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Abstract

Developing fair automated machine learning algorithms is critical in making safe
and trustworthy decisions. Many causality-based fairness notions have been pro-
posed to address the above issues by quantifying the causal connections between
sensitive attributes and decisions, and when the true causal graph is fully known,
certain algorithms that achieve interventional fairness have been proposed. How-
ever, when the true causal graph is unknown, it is still challenging to effectively and
efficiently exploit partially directed acyclic graphs (PDAGs) to achieve interven-
tional fairness. To exploit the PDAGs for achieving interventional fairness, previous
methods have been built on variable selection or causal effect identification, but
limited to reduced prediction accuracy or strong assumptions. In this paper, we
propose a general min-max optimization framework that can achieve interventional
fairness with promising prediction accuracy and can be extended to maximally ori-
ented PDAGs (MPDAGs) with added background knowledge. Specifically, we first
estimate all possible treatment effects of sensitive attributes on a given prediction
model from all possible adjustment sets of sensitive attributes via an efficient local
approach. Next, we propose to alternatively update the prediction model and possi-
ble estimated causal effects, where the prediction model is trained via a min-max
loss to control the worst-case fairness violations. Extensive experiments on syn-
thetic and real-world datasets verify the superiority of our methods. To benefit the
research community, we have released our project at https://github.com/haoxuanli-
pku/NeurIPS24-Interventional-Fairness-with-PDAGs.

1 Introduction

Making automated machine learning algorithms fair is critical to producing safe and trustworthy
decisions with different sensitive attributes [Brennan et al., 2009, Dieterich et al., 2016, Agarwal
et al., 2018, Chen et al., 2018, Chouldechova et al., 2018, Hoffman et al., 2018, Yurochkin et al., 2019,
Li et al., 2023]. To achieve fair predictions, association-based and causality-based fairness notions
have been proposed. Specifically, the former requires statistical independence between the sensitive
attribute and predicted outcome [Dwork et al., 2012, Hardt et al., 2016, Chouldechova, 2017, Jin
et al., 2024a,b], whereas the later investigates causal effect of the sensitive attribute on the predicted
outcome, requiring that the predicted outcome be the same across the real-world without intervention
and the counterfactual world with intervention on sensitive attribute [Zhang and Bareinboim, 2018,
Zhang et al., 2017a,b, 2018a,b, Khademi et al., 2019, Galhotra et al., 2022].
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Despite many algorithms have been developed to achieve causality-based fairness, most of them
require the true causal directed acyclic graph (DAG) is fully known [Kusner et al., 2017, Nabi and
Shpitser, 2018, Chiappa, 2019, Chikahara et al., 2021]. Nevertheless, true causal DAGs and structural
equations are usually not directly available in practice [Colombo et al., 2014]. Moreover, without
strong assumptions, e.g., linearity [Shimizu et al., 2006] and additive noise [Hoyer et al., 2008, Peters
et al., 2014], the true causal DAG may not be recoverable from only the observed data, which raises a
great challenge to achieve causality-based fairness based on partially DAGs (PDAGs).

To achieve causality-based fairness under partially known causal graphs, recent approaches can be
broadly classified into two categories: variable selection methods [Zuo et al., 2022] and causal effect
identification methods [Perkovic, 2020, Zuo et al., 2024]. Specifically, the variable selection method
first adopts causal discovery algorithms to obtain a Markov equivalence class of DAGs that encode
the same set of conditional independencies from the data, and then classifies the covariate variables
into three categories: definite non-descendants, possible descendants, and definite descendants of the
sensitive attributes. By noting that a prediction model would be counterfactually fair if the prediction
model is a function of the non-descendants of sensitive attributes [Kusner et al., 2017], these methods
proposed to use only the definite non-descendants or further incorporate possible descendants to
make fair predictions. Despite can theoretically guarantee interventional fairness, disregarding the
descendants results in a notable decline in performance. Another category of methods proposed to
identify causal effects of sensitive attributes on the outcome variable directly from the maximally
oriented PDAGs (MPDAGs), but relies on strong assumptions for identification.

In this paper, we aim to effectively and efficiently achieve interventional fairness with partially
known causal graphs. Different from the previous variable selection and causal effect identification
methods, we exploit all variables to ensure relatively high prediction accuracy, as well as does not
need to rely on additional strong assumptions for identification. Specifically, we propose a novel local
method to partially identify the causal effects of sensitive attributes on the predictor for satisfying the
interventional fairness, which does not require a global search of all possible DAGs, but can estimate
all possible causal effects using the obtained CPDAG. Inspired by the IDA framework [Maathuis et al.,
2009], we first propose a local algorithm to obtain possible parental sets of the sensitive attributes on
the PDAGs, from which we estimate all possible propensities for various cases. We then calculate
all possible violations of intervention fairness using all possible propensities. Next, we propose to
alternatively update the prediction model and the corresponding estimation of the possible causal
effects, where the prediction model is trained via a min-max loss to control the worst-case fairness
violations. The validity of our method also holds for MPDAGs with added background knowledge.

