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Abstract

Relying on Transformer for complex visual feature learning, object tracking has wit-
nessed the new standard for state-of-the-arts (SOTAs). However, this advancement
accompanies by larger training data and longer training period, making tracking
increasingly expensive. In this paper, we demonstrate that the Transformer-reliance
is not necessary and the pure ConvNets are still competitive and even better yet
more economical and friendly in achieving SOTA tracking. Our solution is to
unleash the power of multimodal vision-language (VL) tracking, simply using
ConvNets. The essence lies in learning novel unified-adaptive VL representations
with our modality mixer (ModaMixer) and asymmetrical ConvNet search. We show
that our unified-adaptive VL representation, learned purely with the ConvNets,
is a simple yet strong alternative to Transformer visual features, by unbelievably
improving a CNN-based Siamese tracker by 14.5% in SUC on challenging LaSOT
(50.7% —65.2%), even outperforming several Transformer-based SOTA trackers.
Besides empirical results, we theoretically analyze our approach to evidence its
effectiveness. By revealing the potential of VL representation, we expect the
community to divert more attention to VL tracking and hope to open more pos-
sibilities for future tracking beyond Transformer. Code and models are released

athttps://github.com/JudasDie/SOTS.

1 Introduction

Transformer tracking recently receives a surge of research
interests and becomes almost a necessity to achieve state-
of-the-art (SOTA) performance [8, 52, 10]. The success
of Transformer trackers mainly attributes to attention that
enables complex feature interactions. But, is this complex
attention the only way realizing SOTA tracking? Or in
other words, is Transformer the only path to SOTA?

We answer no, and display a Transformer-free path us-
ing pure convolutional neural network (CNN). Different
than complex interactions in visual feature by attention
requiring more training data and longer training time, our
alternative is to explore simple interactions of multimodal,
i.e., vision and language, through CNN. In fact, language,
an equally important cue as vision, has been largely ex-
plored in vision-related tasks, and is not new to tracking.
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Figure 1: Comparison between CNN-
based and Transformer-based trackers
on LaSOT [17].
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Prior works [20, 34, 19] have exploited vision-language (VL) multimodal learning for improving
tracking. However, the performance falls far behind current SOTAs. For instance on LaSOT [17], the
gap between current best VL tracker [20] and recent Transformer tracker [8] is absolute 10.9% in
SUC (see Fig. 1). So, what is the bottleneck of VL tracking in achieving SOTA?

The devil is in VL representation. Feature representation has been shown to be crucial in improving
tracking [51, 61, 32, 24, 10]. Given two modalities of vision and language, the VL feature is desired
to be unified and adaptive [40, 58]. The former property requires deep interaction of vision and
language, while the latter needs VL feature to accommodate different scenarios of visual and linguistic
information. However, in existing VL trackers, vision and language are treated independently and
processed distantly until the final result fusion. Although this fusion may easily get two modalities
connected, it does not accords with human learning procedure that integrates multisensory by various
neurons before causal inference [3], resulting in a lower upper-bound for VL tracking. Besides, current
VL trackers treat template and search branches as homoplasmic inputs, and adopt symmetrical feature
learning structures for these two branches, inherited from typical vision-only Siamese tracking [20].
We argue the mixed modality may have different intrinsic nature than the pure vision modality, and
thus requires a more flexible and general design for different signals.

Our solution. Having observed the above, we introduce a novel unified-adaptive vision-language
representation, aiming for SOTA VL tracking without using Transformer’. Specifically, we first
present modality mixer, or ModaMixer, a conceptually simple but effective module for VL interaction.
Language is a high-level representation and its class embedding can help distinguish targets of
different categories (e.g., cat and dog) and meanwhile the attribute embedding (e.g., color, shape)
provides strong prior to separate targets of same class (e.g., cars with different colors). The intuition
is, channel features in vision representation also reveal semantics of objects [22, 56]. Inspired by
this, ModaMixer regards language representation as a selector to reweight different channels of
visual features, enhancing target-specific channels as well as suppressing irrelevant both intra- and
inter-class channels. The selected feature is then fused with the original feature, using a special
asymmetrical design (analyzed later in experiments), to generate the final unified VL representation.
A set of ModaMixers are installed in a typical CNN from shallow to deep, boosting robustness and
discriminability of the unified VL representation at different semantic levels. Despite simplicity,
ModaMixer brings 6.9% gains over a pure CNN baseline [23] (i.e., 50.7%—57.6%).

