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Abstract

Deep learning sometimes appears to work in unexpected ways. In pursuit of a
deeper understanding of its surprising behaviors, we investigate the utility of a
simple yet accurate model of a trained neural network consisting of a sequence of
first-order approximations telescoping out into a single empirically operational tool
for practical analysis. Across three case studies, we illustrate how it can be applied
to derive new empirical insights on a diverse range of prominent phenomena in the
literature – including double descent, grokking, linear mode connectivity, and the
challenges of applying deep learning on tabular data – highlighting that this model
allows us to construct and extract metrics that help predict and understand the a
priori unexpected performance of neural networks. We also demonstrate that this
model presents a pedagogical formalism allowing us to isolate components of the
training process even in complex contemporary settings, providing a lens to reason
about the effects of design choices such as architecture & optimization strategy, and
reveals surprising parallels between neural network learning and gradient boosting.

1 Introduction

Deep learning works, but it sometimes works in mysterious ways. Despite the remarkable recent
success of deep learning in applications ranging from image recognition [KSH12] to text generation
[BMR+20], there remain many contexts in which it performs in apparently unpredictable ways: neural
networks sometimes exhibit surprisingly non-monotonic generalization performance [BHMM19,
PBE+22], continue to be outperformed by gradient boosted trees on tabular tasks despite successes
elsewhere [GOV22], and sometimes behave surprisingly similarly to linear models [FDRC20]. The
pursuit of a deeper understanding of deep learning and its phenomena has since motivated many
subfields, and progress on fundamental questions has been distributed across many distinct yet
complementary perspectives that range from purely theoretical to predominantly empirical research.

Outlook. In this work, we take a hybrid approach and investigate how we can apply ideas primarily
used in theoretical research to investigate the behavior of a simple yet accurate model of a neural
network empirically. Building upon previous work that studies linear approximations to learning in
neural networks through tangent kernels (e.g. [JGH18, COB19], see Sec. 2), we consider a model
that uses first-order approximations for the functional updates made during training. However, unlike
most previous work, we define this model incrementally by simply telescoping out approximations
to individual updates made during training (Sec. 3) such that it more closely approximates the true
behavior of a fully trained neural network in practical settings. This provides us with a pedagogical
lens through which we can view modern optimization strategies and other design choices (Sec. 5), and
a mechanism with which we can conduct empirical investigations into several prominent deep learning
phenomena that showcase how neural networks sometimes generalize seemingly unpredictably.
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Across three case studies in Sec. 4, we then show that this model allows us to construct and extract
metrics that help predict and understand the a priori unexpected performance of neural networks.
First, in Sec. 4.1, we demonstrate that it allows us to extend [CJvdS23]’s recent model complexity
metric to neural networks, and use this to investigate surprising generalization curves – discovering
that the non-monotonic behaviors observed in both deep double descent [BHMM19] and grokking
[PBE+22] are associated with quantifiable divergence of train- and test-time model complexity.
Second, in Sec. 4.2, we show that it reveals perhaps surprising parallels between gradient boosting
[Fri01] and neural network learning, which we then use to investigate the known performance
differences between neural networks and gradient boosted trees on tabular data in the presence of
dataset irregularities [MKV+23]. Third, in Sec. 4.3, we use it to investigate the connections between
gradient stabilization and the success of weight averaging (i.e. linear mode connectivity [FDRC20]).

2 Background

Notation and preliminaries. Let fθ : X ⊆ Rd → Y ⊆ Rk denote a neural network parameterized
by (stacked) model weights θ ∈ Rp. Assume we observe a training sample of n input-output pairs
{xi, yi}ni=1, i.i.d. realizations of the tuple (X,Y ) sampled from some distribution P , and wish to
learn good model parameters θ for predicting outputs from this data by minimizing an empirical
prediction loss 1

n

∑n
i=1 ℓ(fθ(xi), yi), where ℓ : Rk × Rk → R denotes some differentiable loss

function. Throughout, we let k = 1 for ease of exposition, but unless otherwise indicated our
discussion generally extends to k > 1. We focus on the case where θ is optimized by initializing the
model with some θ0 and then iteratively updating the parameters through stochastic gradient descent
(SGD) with learning rates γt for T steps, where at each t ∈ [T ] = {1, . . . , T} we subsample batches
Bt ⊆ [n] = {1, . . . , n} of the training indices, leading to parameter updates ∆θt := θt − θt−1 as:

θt = θt−1 +∆θt = θt−1 − γt

|Bt|
∑

i∈Bt
∇θfθt−1

(xi)g
ℓ
it = θt−1 − γtTtg

ℓ
t (1)

where gℓit =
∂ℓ(fθt−1

(xi),yi)

∂fθt−1
(xi)

is the gradient of the loss w.r.t. the model prediction for the ith training

example, which we will sometimes collect in the vector gℓ
t = [gℓ1t, . . . , g

ℓ
nt]

⊤, and the p× n matrix
Tt = [1{1∈Bt}

|Bt| ∇θfθt−1
(x1), . . . ,

1{n∈Bt}
|Bt| ∇θfθt−1

(xn)] has as columns the gradients of the model
prediction with respect to its parameters for examples in the training batch (and 0 otherwise). Beyond
vanilla SGD, modern deep learning practice usually relies on a number of modifications to the update
described above, such as momentum and weight decay; we discuss these in Sec. 5.

Related work: Linearized neural networks and tangent kernels. A growing body of recent work
has explored the use of linearized neural networks (linear in their parameters) as a tool for theoretical
[JGH18, COB19, LXS+19] and empirical [FDP+20, LZB20, OJMDF21] study. In this paper, we
similarly make extensive use of the following observation (as in e.g. [FDP+20]): we can linearize
the difference ∆ft(x) := fθt

(x)− fθt−1
(x) between two parameter updates as

∆ft(x) = ∇θfθt−1(x)
⊤∆θt +O(||∆θt||2) ≈ ∇θfθt−1(x)

⊤∆θt := ∆f̃t(x) (2)

where the quality of the approximation ∆f̃t(x) is good whenever the parameter updates ∆θt from a
single batch are sufficiently small (or when the Hessian product ||∆θ⊤

t ∇2
θfθt−1

(x)∆θt|| vanishes).
If Eq. (2) holds exactly (e.g. for infinitesimal γt), then running SGD in the network’s parameter space
to obtain ∆θt corresponds to executing steepest descent on the function output fθ(x) itself using the
neural tangent kernel Kθ

t (x,xi) at time-step t [JGH18], i.e. results in functional updates

∆f̃t(x) ≈ −γt
∑

i∈[n] K
θ
t (x,xi)g

ℓ
it where Kθ

t (x,xi) :=
1{i∈Bt}

|Bt| ∇θfθt−1(x)
⊤∇θfθt−1(xi). (3)

Lazy learning [COB19] occurs as the model gradients remain approximately constant during training,
i.e. ∇θfθt

(x) ≈ ∇θfθ0
(x), ∀t ∈ [T ]. For learned parameters θT , this implies that the approxi-

mation f lin
θT

(x) = fθ0
(x) +∇θfθ0

(x)⊤(θT − θ0) holds – which is a linear function of the model
parameters, and thus corresponds to a linear regression in which features are given by the model
gradients ∇θfθ0(x) instead of the inputs x directly – whose training dynamics can be more eas-
ily understood theoretically. For sufficiently wide neural networks the ∇θfθt(x), and thus the
tangent kernel, have been theoretically shown to be constant throughout training in some settings
[JGH18, LXS+19], but in practice they generally vary during training, as shown theoretically in
[LZB20] and empirically in [FDP+20]. A growing theoretical literature [GPK22] investigates con-
stant tangent kernel assumptions to study convergence and generalization of neural networks (e.g.
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Figure 1: Illustration of the telescoping model of a trained neural network. Unlike the more
standard framing of a neural network in terms of an iteratively learned set of parameters, the telescoping model
takes a functional perspective on training a neural network in which an arbitrary test example’s initially random
prediction, fθ0(x), is additively updated by a linearized adjustment ∆f̃t(x) at each step t as in Eq. (5).

[JGH18, LXS+19, DLL+19, BM19, GMMM19, GSJW20]). This present work relates more closely
to empirical studies making use of tangent kernels and linear approximations, such as [LSP+20,
OJMDF21] who highlight differences between lazy learning and real networks, and [FDP+20] who
empirically investigate the relationship between loss landscapes and the evolution of Kθ

t (x,xi).

3 A Telescoping Model of Deep Learning

In this work, we explore whether we can exploit the approximation in Eq. (2) beyond the laziness
assumption to gain new insight into neural network learning. Instead of applying the approximation
across the entire training trajectory at once as in f lin

θT
(x), we consider using it incrementally at each

batch update during training to approximate what has been learned at this step. This still provides
us with a greatly simplified and transparent model of a neural network, and results in a much more
reasonable approximation of the true network. Specifically, we explore whether – instead of studying
the final model fθT

(x) as a whole – we can gain insight by telescoping out the functional updates
made throughout training, i.e. exploiting that we can always equivalently express fθT

(x) as:

fθT
(x) = fθ0

(x) +
∑T

t=1[fθt
(x)− fθt−1

(x)] = fθ0
(x) +

∑T
t=1 ∆ft(x) (4)

This representation of a trained neural network in terms of its learning trajectory rather than its
final parameters is interesting because we are able to better reason about the impact of the training
procedure on the intermediate updates ∆ft(x) than the final function fθT

(x) itself. In particular, we
investigate whether empirically monitoring behaviors of the sum in Eq. (4) while making use of the
approximation in Eq. (2) will enable us to gain practical insights into learning in neural networks,
while incorporating a variety of modern design choices into the training process. That is, we explore
the use of the following telescoping model f̃θT

(x) as an approximation of a trained neural network:

f̃θT
(x) := fθ0

(x) +

T∑
t=1

∇θfθt−1
(x)⊤∆θt︸ ︷︷ ︸

(i) The weight-averaging
representation

= fθ0
(x)−

T∑
t=1

∑
i∈[n]K

T
t (x,xi)g

ℓ
it︸ ︷︷ ︸

(ii) The kernel representation

(5)

Telescoping model of a trained neural network

where KT
t (x,xi) is determined by the neural tangent kernel as γtKθ

t (x,xi) in the case of standard
SGD (in which case (ii) can also be interpreted as a discrete-time approximation of [Dom20]’s path
kernel), but can take other forms for different choices of learning algorithm as we explore in Sec. 5.

