. The feature extraction framework outlined in Section 2 offers a structured
approach to estimating the importance of a feature within the network. Specifically, the feature
vector z ∈ Rk is linearly related to the model’s decision-making process, exemplified by a logit
calculation y = zD⋆W ∈ R, where W ∈ R|An| represents the weights of the penultimate layer
for the class-specific logit. The contribution of the i-th feature, zi, to the logit y can be precisely
measured by leveraging the gradient-input formulation, which is optimal for fidelity metrics within a
linear context [5, 32]. This optimality and the closed-form expression are feasible primarily because
the analysis is confined to the penultimate layer of the network. Formally, the importance of a feature
zi is defined as: Γ(zi) = EPz

(
|| ∂y∂zi · zi||

)
. In essence, the importance measure Γ(zi) quantifies

the average contribution of the i-th feature to the class-specific logit – essentially, the average score
that each feature brings to the decision logit. More details on importance measures and the effect of
inhibition features are available in Appendix G.

Models Prefer Simple Features. The analysis, supported by Figure 6 (right), demonstrates a clear
trend indicating the model’s simplicity bias. Among the 10,000 features extracted in the final epoch,
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more complex features—characterized by higher K(x, z) values—are generally assigned lower
importance (Γ(z)). In contrast, simpler features predominantly influence the model’s decisions. The
plot on the left showcases the complexity and importance of 10,000 concepts extracted at the end
of the first epoch; we observe that the model does not exhibit this simplicity bias at the end of the
first epoch. More detail and study on the role of complex concept is proposed in Appendix D. This
observation raises the question of the dynamic interplay between feature complexity and importance.
To further investigate, we did a detailed analysis of the evolution of feature complexity and importance
throughout the training process.

Model as Levin’s Machine: Simplifying the Complexity of Important Features. A closer
examination of the evolution of feature importance over time reveals an interesting phenomenon in
Figure 5B: the emergence of two distinct phases during training. Initially, there is a global increase in
feature complexity, with the model beginning its training with relatively simple features. Surprisingly,
this is followed by a phase where the model actively reduces its overall complexity, specifically
targeting and simplifying its most important features. The model appears to be “shortening” the
computational “programs” responsible for generating these significant features. This observation
suggests that the ResNet50 under study, like a Levin Machine, develops simpler computational paths
for crucial features. Put simply, our complexity metric shows that important features are extracted at
earlier layers, resembling sedimentation with foundational elements near the network’s input.

This behavior presents a novel perspective on how neural networks might be intrinsically driven to
generalize by simplifying the computation graph of their important features. However, at least at the
early stages of learning, it also challenges our assumption that each layer is optimized to provide a
linearly-separable representation for the downstream linear probe – early in learning, this assumption
is clearly violated since some complex features could be represented more simply than they are
initially. Thus, future work will be needed to fully disentangle the interaction of complexity and
importance over training.

7 Conclusion

We introduced a complexity metric for neural network features, identifying both simple and complex
types. We have shown where simple features flow – through residual connections – as opposed to
complex ones that develop via collaboration with main branches. Our study further revealed that
complex features are learned later in training than simple ones. We have concluded by exploring
the relationship between feature complexity and importance, and discovered that the simplicity bias
found in neural networks becomes more pronounced as training progresses. Surprisingly, we found
that important features simplify over time, suggesting a sedimentation process within neural networks
that compresses important features to be accessible earlier in the network.
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A Feature Extraction

Dictionary Learning. To comprehensively analyze the complexity of features extracted from a
deep learning model, we employed a detailed feature extraction process using dictionary learning,
specifically utilizing an over-complete dictionary. This approach allows each activation fn(x) ∈ Aℓ
to be expressed as a linear combination of multiple basis elements (direction, also called atoms)
d ∈ Aℓ from the dictionary D⋆ = {d1, . . . ,dk} coupled with some sparse coefficient z ∈ Rk
associated to each atoms.

The over-completness of D⋆ means that the dimension of the dictionnary (k) is larger than the
dimension of the activations space k >> |Aℓ|. This property allow us to overcome the superposition
problem [29] essentially stating that there be more feature than neurons.

Mathematically, given an activation function fn(x), it can be represented as a linear combination of
atoms from the dictionary D, expressed as:

fn(x) ≈ zD⋆ =

k∑
i

zidi

where zi are the coefficients indicating the contribution of each atom di from the dictionary.