Despite huge improvement, the gap to SOTA Transformer tracker [8] remains (57.6% v.s. 64.9%).
To mitigate the gap, we propose an asymmetrical searching strategy (ASS) to adapt the unified VL
representation for improvements. Different from current VL tracking [20] adopting symmetrical
and fixed template and search branches as in vision-only Siamese tracking [32], we argue that the
learning framework of mixed modality should be adaptive and not fixed. To this end, ASS borrows the
idea from neural architecture search (NAS) [63, 42] to separately learn distinctive and asymmetrical
networks for mixed modality in different branches and ModaMixers. The asymmetrical architecture,
to our best knowledge, is the first of its kind in matching-based tracking. Note, although NAS has
been adopted in matching-based tracking [55], this method finds symmetrical networks for single
modality. Differently, ASS is applied on mixed modality and the resulted architecture is symmetrical.
Moreover, the network searched in ASS avoids burdensome re-training on ImageNet [14], enabling
quick reproducibility of our work (only 0.625 GPU days with a single RTX-2080Ti). Our ASS is
general and flexible, and together with ModaMixer, it surprisingly shows additional 7.6% gains (i.e.,
57.6%—65.2%), evidencing our argument and effectiveness of ASS.

Eventually, with the unified-adaptive representation, we implement the first pure CNN-based VL
tracker that shows SOTA results comparable and even better than Transformer-based solutions,
without bells and whistles. Specifically, we apply our method to a CNN baseline SiamCAR [23],
and the resulted VL tracker VLTscar shows 65.2% SUC on LaSOT [17] while running at 43FPS,
unbelievably improving the baseline by 14.5% and outperforming SOTA Transformer trackers [8, 52]
(see again Fig. 1). We observe similar improvements by our approach on other four benchmarks.
Besides empirical results, we provide theoretical analysis to evidence the effectiveness of our method.
Note that, our approach is general in improving vision-only trackers including Transformer-based
ones. We show this by applying it to TransT [8] and the resulted tracker VLTt shows 2.4% SUC
gains (i.e., 64.9%—67.3%), evidencing its effectiveness and generality.

*Here we stress that we do not use Transformer for visual feature learning as in current Transformer trackers
or for multimodal learning. We only use it in language embedding extraction (i.e., BERT [15])
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Figure 2: The proposed vision-language tracking framework. The semantic information of language
description is injected to vision from shallow to deep layers of the asymmetrical modeling architecture
to learn unified-adaptive vision-language representation.

We are aware that one can certainly leverage the Transformer [39] to learn a good (maybe better) VL
representation for tracking, with larger data and longer training period. Different than this, our goal is
to explore a cheaper way with simple architectures such as pure CNN for SOTA tracking performance
and open more possibilities for future tracking beyond Transformer. In summary, our contributions
are four-fold: (i) we introduce a novel unified-adaptive vision-language representation for SOTA
VL tracking; (ii) we propose the embarrassingly simple yet effective ModaMixer for unified VL.
representation learning; (iii) we present ASS to adapt mixed VL representation for better tracking
and (iv) using pure CNN architecture, we achieve SOTA results on multiple benchmarks.

2 Related Work

Visual Tracking. Tracking has witnessed great progress in the past decades. Particularly, Siamese
tracking [5, 47], that aims to learn a generic matching function, is a representative branch and has rev-
olutionized with numerous extensions [33, 61, 32, 57, 18, 25, 60, 62, 9]. Recently, Transformer [49]
has been introduced to Siamese tracking for better interactions of visual features and greatly pushed
the standard of state-of-the-art performance [8, 52, 46, 10, 35]. From a different perspective than
using complex Transformer, we explore multimodal with simple CNN to achieve SOTA tracking.

Vision-Language Tracking. Natural language contains high-level semantics and has been leveraged
to foster vision-related tasks [21, 31, 2] including tracking [34, 19, 20]. The work [34] first introduces
linguistic description to tracking and shows that language enhances the robustness of vision-based
method. Most recently, SNLT [20] integrates linguistic information into Siamese tracking by fusing
results respectively obtained by vision and language. Different from these VL trackers that regard
vision and language as independent cues with weak connections only at result fusion, we propose
ModaMixer to unleash the power of VL tracking by learning unified VL representation.