Practical considerations. Before proceeding, it is important to emphasize that the telescoping
approximation described in Eq. (5) is intended as a tool for (empirical) analysis of learning in neural
networks and is not being proposed as an alternative approach to training neural networks. Obtaining
f̃θT

(x) requires computing ∇θfθt−1(x) for each training and testing example at each training step
t ∈ [T ], leading to increased computation over standard training. Additionally, these computational
costs are likely prohibitive for extremely large networks and datasets without further adjustments; for
this purpose, further approximations such as [MBS23] could be explored. Nonetheless, computing
f̃θT

(x) – or relevant parts of it – is still feasible in many pertinent settings as later illustrated in Sec. 4.
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Figure 2: Approximation error of
the telescoping (f̃θt(x), red) and the
linear model (f lin

θt
(x), gray).

How good is this approximation? In Fig. 2, we examine
the quality of f̃θt

(x) for a 3-layer fully-connected ReLU net-
work of width 200, trained to discriminate 3-vs-5 from 1000
MNIST examples using the squared loss with SGD or AdamW
[LH17]. In red, we plot its mean average approximation error
( 1
1000

∑
x∈Xtest

|fθt
(x) − f̃θt

(x)|) and observe that for small
learning rates γ the difference remains negligible. In gray we
plot the same quantity for f lin

θt
(x) (i.e. the first-order expansion

around θ0) for reference and find that iteratively telescoping out
the updates instead improves the approximation by orders of
magnitude – which is also reflected in their prediction perfor-
mance (see Appendix D.1). Unsurprisingly, γ controls approxi-
mation quality as it determines ||∆θt||. Further, γ interacts with
the optimizer choice – e.g. Adam(W) [KB14, LH17] naturally
makes larger updates due to rescaling (see Sec. 5) and therefore
requires smaller γ to ensure approximation quality than SGD.

4 A Closer Look at Deep Learning Phenomena Through a Telescoping Lens

Next, we turn to applying the telescoping model. Below, we present three case studies revisiting
existing experiments that provided evidence for a range of unexpected behaviors of neural networks.
These case studies have in common that they highlight cases in which neural networks appear to
generalize somewhat unpredictably, which is also why each phenomenon has received considerable
attention in recent years. For each, we then show that the telescoping model allows us to construct and
extract metrics that can help predict and understand the unexpected performance of the networks. In
particular, we investigate (i) surprising generalization curves (Sec. 4.1), (ii) performance differences
between gradient boosting and neural networks on some tabular tasks (Sec. 4.2), and (iii) the success
of weight averaging (Sec. 4.3). We include an extended literature review in Appendix A, a detailed
discussion of all experimental setups in Appendix C, and additional results in Appendix D.

4.1 Case study 1: Exploring surprising generalization curves and benign overfitting

Classical statistical wisdom provides clear intuitions about overfitting: models that can fit the training
data too well – because they have too many parameters and/or because they were trained for too long
– are expected to generalize poorly (e.g. [HTF09, Ch. 7]). Modern phenomena like double descent
[BHMM19], however, highlighted that pure capacity measures (capturing what could be learned in-
stead of what is actually learned) would not be sufficient to understand the complexity-generalization
relationship in deep learning [Bel21]. Raw parameter counts, for example, cannot be enough to under-
stand the complexity of what has been learned by a neural network during training because, even when
using the same architecture, what is learned could be wildly different across various implementation
choices within the optimization process – and even at different points during the training process of
the same model, as prominently exemplified by the grokking phenomenon [PBE+22]. Here, with the
goal of finding clues that may help predict phenomena like double descent and grokking, we explore
whether the telescoping model allows us to gain insight into the relative complexity of what is learned.

A complexity measure that avoids the shortcomings listed above – because it allows to consider a
specific trained model – was recently used by [CJvdS23] in their study of non-deep double descent.
As their measure p0ŝ builds on the literature on smoothers [HT90], it requires to express learned
predictions as a linear combination of the training labels, i.e. as f(x) = ŝ(x)y =

∑
i∈[n] ŝ

i(x)yi.
Then, [CJvdS23] define the effective parameters p0ŝ used by the model when issuing predictions for
some set of inputs {x0

j}j∈I0
with indices collected in I0 (here, I0 is either Itrain = {1, . . . , n} or

Itest = {n+ 1, . . . , n+m}) as p0ŝ ≡ p(I0, ŝ(·)) = n
|I0|

∑
j∈I0

||ŝ(x0
j )||2. Intuitively, the larger p0ŝ ,

the less smoothing across the training labels is performed, which implies higher model complexity.

Due to the black-box nature of trained neural networks, however, it is not obvious how to link learned
predictions to the labels observed during training. Here, we demonstrate how the telescoping model
allows us to do precisely that – enabling us to make use of p0ŝ as a proxy for complexity. We consider
the special case of a single output (k = 1) and training with squared loss ℓ(f(x), y) = 1

2 (y− f(x))2,
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and note that we can now exploit that the SGD weight update simplifies to

∆θt = γtTt(y − fθt−1) where y = [y1, . . . , yn]
⊤ and fθt = [fθt(x1), . . . , fθt(xn)]

⊤. (6)

Assuming the telescoping approximation holds exactly, this implies functional updates

∆f̃t(x) = γt∇θfθt−1
(x)⊤Tt(y − f̃θt−1

) (7)

which use a linear combination of the training labels. Note further that after the first SGD update

f̃θ1
(x) = fθ0

(x) + ∆f̃1(x) = γ1∇θfθ0
(x)⊤T1︸ ︷︷ ︸

sθ1 (x)

y + fθ0
(x)− γ1∇θfθ0

(x)⊤T1fθ0︸ ︷︷ ︸
c0θ1

(x)

(8)

which means that the first telescoping predictions f̃θ1
(x) are indeed simply linear combinations of the

training labels (and the predictions at initialization)! As detailed in Appendix B.1, this also implies
that recursively substituting Eq. (7) into Eq. (5) further allows us to write any prediction f̃θt

(x) as
a linear combination of the training labels and fθ0

(·), i.e. f̃θt
(x) = sθt

(x)y + c0θt
(x) where the

1×n vector sθt
(x) is a function of the kernels {Kt

t′(·, ·)}t′≤t, and the scalar c0θt
(x) is a function

of the {Kt
t′(·, ·)}t′≤t and fθ0(·). We derive precise expressions for sθt(x) and c0θt

(x) for different
optimizers in Appendix B.1 – enabling us to use sθt

(x) to compute p0ŝ as a proxy for complexity below.

Figure 3: Double descent in
MSE (top) and effective param-
eters p0ŝ (bottom) on CIFAR-10.

Double descent: Model complexity vs model size. While training
error always monotonically decreases as model size (measured by pa-
rameter count) increases, [BHMM19] made a surprising observation
regarding test error in their seminal paper on double descent: they
found that test error initially improves with additional parameters
and then worsens when the model is increasingly able to overfit to
the training data (as is expected) but can improve again as model
size is increased further past the so-called interpolation threshold
where perfect training performance is achieved. This would appear
to contradict the classical U-shaped relationship between model
complexity and test error [HTF09, Ch. 7]. Here, we investigate
whether tracking p0ŝ on train and test data separately will allow us
to gain new insight into the phenomenon in neural networks.

In Fig. 3, we replicate the binary classification example of double
descent in neural networks of [BHMM19], training single-hidden-layer ReLU networks of increasing
width to distinguish cats and dogs on CIFAR-10 (we present additional results using MNIST in
Appendix D.2). First, we indeed observe the characteristic behavior of error curves as described
in [BHMM19] (top panel). Measuring learned complexity using p0ŝ , we then find that while ptrainŝ
monotonically increases as model size is increasing, the effective parameters used on the test data
ptestŝ implied by the trained neural network decrease as model size is increased past the interpolation
threshold (bottom panel). Thus, paralleling the findings made in [CJvdS23] for linear regression and
tree-based methods, we find that distinguishing between train- and test-time complexity of a neural
network using p0ŝ provides new quantitative evidence that bigger networks are not necessarily learning
more complex prediction functions for unseen test examples, which resolves the ostensible tension
between deep double descent and the classical U-curve. Importantly, note that ptestŝ can be computed
without access to test-time labels, which means that the observed difference between ptrainŝ and ptestŝ
allows to quantify whether there is benign overfitting [BLLT20, YHT+21] in a neural network.

Grokking: Model complexity throughout training. The grokking phenomenon [PBE+22] then
showcased that improvements in test performance during a single training run can occur long after
perfect training performance has been achieved (contradicting early stopping practice!). While
[LMT22] attribute this to weight decay causing ||θt|| to shrink late in training – which they demon-
strate on an MNIST example using unusually large θ0 – [KBGP24] highlight that grokking can also
occur as the weight norm ||θt|| grows later in training – which they demonstrate on a polynomial
regression task. In Fig. 4 we replicate2 both experiments while tracking p0ŝ to investigate whether

2As detailed in Appendix C, we replicate [KBGP24]’s experiment exactly but adapt [LMT22]’s experiment
into a binary classification task with lower learning rate γ to enable the use of f̃θT (x). The reduction of γ is
needed here as the ∆θt are otherwise too large to obtain an accurate approximation and has a side effect that the
grokking phenomenon appears visually less extreme as perfect training performance is achieved later in training.
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Figure 4: Grokking in mean squared error on a polynomial regression task (1, replicated from [KBGP24]) and
in misclassification error on MNIST using a network with large initialization (2, replicated from [LMT22]) (top),
against effective parameters (bottom). Column (3) shows test results on MNIST with standard initialization
(with and without sigmoid activation) where time to generalization is quick and grokking does not occur.

this provides new insight into this apparent disagreement. Then, we observe that the continued
improvement in test error, past the point of perfect training performance, is associated with diver-
gence of ptrainŝ and ptestŝ in both experiments (analogous to the double descent experiment in Fig. 3),
suggesting that grokking may reflect transition into a measurably benign overfitting regime during
training. In Appendix D.2, we additionally investigate mechanisms known to induce grokking, and
show that later onset of generalization indeed coincides with later divergence of ptrainŝ and ptestŝ .

Inductive biases & learned complexity. We observed that the large θ0 in [LMT22]’s MNIST exam-
ple of grokking result in very large initial predictions |fθ0

(x)|≫1. Because no sigmoid is applied, the
model needs to learn that all yi∈ [0, 1] by reducing the magnitude of predictions substantially – large
θ0 thus constitute a very poor inductive bias for this task. One may expect that the better an inductive
bias is, the less complex the component of the final prediction that is learned from data. To test whether
this intuition is quantifiable, we repeat the MNIST experiment with standard initialization scale, with
and without sigmoid activation σ(·), in column (3) of Fig. 4 (training results shown in Appendix D.2
for readability). We indeed find that both not only speed up learning significantly (a generalizing
solution is found in 102 instead of 105 steps), but also substantially reduce effective parameters
used, where the stronger inductive bias – using σ(·) – indeed leads to the least learned complexity.