The contributions of this paper are summarized as follows:

•We propose a general min-max optimization framework to achieve interventional fairness, which
enables to use all variables to achieve relatively high prediction accuracy, and can be extended to
MPDAGs with added background knowledge.
• Based on the proposed framework, we provide an efficient algorithm to estimate all possible causal
effects of sensitive attribute on predictions for MPDAGs.
•We further provide a joint learning approach that alternatively updates the prediction model and the
corresponding estimation of the possible causal effects, where the prediction model is trained via a
min-max loss to control the worst-case fairness violations.
•We conduct extensive experiments on synthetic and real-world datasets to demonstrate the effec-
tiveness of our methods in achieving interventional fairness with promising accuracy.

2 Preliminaries

2.1 DAGs, PDAGs, CPDAGs, and MPDAGs

In a graph G = (V,E), where V and E represent the node set and edge set in G, we say G is directed,
undirected, or partially directed if all edges in the graph are directed, undirected, or a mixture
of directed and undirected edges, respectively. The skeleton of G is an undirected graph obtained
by removing all arrowheads from G. Given a graph G, an Xi is called a parent of Xj and Xj is
called a child of Xi if Xi → Xj in G. Also, Xi is a sibling of Xj if Xi −Xj in G. If Xi and Xj

are connected by an edge, they are adjacent. The notation pa(Xi,G), ch(Xi,G), sib(Xi,G), and
adj(Xi,G) respectively represent sets of parents, children, siblings, and adjacent vertices of Xi in
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G. A graph is termed complete if all distinct vertices are adjacent. A path is a sequence of distinct
vertices (Xk1 , · · · , Xkj ) where any two consecutive vertices are adjacent. A path is called partially
directed from Xk1 to Xkj if Xki ← Xki+1 does not occur in G for any i = 1, . . . , j − 1. A partially
directed path is directed (undirected) if all edges on the path are directed (undirected). A vertex Xi is
an ancestor of Xj and Xj is a descendant of Xi if there is a directed path from Xi to Xj or Xi = Xj .
A directed (undirected) cycle is a directed (undirected) path from a vertex to itself. Particularly, a
cycle with the number of edges equal to three is called a triangle.

In a directed acyclic graph (DAG), all edges are directed and there is no directed cycle. A partially
directed acyclic graph (PDAG) may contain both directed and undirected edges without directed
cycles. Two DAGs are Markov equivalent if they induce the same set of conditional independence
relations [Pearl, 1988]. A Markov equivalence class, denoted by [G], contains all DAGs equivalent
to G. A Markov equivalence class can be uniquely represented by a partially directed graph called
completely partially directed acyclic graph (CPDAG) G∗, in which two vertices are adjacent if and
only if they are adjacent in G, and a directed edge occurs if and only if it appears in all DAGs in
[G] [Andersson et al., 1997, Chickering, 2002a]. A CPDAG G∗ can be refined to a maximally oriented
partially directed acyclic graph (maximal PDAG or MPDAG)H by giving background knowledge
Bd consisting of some directed causal relationships between variables in the form Xi → Xj [Hauser
and Bühlmann, 2012, Eigenmann et al., 2017, Wang et al., 2017, Rothenhäusler et al., 2018]. Meek
[1995] proved that, with a series of orientation rules called Meek’s rules, some undirected edges may
be further directed (see Algorithm 4 in Appendix for details), and the resulting graph is an MPDAG.
Both a DAG and a CPDAG can be viewed as special cases of an MPDAG, where the background
knowledge is fully known and unknown, respectively.

2.2 Structural Causal Model

We follow Pearl [2009] to define the structural causal model (SCM) as a triplet (V,U, F ) to describe
the causal relationships between variables. Specifically, V is a set of observable endogenous variables,
U is a set of latent independent background variables that cannot be caused by any variable in V ,
and F is a set of functions {f1, . . . , f|V |}, one for each Vi ∈ V , such that Vi = fi (pai, Ui), where
pai ⊆ V \ {Vi} and Ui ∈ U . Notably, the set of equations F induces a directed graph over the
variables, here assumed to be a DAG, where the directed causes of Vi represents its parent set. A
causal DAG model consists of a DAG G and a joint distribution P over V such that the distribution
can be factorized as P (v1, ..., v|V |) =

∏
vi∈V P (vi|pa(vi,G)) [Perković et al., 2017].

2.3 Interventional Fairness

Given a DAG G and two distinct variables X and Y , the causal effect of X on Y can be interpreted
by the post-intervention distribution of Y intervening on X via do operator [Pearl, 1995, 2009].
Formally, given a distribution P (U) over the background variables U , an intervention do(X = x)
that force variable X to take certain value x is defined as the substitution of the structural equation
X = fx(pax, Ux) with X = x, and the post-interventional density of Y is denoted as f(Y = y |
do(X = x)). However, if we only know a CPDAG G∗ or an MPDAGH, the causal effect of X on Y
may not be identifiable from observational data [Perković et al., 2015, 2017, Wu et al., 2019a,b].