NAS for Tracking. Neural architecture search (NAS) aims at finding the optimal design of deep
network architectures [63, 42, 37, 26] and has been introduced to tracking [55, 60]. LightTrack [55]
tends to search a lightweight backbone but is computationally demanding (about 40 V100 GPU
days). AutoMatch uses DARTS [37] to find better matching networks for Siamese tracking. All
these methods leverage NAS for vision-only tracking and search a symmetrical Siamese architecture.
Differently, our work searches the network for multimodal tracking and tries to find a more general
and flexible asymmetrical two-stream counterpart. In addition, our search pipeline only takes 0.625
RTX-2080Ti GPU days, which is much more resource-friendly.

3 Unified-Adaptive Vision-Language Tracking

This section details our unified-adaptive vision-language (VL) tracking as shown in Fig. 2. In specific,
we first describe the proposed modality mixer for generating unified multimodal representation and
then asymmetrical network which searches for learning adaptive VL representation. Afterwards, we
illustrate the proposed tracking framework, followed by theoretical analysis of our method.



3.1 Modality Mixer for Unified Representation

The essence of multimodal learning is a simple and effective modality fusion module. As discussed
before, existing VL trackers simply use a later fusion way, in which different modalities are treated
independently and processed distantly until merging their final results [20, 34]. Despite the effective-
ness to some extent, the complementarity of different modalities in representation learning is largely
unexplored, which may impede the multimodal learning to unleash its power for VL tracking. In this
work, we propose the modality mixer (dubbed ModaMixer) to demonstrate a compact way to learn a
unified vision-language representation for tracking.

ModaMixer considers language representation
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ensure the ModaMixer applicable for all videos,
we first average the features for all words along Figure 3: Illustration of the ModaMixer.
sequence length dimension “(N+2)” to generate

a unique language representation f; € R'*? for each description. Then a linear layer is followed to
align the channel number of f; with the corresponding vision feature f, € R”*W*C_ Channel selec-
tor is expressed as Hadamard product operator, which point-wisely multiplies language representation
(1 x C) to embedding of each spatial position in the vision feature f,. Finally, a residual connection
between the mixed feature f,,, and vision feature f,, is conducted to avoid losing informative vision
details. In a nutshell, the ModaMixer can be formulated as,

f,, = Blockass (Linear(f;) ® f,) + Blockags (f,), e

where © denotes Hadamard product, Linear is a linear projection layer with weight matrix size of
d x C for channel number alignment, and Blocksgg indicates post-processing block before residual
connection. Please note that, to enable adaptive feature modeling for different modalities, we search
different Blockagg to process features before and after fusion (see Sec. 3.2 for more details). The
proposed ModaMixer is illustrated in Fig. 3. Akin to channel attention [44, 22], the high-level
semantics in language representation dynamically enhance target-specific channels in vision features,
and meanwhile suppress the responses of distractors belonging to both inter- and intra-classes.

3.2 Asymmetrical Search for Adaptive Vision-Language Representation

Besides the fusion module, the other crucial key for vision-language tracking is how to construct
the basic modeling structure. The simplest strategy is to inherit a symmetrical Siamese network
from vision-based tracking (e.g., [5, 32]), as in current VL trackers [20]. But the performance gap
still remains if using this manner, which is mostly blamed on the neglect of the different intrinsic
nature between VL-based multimodal and vision-only single modality. To remedy this, we propose
an asymmetrical searching strategy (dubbed ASS) to learn an adaptive modeling structure for pairing
with ModaMixer.

The spirits of network search are originated from the field of Neural Architecture Search (NAS). We
adopt a popular NAS model, in particular the single-path one-shot method SPOS [26], for searching
the optimal structure of our purpose. Although SPOS has been utilized for tracking [55], our work
significantly differs from it from two aspects: 1) Our ASS is tailored for constructing an asymmetrical
two-stream network for multimodal tracking, while [55] is designed to find a symmetrical Siamese
network for vision-only single-modality tracking. Besides, we search layers both in the backbone
network and the post-processing Block 4gg in the ModaMixer (see Eq. 1); 2) Our ASS reuses the

3The language description in tracking is generated only by the initial target object in the first frame.



Table 1: The asymmetrical architecture learned by ASS. @ is the stem convolution layer. (@ O O @)
represents the basic ASS unit, where the first three ones indicate Shuffle block [59] with kernel sizes
of (3,5,7), respectively, and the last one denotes a Shuffle Xception block [59] with kernel size of 3.