Takeaway Case Study 1. The telescoping model enables us to use p0ŝ as a proxy for learned complexity,
whose relative behavior on train and test data can quantify benign overfitting in neural networks.

4.2 Case study 2: Understanding differences between gradient boosting and neural networks

Despite their overwhelming successes on image and language data, neural networks are – perhaps
surprisingly – still widely considered to be outperformed by gradient boosted trees (GBTs) on tabular
data, an important modality in many data science applications. Exploring this apparent Achilles heel
of neural networks has therefore been the goal of multiple extensive benchmarking studies [GOV22,
MKV+23]. Here, we concentrate on a specific empirical finding of [MKV+23]: their results suggest
that GBTs may particularly outperform deep learning on heterogeneous data with greater irregularity
in input features, a characteristic often present in tabular data. Below, we first show that the telescoping
model offers a useful lens to compare and contrast the two methods, and then use this insight to provide
and test a new explanation of why GBTs can perform better in the presence of dataset irregularities.

Identifying (dis)similarities between learning in GBTs and neural networks. We begin by
introducing gradient boosting [Fri01] closely following [HTF09, Ch. 10.10]. Gradient boosting (GB)
also aims to learn a predictor f̂GB : X → Rk minimizing expected prediction loss ℓ. While deep
learning solves this problem by iteratively updating a randomly initialized set of parameters that
transform inputs to predictions, the GB formulation iteratively updates predictions directly without
requiring any iterative learning of parameters – thus operating in function space rather than parameter
space. Specifically, GB, with learning rate γ and initialized at predictor h0(x), consists of a sequence
f̂GB
T (x) = h0(x)+γ

∑T
t=1 ĥt(x) where each ĥt(x) improves upon the existing predictions f̂GB

t−1(x).
The solution to the loss minimization problem can be achieved by executing steepest descent in
function space directly, where each update ĥt simply outputs the negative training gradients of the loss
function with respect to the previous model, i.e. ĥt(xi) = −gℓit where gℓit = ∂ℓ(f̂GB

t−1(xi), yi)/∂f̂GB
t−1(xi).
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However, this process is only defined at the training points {xi, yi}i∈[n]. To obtain an estimate of the
loss gradient for an arbitrary test point x, each iterative update instead fits a weak learner ĥt(·) to
the current input-gradient pairs {xi,−gℓit}i∈[n] which can then also be evaluated new, unseen inputs.
While this process could in principle be implemented using any base learner, the term gradient boost-
ing today appears to exclusively refer to the approach outlined above implemented using shallow trees
as ĥt(·) [Fri01]. Focusing on trees which issue predictions by averaging the training outputs in each
leaf, we can make use of the fact that these are sometimes interpreted as adaptive nearest neighbor es-
timators or kernel smoothers [LJ06, BD10, CJvdS24], allowing us to express the learned predictor as:

f̂GB(x) = h0(x)− γ

T∑
t=1

∑
i∈[n]

1{lht
(x) = lht

(xi)}
nl(x)

gℓit = h0(x)− γ

T∑
t=1

∑
i∈[n]

Kĥt
(x,xi)g

ℓ
it (9)

where lĥt
(x) denotes the leaf example x falls into, nl(x) =

∑
i∈[n] 1{lht

(x) = lht
(xi)} is the number

of training examples in said leaf and Kĥt
(x,xi) = 1/nleaf(x)1{lĥt

(x) = lĥt
(xi)} is thus the kernel

learned by the tth tree ĥt(·). Comparing Eq. (9) to the kernel representation of the telescoping model
of neural network learning in Eq. (5), we make a perhaps surprising observation: the telescoping model
of a neural network and GBTs have identical structure and differ only in their used kernel! Below,
we explore whether this new insight allows to understand some of their performance differences.

Why can GBTs outperform deep learning in the presence of dataset irregularities? Comparing
Eq. (5) and Eq. (9) thus suggests that at least some of the performance differences between neural
networks and GBTs are likely to be rooted in the differences between the behavior of the neural
network tangent kernels Kθ

t (x,xi) and GBT’s tree kernels Kĥt
(x,xi). One difference is obvious

and purely architectural: it is possible that either kernel encodes a better inductive bias to fit the
underlying outcome-generating process of a dataset at hand. Another difference is more subtle
and relates to the behavior of the learned model on new inputs x: the tree kernels are likely to
behave much more predictable at test-time than the neural network tangent kernels. To see this,
note that for the tree kernels we have that ∀x ∈ X and ∀i ∈ [n], 0 ≤ Kĥt

(x,xi) ≤ 1 and∑
i∈[n] Kĥt

(x,xi) = 1; importantly, this is true regardless of whether x = xi for some i or not.
For the tangent kernels on the other hand, Kθ

t (x,xi) is in general unbounded and could behave
very differently for x not observed during training. This leads us to hypothesize that this difference
may be able to explain [MKV+23]’s observation that GBTs perform better whenever features are
heavy-tailed: if a test point x is very different from training points, the kernels implied by the neural
network kθ

t (x) := [Kθ
t (x,x1), . . . ,K

θ
t (x,xn)]

⊤ may behave very differently than at train-time
while the tree kernels kĥt

(x) := [Kĥt
(x,x1), . . . ,Kĥt

(x,xn)]
⊤ will be less affected. For instance,

1√
n
≤ ||kĥt

(x)||2 ≤ 1 for all x while ||kθ
t (x)||2 is generally unbounded.

Figure 5: Neural Networks vs GBTs: Rel-
ative performance (top) and behavior of ker-
nels (bottom) with increasing test data irreg-
ularity using the houses dataset.

We empirically test this hypothesis on standard tabular
benchmark datasets proposed in [GOV22]. We wish to
examine the performance of the models and the behav-
ior of the kernels as inputs become increasingly irregular,
evaluating if GBT’s kernels indeed display more consis-
tent behavior compared to the network’s tangent kernels.
As a simple notion for input irregularity, we apply prin-
cipal component analysis to the inputs to obtain a lower
dimensional representation of the data and sort the ob-
servations according to their distance from the centroid.
For a fixed trained model, we then evaluate on test sets
consisting of increasing proportions p of the most irreg-
ular inputs (those in the top 10% furthest from the cen-
troid). We compare the GBTs to neural networks by ex-
amining (i) the most extreme values their kernel weights
take at test-time relative to the training data (measured

as
1
T

∑T
t=1 maxj∈Ip

test
||kt(xj)||2

1
T

∑T
t=1 maxi∈Itrain

||kt(xi)||2
) and (ii) how their rela-

tive mean squared error (measured as MSEp
NN−MSEp

GBT

MSE0
NN−MSE0

GBT
)

changes as the proportion p of irregular examples in-
creases. In Fig. 5 using houses and in Appendix D.3
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using additional datasets, we first observe that GBTs outperform the neural network already in the
absence of irregular examples; this highlights that there may indeed be differences in the suitability of
the kernels in fitting the outcome-generating processes. Consistent with our expectations, we then find
that, as the test data becomes more irregular, the performance of the neural network decays faster than
that of the GBTs. Importantly, this is well tracked by their kernels, where the unbounded nature of
the network’s tangent kernel indeed results in it changing its behavior on new, challenging examples.

Takeaway Case Study 2. Eq. (5) provides a new lens for comparing neural networks to GBTs, and high-
lights that unboundedness in kθ

t (x) can predict performance differences due to dataset irregularities.

4.3 Case study 3: Towards understanding the success of weight averaging

The final interesting phenomenon we investigate is that it is sometimes possible to simply average the
weights θ1 and θ2 obtained from two stochastic training runs of the same model, resulting in a weight-
averaged model that performs no worse than the individual models [FDRC20, AHS22] – which has
important applications in areas such as federated learning. This phenomenon is known as linear
mode connectivity (LMC) and is surprising as, a priori, it is not obvious that simply averaging the
weights of independent neural networks (instead of their predictions, as in a deep ensemble [LPB17]),
which are highly nonlinear functions of their parameters, would not greatly worsen performance.
While recent work has demonstrated empirically that it is sometimes possible to weight-average an
even broader class of models after permuting weights [SJ20, ESSN21, AHS22], we focus here on
understanding when LMC can be achieved for two models trained from the same initialization θ0.

In particular, we are interested in [FDRC20]’s observation that LMC can emerge during training: the
weights of two models θt′

jT , j ∈ {1, 2}, which are initialized identically and follow identical optimiza-
tion routine up until checkpoint t′ but receive different batch orderings and data augmentations after
t′, can be averaged to give an equally performant model as long as t′ exceeds a so-called stability
point t∗, which was empirically discovered to occur early in training in [FDRC20]. Interestingly,
[FDP+20, Sec. 5] implicitly hint at an explanation for this phenomenon in their empirical study of
tangent kernels and loss landscapes, where they found an association between the disappearance of
loss barriers between solutions during training and the rate of change in Kθ

t (·, ·). We further explore
potential implications of this observation through the lens of the telescoping model below.

Why a transition into a constant-gradient regime would imply LMC. Using the weight-averaging
representation of the telescoping model, it becomes easy to see that not only would stabilization of the
tangent kernel be associated with lower linear loss barriers, but the transition into a lazy regime during
training – i.e. reaching a point t∗ after which the model gradients no longer change – can be sufficient
to imply LMC during training as observed in [FDRC20] under a mild assumption on the performance
of the two networks’ ensemble. To see this, let L(f) := EX,Y∼P [ℓ(f(X), Y )] denote the expected
loss of f and recall that if supα∈[0,1]L(fαθt′

1T+(1−α)θt′
2T
)− [αL(fθt′

1T
) + (1− α)L(fθt′

2T
)] ≤ 0 then

LMC is said to hold. If we assume that ensembles f̄α(x) := αfθt′
1T
(x)+ (1−α)fθt′

2T
(x) perform no

worse than the individual models (i.e. L(f̄α) ≤ αL(fθt′
1T
)+(1−α)L(fθt′

2T
) ∀α ∈ [0, 1], as is usually

the case in practice [ABPC23]), then one case in which LMC is guaranteed is if the predictions of
weight-averaged model and ensemble are identical. In Appendix B.2, we show that if there exists
some t∗ ∈ [0, T ) after which the model gradients ∇θfθt∗

jt
(·) no longer change (i.e. for all t′ ≥ t∗ the

learned updates θt′

jt lie in a convex set Θstable
j in which ∇θfθt′

jt
(·) ≈ ∇θfθt∗ (·)), then indeed

f̄α(x) ≈ fαθt′
1T+(1−α)θt′

2T
(x) ≈ fθt′ (x) +∇θfθt∗ (x)

⊤∑T
t=t′+1(α∆θt′

1t + (1− α)∆θt′

2t). (10)

That is, transitioning into a regime with constant model gradients during training can imply LMC
because the ensemble and weight-averaged model become near-identical. This also has as an
immediate corollary that models with the same θ0 which train fully within this regime (e.g. those
discussed in [JGH18, LXS+19]) will have t∗ = 0. Note that, when using nonlinear (final) output
activation σ(·) the post-activation model gradients will generally not become constant during training
(as we discuss in Sec. 5 for the sigmoid and as was shown theoretically in [LZB20] for general
nonlinearities). If, however, the pre-activation model gradients become constant during training
and the pre-activation ensemble – which averages the two model’s pre-activation outputs before
applying σ(·) – performs no worse than the individual models (as is also usually the case in practice
[JLCvdS24]), then the above also immediately implies LMC for such models.
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Figure 6: Linear mode connectivity and gradient changes by t′. (1) Decrease in accuracy when using
averaged weights αθt′

1T + (1− α)θt′
2T for randomly initialized (orange) and pre-trained ResNet-20 (green).