Build on the do operator, interventional fairness criterion [Kilbertus et al., 2017, Salimi et al., 2019]
requires that given the covariates, intervening the value of the sensitive attribute does not affect the
output distribution of the output predictor. Formally, let A, Y , and X denote sensitive attributes,
outcomes of interest, and other covariates, and Ŷ be a predictor produced by a learning algorithm as
a prediction of Y . Without loss of generality2, we say the predictor Ŷ is interventionally fair with
respect to the sensitive attributes A if it satisfies the following condition:

Definition 2.1 (Interventional fairness [Kilbertus et al., 2017]). We say the prediction Ŷ is interven-
tionally fair with respect to the sensitive attributes A if the following holds:

P (Ŷ = y | do(A = a)) = P (Ŷ = y | do(A = a′)),

for all possible values of y and any value that A can take.
2Note that our proposed method can be naturally extend to interventional fairness with admissible attributes

Xad ⊆ X [Salimi et al., 2019], defined as P (Ŷ = y | do(A = a), do(Xad = xad)) = P (Ŷ = y | do(A =
a′), do(Xad = xad)), by observing that do(A) and do(Xad) are symmetric and including Xad into A.
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3 A General Min-Max Optimization Framework

3.1 Motivation and Method Overview

Given only observational data, the underlying true causal DAG may not be recoverable without strong
assumptions such as linearity [Shimizu et al., 2006] or additive noise [Hoyer et al., 2008, Peters et al.,
2014]. Instead, we can use causal discovery algorithms [Spirtes and Glymour, 1991, Shimizu et al.,
2006, Zhang and Hyvärinen, 2009, Peters et al., 2014] to obtain a CPDAG that contains that true
causal DAG. To exploit the obtained CPDAG for achieving interventional fairness, previous methods
have been built on variable selection [Zuo et al., 2022] or causal effect identification [Perkovic, 2020,
Zuo et al., 2024], but limited to reduced prediction accuracy or strong assumption for identification.

Differing from the above work, we propose a novel local method to partially identify the causal
effects of sensitive attributes on the predictor for satisfying the interventional fairness. Interestingly,
our approach does not require a global search of all possible DAGs, but can estimate all possible
causal effects using the obtained CPDAG. In the following, we first theoretically state the necessary
and sufficient condition for discriminating a set to be a possible parent set of the sensitive attribute for
CPDAG and MPDAG, respectively, from which we propose a local method for finding all possible
parent sets of sensitive attributes and estimating the corresponding propensities (Sec. 3.2). We then
calculate the all possible degrees of intervention fairness being violated using all possible estimated
propensities (Sec. 3.3). Finally, we further propose a min-max joint learning approach to make the
predictor satisfy intervention fairness by controlling for worst-case fairness violation (Sec. 3.4).

3.2 Finding Possible Parental Sets and Estimating Propensities

Given a CPDAG obtained from observational data, since enumerating all DAGs is infeasible when the
size of the Markov equivalence class is large [He et al., 2015, Zuo et al., 2022], we propose to adopt
a novel framework called IDA [Maathuis et al., 2009, Fang and He, 2020] to only enumerate possible
parental sets of the sensitive attribute. This provides a more efficient solution since enumerating
possible parental sets only requires the local structure around the sensitive attribute. We further
extend the above theoretical results to MPDAGs with background knowledge added, and estimate
possible propensities by regressing sensitive attribute on each possible parental set.

Definition 3.1 (v-structure). For three distinct vertices Xi, Xj and Xk, if Xi → Xj ← Xk and Xi

is not adjacent to Xk in G, then the triplet (Xi, Xj , Xk) is called a v-structure collided on Xj .

Pearl [2009] have shown that two DAGs are equivalent if and only if they have the same skeleton
and the same v-structures. Given a CPDAG G∗ contains all DAGs equivalent to G and a sensitive
attribute A, the local structure around A can be divided into three cases: parents pa(A,G∗) → A,
children pa(A,G∗)← A, and siblings sib(A,G∗)−A with undirected edges. Let S(A) be a subset
of sib(A,G∗), we denote G∗S(A)→A as a DAG that is obtained from CPDAG G∗ by changing all
undirected edges {Z − A,∀Z ∈ S(A)} into the directed edges {Z → A,∀Z ∈ S(A)} as parents,
and all of other undirected edges {Z−A,∀Z ̸∈ S(A)} into the directed edges with opposite direction
{Z ← A,∀Z ̸∈ S(A)} as children. We say S(A) → A is a possible parental set of the sensitive
attribute A for G∗, if there exists a DAG G in the equivalence class G∗ with the same directed edges
adjacent to A as G∗S(A)→A. Then a sufficient and necessary condition for determining whether a set
S(A) ⊂ sib(A,G∗) is a possible parent set of the sensitive attribute A is shown in below.