Implementation. Our implementation was inspired by Craft [30], leveraging the properties of
ReLU activations in ResNet50. Given that ReLUs induce non-negativity of the activation, we
employed Non-Negative Matrix Factorization (NMF) [59, 113] for the reconstruction, as it naturally
aligns with the sparsity and non-negativity constraints of ReLU activations. Unlike PCA, which
cannot produce overcomplete dictionaries and may result in non-positive activations, NMF can create
overcomplete dictionaries in this context.

The dictionary D⋆ was trained to reconstruct the activations fn(x) using the entire ImageNet training
dataset, comprising 1.2 million images. Formally, for the set of images X and their corresponding
activations fn(X), the objective was to minimize the reconstruction error:

||fn(X)−ZD⋆||F ,
ensuring that fn(X) can be closely approximated by ZD⋆. Additionally, the NMF framework
enforces non-negativity constraints on the dictionary matrix D⋆ ≥ 0 and the coefficients Z ≥ 0:

(Z,D⋆) = argmin
Z≥0,D⋆≥0

||fn(X)−ZD⋆||F .

The dictionary D⋆ was designed to encapsulate 10 concepts per class, resulting in a total of 10,000
concepts. To augment the training samples for NMF, we exploited the spatial dimensions of the last
layer of ResNet50, which has 2048 channels with a spatial resolution of 7x7. By training the NMF
independently on each of the 49 spatial dimensions, we effectively increased the number of training
samples to approximately 58 million artificial samples (channel activations).

We utilized the block coordinate descent solver from Scikit-learn [86] to solve the NMF problem.
This algorithm decomposes the problem into smaller subproblems, making it more tractable. The
optimization process continued until convergence was achieved with a tolerance of ε = 10−4,
ensuring the dictionary was sufficiently optimized for accurate feature extraction. Post-training, the
reconstructed activations ZD⋆ retained over 99% accuracy in common predictions compared to the
original activations fn(X).

Extracting Features for New Data Points. Once the dictionary D⋆ was trained, it was fixed. For
any new input x, the corresponding feature z was extracted by solving a Non-Negative Least Squares
(NNLS) problem. This mapping of new input activations fn(x) to the learned feature space was
performed by minimizing the following objective:

z = argmin
z≥0

||fn(x)− zD⋆||F .

This optimization problem is convex, ensuring computational feasibility and robust feature extraction
for new data points.
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B Visualization of Meta-features

To visualize each feature, we used feature visualization methods [84]. Specifically, a recent improve-
ment [31] re-parameterizes the original feature visualization optimization problem—i.e., finding an
image x that maximizes a direction, channel, or neuron—by optimizing only the phase of a Fourier
buffer while fixing the image magnitude. This approach produces more realistic images and prevents
high-frequency leakage that results in adversarial positives.

Figure 7: Visualization of Meta-Features, sorted by Complexity. Feature visualization using
MACO [31] for the most simple (1-15) of the 30 Meta-features found on the 10,000 features
extracted.
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Figure 8: Visualization of Meta-Features, sorted by Complexity. Feature visualization using
MACO [31] for for the most complex (15-30) of the 30 Meta-features found on the 10,000 features
extracted.
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C Complexity measure

In this section, we detail the closed-form expression of the V-information when the predictive family
V consists of linear classifiers with Gaussian posteriors. Specifically, V is defined as follows:

V =

{
η : x→ N (ψ(x), σ2), with x ∈ X and ψ ∈ Ψ;

�→ N (µ, σ2), with µ ∈ R, σ2 = 1
2 ;

where Ψ = {x 7→Mx |M ∈ Rd} is a set of linear predictors. This setting corresponds to the linear
decoding we apply during the computation of V-information. In this context, a closed-form solution
is available (see [115]):

IV(x→ z) = HV(z)−HV(z | x)

= inf
µ∈R

Ez∼Pz

[
− log

1√
2πσ2

e−
(z−µ)2

2σ2

]
− inf
ψ∈Ψ

Ex,z∼P

[
− log

1√
2πσ2

e−
(z−ψ(x))2

2σ2

]
= inf
µ∈R

Ez∼Pz

[
(z− µ)2

2σ2

]
− inf
ψ∈Ψ

Ex,z∼P

[
(z− ψ(x))2

2σ2

]
=

1

2σ2

(
inf
µ∈R

Ez∼Pz

[
(z− µ)2

]
− inf
ψ∈Ψ

Ex,z∼P
[
(z− ψ(x))2

])
=

Var(z)
2σ2

(
1−

infψ∈Ψ Ex,z∼P
[
(z− ψ(x))2

]
Var(z)

)

=
Var(z)
2σ2

R2

= Var(z)R2.