(2) & (3) Changes in model gradients by layer for a randomly initialized (2) and pretrained (3) model.

This suggests a candidate explanation for why LMC emerged at specific points in [FDRC20]. To test
this, we replicate their CIFAR-10 experiment using a ResNet-20 in Fig. 6. In addition to plotting
the maximal decrease in accuracy when comparing fαθt′

1T+(1−α)θt′
2T
(x) to the weighted average of

the accuracies of the original models as [FDRC20] to measure LMC in (1), we also plot the squared
change in (pre-softmax) gradients (∇θfθt′+390

(x)−∇θfθt′ (x))
2 over the next epoch (390 batches)

after checkpoint t′, averaged over the test set and the parameters in each layer in (2). We find that the
disappearance of the loss barrier indeed coincides with the time in training when the model gradients
become more stable across all layers. Most saliently, the appearance of LMC appears to correlate
with the stabilization of the gradients of the linear output layer. However, we also continue to observe
some changes in other model gradients, which indicates that these models do not train fully linearly.

Pre-training and weight averaging. Because weight averaging methods have become increasingly
popular when using pre-trained instead of randomly initialized models [NSZ20, WIG+22, CVSK22],
we are interested in testing whether pre-training may improve mode connectability through stabilizing
the model gradients. To test this, we replicate the above experiment with the same architecture
pre-trained on the SVHN dataset (in green in Fig. 6(1)). Mimicking findings of [NSZ20], we first
find the loss barrier to be substantially lower after pre-training. In Fig. 6(3), we then observe that
the gradients in the hidden and final layers indeed change less and stabilize earlier in training than
in the randomly initialized model – yet the gradients of the BatchNorm parameters change more.
Overall, the findings in this section thus highlight that while there may be a connection between
gradient stabilization and LMC, it cannot fully explain it – suggesting that further investigation into
the phenomenon using this lens, particularly into the role of BatchNorm layers, may be fruitful.

Takeaway Case Study 3. Reasoning through the learning process by telescoping out functional updates
suggests that averaging model parameters trained from the same checkpoint can be effective if their
models’ gradients remain stable, however, this cannot fully explain LMC in the setting we consider.

5 The Effect of Design Choices on Linearized Functional Updates

The literature on the neural tangent kernel primarily considers plain SGD, while modern deep learning
practice typically relies on a range of important modifications to the training process (see e.g. [Pri23,
Ch. 6]) – this includes many of the experiments demonstrating surprising deep learning phenomena we
examined in Sec. 4. To enable us to use modern optimizers above, we derived their implied linearized
functional updates through the weight-averaging representation ∆f̃t(x) = ∇θfθt−1(x)

⊤∆θt, which
in turn allows us to define KT

t (·, ·) in Eq. (5) for these modifications using straightforward algebra.
As a by-product, we found that this provides us with an interesting and pedagogical formalism to
reason about the relative effect of different design choices in neural network training, and elaborate
on selected learnings below.

• Momentum with scalar hyperparameter β1 smoothes weight updates by employing an exponentially
weighted average over the previous parameter gradients as ∆θt = −γt

1−β1

1−βt
1

∑t
k=1 β

t−k
1 Tkg

ℓ
k

instead of using the current gradients alone. This implies linearized functional updates

∆f̃t(x) = −γt
1−β1

1−βt
1

∑
i∈[n](K

θ
t (x,xi)g

ℓ
it +

∑t−1
k=1 β

t−k
1 Kθ

t,k(x,xi)g
ℓ
ik) (11)

where Kθ
t,k(x,xi) :=

1{i∈Bk}
|Bk| ∇θfθt−1

(x)⊤∇θfθk−1
(xi) denotes the cross-temporal tangent kernel.

Thus, the functional updates also utilize previous loss gradients, where their weight is determined
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using an inner product of the model gradient features from different time steps. If ∇θfθt(x) is
constant throughout training and we use full-batch GD, then the contribution of each training example
i to ∆f̃t(x) reduces to −γtK

θ
0 (x,xi)

1−β1

1−βt
1
[
∑t

k=1 β
t−k
1 gℓik], an exponentially weighted moving

average over its past loss gradients – making the effect of momentum on functional updates analogous
to its effect on updates in parameter space. However, if ∇θfθt

(x) changes over time, it is e.g.
possible that Kθ

k,t(x,xi) has opposite sign from Kθ
t (x,xi) in which case momentum reduces instead

of amplifies the effect of a previous gℓit. This is more obvious when re-writing Eq. (11) to collect all
terms containing a specific gℓit, leading to KT

t (x,xi) =
∑T

k=t γk
1−β1

1−βk
1
βk−t
1 Kk,t(x,xi) for Eq. (5).

• Weight decay with scalar hyperparameter λ uses ∆θt = −γt(Ttg
ℓ
t+λθt−1). For constant learning

rate γ this gives θt = θ0 −
∑t

k=1 γ(Tkg
ℓ
k + λθk−1) = (1− λγ)tθ0 − γ

∑t
k=1(1− λγ)t−kTkg

ℓ
k.

This then implies linearized functional updates

∆f̃t(x) = −γ
∑

i∈[n](Kt(x,xi)g
ℓ
it − λγ

∑t−1
k=1(1− λγ)t−1−kKt,k(x,xi)g

ℓ
ik)

−γλ(1− λγ)t−1∇θfθt−1
(x)⊤θ0

(12)

For full-batch GD and constant tangent kernels, −γKθ
0 (x,xi)[git − λγ

∑t−1
k=1(1 − λγ)t−1−kgik]

is the contribution of each training example to the functional updates, which effectively decays the
previous contributions of this example. Further, comparing the signs in Eq. (12) to Eq. (11) highlights
that momentum can offset the effect of weight decay on the learned updates in function space (in
which case weight decay mainly acts through the term decaying the initial weights θ0).

• Adaptive & parameter-dependent learning rates are another important modification in practice
which enable the use of different step-sizes across parameters by dividing ∆θt elementwise by a p×1
scaling vector ϕt. Most prominently, this is used to adaptively normalize the magnitude of updates
(e.g. Adam [KB14] uses ϕt =

√
1−β2

1−βt
2

∑t
k=1 β

t−k
2 [Tkgℓ

k]
2 + ϵ). When combined with plain SGD,

this results in kernel Kϕ
t (x,xi) = 1{i∈Bt}

|Bt| ∇θfθt−1
(x)⊤diag( 1

ϕt
)∇θfθt−1

(xi). This expression
highlights that ϕt admits an elegant interpretation as re-scaling the relative influence of features on
the tangent kernel, similar to structured kernels in non-parametric regression [HTF09, Ch. 6.4.1].

• Architecture design choices also impact the form of the kernel. One important practical example
is whether fθ(x) applies a non-linear activation function to the output gθ(x) ∈ R of its final layer.
Consider the choice of using the sigmoid σ(z) = 1

1+e−z for a binary classification problem and
recall ∂

∂zσ(z) = σ(z)(1 − σ(z)) ∈ (0, 1/4], which is largest where σ(z) = 1/2 and smallest when
σ(z) → 0 ∨ 1. If Kθ,g

t (x,xi) :=
1{i∈Bt}

|Bt| ∇θ gθt−1
(x)⊤∇θ gθt−1

(xi) denotes the tangent kernel of
the model without activation, it is easy to see that the tangent kernel of the model σ(gθt

(x)) is

Kθ,σ
t (x,xi) = σ(gθt

(x))(1− σ(gθt
(x)))σ(gθt

(xi))(1− σ(gθt
(xi)))K

θ,g
t (x,xi) (13)

indicating that Kθ,σ
t (x,xi) will give relatively higher weight in functional updates to training

examples i for which the model is uncertain (σ(g(xi)) ≈ 1/2)) and lower weight to examples where
the model is certain (σ(gθt

(xi)) ≈ 0 ∨ 1) – regardless of whether σ(gθt
(xi)) is the correct label.

Conversely, Eq. (13) also implies that when comparing the functional updates of σ(gθ(x)) to those
of gθ(x) across inputs x ∈ X , updates with σ(·) will be relatively larger for x where the model is
uncertain (σ(gθt

(x)) ≈ 1/2)). Finally, Eq. (13) also highlights that the (post-activation) tangent kernel
of a model with sigmoid activation will generally not be constant in t unless the model predictions
σ(gθt

(x)) do not change.

6 Conclusion

This work investigated the utility of a telescoping model for neural network learning, consisting
of a sequence of linear approximations, as a tool for understanding several recent deep learning
phenomena. By revisiting existing empirical observations, we demonstrated how this perspective
provides a lens through which certain surprising behaviors of deep learning can become more
intelligible. In each case study, we intentionally restricted ourselves to specific, noteworthy empirical
examples which we proceeded to re-examine in greater depth. We believe that there are therefore many
interesting opportunities for future research to expand on these initial findings by building upon the
ideas we present to investigate such phenomena in more generality, both empirically and theoretically.
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Appendix

This appendix is structured as follows: Appendix A presents an extended literature review, Ap-
pendix B presents additional theoretical derivations, Appendix C presents an extended discussion
of experimental setups and Appendix D presents additional results. The NeurIPS paper checklist is
included after the appendices.

A Additional literature review

In this section, we present an extended literature review related to the phenomena we consider in
Sec. 4.1 and Sec. 4.3.