Lemma 3.2 (Maathuis et al. [2009]). Given a CPDAG G∗, a set S(A) ⊂ sib(A,G∗) is a possible
parent set of the sensitive attribute A, if and only if there is no more v-structure in G∗S(A)→A than G∗.

From the above lemma, given any S(A) ⊆ sib(A,G∗), we can determine whether S(A) is a possible
parental set from a local way. In particular, let the induced subgraph of G = (V,E) over V ′ ⊆ V be
the subgraph G′ = (V ′, E′) by restricting the edges E on the set of vertices V ′, where the edge set
E′ contains all edges with both endpoints in V ′. Then Lemma 3.2 is equivalent to check whether the
induced subgraph of G∗ over S(A) is complete, i.e., all vertices in the induced subgraph of G∗ over
S(A) are adjacent. This is because if there are two vertices Xi and Xj in S(A) that are not adjacent,
then by Definition 3.1, a v-structure is formed as Xi → A← Xj .

For MPDAG, a key difference compared with CPDAG is the possible generation of a directed trian-
gular cycle (e.g., A→ Xi → Xj → A) [Fang and He, 2020], when incorporating the background
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Algorithm 1: A local algorithm for finding possible adjustment sets and estimating corresponding
propensity model parameters of the sensitive attribute A further using direct causal information.
Input: Sensitive attribute A, CPDAG G∗, and consistent direct causal information set Bd.

1 Construct the MPDAGH from G∗ and Bd using Meek’s rules (see Algotirhm 4 for details);
2 Set SA = ∅ and m = 1;
3 for each S(m) ⊂ sib(A,H) such that orienting S(m) → A and A→ sib(A,H)\S(m) does not

introduce any v-structure collided on A or any directed triangle containing A do
4 for number of steps for training the possible propensity model on S(m) do
5 Sample a batch of units {(amk

, xmk
|S(m))}Kk=1;

6 Update ϕ̂(m) by descending along the gradient∇ϕ̂(m)ℓ(ϕ̂(m);S(m));
7 end
8 SA ← SA ∪ (pa(A,H) ∪ S(m)) and m← m+ 1;
9 end

Output: A set SA of possible adjustment sets S(m) and propensity model parameters ϕ̂(m).

knowledge and using Meek’s rule for orienting undirected edges adjacent to the sensitive attribute A.
Motivated by such difference, we entend the theoretical results on CPDAGs to MPDAGs for deter-
mining possible parental sets of A, which can also be implemented via a local way.
Definition 3.3 (Direct triangle structure). For three distinct vertices Xi, Xj and Xk, if Xi → Xj →
Xk → Xi, then the triplet (Xi, Xj , Xk) is called a direct triangle structure.
Lemma 3.4 (Fang and He [2020]). Given an MPDAG H, a set S(A) ⊂ sib(A,H) is a possible
parent set of A, if and only if there is no more direct triangle structure and v-structure inHS(A)→A

thanH.

From Lemma 3.4, we can conclude that for a given MPDAGH, it is equivalent to checking whether
the induced subgraph of H over S(A) is complete, as well as there does not exist S ∈ S(A) and
C ∈ adj(A,H)\ (pa(A,H)∪S(A)) such that C → S, otherwise a direct triangle structrue is formed
as A→ C → S → A. This provides a efficient way to locally find the possible parental sets of A.
Without loss of generality, we denote the set of possible parental sets of A with a total number M as

SA =
{
pa(A,H) ∪ S(1)(A), pa(A,H) ∪ S(2)(A), . . . , pa(A,H) ∪ S(M)(A)

}
.

Next, to estimate P (Ŷ = y|do(A = a)) in the interventional fairness notion, for each possi-
ble parental set pa(A,H) ∪ S(m)(A) with m = 1, . . . ,M , we propose to first estimate the cor-
responding propensity P (A | pa(A,H) ∪ S(m)(A)). Specifically, we use the covariates X re-
stricted on pa(A,H) ∪ S(m)(A), denoted as X|pa(A,H)∪S(m)(A), and train the propensity model
g(X|pa(A,H)∪S(m)(A); ϕ̂

(m)) for estimating propensity P (A | pa(A,H) ∪ S(m)(A)) by minimizing

ℓ(ϕ̂(m)) =− 1

N

N∑
i=1

[
Ai log g(X|pa(A,H)∪S(m)(A)) + (1−Ai) log

(
1− g(X|pa(A,H)∪S(m)(A))

)]
,

where ϕ̂(m) is the propensity model parameter and ê
(m)
i = g(xi|pa(A,H)∪S(m)(A); ϕ̂

(m)) is the
estimated propensity of unit i corresponding to the possible parent set pa(A,H) ∪ S(m)(A) for
i = 1, . . . , N and m = 1, . . . ,M . Since CPDAGs can be viewed as special cases of MPDAGs,
without loss of generality, we summarized the proposed local algorithm on MPDAGs in Alg. 1 (see
Alg. 3 in Appendix for implementing the proposed local algorithm on CPDAGs).