Here, R2 is the coefficient of determination. Therefore, the following inequalities hold:

0 ≤ IV(x→ z) ≤ Var(z).

Given that the input data are centered and scaled, we typically have Var(z) around 1 (or less in case
of Layer normalization). Furthermore, residual connections and batch normalization tend to preserve
this scaling in deeper layers. We note, however, that our score K(z, x) is not strictly bounded. Indeed,
we define complexity as the opposite of the average V-information across layers: complex features
are those that are harder to decode. We add a shift of 1 for the ease of plotting. Empirically, we
observed that this adjustment yields K(z, x) in the range [0, 1], with 1 indicating a complex feature
that is not available and 0 indicating a simple feature that is fully available.
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D Feature Support Theory

While simplifying important features underscores a trend toward computational efficiency, the role of
complex features within the model deserves a closer examination. Despite these features often being
deemed less important directly, they contribute significantly to the model’s overall performance, a
paradox that can lead us to introduce the concept of “support features.” These are a set of features
that may not carry substantial importance individually, but that collectively play a crucial role in the
model’s decision-making process.

Figure 9: “Support Features” hypothesis. The majority of complex features are not very important,
but play a non-negligible role and contribute to significant performance gains. This paradox is referred
to as the “support features,” a large ensemble of features individually of little to very little importance
to the model but collectively holding a significant role.

The presence of numerous complex features, whose importance on average is less pronounced,
poses a conundrum. However, these features are far from redundant. Experiments conducted
by progressively removing the most complex concepts from the model demonstrate a noticeable
impact on performance, as illustrated in Figure 9. This empirical evidence supports the theory that,
while individually, these complex features may not be pivotal, their collective presence contributes
indispensably to the robustness and adaptability of the model. These results are reminiscent of
prior findings that low-importance model components that are removed in pruning may nevertheless
contribute to model accuracy on rare items [50].

This observation aligns with the broader understanding of neural network functionality, where
diversity in feature representation—spanning from simple to complex—enhances the model’s ability
to generalize and perform across varied datasets and tasks. Therefore, the “Feature Support Theory”
underscores an essential aspect of neural network design and training: integrating and preserving a
wide spectrum of features, regardless of their individual perceived importance, are vital for achieving
high levels of performance and robustness.
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E Complexity and Redundancy

To further understand the link between feature complexity and redundancy, we utilized the redundancy
measure from [76]. Our findings indicate that complex features tend to be less redundant, as depicted
in Figure 10. This observation aligns with the strong correlation between our complexity measure
and the redundancy-based complexity measure proposed by [24].

Figure 10: Complex features are less redundant. Using the redundancy measure from [76], we
show that our complex features tend to be less redundant. This result also confirms a link between
our complexity measure and the one recently proposed by [24], which is also based on redundancy.

To quantify redundancy, [76] employed a modified version of Centered Kernel Alignment (CKA) [57],
a measure of similarity between two sets of activation features. We briefly recall that CKA between
two set of activations A,B in Rd is defined as follows:

CKA(A,B) =
∥KAKB∥2F

∥KAKA∥F ∥KBKB∥F

where KA and KB are the Gram matrices of the feature activations A and B, respectively, and
∥ · ∥F denotes the Frobenius norm.

In our analysis, we calculated the CKA measure between a feature z and the activations for a set
of 2,000 images from the validation set fn(X). Subsequently, we compared this with the CKA
measure when a portion of the activation is masked using a binary mask m ∈ {0, 1}|Aℓ|, denoted
as CKA(z,fn(X) ⊙m), where ⊙ represents element-wise multiplication (Hadamard product).
This comparison enabled us to assess whether masking a subset of neurons impacts the decoding
of the features. Specifically, to evaluate redundancy, we employed a progressive masking strategy,
successively masking 10%, 50%, and 90% of the activation. If the masked activations retain a high
CKA with z, it indicates that the information remains largely intact, suggesting that the feature
is redundantly stored across multiple neurons, sign of a redundant encoding mechanism within
the network. Conversely, if masking results in a substantial decrease in CKA, it implies that the
information was predominantly localized on a specific neuron. In this scenario, the feature is not
redundantly encoded but rather concentrated in specific neurons. This concentration indicates a
lower degree of redundancy, as the loss of these specific neurons (throught the masking) leads to a
significant reduction in the CKA score.
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The final score of redundancy is then the average CKA difference between the original activation and
the masked activations:

Redundancy =
Em

(
CKA(fn(X)⊙m, z)

)
CKA(fn(X), z)

And averaged across the different level of masking. A high score (1) indicating a high redundancy –
i.e. the CKA between the masked activation and with the original activation is similar – while a low
score indicate a more localized and thus a lower degree of redundancy.