Moda Moda Moda Moda

Stem | Stagel Mixer Stage2 Mixer Stage3 Mixer Stage4 Mixer

Template (@) OO0 | 00 000 | @00 ©00 O 000 | 00
@0 0O

Search @ OO0 O 00O | @0 ©0e 0 000 | 00
@@ OO0

pre-trained supernet from SPOS, which avoids the burdensome re-training on ImageNet [ 14] (both
for the supernet and found subnet) and thus reduces the time complexity of our search pipeline to
1/64 of that in LightTrack [55] (i.e., 0.625 RTX-2080Ti GPU days v.s. 40 V100 GPU days). Due
to limited space, please refer to appendix for more details and comparison of our ASS and [55].

The search space and search strategy of ASS are kept consistent with the original SPOS [26]. In
particular, the search pipeline is formulated as,

W.A = arg;/nin EaNF(A) [Etrain (N(Cl, W(a)))] ’ (2)
a* = argmax SUCyy (N (a, W4(a))), S
ac€A

where A represents the architecture search space of the network NV, a is a sample from A and W
denotes the corresponding network weights. Notably, the network A includes three components
N = {¢1, ps, om +» where each indicates backbone for the template branch (;, backbone for the
search branch ¢, and layers in the ModaMixer ¢,,. The whole pipeline consists of training supernet
on tracking datasets via random sampling I" from search space A (Eq. 2) and finding the optimal
subnet via evolutionary algorithms (Eq. 3). The SUC (success score) on validation data is used as
rewards of evolutionary algorithms. Tab. 1 demonstrates the searched asymmetrical networks in our
VL tracking. For more details of ASS, we kindly refer readers to appendix or [26].

3.3 Tracking Framework

With the proposed ModaMixer and the searched asymmetrical networks, we construct a new vision-
language tracking framework, as shown in Fig. 2 and Tab. 1. Our framework is matching-based
tracking. Both template and search backbone networks contain 4 stages with the maximum stride of 8,
the chosen blocks of each stage are denoted with different colors in Tab. 1. ModaMixer is integrated
into each stage of the template and search networks to learn informative mixed representation. It is
worth noting that, the asymmetry is revealed in not only the design of backbone networks, but also
the ModaMixer. Each ModaMixer shares the same meta-structure as in Fig. 3, but comprises different
post-processing layers Block s gg to allow adaption to different semantic levels (i.e., network depth)
and input signals (i.e., template and search, pure-vision and mixed feature in each ModaMixer). With
the learned unified-adaptive VL representations from the template and search branches, we perform
feature matching and target localization, the same as in our baseline.

3.4 A Theoretical Explanation

This section presents a theoretical explanation of our method, following the analysis in [29]. Based
on the Empirical Risk Minimization (ERM) principle [45], the objective of representation learning is
to find better network parameters 6 by minimizing the empirical risk, i.e.,

1 n
min f(HM)éEZE(Xi,yi;QM) stt. Oy € F. )
i=1

where £ denotes loss function, M represents the modality set, n indicates sample number, X; =
{z}, 22 xLM |} is the input mutimodal signal, ¥; is training label, and F demotes optimization space

PR 2R



Table 2: State-of-the-art comparisons on LaSOT [17], LaSOTgyy [16], TNL2K [53], GOT-10k [28]
and OTB99-LANG (OTB99-L) [34]. TransT and SiamCAR are baselines of the proposed VLTt and
VLTsc AR, respectively. © and ¢ denote the settings of “O-tensor” and “template” without language
description. All metrics of performance are in % in tables unless otherwise specified.

Tvpe Method LaSOT LaSOTgx TNL2K GOT-10k OTBY9-L
P sutCc P |SuC P |SuC P AO SRps5 SRgp7s| SUC P
SiamRCNN [50] | 64.8 68.4 - - 523 528 | 649 728 59.7 | 70.0 894

PrDiMP [13] 59.8  60.8 - - 470 459 | 634 738 543 | 69.5 895
AutoMatch [60] | 58.3 599 | 37,6 43.0 | 47.2 435 | 652 76.6 543 | 71.6 932
Ocean [62] 56.0 56.6 - - 384 377|611 721 473 | 68.0 92.1
KYS [6] 554 - - 449 435 ] 636 751 51.5 - -
ATOM [12] 51.5 505 | 37.6 43.0 | 40.1 392 | 556 634 402 | 67.6 824
CNN-based | SiamRPN++[32] | 49.6 49.1 | 34.0 39.6 | 41.3 412 | 51.7 61.6 325 | 63.8 826
C-RPN [18] 455 425 | 275 320 - - - - - -
SiamFC [5] 336 339 | 230 269 | 295 286|348 353 9.8 | 587 792