A.1 The model complexity-performance relationship (Sec. 4.1)

Classical statistical textbooks convey a well-understood relationship between model complexity
– historically captured by a model’s parameter count – and prediction error: increasing model
complexity is expected to modulate a transition between under- and overfitting regimes, usually
represented by a U-shaped error-curve with model complexity on the x-axis in which test error first
improves before it worsens as the training data can be fit too well [HT90, Vap95, HTF09]. While this
relationship was originally believed to hold for neural networks as well [GBD92], later work provided
evidence that – when using parameter counts to measure complexity – this U-shaped relationship no
longer holds [NMB+18, Nea19].

Double descent. Instead, the double descent [BHMM19] shape has claimed its place, which
postulates that the well-known U-shape holds only in the underparameterized regime where the
number of model parameters p is smaller than the number of training examples n; once we reach the
interpolation threshold p = n at which models have sufficient capacity to fit the training data perfectly,
increasing p further into the overparametrized (or: interpolation) regime leads to test error improving
again. While the double descent shape itself had been previously observed in linear regression and
neural networks in [VCR89, BO96, ASS20, NMB+18, SGd+18] (see also the historical note in
[LVM+20]), the seminal paper by [BHMM19] both popularized it as a phenomenon and highlighted
that the double descent shape can also occur tree-based methods. In addition to double descent as a
function of the number of model parameters, the phenomenon has since been shown to emerge also
in e.g. the number of training epochs[NKB+21] and sparsity [HXZQ22]. Optimal regularization has
been shown to mitigate double descent [NVKM20].

Due to its surprising and counterintuitive nature, the emergence of the double descent phenomenon
sparked a rich theoretical literature attempting to understand it. One strand of this literature has
focused on modeling double descent in the number of features in linear regression and has produced
precise theoretical analyses for particular data-generating models [BHX20, ASS20, BLLT20, DLM20,
HMRT22, SKR+23, CMBK21]. Another strand of work has focused on deriving exact expressions
of bias and variance terms as the total number of model parameters is increased in a neural network by
taking into account all sources of randomness in model training [NMB+18, AP20, dRBK20, LD21].
A different perspective was presented in [CJvdS23], who highlighted that in the non-deep double
descent experiments of [BHMM19], a subtle change in the parameter-increasing mechanism is
introduced exactly at the interpolation threshold, which is what causes the second descent. [CJvdS23]
also demonstrated that when using a measure of the test-time effective parameters used by the model
to measure complexity on the x-axes, the double descent shapes observed for linear regression,
trees, and boosting fold back into more traditional U-shaped curves. In Sec. 4.1, we show that the
telescoping model enables us to discover the same effect also in deep learning.

Benign overfitting. Closely related to the double descent phenomenon is benign overfitting (e.g.
[BMM18, MBB18, BLLT20, CL21, MSA+22, WOBM17, HHLS24]), i.e. the observation that,
incompatible with conventional statistical wisdom about overfitting [HTF09], models with perfect
training performance can nonetheless generalize well to unseen test examples. In this literature, it is
often argued in theoretical studies that overparameterized neural networks generalize well because
they are much more well-behaved around unseen test examples than examples seen during training
[MSA+22, HHLS24]. In Sec. 4.1 we provide new empirical evidence for this by highlighting that
there is a difference between ptrainŝ and ptestŝ .
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Understanding modern model complexity. Many measures for model complexity capture some
form of capacity of a hypothesis class, which gives insight into the most complex function that
could be learned – e.g. raw parameter counts and VC dimensions [BBL03]. The double descent and
benign overfitting phenomena prominently highlighted that complexity measures that consider only
what could be learned and not what is actually learned for test examples, would be unlikely to help
understand generalization in deep learning [Bel21]. Further, [CJvdS23] highlighted that many other
measures for model complexity – so-called measures of effective parameters (or: degrees of freedom)
including measures from the literature of smoothers [HT90, Ch. 3.5] as well as measures relying
on the model’s Hessian [Moo91, Mac91] (which have been considered for use in deep learning in
[MBW20]) – were derived in the context of in-sample prediction (where train- and test inputs would
be the same) and do thus not allow to distinguish differences in the behavior of learned functions on
training examples from new examples. [Cur24] highlight that this difference in setting – the move
from in-sample prediction to measuring performance in terms of out-of-sample generalization – is
crucial for the emergence of apparently counterintuitive modern machine learning phenomena such
as double descent and benign overfitting. For this reason, [CJvdS23] proposed an adapted effective
parameter measure for smoothers that can distinguish the two, and highlighted that differentiating
between the amount of smoothing performed on train- vs test examples is crucial to understanding
double descent in linear regression, trees and gradient boosting. In Sec. 4.1, we show that the
telescoping model makes it possible to use [CJvdS23]’s effective parameter measure for neural
networks, allowing interesting insight into implied differences in train- and test-time complexity of
neural networks.

Grokking. Similar to double descent in the number of training epochs as observed in [NKB+21]
(where the test error first improves then gets worse and then improves again during training), the
grokking phenomenon [PBE+22] demonstrated the emergence of another type of unexpected be-
havior during the training run of a single model. Originally demonstrated on arithmetic tasks, the
phenomenon highlights that improvements in test performance can sometimes occur long after perfect
training performance has already been achieved. [LMT22] later demonstrated that this can also occur
on more standard tasks such as image classification. This phenomenon has attracted much recent
attention both because it appears to challenge the common practice of early stopping during training
and because it showcases further gaps in our current understanding of learning dynamics. A number
of explanations for this phenomenon have been put forward recently: [LKN+22] attribute grokking
to delayed learning of representations, [NCL+23] use mechanistic explanations to examine case
studies of grokking, [VSK+23] attribute grokking to more efficient circuits being learned later in
training, [LMT22] attribute grokking to the effects of weight decay setting in later in training and
[TLZ+22] attribute grokking to the use of adaptive optimizers. [KBGP24] highlight that the latter two
explanations cannot be the sole reason for grokking by constructing an experiment where grokking
occurs as the weight norm grows without the use of adaptive optimizers. Instead, [KBGP24, LJL+24]
conjecture that grokking occurs as a model transitions from the lazy regime to a feature learning
regime later in training. Finally, [LBBS24] show analytically and experimentally that grokking can
also occur in simple linear estimators, and [MOB24] similarly study grokking outside neural net-
works, including Bayesian models. Our perspective presented in Sec. 4.1 is complementary to these
lines of work: we highlight that grokking coincides with the widening of a gap in effective parameters
used for training and testing examples and that there is thus a quantifiable benign overfitting effect at
play.

A.2 Weight averaging in deep learning (Sec. 4.3)

Ensembling [Die02], i.e. averaging the predictions of multiple independent models, has long estab-
lished itself as a popular strategy to improve prediction performance over using single individual
models. While ensembles have historically been predominantly implemented using weak base learn-
ers like trees to form random forests [Bre01], deep ensembles [LPB17] – i.e. ensembles of neural
networks – have more recently emerged as a popular strategy for improving upon the performance of
a single network [LPB17, FHL19]. Interestingly, deep ensembles have been shown to perform well
both when averaging the predictions of the underlying models and when averaging the pre-activations
of the final network layers [JLCvdS24].

A much more surprising empirical observation made in recent years is that, instead of averaging
model predictions as in an ensemble, it is sometimes also possible to average the learned weights θ1
and θ2 of two trained neural networks and obtain a model that performs well [IPG+18, FDRC20].
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This is unexpected because neural networks are highly nonlinear functions of their weights, so it
is unclear a priori when and why averaging two sets of weights would lead to a sensible model at
all. When weight averaging works, it is a much more attractive solution relative to ensembling:
an ensemble consisting of k models requires k × p model parameters, while a weight-averaged
model requires only p parameters – making weight-averaged models both more efficient in terms of
storage and at inference time. Additionally, weight averaging has interesting applications in federated
learning because it could enable the merging of models trained on disjoint datasets. [IPG+18] were
the first to demonstrate that weight averaging can work in the context of neural networks by showing
that model weights obtained by simple averaging of multiple points along the trajectory of SGD
during training – a weight-space version of the method of fast geometric ensembling [GIP+18] –
could improve upon using the final solution directly.

Mode connectivity. The literature on mode connectivity first empirically demonstrated that there
are simple (but nonlinear) paths of nonincreasing loss connecting different final network weights
obtained from different random initializations [FB16, DVSH18, GIP+18]. As discussed in the main
text, [FDRC20] then demonstrated empirically that two learned sets of weights can sometimes be
linearly connected by simply interpolating between the learned weights, as long as two models were
trained together until some stability point t∗. [ABNH23] perform an empirical study investigating
which networks and optimization protocols lead to mode connectivity from initialization (i.e. t∗ = 0)
and which modifications ensure t∗ > 0. As highlighted in Sec. 4.3, our theoretical reasoning indicates
that one sufficient condition for linear mode connectivity from initialization is that models stay in a
regime in which the model gradients do not change during training. In the context of task arithmetic,
where parameters from models finetuned on separate tasks are added or subtracted (not averaged) to
add or remove a skill, [OJFF24] find that pretrained CLIP models that are finetuned on separate tasks
and allow to perform task arithmetic do not operate in a regime in which gradients are constant.

Methods that average weights. Beyond [IPG+18]’s stochastic weight averaging method, which
averages weights from checkpoints within a single training run, weight averaging has also recently
gained increased popularity in the context of averaging multiple models finetuned from the same pre-
trained model [NSZ20, WIG+22, CVSK22]: while [NSZ20] showed that multiple models finetuned
from the same pretrained model lie in the same loss basin and are linearly mode connectible, the
model soups method of [WIG+22] highlighted that simply averaging the weights of multiple models
fine-tuned from the same pre-trained parameters with different hyperparameters leads to performance
improvements over choosing the best individual fine-tuned model. A number of methods have since
been proposed that use weight-averaging of models fine-tuned from the same pretrained model
for diverse purposes (e.g. [RKR+22, IWG+22]). Our results in Sec. 4.3 complement the findings
of [NSZ20] by investigating whether fine-tuning from a pre-trained model leads to better mode
connectivity because the gradients of a pre-trained model remain more stable than those trained from
a random initialization.

Weight averaging after permutation matching. Most recently, a growing number of papers have
investigated whether attempts to merge models through weight-averaging can be improved by first
performing some kind of permutation matching that corrects for potential permutation symmetries
in neural networks. [ESSN21] conjecture that all solutions learned by SGD are linearly mode
connectible once permutation symmetries are corrected for. [SJ20, AHS22, BSM+22] use different
methods for permutation matching and find that this improves the quality of weight-averaged models.