3.3 Estimating and Bounding Interventional Fairness

We then aim to estimate and bound all possible causal effects of sensitive attribute A on the predictor
Ŷ . Note that each parental set pa(A,H) ∪ S(m)(A) is a valid back-door adjustment set in the
back-door adjustment formula [Pearl, 1995, 2009], we have the following identification results.
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Lemma 3.5. With observational data, for m ∈ {1, . . . ,M}, if Ŷ /∈ pa(A,H) ∪ S(m)(A)3, then the
post-intervention distribution can be calculated from the observational data by:

P (Ŷ = y|do(A = a)) =

∫
P
(
Ŷ = y|A = a, pa(A,H) ∪ S(m)(A)

)
dP

(
pa(A,H) ∪ S(m)(A)

)
=

∫ P
(
Ŷ = y,A = a|pa(A,H) ∪ S(m)(A)

)
P
(
A = a|pa(A,H) ∪ S(m)(A)

) dP
(
pa(A,H) ∪ S(m)(A)

)
,

where P
(
A = a|pa(A,H) ∪ S(m)(A)

)
is estimated via g(X|pa(A,H)∪S(m)(A); ϕ̂

(m)) in Sec. 3.2.

Proof of Lemma 3.5.

P (Ŷ = y|do(A = a))

=

∫
P
(
Ŷ = y|do(A = a), pa(A,H) ∪ S(m)(A)

)
dP

(
pa(A,H) ∪ S(m)(A)

)
=

∫
P
(
Ŷ = y|A = a, pa(A,H) ∪ S(m)(A)

)
dP

(
pa(A,H) ∪ S(m)(A)

)
=

∫ P
(
Ŷ = y,A = a|pa(A,H) ∪ S(m)(A)

)
P
(
A = a|pa(A,H) ∪ S(m)(A)

) dP
(
pa(A,H) ∪ S(m)(A)

)
,

where the first and the third equations are from the conditional probability formula.

From Lemma 3.5, for each possible parental set pa(A,H) ∪ S(m)(A) with m = 1, . . . ,M ,
given estimated propensities ê(m)

i in Sec. 3.2, we can train a treatment effect estimation model
h(xi; ψ̂

(m)) = τ̂
(m)
i to estimate P (Ŷ = y | do(A = 1))− P (Ŷ = y | do(A = 0)) by minimizing

ℓ(ψ̂(m)) =
1

N

N∑
i=1

(Aif(xi; θ)
ê
(m)
i

− (1−Ai)f(xi; θ)
1− ê(m)

i

− h(xi; ψ̂(m))
)2
,

where f(xi; θ) = Ŷi is an outcome predictor parameterized by θ, and h(xi; ψ̂(m)) = τ̂
(m)
i aims to

evaluate the interventional fairness violation of that learned predictor.

3.4 Min-Max Joint Learning Approach

We now aim to train a predictor to satisfy interventional fairness. Since the parental set of the sensitive
attribute in the true DAG is unknown, we propose a min-max learning approach to control for the
worst-case interventional fairness violations of the predictor. Specifically, given all possible causal
effects τ̂ (m)

i of the sensitive attribute A on the predictor Ŷ in Section 3.3, the prediction model
Ŷ = f(x; θ) is trained by minimizing the average prediction error with the worst-case violations of
interventional fairness as a penalty term

min
θ
ℓ(θ; ψ̂(1), . . . , ψ̂(M)) =

1

N

N∑
i=1

(Yi − f(xi; θ))2 + γ ·max
m

1

N

N∑
i=1

ξ
(m)
i ,

s.t. τ̂ (m)
i ≤ C + ξ

(m)
i , i = 1, . . . , N, m = 1, . . . ,M,

τ̂
(m)
i ≥ −C − ξ(m)

i , i = 1, . . . , N, m = 1, . . . ,M,

ξ
(m)
i ≥ 0, i = 1, . . . , N, m = 1, . . . ,M,

3It is worth noting that this assumption always holds, since the training of the predictor Ŷ cannot affect the
origin sensitive attribute A.
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Algorithm 2: A min-max optimization approach alternatively updating possible counterfactual
treatment effect models and prediction model controlling the worse-case fairness violations.
Input: Sensitive attribute A, outcome of interest Y , and other observable attributes X , possible

adjustment sets S(m) and propensity model parameters ϕ̂(m) from Alg. 1.
1 while stopping criteria is not satisfied do
2 for m = 1, . . . ,M do
3 for number of steps for training the possible counterfactual treatment effect model do
4 Sample a batch of units {(amk

, xmk
, ymk

)}Kk=1;
5 Update ψ̂(m) by descending along the gradient∇ψ̂(m)ℓ(ψ̂(m); θ);
6 end
7 Compute possible counterfactual treatment effects τ̂ (m)

i = h(xi; ψ̂
(m));