ECO[!1] 324 30.1 | 220 240 - - 31.6 309 11.1 - -
SiamCAR [23] 50.7 51.0 | 339 41.0| 353 384|569 67.0 415 | 68.8 89.1
SNLT [20] 540 57.6 | 262 30.0 | 27.6 419 | 433 50.6 22.1 | 66.6 804

CNN-VL VLT zp (Ours) | 652 69.1 | 41.2 475 | 48.3 46.6 | 614 724 523 | 72.7 88.8
VLT aop (Ours) | 639 679 | 447 51.6 | 498 51.1 | 61.0 70.8 522 | 739 89.8

STARK [54] 664 712 | 47.8 55.1 - - 68.0 777 623 | 69.6 914
Trans-based TrDiMP [52] 639 66.3 - - - - 67.1 717 583 | 70.5 925

TransT [8] 649 69.0 | 448 525 | 50.7 51.7 | 67.1 76.8 609 | 70.8 912
VLT (Ours) 66.3 70.5 | 454 521 | 522 521 | 684 815 624 | 747 91.2
VLT (Ours) 67.3 721 | 484 559 | 531 533 | 694 81.1 645 | 764 93.1

Trans-VL

of 0. Given the empirical risk 7 (6 o), its corresponding population risk is defined as,

7 (Orm) = Ex; i) Dy [F (OM1)] Q)

Following [, 48, 29], the population risk is adopted to measure the learning quality. Then the latent
representation quality [29] is defined as,

n(6) = inf [r (6) —r(67)] ©)

where x represents the optimal case, inf indicates the best achievable population risk. With the
empirical Rademacher complexity R [4], we restate the conclusion in [29] with our definition.

Theorem 1 ([2°9]). Assuming we have produced the empirical risk minimizers 0 M and és, training
with the | M| and |S| modalities separately (|M| > |S|). Then, for all 1 > & > 0, with probability at

J.
least 1 — 5

) ) 4C 21n(2/6
r(0a) =7 (95) < ¥D(M, 8) +BLR(Faq) + R 21n(2/9) o
where
DM, 8) £ 1(0r) — n(Bs) R (Far) ~ /Complexity(Faq)/n (8)

vp (M, S) computes the quality difference learned from multiple modalities M and single modality
S with dataset D. Theorem 1 defines an upper bound of the population risk training with differ-
ent number of modalities, which proves that more modalities could potentially enhance the
representation quality. Furthermore, the Rademacher complexity 2R,,(F) is proportional to the
network complexity, which demonstrates that heterogeneous network would theoretically rise

the upper bound of (é M) -7 (93> , and also exhibits that our asymmetrical design has larger

optimization space when learning with | M| modalities compared to |S| modalities (M| > |S|).
The proof is beyond our scoop, and please refer to [29] for details.



4 Experiment

4.1 Implementation Details

We apply our method to both CNN-based SiamCAR [23] (dubbed VLTgcar) and Transformer-based
TransT [8] (dubbed VLT r1). The matching module and localization head are inherited from the
baseline tracker without any modifications.

Searching for VLT. The proposed ASS aims to find a more flexible modeling structure for vision-
language tracking (VLT). Taking VLTscar as example, the supernet from SPOS [26] is used
as feature extractor to replace the ResNet [27] in SiamCAR. We train the trackers with supernet
using training splits of COCO [36], Imagenet-VID [14], Imagenet-DET [14], Youtube-BB [43],
GOT-10k [28], LaSOT [17] and TNL2K [53] for 5 epochs, where each epoch contains 1.2 x 10°
template-search pairs. Once finishing supernet training, evolutionary algorithms as in SPOS [26]
is applied to search for optimal subnet and finally obtains VLTscar. The whole search pipeline
consumes 15 hours on a single RTX-2080Ti GPU. The search process of VLT is similar to
VLTscar. We present more details in the appendix due to space limitation.

Optimizing VLTscar and VLT 1r. The training protocol of VLTscar and VLTt follows the
corresponding baselines SiamCAR [23] and TransT [8]. Notably, for each epoch, half training pairs
come from datasets without language annotations (i.e., COCO [36], Imagenet-VID [14], Imagenet-
DET [14], Youtube-BB [43]). The language representation is set as O-tensor or visual pooling feature
under this circumstances (discussed in Sec. 4.4)*.