B Additional theoretical results

B.1 Derivation of smoother expressions using the telescoping model

Below, we explore how we can use the telescoping model to express a function learned by a
neural network as f̃θt(x) = sθt(x)y + c0θt

(x), where the 1×n vector sθt(x) is a function of the
kernels {Kt

t′(·, ·)}t′≤t, and the scalar c0θt
(x) is a function of the {Kt

t′(·, ·)}t′≤t and the networks’
initialization fθ0

(·). Note that, as discussed further in the remark at the end of this section, the kernels
Kt

t′(·, ·) for t > 1 are data-adaptive as they can change throughout training.

Vanilla SGD. Recall that letting y = [y1, . . . , yn]
⊤ and fθt = [fθt(x1), . . . , fθt(xn)], the

SGD weight update with squared loss ℓ(f(x), y) = 1
2 (y − f(x))2, in the special case of sin-

gle outputs k = 1, simplifies to ∆θt = γtTt(y − fθt−1
), where Tt is the p × n matrix
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Tt = [1{1∈Bt}
|Bt| ∇θfθt−1

(x1), . . . ,
1{n∈Bt}

|Bt| ∇θfθt−1
(xn)]. If we assume that the telescoping model

holds exactly, this implies functional updates ∆f̃t(x) = γt∇θfθt−1
(x)⊤Tt(y − f̃θt−1

). If we could
write f̃θt−1

= Sθt−1
y + cθt−1

, then we would have

∆f̃t(x) = γt∇θfθt−1(x)
⊤Tt(y − (Sθt−1y + cθt−1))

= γt∇θfθt−1
(x)⊤Tt(In − Sθt−1

)y − γt∇θfθt−1
(x)⊤Ttcθt−1

(14)

where In is the n × n identity matrix. Noting that we must have cθ0 = fθ0 and Sθ0 = 0n×n at
initialization, we can recursively substitute Eq. (14) into Eq. (5) which then allows to write the vector
of training predictions as

f̃θT
=

(
T∑

t=1

(
T−t∏
k=1

(In−γt+kT̄
⊤
t+kTt+k)

)
γtT̄

⊤
t Tt

)
y︸ ︷︷ ︸

SθT
y

+

(
T−1∏
k=0

(In−γT−kT̄
⊤
T−kTT−k)

)
fθ0︸ ︷︷ ︸

cθT

(15)

where the p × n matrix T̄t = [∇θfθt−1(x1), . . . ,∇θfθt−1(xn)] differs from Tt only in that it
includes all training examples and is not normalized by batch size. Then note that Eq. (15) is indeed a
function of the training labels y, the predictions at initialization fθ0 and the model gradients {T̄t}Tt=1
traversed during training (captured in the n×n matrix SθT

and the n×1 vector cθT
) alone. Similarly,

we can also write the weight updates (and, by extension, the weights θT ) using the same quantities, i.e.
∆θt = γtTt(In − Sθt−1

)y − γtTtcθt−1
. By Eq. (5), this also implies that we can write predictions

at arbitrary test input points as a function of the same quantities:

f̃θT
(x) =

(
T∑

t=1

γt∇θfθt−1
(x)⊤Tt(In − Sθt−1

)

)
y︸ ︷︷ ︸

sθT (x)y

+

(
fθ0

(x)−
T∑

t=1

γt∇θfθt−1
(x)⊤Ttcθt−1

)
︸ ︷︷ ︸

cθT (x)

where the matrix Sθt−1
is as defined in Eq. (15), which indeed has sθt−1

(xi) as its i-th row (and
analogously for cθt−1

).

General optimization strategies. Adapting the previous expressions to enable the use of adaptive
learning rates is straightforward and requires only inserting diag( 1

ϕt
)Tt into the expression for

∆f̃t(x) instead of Tt alone; then defining the matrices similarly proceeds by recursively unraveling
updates using ∆f̃t(x) = γt∇θfθt−1(x)

⊤diag( 1
ϕt

)Tt(y − f̃θt−1). Both momentum and weight
decay lead to somewhat more tedious updates and necessitate the introduction of additional notation.
Let ∆st(x) = sθt

(x) − sθt−1
(x), with sθ0

(x) = 01×n and ∆ct(x) = cθt
(x) − cθt−1

(x), with
cθ0(x) = fθ0(x), so that sθT

(x) =
∑T

t=1 ∆st(x) and cθT
(x) = fθ0(x) +

∑T
t=1 ∆ct(x). Further,

we can write

∆f̃t(x) = ∆st(x)y + ct(x) = γt∇θfθt−1
(x)⊤US

t y + γt∇θfθt−1
(x)⊤UC

t (16)

which means that to derive sθt(x) for each t, we can use the weight update formulas to define the
p× n update matrix US

t and the p× 1 update vector UC
t that can then be used to compute ∆st(x)

as γt∇θfθt−1
(x)⊤US

t and ∆ct(x) as γt∇θfθt−1
(x)⊤UC

t . For vanilla SGD,

US
t = Tt(In − Sθt−1

) and UC
t = −Ttcθt−1

(17)

while SGD with only adaptive learning rates uses

US
t = diag(

1

ϕt
)Tt(In − Sθt−1

) and UC
t = −diag(

1

ϕt
)Ttcθt−1

(18)

Momentum, without other modifications, uses US
t = 1

1−βt
1
ŨS

t and CS
t = 1

1−βt
1
ŨC

t , where

ŨS
t = (1− β1)Tt(In − Sθt−1

) + β1Ũ
S
t−1 and ŨC

t = −((1− β1)Ttcθt−1
+ β1

˜UC
t−1) (19)
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with ŨS
0 = 0p×n and ŨS

0 = 0p×1.

Weight decay, without other modifications, uses

US
t = Tt(In − Sθt−1

+ λDS
t ) and UC

t = −Tt(cθt−1
+ λDC

t ) (20)

where DS
t = γt−1U

S
t−1 + (1 − λγt−1)D

S
t−1 and DC

t = γt−1U
C
t−1 + (1 − λγt−1)D

C
t−1 with

DS
0 = 0p×n and DC

0 = θ0.

Putting all together leads to AdamW [LH17] (which decouples weight decay and momentum, so that
weight decay does not enter the momentum term), which uses

US
t = diag(

1

ϕt
)

1

1− βt
1

ŨS
t + λTtD

S
t and CS

t =
1

1− βt
1

diag(
1

ϕt
)ŨC

t + λTtD
C
t (21)

where all terms are as in Eq. (19) and Eq. (20).

Remark: Writing f̃θT
= SθT

y + cθT
is reminiscent of a smoother as used in the statistics literature

[HT90]. Prototypical smoothers issue predictions ŷ = Sy – which include k-Nearest Neighbor
regressors, kernel smoother, and (local) linear regression as prominent members –, and are usually
linear smoothers because S does not depend on y. The smoother implied by the telescoping model is
not necessarily a linear smoother because SθT

can depend on y through changes in gradients during
training, making f̃θT

an adaptive smoother. This adaptivity in the implied smoother is similar to trees
as recently studied in [CJvdS23, CJvdS24]. In this context, effective parameters as measured by p0s
can be interpreted as measuring how non-uniform and extreme the learned smoother weights are
when issuing predictions for specific inputs [CJvdS23].

B.2 Comparing predictions of ensemble and weight-averaged model after train-time
transition into a constant-gradient regime

Here, we compare the predictions of the weight-averaged model fαθt′
1T+(1−α)θt′

2T
(x) to the ensemble

f̄α(x) = αfαθt′
1T
(x) + (1− α)fαθt′

2T
(x) if the models transition into a lazy regime at time t∗ ≤ t′.

We begin by noting that the assumption that the gradients no longer change after t∗ (i.e. ∇θfθt′
jt
(·) ≈

∇θfθt∗ (·) for all t ≥ t∗) implies that the rate of change of ∇θfθt∗ (x) in the direction of the
weight updates must be approximately 0. That is, ∇2

θfθt∗ (x)(θ − θt∗) ≈ 0 for all θ ∈ Θstable
j ,

or equivalently all weight changes in each Θstable
j are in directions that are in the null-space of the

Hessian (or in directions corresponding to diminishingly small eigenvalues). To avoid clutter in
notation, we use splitting point t′ = t∗ below, but note that the same arguments hold for t′ > t∗.

First, we now consider rewriting the predictions of the ensemble, and note that we can now write the
second-order Taylor approximation of each model fθt∗

jT
(x) around θt∗ as

fθt∗
jT
(x) = fθt∗ (x) +∇θfθt∗ (x)

⊤
T∑

t=t∗+1

∆θt∗

jt +
1

2

[
T∑

t=t∗+1

∆θt∗

jt

]⊤
∇2

θfθt∗ (x)

[
T∑

t=t∗+1

∆θt∗

jt

]
︸ ︷︷ ︸

≈0

+R2(

T∑
t=t∗+1

∆θt∗

jt )

≈ fθt∗ (x) +∇θfθt∗ (x)
⊤

T∑
t=t∗+1

∆θt∗

jt +R2(

T∑
t=t∗+1

∆θt∗

jt )

where R2(
∑T

t=t∗+1 ∆θt∗

jt ) contains remainders of order 3 and above. Then the prediction of the
ensemble can be written as

f̄α(x) ≈ fθt∗ (x) + fθt∗ (x)
⊤

T∑
t=t∗+1

(α∆θt∗

1t + (1− α)∆θt∗

2t)

+αR2(

T∑
t=t∗+1

∆θt∗

1t) + (1− α)R2(

T∑
t=t∗+1

∆θt∗

2t))

(22)
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Now consider the weight-averaged model fαθt′
1T+(1−α)θt′

2T
(x). Note that we can always write

θt∗

jT = θ0 +
∑T

t=1 ∆θt∗

jt = θt∗ +
∑T

t=t∗+1 ∆θt∗

jt and thus αθt∗

1T + (1 − α)θt∗

2T = θt∗ +∑T
t=t∗+1

(
α∆θt∗

1t + (1− α)∆θt∗

2t

)
. Further, because ∇2

θfθt∗ (x)
∑T

t=t∗+1 ∆θt∗

tj ≈ 0 for each
j ∈ {0, 1}, we also have that

∇2
θfθt∗ (x)

(
T∑

t=t∗+1

α∆θt1 + (1− α)∆θt2

)
≈ α0+ (1− α)0 = 0 (23)

Then, the second-order Taylor approximation of fαθt′
1T+(1−α)θt′

2T
(x) around θt∗ gives

fαθt′
1T+(1−α)θt′

2T
(x) ≈ fθt∗ (x) +∇θfθt∗ (x)

⊤
T∑

t=t∗+1

(α∆θt1 + (1− α)∆θt2)

+R2(

T∑
t=t∗+1

∆θt1 + (1− α)∆θt2)

(24)

Thus, fαθt′
1T+(1−α)θt′

2T
(x) ≈ f̄α(x) up to remainder terms of third order and above.