8 end
9 for number of steps for training the prediction model do

10 Sample a batch of units {(al, xl, yl)}Ll=1;
11 Update θ by descending along the gradient of min-max loss∇θℓ(θ; ψ̂(1), . . . , ψ̂(M));
12 end
13 end

which is a convex optimization problem when τ̂ (m)
i = h(xi; ψ̂

(m)) is linear. It is equivalent to

min
θ
ℓ̃(θ) =

1

N

N∑
i=1

(Yi − f(xi; θ))2 + λ ·max
m

1

N

N∑
i=1

[
(−C − τ̂ (m)

i )+ + (τ̂
(m)
i − C)+

]
,

where γ and λ are hyper-parameters for trade-off between prediction accuracy and interventional
fairness. Since achieving strict interventional fairness for all individuals, i.e., having zero causal
effects of sensitive attribute on the predictor, is usually unrealistic and would come at the cost of
much prediction accuracy, we introduce a slack variable ξ(m)

i for each individual and a pre-specified
threshold C, which penalizes the loss when the estimated causal effect |τ̂ (m)

i | > C. Note that
when implementing the proposed min-max optimization approach, the treatment effect estimation
models for evaluating the fairness violations in Section 3.3 and the prediction model controlling for
worse-case fairness violations in Section 3.4 should be updated alternatively, which can be viewed as
an iterative process of interventional fairness evaluation and policy improvement of the prediction
model. We summarized the whole min-max optimization algorithm in Alg. 2.

4 Experiments

In this section, both synthetic and real-world experiments are conducted to evaluate the prediction
accuracy and fairness of our approach. The root mean squared error (RMSE) between Y and Ŷ is used
to measure the prediction performance, and the RMSE between Ŷ |do(A = a) and Ŷ |do(A = a′) is
used to measure the violation of the interventional fairness, named ”unfairness”.

Baselines. We consider six baseline prediction models: (1) Full uses all attributes, (2) Unaware uses
all attributes except the sensitive attribute, (3) Oracle uses all attributes that are non-descendants of
the sensitive attribute given the ground-truth DAG, (4) FairRelax uses all definite non-descendants
and possible descendants of the sensitive attribute in a CPDAG (or an MPDAG), (5) Fair uses all
definite non-descendants of the sensitive attribute in a CPDAG (or an MPDAG), and (6) ϵ-IFair uses
all attributes and implement the constrained optimization problem.

Synthetic Study. Synthetic data are generated from a linear structural equation model based on a
ground-truth DAG. Specifically, we first randomly generate a DAG with d nodes and 2d directed edges
according to the Erdős-Rényi (ER) model with d ∈ {10, 20, 30, 40} in our experiment. Following
the previous studies [Zuo et al., 2022, 2024], the path coefficients βjk of directed edges Xj → Xk

are sampled from a uniform distribution U([−2,−0.5] ∪ [0.5, 2]). The data are generated using
Xk =

∑
Xj∈pa(Xk)

βjkXj + ϵi, i = 1, . . . , n, where pa (Xk) represents the parent nodes of Xk,
noise ϵi ∼ N(0, γ) with γ ∈ {1.5, 2.5}, and n is the sample size, which is set to 1,000 in our
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Table 1: Average RMSE and unfairness for synthetic datasets on the held-out test set.
Noise = 1.5 NODE = 10, EDGE = 20 NODE = 20, EDGE = 40 NODE = 30, EDGE = 60 NODE = 40, EDGE = 80

Method RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓
Oracle 0.757 ± 0.349 0.000 ± 0.000 0.579 ± 0.245 0.000 ± 0.000 0.571 ± 0.194 0.000 ± 0.000 0.578 ± 0.200 0.000 ± 0.000

Full 0.576 ± 0.218 0.195 ± 0.232 0.494 ± 0.133 0.095 ± 0.128 0.542 ± 0.196 0.063 ± 0.083 0.538 ± 0.183 0.067 ± 0.113
Unaware 0.587 ± 0.219 0.150 ± 0.208 0.498 ± 0.134 0.058 ± 0.095 0.544 ± 0.196 0.050 ± 0.076 0.540 ± 0.183 0.043 ± 0.066
FairRelax 0.653 ± 0.256 0.142 ± 0.201 0.586 ± 0.217 0.055 ± 0.092 0.603 ± 0.241 0.045 ± 0.068 0.611 ± 0.254 0.041 ± 0.068
Fair 0.747 ± 0.293 0.128 ± 0.200 0.627 ± 0.223 0.050 ± 0.074 0.661 ± 0.263 0.043 ± 0.067 0.630 ± 0.292 0.038 ± 0.059
ϵ-IFair 0.644 ± 0.262 0.137 ± 0.187 0.570 ± 0.215 0.056 ± 0.080 0.589 ± 0.239 0.048 ± 0.065 0.609 ± 0.241 0.040 ± 0.063

Ours 0.623 ± 0.210 0.119 ± 0.175 0.561 ± 0.126 0.049 ± 0.073 0.597 ± 0.185 0.037 ± 0.054 0.606 ± 0.178 0.036 ± 0.054