In summary, our results, as depicted in Figure 10 support the idea that complex features exhibit lower
redundancy.

23



F Complexity and Robustness

Figure 11: Complex features are less robust. This figure illustrates the relationship between feature
complexity and robustness, quantified as the variance of the feature value when the image is perturbed
with Gaussian noise. The results indicate that more complex features tend to exhibit lower robustness.

To measure robustness, we evaluate the stability of feature responses under perturbations. For each
input point x, we add isotropic Gaussian noise with varying levels of standard deviation σ. The
robustness score is determined by measuring the variance in the feature response due to the noise.
Formally, let z(x) represent the feature response for input x. We define the perturbed input as:
x̃ = x+N (0, σ2I) where N (0, σ2I) represents Gaussian noise with mean 0 and variance σ2. The
sensitivity score Sensitivity(z) for a feature z is given by:

Sensitivity(z) = Var(z(x̃))

Specifically, we sample 100 random noise and repeat this for 3 levels of noise σ ∈ {0.01, 0.1, 0.5} to
compute the variance in feature response for each input from 2,000 samples from the Validation set
of ImageNet to get a distribution of feature value. We also consider other metrics such as the range
(min-max) of the feature response, but all methods consistently indicate that more complex features
are less robust.

In summary, our results, as shown in Figure 11, demonstrate that complex features exhibit lower
robustness. This indicates that features with higher complexity are more sensitive to perturbations
and noise, resulting in greater variability in their responses.
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G Importance Measure

Figure 12: Inhibiting and non-inhibiting features vs complexity. Important features can be
significant either by inhibition, i.e., removing information from a class, or by adding information for
a given class. Each point represents a feature, and violet-colored features generally act as inhibitors
(Γ(zi) < 0).

The problem of estimating feature importance is closely related to attribution methods [117, 33, 88,
80, 15, 102, 106, 23], which aim to identify the important pixels for a decision. A recent study has
shown that all attribution methods can be extended in the space of concepts [32]. In our case, the
features are extracted from the penultimate layer, where the relationship between feature values and
logits is linear. We will elaborate on this and demonstrate that the notion of importance in the linear
case is easier and optimal methods to estimate importance exist.

Setup. Recall that for a point x, we can obtain its k feature values by solving an NNLS problem
z = argmin ||fn(x) − zD⋆||F . The vector z contains the k features in Rk. We can replace the
activation of the penultimate layer fn(x) with its feature representation in the over-complete basis
zD⋆ ≈ fn(x). Since we are in the penultimate layer, the model’s decision, i.e., the logit y ∈ R for
the predicted class, is linearly related to each feature z by the last weight matrix, denoted as W , as
follows:

y = fn(x)W (3)
≈ zD⋆W with z = argmin ||fn(x)− zD⋆||F (4)

= zW ′ with W ′ = D⋆W ∈ Rk (5)

Thus, the energy contributed to the logit by feature i can be directly measured by W ′
i zi and y =∑k

i W
′
i zi. Consequently, the contribution of a feature zi can be measured using gradient-input,

(∇zy)⊙ z. Several studies [5, 32] have detailed the linear case and shown the optimality of gradient-
input with respect to fidelity metrics. They also demonstrated that many methods in the linear case
boil down to Gradient-Input, including Occlusion [117], Rise[88], and Integrated Gradient[106].

In our case, we measured the importance by taking the absolute value of the importance vector, i.e.,
Γ(zi) = EPz

(
|| ∂y∂zi · zi||

)
. It is natural to question whether this approach might overlook important

features due to their inhibitory effects. Indeed, as depicted in Figure 12, numerous features may be
important not because they add positive energy to the logits, but by inhibition, i.e., by suppressing
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class information. Although this does not alter the implications of our previous observations, it is
noteworthy that the majority of inhibitory features are also simple features.