C Additional Experimental details

In this section, we provide a complete description of the experimental details throughout this work.
Code is provided at https://github.com/alanjeffares/telescoping-lens. Each section
also reports their respective required compute which was performed on either Azure VMs powered
by 4 × NVIDIA A100 GPUs or an NVIDIA RTX A4000 GPU.

C.1 Case study 1 (Sec. 4.1) and approximation quality experiment (Sec. 3, Fig. 2)

Double descent experiments. In Fig. 3, we replicate [BHMM19, Sec. S.3.3]’s only binary classifi-
cation experiment which used fully connected ReLU networks with a single hidden layer trained using
the squared loss, without sigmoid activation, on cat and dog images from CIFAR-10 [KH+09]. Like
[BHMM19], we grayscale and downsize images to d = 8×8 format and use n = 1000 training exam-
ples and use SGD with momentum β1 = 0.95. We use batch size 100 (resulting in B = 10 batches),
learning rate γ = 0.0025, and test on ntest = 1000 held out examples. We train for up to e = 30000
epochs, but stop when training accuracy reaches 100% or when the training squared loss does not
improve by more than 10−4 for 500 consecutive epochs (the former strategy was also employed in
[BHMM19], we additionally employ the latter to detect converged networks). We report results us-
ing {1, 2, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 70, 85, 100, 200, 500, 1000, 2000, 5000} hidden
units. We repeat the experiment for 4 random seeds and report mean and standard errors in all
figures.

In Appendix D.2, we additionally repeat this experiment with the same hyperparameters using MNIST
images [LBBH98]. To create a binary classification task, we similarly train the model to distinguish
3-vs-5 from n = 1000 images downsampled to d = 8× 8 format and test on 1000 examples. Likely
because the task is very simple, we observe no deterioration in test error in this setting for any hidden
size (see Fig. 9). Because [NKB+21] found that double descent can be more apparent in the presence
of label noise, we repeat this experiment while adding 20% label noise to the training data, in which
case the double descent shape in test error indeed emerges. As above, we repeat both experiments for
4 random seeds and report mean and standard errors in all figures.

Further, in Appendix D.2 we additionally utilize the MNIST-1D dataset [GK24] which was pro-
posed recently as a sandbox for investigating empirical deep learning phenomena. We repli-
cate a binary classification version of their MLP double descent experiment with added 15%
label noise from [GK24] (which was itself adapted from the textbook [Pri23]). We select only
examples with label 0 and 1, and train fully connected neural networks with a single hidden
layer with batch size 100, learning rate γ = 0.01 for 500 epochs, considering models with
[1, 2, 3, 5, 10, 20, 30, 40, 50, 70, 100, 200, 300, 400] hidden units.

Compute: We train num_settings × num_hidden_sizes × num_seeds (≈ 4 × 22 × 4 = 352)
models for up to T = B × e = 300000 gradient steps. Training times, which included all gradient
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computations to create the telescoping approximation, depended on the dataset and hidden sizes, but
completing a single seed for all hidden sizes for one setting took an average of 36 hours.

Grokking experiments. In panel (1) of Fig. 4, we replicate the polynomial regression experiment
from [KBGP24, Sec. 5] exactly. [KBGP24] use a neural network with a single hidden layer, using
custom nonlinearities, of width nh = 500 in which the weights of the final layer are fixed, that is
they use

fθ(x) =
1

nh

nh∑
j=1

ϕ(θ⊤
j x) where ϕ(h) = h+

ϵ

2
h2 (25)

Inputs x ∈ Rd are sampled from an isotropic Gaussian with variance 1
d and targets y are generated

as y(x) = 1
2 (β

⊤x)2. In this setup, ϵ used in the activation function of the network controls how
easy it is to fit the outcome function (the larger ϵ, the better aligned it is for the task at hand), which
in turn controls whether grokking appears. In the main text, we present results using ϵ = .2; in
Appendix D.2 we additionally present results using ϵ = .05 and ϵ = 0.5. Like [KBGP24], we use
d = 100, ntrain = 550, ntest = 500, initialize all weights using standard normals, and train using
full-batch gradient descent with γ = B = 500 on the squared loss. We repeat the experiment for 5
random seeds and report mean and standard errors in all figures.

In panel (2) of Fig. 4, we report an adapted version of [LMT22]’s experiment reporting grokking
on MNIST data. To enable the use of our model, we once more consider the binary classification
task 3-vs-5 from n = 1000 images downsampled to d = 8 × 8 features and test on 1000 held-out
examples. Like [LMT22], we use a 3-layer fully connected ReLU network trained with squared
loss (without sigmoid activation) and larger than usual initialization by using αθ0 instead of the
default initialization θ0. We report α = 6 in the main text and include results with α = 5 and
α = 7 in Appendix D.2. Like [LMT22] we use the AdamW optimizer [LH17] with batches of size
200, β1 = .9 and β2 = .99, and use weight decay λ = .1. While [LMT22] use learning rate 10−3,
we need to reduce this by factor 10 to γ = 10−4 and additionally use linear learning rate warmup
over the first 100 batches to ensure that weight updates are small enough to ensure the quality of
the telescoping approximation; this is particularly critical because of the large initialization which
otherwise results in instability in the approximation early in training. Panel (C) of Fig. 4 uses an
identical setup but lets α = 1 (i.e. standard initialization) and additionally applies a sigmoid to the
output of the network. We repeat these experiments for 4 random seeds and report mean and standard
errors in all figures.

Compute: Replicating [KBGP24]’s experiments required training num_settings × num_seeds
(3 × 5 = 15) models for T = 100, 000 gradient steps. Each training run including all gradient
computations took less than 1 hour to complete. Replicating [LMT22]’s experiments required
training num_settings× num_seeds (3× 4 = 12) for T = 100, 000 gradient steps. Each training
run including all gradient computations took around 5 hours to complete. The MNIST experiments
with standard initialization required training num_settings×num_seeds (2×4 = 8) for T = 1000
gradient steps, these took no more than 2 hours to complete in total.

Approximation quality experiment (Fig. 2) The approximation quality experiment uses the
identical MNIST setup, training process and architecture as in the grokking experiments (differing
only in that we use standard initialization α and no learning rate warmup). In addition to the vanilla
SGD and AdamW experiments presented in the main text, we present additional settings – using
momentum alone, weight decay alone and using sigmoid activation – in Appendix D.1. In particular,
we use the following hyperparameter settings for the different panels:

• “SGD”: λ = 0, β1 = 0, no sigmoid.

• “AdamW”: λ = 0.1, β1 = 0.9, β2 = .99, no sigmoid.

• “SGD + Momentum”: λ = 0, β1 = 0.9, no sigmoid.

• “SGD + Weight decay”: λ = 0.1, β1 = 0, no sigmoid.

• “SGD + σ(·)”: λ = 0, β1 = 0, with sigmoid activation.

We repeat the experiment for 4 random seeds and report mean and standard errors in all figures.

23



Compute: Creating Fig. 7 required training num_settings×num_seeds (5×4 = 20) for T = 5, 000
gradient steps. Each training run including all gradient computations took approximately 15 minutes
to complete.

C.2 Case study 2 (Sec. 4.2)

In Figs. 5 and 14 we provide results on tabular benchmark datasets from [GOV22]. We select four
datasets with > 20,000 examples (houses, superconduct, california, house_sales) to ensure
there is sufficient hold-out data for evaluation across irregularity proportions. We apply standard
preprocessing including log transformations of skewed features and target rescaling. As discussed
in the main text, irregular examples are defined by first projecting each (normalized) dataset’s input
features onto its first principal component and then calculating each example’s absolute distance to
the empirical median in this space. We note that several recent works have discussed metrics of an
examples irregularity or “hardness” (e.g. [KAF+24, SIvdS23]) finding the choice of metric to be
highly context-dependent. Therefore we select a principal component prototypicality approach based
on its simplicity and transparency. The top K irregular examples are removed from the data (these
form the “irregular examples at test-time”) and the remainder (the “regular examples”) is split into
training and testing. We then construct test datasets containing 4000 examples, constructed from a
mixture of standard test examples and irregular examples according to each proportion p.

We train both a standard neural network (while computing its telescoping approximation as de-
scribed in Eq. (5)) and a gradient boosted tree model (using [PVG+11]) on the training data.
We select hyperparameters by further splitting the training data to obtain a validation set of size
2000 and applying a random search consisting of 25 runs. We use the search spaces suggested in
[GOV22]. Specifically, for GBTs we consider learning_rate ∈ LogNormal[log(0.01), log(10)],
num_estimators ∈ LogUniformInt[10.5, 1000.5], and max_depth ∈ [None, 2, 3, 4, 5] with respec-
tive probabilities [0.1, 0.1, 0.6, 0.1, 0.1]. For the neural network, we consider learning_rate
∈ LogUniform[1e − 5, 1e − 2] and set batch_size = 128, num_layers = 3, and hidden_dim
= 64 with ReLU activations throughout. Each model is then trained on the full training set with its
optimal parameters and is evaluated on each of test sets corresponding to the various proportions of
irregular examples. All models are trained and evaluated for 4 random seeds and we report the mean
and a standard error in our results.

As discussed in the main text, we report how the relative relative mean squared error of neural
network and GBT (measured as MSEp

NN−MSEp
GBT

MSE0
NN−MSE0

GBT
) changes as the proportion p of irregular examples

increases and relate this to changes in
1
T

∑T
t=1 maxj∈Ip

test
||kt(xj)||

1
T

∑T
t=1 maxi∈Itrain

||kt(xi)||
, which measures how the kernels

behave at their extreme during testing relative to the maximum of the equivalent values measured for
the training examples such that the test values can be interpreted relative to the kernel at train time
(i.e. values > 1 can be interpreted as being larger than the largest value observed across the entire
training set).

Compute: The hyperparameter search results in num_searches× num_datasets× num_models
(25× 4× 2 = 200) training runs and evaluations. Then the main experiment requires num_seeds×
num_datasets× num_models (4× 4× 2 = 32) training runs and num_seeds× num_datasets×
num_models× num_proportions (4× 4× 2× 5 = 160) evaluations. This results in a total of 232
training runs and 360 evaluations. Individual training and evaluation times depend on the model and
dataset but generally require < 1 hour.