Noise = 2.5 NODE = 10, EDGE = 20 NODE = 20, EDGE = 40 NODE = 30, EDGE = 60 NODE = 40, EDGE = 80

Method RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓
Oracle 0.729 ± 0.344 0.000 ± 0.000 0.874 ± 0.625 0.000 ± 0.000 0.801 ± 0.497 0.000 ± 0.000 0.820 ± 0.472 0.000 ± 0.000

Full 0.667 ± 0.274 0.185 ± 0.189 0.761 ± 0.440 0.150 ± 0.425 0.736 ± 0.417 0.075 ± 0.087 0.729 ± 0.334 0.110 ± 0.183
Unaware 0.674 ± 0.276 0.065 ± 0.094 0.772 ± 0.457 0.062 ± 0.126 0.737 ± 0.417 0.032 ± 0.043 0.733 ± 0.336 0.041 ± 0.079
FairRelax 0.738 ± 0.283 0.059 ± 0.077 0.898 ± 0.600 0.050 ± 0.119 0.831 ± 0.487 0.030 ± 0.040 0.791 ± 0.410 0.040 ± 0.079
Fair 0.774 ± 0.274 0.052 ± 0.067 0.937 ± 0.642 0.046 ± 0.118 0.891 ± 0.550 0.029 ± 0.039 0.816 ± 0.411 0.039 ± 0.079
ϵ-IFair 0.732 ± 0.275 0.055 ± 0.082 0.872 ± 0.586 0.046 ± 0.101 0.833 ± 0.418 0.025 ± 0.045 0.789 ± 0.418 0.039 ± 0.078

Ours 0.719 ± 0.280 0.049 ± 0.073 0.857 ± 0.466 0.045 ± 0.090 0.823 ± 0.413 0.023 ± 0.031 0.788 ± 0.334 0.038 ± 0.070
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Figure 1: Performance under varying hyper-parameters C and λ on RMSE and unfairness.

experiment. Next, we use the PC algorithm in the causal-learn package to learn a CPDAG. Then we
randomly select two nodes as the outcome Y and the sensitive attribute A, respectively. We sample
A from a Bernoulli distribution with probability σ(

∑
Xj∈pa(A) βjAXj + ϵi), where σ(·) denotes the

sigmoid function. The proportion of training data and test data are set to 0.8 and 0.2, respectively.

Performance Comparison. Table 1 shows the results of baselines and our approach. First, Full
and Unaware perform better on RMSE, while Fair, FairRelax, ϵ-IFair, and our approach have
a significant advantage on unfairness. Note that our approach outperforms Fair, FairRelax, and
ϵ-IFair in all scenarios on both RMSE and unfairness metrics, because the proposed method makes
predictions with all attributes and controls unfairness by the adjustment sets, whereas Fair and
FairRelax can hardly find the true descendants of the sensitive attribute and ϵ-IFair can hardly find
the true causal effects when the learned CPDAG is not accurate in practice. In addition, Figure 1
shows the change in RMSE and unfairness as C and λ increase. When C is increasing, RMSE is
decreasing significantly, while unfairness is increasing. Because the larger C is, the looser the control
of causal effects, which is beneficial for prediction performance but hurts fairness. Similar arguments
hold for λ, where a larger λ will increase the cost of fairness violations in the optimization problem,
thus benefiting fairness but hurting prediction accuracy.

MPDAG with Background Knowledge. Given the CPDAG, we randomly select a certain percentage
of the directed edges in the true DAG as background knowledge and impose it on the already learned
CPDAG. For example, if A → B is selected from the true DAG, we add this directed edge to the
learned CPDAG regardless of the original relationship between A and B in the CPDAG to obtain
an MPDAG and then adjust the MPDAG according to the Meek’s rule. Figure 2 shows the effect
of background knowledge on performance. As the background knowledge increases, the RMSE of
Fair and FairRelax increases and the unfairness decreases significantly because more background
knowledge forces Fair and FairRelax to have fewer nodes to make predictions. For our approach
and ϵ-IFair, both prediction and unfairness performance become better as the background knowledge
ratio increases, which is attributed to the more accurate identification of the possible adjustment sets
and the causal effect. Note that our approach stably outperforms ϵ-IFair under varying background
knowledge ratios. In addition, Table 2 reports the change of precision and recall for finding adjustment
sets with increasing background knowledge ratio.

Effect of Different Number of Parent Node. We evaluate the RMSE and unfairness performance
with varying numbers p of parent nodes of the sensitive attribute. The results are shown in Table 3.
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Figure 2: RMSE and unfairness performance under varying background knowledge ratio.