Prevalence and Importance. Another property of importance is its close relationship with preva-
lence [32], which indicates that a frequently occurring feature will, on average, be more important
given the same importance coefficient (∇zy). In our study, this implies that if the most important
features are reduced, these important features are also potentially more frequently present. Conse-
quently, the prevalence of a feature can be a factor explaining this sedimentation process. We refer
the reader to a concurrent study that proposed to investigate more deeply this phenomena using a
controlled dataset [58].
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H Features Clustering

The visualization in Figure 2 prompts an important question: are features in our model clustered
based on their complexity? Specifically, are there regions in the feature space that are generally more
“complex” than others, or that respond primarily to more complex stimuli? Our access to 10,000
features via overcomplete decomposition enables a more detailed analysis compared to traditional
neuron-wise studies. We aim to explore three main hypotheses:

• Hypothesis 1: Features cluster by super-class. This hypothesis posits that features
corresponding to semantically related categories are spatially grouped within the feature
space—e.g., concepts related to the dog class are closer to those of the cat class than to
unrelated classes like furniture.

• Hypothesis 2: Features cluster by complexity. We suggest that features may organize
themselves based on their complexity, with simpler features forming distinct clusters separate
from more complex ones.

• Hypothesis 3: Features cluster by importance. This hypothesis explores whether features
with similar predictive importance tend to group together within the feature space.

It is important to emphasize that these hypotheses are mutually independent. To test them, we propose
two methodologies: (1) visualizing feature embeddings using UMAP and (2) clustering the features
followed by dendrogram analysis to examine whether the resulting clusters are homogeneous (also
called "pure") in terms of super-class, complexity, or importance.

27



Figure 13: Feature Similarity vs Super-Class. Each point represents a concept, with its color
indicating the associated super-class. Some super-classes such as birds, reptiles, dogs & other
mammals form well-defined, tight clusters, suggesting that features belonging to them are close in
the feature space. Others, such as device, clothes appear more dispersed. By comparing this figure
with Figure 2, we can identify which meta-features are "pure" (belonging to a single super-class) and
which are "impure" (spanning multiple super-classes). Interestingly, the “impurity” region seems to
cover low-complexity and mid-complexity concepts such that Grass, Waves, Trees, Low-pixel quality
detector which are not class-specific.

Feature Similarity vs Super-Class. Figure 13 illustrates the organization of features by their
super-class. Each point is a feature, colored according to its super-class label. We observe that certain
super-classes, like those associated with birds, dogs, reptiles form distinct and cohesive clusters,
indicating a strong grouping within the feature space. Other region have features that encompassing
a wider range of super-class, such that grass, waves, low-pixel quality detector. This reveals that
some meta-features are predominantly associated with a single super-class ("pure"), while others
span multiple super-classes ("impure"), reflecting the shared visual characteristics or multi-functional
nature of those features.
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Figure 14: Feature Similarity by Complexity. A) Each point is a feature, colored by its complexity
score. Distinct areas of the graph correspond to varying levels of complexity, suggesting a non-
random distribution of feature complexity. For instance, animal-related features tend to have higher
complexity, one could hypothesize that the fine-grained classification required for these categories
are responsible for this complexity. B) A four-level dendrogram where each level further segments
clusters and calculates the average complexity for each sub-cluster. A clear split by complexity
appears at the first level and intensifies with depth, supporting the idea that some regions of the
feature space are inherently more complex than others.

Clustering by Complexity. Figure 14 explores how features are organized based on their complex-
ity. Panel A shows a UMAP visualization with points colored according to their complexity scores.
The visualization reveals distinct regions of varying complexity, indicating that the distribution is
structured. For instance, features related to animals display higher complexity, likely because these
require fine-grained and precise detectors. In contrast, simpler features, such as color detectors or
low-frequency patterns, cluster together in less complex regions. Panel B displays a dendrogram with
four hierarchical levels, where each level introduces additional splits, and the mean complexity is
calculated for each sub-cluster. The pronounced division in complexity at the first level, which sharp-
ens as we delve deeper, suggests that the feature space is compartmentalized based on complexity.
A promising direction for future research would be to align these complexity clusters with known
visual cortical areas to explore potential correspondences.
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Figure 15: Feature Similarity by Importance. A) Each point represents a feature, with color
indicating its importance. Distinct regions of the graph contain features of varying importance,
particularly with more important features clustering at the top. B) A four-level dendrogram with sub-
clusters evaluated by their average importance. We observe that from the first level, the dendrogram
effectively splits features into groups of varying importance, corresponding to the upper and lower
parts of the UMAP graph in Panel A.