4.2 State-of-the-art Comparison

Tab. 2 presents the results and comparisons of our trackers with other SOTAs on LaSOT [17],
LaSOTgy¢ [16], TNL2K [53], OTB99-LANG [34] and GOT-10K [28]. The proposed VLTscar and
VLTt run at 43/35 FPS on a single RTX-2080Ti GPU, respectively. Compared with the speeds of
baseline trackers SiamCAR [23]/TransT [8] with 52/32 FPS, the computation cost of our method is
small. Moreover, our VLT 1 outperforms TransT in terms of both accuracy and speed.

Compared with SiamCAR [23], VLTgcar achieves considerable SUC gains of 14.5%/10.8%/14.5%
on LaSOT/LaSOTEx/TNL2K, respectively, which demonstrates the effectiveness of the proposed VL
tracker. Notably, our VLTgcar outperforms the current best VL tracker SNLT [20] for 11.2%/18.5%
on LaSOT/LaSOTEy¢, showing that the unified-adaptive vision-language representation is more
robust for VL tracking and is superior to simply fusing tracking results of different modalities. The
advancement of our method is preserved across different benchmarks. What surprises us more is
that the CNN-based VLTgcaR is competitive and even better than recent vision Transformer-based
approaches. For example, VLTscar outperforms TransT [8] on LaSOT and meanwhile runs faster
(43 FPS v.s. 32 FPS) and requires less training pairs (2.4 x 107 v.s. 3.8 x 107). By applying our
method to TransT, the new tracker VLTt improves the baseline to 67.3% in SUC with 2.4% gains
on LaSOT while being faster, showing its generality.

4.3 Component-wise Ablation

We analyze the influence of each component in our method to show the effectiveness and rationality
of the proposed ModaMixer and ASS. The ablation experiments are conducted on VLTgcar with
“O-tensor” setting (discussed in Sec. 4.4), and results are presented in Tab. 3. By directly applying
the ModaMixer on the baseline SiamCAR [23] (“ResNet50+ModaMixer”), it obtains SUC gains
of 6.9% on LaSOT (@v.5.®). This verifies that the unified VL representation effectively improves
tracking robustness. One interesting observation is that ASS improves vision-only baseline for 1.4%
percents on LaSOT (®v.5.®), but when equipping with ModaMixer, it surprisingly further brings
7.6% SUC gains (®v.5.®), which shows the complementarity of multimodal representation learning
(ModaMixer) and the proposed ASS.

*GOT-10k [28] provides simple descriptions for object/motion/major/root class, e.g., “dove, walking, bird,
animal”, in each video. We concatenate these words to obtain a pseudo language description.



Table 3: Ablation on ModaMixer and asymmetrical searching strategy (ASS).

#| Method | ModaMixer| ASS LaSOT TNL2K
SUC Pxorm P | SUC Pnoyn P
@ | Baseline - - 50.7 60.0 51.0 | 35.3 43.6 38.4
®| VLTscan - | 576 658 611 | 415 492 432
®| VLTscar - J | 521 598 506 | 407 472 402
@ | VLTscaR J | 652 749 691|483 552 466

Table 4: Comparisons with two strategies (i.e., “O-tensor” and “template”) and different language
settings during inference.

LaSOT TNL2K
SUC Pnxorm P | SUC Pynoym P
w/. language | 65.2 749  69.1 | 483 552  46.6
0-tensor | w/o. language | 50.8 579 526 | 395 471 412
Pse. language | 53.1 60.4 55.0 | 38.1 457  39.6

Method Settings

VLTscar w/. language | 63.9 733 679 | 498 583 S5I.1
template | w/o. language | 534  60.7 54.6 | 41.1 49.1 429
Pse. language | 51.6 58.1 534 | 38.8 46.6  40.5
w/. language | 66.3 770 70.5 | 522 58.6  52.1
0-tensor | w/o. language | 60.7 71.1  63.1 | 48.2 54.6  46.8
Pse. language | 59.3 68.6 622 | 493 55.7 492
VLT 1

w/. language | 67.3 78.0  72.1 | 53.1 593 533
template | w/o. language | 61.0 71.5 634 | 49.1 55.5 483
Pse. language | 59.7 69.2 63.0 | 50.0 56.3 50.3

4.4 Further Analysis

Dealing with videos without language description during training. As mentioned above, language
annotations are not provided in several training datasets (e.g., YTB-BBox [43]). We design two
strategies to handle that. One is to use “O-tensor” as language embedding, and the other is to replace
the language embedding with visual features which are generated by pooling template feature in the
bounding box (dubbed as “template”). As shown in Tab. 2, the two strategies perform competitively,
but the one with visual feature (i.e., VLT, r and VLT-4p) is slightly better in average.