C.3 Case study 3 (Sec. 4.3)

In Fig. 6 we follow the experimental setup described in [FDRC20]. Specifically, for each model we
train for a total of 63,000 iterations over batches of size 128 with stochastic gradient descent. At a
predetermined set of checkpoints (t′ ∈ [0, 4, 25, 50, 100, 224, 500, 1000, 2000, 4472, 10000, 25100])
we create two copies of the current state of the network and train until completion with different batch
orderings, where linear mode connectivity measurements are calculated. This process sometimes also
referred to as spawning [FDP+20] and is repeated for 3 seeds at each t′. The entire process is repeated
for 3 seeds resulting in a total of 3× 3 = 9 total values over which we report the mean and a standard
error. Momentum is set to 0.9 and a stepwise learning rate is applied beginning at 0.1 and decreasing
by a factor of 10 at iterations 32,000 and 48,000. For the ResNet-20 architecture [HZRS16], we use
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an implementation from [Ide]. Experiments are conducted on CIFAR-10 [KH+09] where the inputs
are normalized with random crops and random horizontal flips used as data augmentations.

Pretraining of the finetuned model model is performed on the SVHN dataset [NWC+11] which is
also an image classification task with identically shaped input and output dimensions as CIFAR-10.
We use a training setup similar to that of the CIFAR-10 model but set the number of training iterations
to 30,000 and perform the stepwise decrease in learning rate at iterations 15,000 and 25,000 decaying
by a factor of 5. Three models are trained following this protocol which achieve validation accuracy
of 95.5%, 95.5%, and 95.4% on SVHN. We then repeat the CIFAR-10 training protocol for finetuning
but parameterize the three initialization with the respective pretrained weights rather than random
initialization. We also find that a shorter finetuning period is sufficient and therefore finetune for
12,800 steps with the learning rate decaying by a factor of 5 at steps 6,400 and 9,600.

Also following the protocol of [FDRC20], for each pair of trained spawned networks (fθ1&fθ2 ) we
consider interpolating their losses (i.e. ℓavg

α := α·ℓ(fθ1(x), y)+(1−α)·ℓ(fθ2(x), y)) and parameters
(i.e. ℓlmc

α := ℓ(fθlmc(x), y) where θlmc = αθ1+(1−α)θ2) for 30 equally spaced values of α ∈ [0, 1].
In the upper panel of Fig. 6 we plot the accuracy gap at each checkpoint t′ (i.e. the point from
which two identical copies of the model are made and independently trained to completion) which
is simply defined as the average final validation accuracy of the two individual child models minus
the final validation accuracy of the weight averaged version of these two child models. Beyond the
original experiment, we also wish to evaluate how the gradients ∇fθt

(·) evolve throughout training.
Therefore, in panels (2) and (3) Fig. 6, at each checkpoint t′ we also measure the mean squared
change in (pre-softmax) gradients (∇θfθt′+390

(x)−∇θfθt′ (x))
2 between the current iteration t′

and those at the next epoch t′+390, averaged over a set of n = 256 test examples and the parameters
in each layer.

Compute: We train num_outer_seeds × num_inner_seeds × num_child_models ×
num_checkpoints (3 × 3 × 2 × 12 = 216) networks for the randomly initialized model. For
the finetuned model this results in 3× 3× 2× 10 = 180 training runs. Additionally, we require the
pertaining of the 3 base models on SVHN. Combined this results in a total of 216 + 180 + 3 = 399
training runs. Training each ResNet-20 on CIFAR-10 required <1 hour including additional gradient
computations.

C.4 Data licenses

All image experiments are performed on CIFAR-10 [KH+09], MNIST [LBBH98], MNIST1D
[GK24], or SVHN [NWC+11]. Tabular experiments are run on houses, superconduct,
california, and house_sales from OpenML [VvRBT13] as described in [GOV22]. CIFAR-
10 is released with an MIT license. MNIST is released with a Creative Commons Attribution-Share
Alike 3.0 license. MNIST1D is released with an Apache-2.0 license. SVHN is released with a
CC0:Public Domain license. OpenML datasets are released with a 3-Clause BSD License. All the
datasets used in this work are publicly available.

D Additional results

D.1 Additional results on approximation quality (supplementing Fig. 2)

Figure 7: Approximation error of the telescoping (f̃θt
(x), red) and the model linearized around the

initialization (f lin
θt

(x), gray) by optimization step for different optimization strategies and other design
choices. Iteratively telescoping out the updates using f̃θt

(x) improves upon the lazy approximation
around the initialization by orders of magnitude.
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Figure 8: Test accuracy of the telescoping (f̃θt(x), red, top row) and the model linearized around
the initialization (f lin

θt
(x), blue, bottom row) against accuracy of the actual neural network (gray) by

optimization step for different optimization strategies and other design choices. While the telescoping
model visibly matches the accuracy of the actual neural network, the linear approximation around the
initialization leads to substantial differences in accuracy later in training.

In Fig. 7, we present results investigating the evolution of approximation errors of the telescoping
and linear approximation around the initialization during training using additional configurations
compared to the results presented in Fig. 2 in the main text (replicated in the first two columns of
Fig. 7). We observe the same trends as in the main text, where the telescoping approximation matches
the predictions by the neural network by orders of magnitudes better than the linear approximation
around the initialization. Importantly, we highlight in Fig. 8 that this is also reflected in how well
each approximation matches the accuracy of the predictions of the real neural network: while the
small errors of the telescoping model lead to no visible differences in accuracy compared to the real
neural network, using the Taylor expansion around the initialization leads to significantly different
accuracy later in training.

D.2 Additional results for case study 1: Exploring surprising generalization curves and
benign overfitting

Figure 9: Double descent experiments using MNIST, distinguishing 3-vs-5, with 20% added label
noise during training (left) and no added label noise (right). Without label noise, there is no double
descent in error on this task; when label noise is added we observe the prototypical double descent
shape in test error.

Double descent on MNIST. In Fig. 9, we replicate the CIFAR-10 experiment from the main
text while training models to distinguish 3-vs-5 on MNIST. We find that in the absence of label
noise, no problematic overfitting occurs for any hidden size; both train and test error monotonically
improve with increased width. Only when we add label noise to the training data, do we observe the
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Figure 10: Double descent experiment using MNIST-1D, distinguishing class 0 and 1, with 15%
added label noise during training. Mean squared error (top) and effective parameters (bottom) for
train and test examples by number of hidden neurons.

characteristic double descent behavior in error – this is in line with [NKB+21]’s observation that
double descent can be more pronounced when there is noise in the data. Importantly, we observe that
as in the main text, the improvement of test error past the interpolation threshold is associated with
the divergence of effective parameters used on train and test data. In Fig. 10 we additionally repeat
the experiment using the MNIST-1D dataset with 15% labelnoise as in [GK24], and find that the
decrease in test error after the interpolation threshold is again accompanied by a decrease in effective
parameters as the number of raw model parameters is further increased in the interpolation regime.

Additional grokking results. In Fig. 11, we replicate the polynomial grokking results of [KBGP24]
with additional values of ϵ. Like [KBGP24], we observe that larger values of ϵ = 0.5 lead to less
delayed generalization. This is reflected in a gap between effective parameters on test and train
emerging earlier. With very small ϵ = .05, conversely, we even observe a double descent-like
phenomenon where test error first worsens before it improves later in training. This is reflected
also in the effective parameters, where ptestŝ first exceeds ptrainŝ before dropping below it as benign
overfitting sets in later in training. In Fig. 12, we replicate the MNIST results with additional values
of α; like [LMT22] we observe that grokking behavior is more extreme for larger α. This is indeed
also reflected in the gap between ptestŝ and ptrainŝ emerging later in training.

Additional training results on MNIST with standard initialization. In Fig. 13, we present train
and test results on MNIST with standard initialization to supplement the test results presented in the
main text. Both with and without sigmoid, train and test behavior is almost identical, and learning is
orders of magnitude faster than with the larger initialization. The stronger inductive biases of small
initialization, and additionally using sigmoid activation, lead to much lower learned complexity on
both train and test data as measured by effective parameters.

D.3 Additional results for Case study 2: Understanding differences between gradient
boosting and neural networks

In Fig. 14, we replicate the experiment from Sec. 4.2 on three further datasets from [GOV22]’s tabular
benchmark. We find that the results match the trends present in Fig. 5 in the main text: the neural
network is outperformed by the GBTs already at baseline, and the performance gap grows as the test
dataset becomes increasingly more irregular. The growth in the gap is tracked by the behavior of the
normalized maximum kernel weight norm of the neural network’s kernel. Only on the california
dataset do we observe a slightly different behavior of the neural network’s kernel: unlike the other

three datasets,
1
T

∑T
t=1 maxj∈Ip

test
||kt(xj)||2

1
T

∑T
t=1 maxi∈Itrain

||kt(xi)||2
stays substantially below 1 at all p; this indicates that

there may have been examples in the training set that are irregular in ways not captured by our

experimental protocol. Nonetheless, we observe the same trend that
1
T

∑T
t=1 maxj∈Ip

test
||kt(xj)||2

1
T

∑T
t=1 maxi∈Itrain

||kt(xi)||2
increases in relative terms as p increases.

27



Figure 11: Grokking in mean squared error (top) on a polynomial regression task (replicated from
[KBGP24]) against effective parameters (bottom) with different task alignment parameters ϵ.

Figure 12: Grokking in misclassification error on MNIST using a network with large initialization (
replicated from [LMT22]) (top), against effective parameters (bottom) with different initialization
scales α.

Figure 13: No grokking in misclassification error on MNIST (top), against effective parameters
(bottom) using a network with standard initialization (α = 1) with and without sigmoid activation.
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Figure 14: Neural Networks vs GBTs: Relative performance (top) and behavior of kernels (bottom)
with increasing test data irregularity for three additional datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As indicated in the abstract, we present a model for learning in neural networks
in Sec. 3. We discuss how this allows to reason about the effects of design choices in Sec. 5,
and use it to derive new empirical insights on the listed phenomena in Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec. 3, we highlight important practical limitations regarding the use of
the telescoping approximation – it requires significant additional computation. Further, in
Sec. 4 and in Sec. 6, we highlight that in each case study we intentionally limited ourselves
to specific noteworthy empirical observations, which implies that future work is needed to
further establish their generality beyond the case studies we consider.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Beyond the arguments presented in the main text, all additional derivations are
included in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details needed to replicate the experiments are described in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided at https://github.com/alanjeffares/
telescoping-lens.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: A detailed account of all experimental details is presented in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All figures report mean and one standard error across multiple replications of
the same experiment, as outlined in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Estimates of used compute resources are presented in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning by advancing our understanding of surprising deep learning phenomena. While
there are many potential societal consequences of the use of machine learning in general,
there are none that we feel must be specifically highlighted here. If anything, we believe
that a better understanding of unexpected deep learning behaviors will help limit unexpected
behaviors of systems deployed in practice.

33

https://neurips.cc/public/EthicsGuidelines


Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The used datasets and their licenses are discussed in Appendix C.4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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