Clustering by Importance. Finally, we investigate the third hypothesis: the presence of regions
within the feature space that contain features with higher predictive importance. Figure 15 Panel
A depicts a UMAP visualization where features are colored by their importance. The graph shows
a clear structure, with highly important features grouping in specific regions (e.g., the upper part
of the graph), while less important features are distributed in other regions. Panel B provides the
corresponding dendrogram, revealing that even at the first level of the hierarchy, features segregate
into clusters of varying importance. Notably, low-complexity “support” features—such as grass,
waves, and low-pixel-quality detectors—tend to form cohesive clusters. Meanwhile, more predictive
features, like animal-related features that drive classification, group together in another distinct region.
This raises a crucial question: is this clustering merely correlated (i.e., based on shared visual aspects
like context or background), or does it reflect a causal relationship in the model’s predictive structure?
This question remains an open avenue for future investigation.
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I Local vs Distributed Encoding

Figure 16: Local vs Distributed Encoding. Each
point represents a feature, with color indicating its
Hoyer score. Higher scores suggest a more "lo-
cal" representation, where a feature is primarily
encoded by a single neuron. Lower scores indicate
a distributed representation across a population of
neurons. Interestingly, some features have scores
near 1, implying near-complete localization, while
others are more distributed. This variation high-
lights the diversity in encoding across features.

Neural networks exhibit a diversity in how
features are encoded, ranging from local to
distributed representations [25, 29]. In the
local encoding scenario, a single neuron is
primarily responsible for encoding a feature.
On the other hand, in a distributed encoding
scheme, features are represented by the coor-
dinated activity of multiple neurons, often de-
viating from canonical axis-aligned directions.
More specifically, features could be distributed
across many neurons—sometimes densely, or in
a pseudo-distributed fashion—rather than be-
ing localized to a specific neuron. This the-
ory is one of the main motivations behind em-
ploying overcomplete concept extraction meth-
ods [18, 32, 92, 35].

The distinction between local and distributed en-
coding is critical, particularly when extracting
overcomplete features from a large-scale dic-
tionary. In our analysis of 10,000 features, we
assess whether these features are encoded in a
local or distributed manner. A local encoding
would imply that the feature vector d is aligned
with a canonical vector, i.e., d ∈ {e1, ..., en},
where n = |Aℓ| is the dimensionality of the
activation space and ei represents the one-hot
canonical vector for the ith neuron. In contrast,
a fully distributed feature would be character-
ized by non-zero values across all neurons, with
no alignment to any single axis.

To quantify the extent of this local or distributed
encoding, we use the Hoyer score. This score,
which ranges between 0 and 1, captures the spar-
sity of a vector by comparing its ℓ1-norm to its
ℓ2-norm, with a correction term for normalization. Formally, the Hoyer score is given by:

Hoyer(d) =
√
n− ||d||1/||d||2√

n− 1
.

For each feature in our dictionary D = {d1, ..., d10,000}, we compute the Hoyer score to determine
whether the feature is locally encoded (score near 1) or distributed (score near 0).

Figure 16 illustrates the results of this analysis, revealing significant variability in the degree of
distribution among features. Some regions of the feature space show highly distributed encoding,
while others exhibit more local representations. This analysis was conducted on a ResNet50 model,
and it is possible that the distribution of encoding strategies varies across different architectures.
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Figure 17: Feature Complexity vs. Distributed Encoding. We show that there is no clear rela-
tionship between feature complexity and the degree of distributed encoding. Whether a feature is
encoded by a single neuron or distributed across multiple neurons does not seems to be determined
by its complexity.
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J Replicating the feature flow results with other measures and models.

Figure 18: Replication of Figure 4 Using V-Information. As described in Section 4, we replicate
the analysis of feature flow and complexity using V-information as a measure.

A legitimate consideration arises when revisiting Section 4, where we introduced the hypothesis that
simpler features are primarily carried through the residual connections of a network, while more
complex features are progressively constructed through interactions between the main branch and
residual connections. The measure we originally used to support this hypothesis was CKA, which
serves as a proxy to assess the similarity between the activations at a certain stage of the model and
the final state of a concept. However, one might wonder why not use V-information directly.