No/Pseudo description during inference. VL trackers require the first frame of a video is annotated
with a language description. One may wonder that what if there is no language description? Tab. 4
presents the results by removing the description and using that generated with an recent advanced
image-caption method [41] (in ICML2021) based on VLTscar and VLTt with “O-tensor” and
“template” settings. The results show that, without language description, tracking performances
heavily degrade (e.g., 63.9% — 53.4%, 67.3% — 61.0% SUC on LaSOT of VLT{.,, and VLT 4,
respectively), verifying that the high-level semantics in language do help in improving robustness.
Even though, the performances are still better than the vision-only baseline. Surprisingly, when using
the generated description, it doesn’t show promising results (e.g., 51.6% of VLTd 4 and 59.7% of
VLT, indicating that it is still challenging to generate accurate caption in real-world cases and
noisy caption even brings negative effects to the model.

Symmetrical or Asymmetrical? The proposed asymmetrical searching strategy is essential for
achieving an adaptive vision-language representation. As illustrated in Tab. 5a, we experiment by
searching for a symmetrical network (including both backbone and Blockagg in the ModaMixer)
based on VLT, , g, but it is inferior to the asymmetrical counterpart for 3.9%/6.2% of success rate
(SUC) and precision (P) on LaSOT [17], respectively, which empirically proves our argument.

Asymmetry in ModaMixer. The asymmetry is used in not only the backbone network, but also
the ModaMixer. In our work, the post-processing layers for different signals (visual and mixed
features) are decided by ASS, which enables the adaption at both semantic levels (i.e., network
depth) and different input signals (i.e., template and search, pure-vision and mixed feature in each



Table 5: Evaluating different settings on LaSOT: (a) the influence of symmetrical and our asymmetri-
cal design, (b) adopting fixed ShuffleNet block or searching the post-processing block in ModaMixer,
and (c) removing the residual connection (dubbed as “Res”) of ModaMixer.

(a) (b) (c)

Settings SucC P Settings suCc P Settings | SUC P
symmetrical 60.0 61.7 Shuffle-ModaMixer | 59.1 62.2 w/o. Res| 61.1 63.6
asymmetrical 639 679 NAS-ModaMixer | 639 67.9 w/. Res | 63.9 67.9

Table 6: Comparing different data volumes and sources for training. “SiamCAR Four Datasets”
consist of VID, YOUTUBEBB, DET and COCO, “SiamCAR Seven Datasets” consist of VID,
YOUTUBEBB, DET, COCO, GOT-10K, LaSOT and TNL2K, “TransT Four Datasets” consist of
COCO, GOT-10K, LaSOT and TrackingNet.

LaSOT TNL2K

# Method Data Volume Data Source SUC p SUC p

® | SiamCAR 60W x20Epoch SiamCAR Four Datasets 50.7 51.0 | 353 384
@ | SiamCAR 60W x 20Epoch LaSOT 51.6 523 | 350 364
® | SiamCAR | 120W x20Epoch SiamCAR Seven Datasets 487 46.6 | 39.7 39.2
@ | VLTscar 60W x 20Epoch LaSOT 570 58.6 | 39.0 39.8
® | VLTscarR 120W x20Epoch SiamCAR Seven Datasets 639 679 | 483 46.6
® TransT 3.8W x1000Epoch TransT Four Datasets 64.9 69.0 | 50.7 51.7
@ TransT 3.8Wx1000Epoch | TransT Four Datasets, TNL2K | 62.2 652 | 51.2 523
VLT 11 3.8Wx1000Epoch | TransT Four Datasets, TNL2K | 67.3 72.1 | 53.1 533

ModaMixer). As in Tab. 5b, when replacing the post-processing layers with a fixed ShuffleNet block
from SPOS [26] (i.e., inheriting structure and weights from the last block in each backbone stage),
the performance of VLT, drops from 63.9% to 59.1% in SUC on LaSOT. This reveals that the
proposed ASS is important for building a better VL learner.

Residual Connection of ModaMixer The residual connection [27] is a commonly used trick to
avoid information loss. In our VL representation learning, it provides more vision messages for better
multimodal fusion. We experiment by removing the structure based on VLTgcar with the "template”
setting as shown in Tab. 5c. Compared to the default setting (i.e., w/. Res), the loss of additional
vision details brings decreases for 2.7%/2.1% of SUC on LaSOT/TNL2K, respectively. Even though,
the performance is still much higher than the baseline. This demonstrates the improvements are
mainly attributed to the multimodal fusion.

Volume and Source of Training Data. As common wisdom, the tracking performance is deeply
influenced by training data volume and source. As illustrated in Tab. 6, we experiment by comparing
VLT{ o> VLT and their baselines (i.e., SiamCAR and TransT) with different data settings:

(1) We retrain SiamCAR with the same data setting of VLTscar (® v.s. ®). Compared to the default
setting (@), double data volume and three more data sources contain different biases, which affect
the trained model to produce biased outcomes, as illustrated in [7, 30, 38]. From the results (®),
the addition of TNL2K significantly improves the default @ with 4.4% gains in SUC on TNL2K,
whereas the performance on LaSOT slightly decreases. Compared to VLTscar with the same setting
(®), ® is still suppressed for 8.6%/7.4% of SUC and P on TNL2K, respectively.

(2) We also retrain VLTgcar With the only LaSOT (@), which keeps aligned with @. The SUC scores
on LaSOT and TNL2K degrade heavily to 57.0%/39.0% compared to the default ®, respectively.
This is caused by the great reduction of the language-annotated training data, i.e., from 1120
(LaSOT)+1300 (TNL2K)+9335 (GOT-10k) to 1120 (LaSOT). Our model is hard to learn a good
multimodal representation with the quite less language-annotated training data, which violates
our intention. Even though, our VLTscar (@) still outperforms the baseline SiamCAR (@) for
5.4%/4.0% of SUC scores on LaSOT/TNL2K.

(3) TransT is also retrained with the same data setting as VLT (@ v.s. ®). More data sources bring
similar biases and influence the performance as SiamCAR, compared to default TransT (®). Our
VLTt (®) still achieves superior scores on both LaSOT and TNL2K.



Max. Score
after fusion

Min. Score
before fusion

(a) Channels visualization with max/min selection scores (b) Activation maps

Figure 4: (a) feature channel with maximum/minimum (top/bottom) selection scores from ModaMixer
in stagel-4. (b) activation map before/after (top/bottom) multimodal fusion in ModaMixer.

Table 7: Results of applying ModaMixer and ASS to SiamRPN++.

LaSOT TNL2K
SUC Pnom P | SUC Pynoym P
VLTrpNn++ | 59.0 684 626 | 458 542 474
SiamRPN++ | 49.6 569 49.1 | 413 482 412

Method

Channel selection by ModaMixer. ModaMixer translates the language description to a channel
selector to reweight visual features. As shown in Fig. 4, the channel activation maps with maximum
selection scores always correspond to the target, while the surrounding distractors are successfully
assigned with minimum scores (Fig. 4 (a)-bottom). Besides, with multimodal fusion (or channel
selection), the network can enhance the response of target and meanwhile suppress the distractors (see
Fig. 4 (b)). This evidences our argument that language embedding can identify semantics in visual
feature channels and effectively select useful information for localizing targets. More visualization
results are presented in appendix due to limited space.

Multimodal Vision-Language Tracking with SiamRPN++ [32] We apply our method to another
pure CNN-based tracker SiamRPN++ (dubbed VLTrpN++ ) and the results are shown in Tab. 7. Com-
pared with the baseline SiamRPN++, VLTrpN -+ achieves considerable SUC gains of 9.4%/4.5%
on LaSOT/TNL2K, respectively. This demonstrates the effectiveness of multimodal representation
learning (ModaMixer) and the proposed ASS.

5 Conclusion

In this work, we explore a different path to achieve SOTA tracking without complex Transformer,
i.e., multimodal VL tracking. The essence is a unified-adaptive VL representation, learned by our
ModaMixer and asymmetrical networks. In experiments, our approach surprisingly boosts a pure
CNN-based Siamese tracker to achieve competitive or even better performances compared to recent
SOTAs. Besides, we provide an theoretical explanation to evidence the effectiveness of our method.
We hope that this work inspires more possibilities for future tracking beyond Transformer.
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