Figure 18 presents the results of this replication. Although the scale of the values differs from
those in Section 4, the overall trend remains consistent. The left panel shows the dynamics of
simpler features. Early in the network, the main branch carries a significant portion of the V-
information, which diminishes as the simpler features are gradually “passed along” through the
residual connections. Notably, even as the information content decreases, the absolute quantity of
V-information remains higher for simple features compared to complex ones. This indicates that
while simpler features are transported through the residual connections, they are not entirely depleted
of their information content. The right panel of Figure 18 demonstrates the progressive construction
of more complex features. Here, we see that both the main branch and residual connections contribute
to the gradual accumulation of information necessary for these complex features. This supports our
initial hypothesis: complex features do not traverse the network intact but are built up in a cumulative
process, drawing on multiple layers and branches to form intricate representations.

For compute consideration, this replication was conducted using a different experimental setup than
that of Section 4. For this analysis, we employed the validation set of ImageNet to build the dictionary
instead of the train set. Both the dictionary and the model were different from those used in the main
body of the paper. Specifically, the model used here was the ResNet50 implementation from the Keras
library [26]. Despite these differences in experimental conditions, the overarching trends observed in
our original CKA-based analysis are preserved, bolstering the validity of the flow hypothesis.

K Kolmogorov, Levin and V-information

In this section we recall some of the most important complexity measures like Kolmogorov complexity,
its computationally tractable counterpart the Levin complexity, and finally we underline the epistemic
similarity between these concepts in deep learning.

Kolmogorov complexity [55] is a measure of the complexity of an object. The objects (image,
video, text, pdf, etc.) can be ecnoded as a sequence (un) ∈ ΣN of symbols over a finite alphabet
Σ. A program is a finite sequence P ∈ L written in language L ⊂ Σ∗ (e.g a Python source file).
Kolmogorov complexity K(∞)

L (un) is the length of the shortest program P : N→ Σ∗ that produces

There exists numerous variants of this definition with slightly different behaviors [65]. Since deriving
theoretical results is not the focus of our work, we decided to tradeoff precision for simplicity of exposure.
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the n-th first terms of the sequence (un):

K
(∞)
L (un)

def
= min

P (n)=un
|P |. (6)

Intuitively, if the sequence is highly compressible, the program will be short. For example, the
sequences [1, 2, 3, 4, . . .] or [2, 4, 8, 16, 32, . . .] are few lines of code in most programming languages.
Conversely, if the sequence is purely random, then no finite-length program exists. The digits of π,
seemingly without structure, are not Kolmogorov random since there exist short programs computing
them. The famous Cantor’s diagonal argument [20] shows that most sequences are random, since
no bijection exists between Σ∗ (countably infinite) and ΣN (cardinality of the continuum). The
definition implicitly assumes a specific computation model (Python interpreter, C++ compiler, Turing
machine) to describe the language. However, by definition Turing-complete models can simulate
each other, which implies there exist a universal constant C(Python|C++) such that for all sequences
un we have K(∞)

Python(un) ≤ K
(∞)
C++ (un) + C(Python|C++). This constant corresponds to the length of

a Python interpreter written in C++ for example. In general, this holds for any other pair of languages.
Therefore, if K(∞)

L (un) → +∞ as n → ∞ for some language L, then it is true in every other
language: intrinsic randomness is universal in this sense [98].

Levin complexity. Kolmogorov’s complexity suffers from an important drawback: it is not Turing-
computable. Put another way, there exists no algorithm that computes K(∞). Fortunately, by
regularizing K(∞) appropriately it is possible to make it computable. Levin [64] proposed to
regularize the cost with the runtime T (P, n) of program P on input n. This is the Levin complexity:

K
(T )
L (un)

def
= min

P (n)=un
|P |+ log|Σ| T (P, n). (7)

This modification makes K(T )(un, L) computable with the Levin Universal Search algorithm (see
Alg. 1). Informally, instead of looking for a shortest program, this algorithm seeks algorithms that
run fast among those who are shorts. It is obtained by iterating over lengths i ∈ N, and by running
exactly one step of computation of all these programs in parallel. The first program P that halts on
un minimizes K(T ). This is a central property of Levin’s universal search: the first programs found
are the simplest and the ones requiring the lesser compute [4, 108, 13].

Algorithm 1 : Levin Universal Search
Input: sequence (un) ∈ Σ∗

Output: program P minimizing K(T )
L

1: S ← ∅
2: for i ∈ N do
3: for each program P ∈ (Σi ∩ L) do
4: S ← S ∪ {P}
5: for each P ∈ S in parallel do
6: Run P for exactly 1 step.
7: if P halts on un then
8: return P

Deep learning and simplicity bias. The links between algorithmic information theory and deep
learning have been a recurring although spurious interest throughout the years [94, 95, 75, 61, 68, 40].
Neural networks are a special kind of program, composed of the source files required for inference,
and the weights embedded in the network. Therefore, results related to the complexity of sequences
apply transparently. Program length (Kolmogorov) and program runtime (Levin) are tightly linked
since deeper and wider networks also consume more FLOPS during inference. Smaller networks
implement simpler programs. Similarly, features that can be decoded “early” in the network are
simpler than those requiring all the layers. The idea is often coined as Minimum Description Length
(MDL) principle [16], Occam’s Razzor, or even simplicity bias [49].

As for many things in machine learning, regularization helps.
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L Limitations

Task. Here, we have studied a specific CNN architecture, ResNet50. In future experiments, it will
be useful to investigate whether other model families exhibit similar feature learning, including in
domains beyond vision.

Architecture. The residual connections of the ResNet are shared by other architectures like Con-
vNext [67] or Vision Transformers (ViT) [28, 14]. The works of [109] indicate that findings from
convolutional models may transfer to ViTs. Furthermore, the work of [116] suggest that features in
convolutional networks and ViT are of similar nature. However, [90] found significant quantitative
differences between the layers of ResNets and ViTs, highlighting the need for further empirical
testing.

Training Dynamics The observed dynamics of feature learning, including the emergence of
complex features and the reduction in the complexity of important features later in training, are based
on a specific training schedule and set of hyperparameters. To accurately attribute these findings, a
more comprehensive study is required to evaluate the role of various factors such as the learning rate
scheduler and weight decay. Future research should systematically investigate how these and other
training parameters influence feature complexity and importance.

Nested predictive families. Our complexity metrics rely on the hypothesis that the different
predictive families associated to the network up to depth fℓ(x) are nested, i.e. that stacking more
layers strictly increases expressiveness. This is highlighted in the relevant assumption in section 2. If
this hypothesis is violated, the true complexity of a feature may be overestimated in deeper layers.
This is typically the case at the early stages of training.

Dictionary of features. Regarding the building of the dictionary using NMF, a previous study [32]
has shown that the specific dictionary learning method yielded a favorable tradeoff between several
criterions such as sparsity, reconstruction error, or stability. Other dictionary learning methods (like
sparse-PCA, K-Means or sparse auto-encoder) may yield a bank of concepts with different properties.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We support every claim with the corresponding experiment on which we
compute well-defined metrics, correlations, and p-values.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: the paper relies on a large empirical study, that was specifically performed on
the ResNet50 architecture and the Imagenet dataset. This limitation is clearly specified in
the Section 2. Furthermore, the relevance of V-Information to analyse the expressiveness
of the network at difference depth assumes that expressiveness monotically increases with
depth. This assumption is formalized in paragraph Assumption page 5. Finally, a last
"Limitations" section is placed in Appendix L.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No new theoretical results are claimed.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we rely on existing protocols to train the models, as specified in Section 2,
which includes all pre-processing, learning rates, architectures, and other common hyperpa-
rameters. Furthermore, the metrics introduced are existing metrics of literature for which
standard implementations are available.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: the dataset ImageNet can be accessed through https://www.image-net.
org. However the code is not available for review at time of submission.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: see answers above.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We compute correlation coefficients between metrics, and we also report the
corresponding p-value for statistical significance in every case.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: the cost of re-training the model can be estimated in the relevant literature.
Computing the complexity scores involves solving a (high dimensional) linear regression at
every depth and every epoch of interest for each of the features.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: after close examination of the Code of Ethics, there are no concerns associated
to our study.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: the goal of this empirical study is to understand phenomenons arising during
the training of deep neural networks. No new algorithm nor dataset is proposed, that could
have had direct societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we rely exclusively on the ImageNet dataset, more specifically the sub-
set of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) whose
license can be accessed at this URL: https://www.kaggle.com/competitions/
imagenet-object-localization-challenge/rules#7-competition-data.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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