Table 2: Average precision and recall for finding the adjustment sets in MPDAG.
Background Knowledge 0% 10% 20% 30% 40% 50%

Precision ↑ 0.438 ± 0.489 0.438 ± 0.489 0.466 ± 0.492 0.580 ± 0.486 0.642 ± 0.471 0.742 ± 0.437
Recall ↑ 0.265 ± 0.353 0.265 ± 0.353 0.274 ± 0.350 0.329 ± 0.355 0.353 ± 0.347 0.400 ± 0.346

Table 3: Average RMSE and unfairness for synthetic datasets on the held-out test set with different
numbers p of parent nodes of the sensitive attribute.

Unaware Fair FairRelax ϵ-IFair Ours

RMSE (p = 0) 0.601± 0.235 0.642± 0.241 0.635± 0.240 0.633± 0.237 0.635± 0.233
Unfairness (p = 0) 0.063± 0.082 0.041± 0.051 0.045± 0.050 0.041± 0.021 0.035± 0.016
RMSE (p = 2) 0.528± 0.298 0.601± 0.291 0.597± 0.294 0.590± 0.206 0.584± 0.201
Unfairness (p = 2) 0.111± 0.090 0.099± 0.075 0.100± 0.075 0.100± 0.088 0.096± 0.107
RMSE (p = 4) 0.718± 0.281 0.860± 0.261 0.834± 0.253 0.818± 0.237 0.792± 0.228
Unfairness (p = 4) 0.129± 0.073 0.113± 0.058 0.120± 0.050 0.110± 0.072 0.103± 0.086

As p increases, due to the presence of more backdoor paths, the RMSE performance and unfairness
performance of all methods decreases, however, our method still outperforms the baseline methods.

The Performance on the Classification Problem. We conduct more experiments to examine if
the proposed method can be applied to classification problems. Specifically, we modify the data
generation process (DGP) to clip the outcome variable Y to 1 if Y > 0, and to 0 if Y ≤ 0, and the
rest DGP remains the same. In this scenario, we adopt AUC as the evaluation metric instead of RMSE.
The experiment results are shown in Table 4. We find that both Full and Unaware perform better on
AUC, while Fair, FairRelax, ϵ-IFair, and our approach perform better on unfairness. Note that our
approach outperforms Fair, FairRelax, and ϵ-IFair in all scenarios for both AUC and unfairness.

Case Study. The sensitive attributes contained in many widely used datasets for fair machine
learning have no parent nodes, such as sex in the Adult dataset4 [Kohavi, 1996] and race in the
COMPAS dataset5 [Angwin et al., 2022]. Because sex, race, and age cannot be affected by other
collected features, we further consider the Open University Learning Analytics Dataset (OULAD)
dataset6 [Kuzilek et al., 2017], in which disability is treated as the sensitive attribute and final grade
is treated as the outcome. The COMPAS dataset contains 6,172 units with 9 attributes such as
gender and number of priors, the Adult dataset contains 48,842 units with 14 attributes such as
age, education, and race, and the OULAD dataset contains 32,593 units with 11 attributes including
demographic information such as gender, age, education level, etc. For this case study, we first
learn a CPDAG from the raw data using the PC algorithm in the causal-learn package and obtain an
MPDAG with the background knowledge such as sex can not be caused by other attributes. Second,

4https://archive.ics.uci.edu/dataset/2/adult
5https://www.kaggle.com/datasets/danofer/compass
6https://www.archive.ics.uci.edu/dataset/349/open+university+learning+analytics+dataset
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Table 4: Average AUC and unfairness for synthetic datasets on the test set on classification problem.

Noise = 2.5 NODE = 10, EDGE = 20 NODE = 20, EDGE = 40 NODE = 30, EDGE = 60 NODE = 40, EDGE = 80

Method AUC ↑ Unfairness ↓ AUC ↑ Unfairness ↓ AUC ↑ Unfairness ↓ AUC ↑ Unfairness ↓
Oracle 0.815 ± 0.094 0.000 ± 0.000 0.805 ± 0.148 0.000 ± 0.000 0.819 ± 0.149 0.000 ± 0.000 0.818 ± 0.087 0.000 ± 0.000

Full 0.845 ± 0.071 0.038 ± 0.051 0.889 ± 0.083 0.126 ± 0.115 0.855 ± 0.111 0.090 ± 0.087 0.842 ± 0.086 0.143 ± 0.106
Unaware 0.843 ± 0.070 0.017 ± 0.021 0.886 ± 0.080 0.105 ± 0.152 0.853 ± 0.114 0.076 ± 0.082 0.837 ± 0.090 0.113 ± 0.121
FairRelax 0.825 ± 0.057 0.017 ± 0.021 0.857 ± 0.130 0.084 ± 0.148 0.845 ± 0.117 0.074 ± 0.106 0.824 ± 0.082 0.112 ± 0.119
Fair 0.819 ± 0.060 0.015 ± 0.021 0.779 ± 0.200 0.082 ± 0.143 0.844 ± 0.116 0.074 ± 0.106 0.822 ± 0.128 0.094 ± 0.122
ϵ-IFair 0.843 ± 0.049 0.018 ± 0.017 0.883 ± 0.081 0.081 ± 0.087 0.843 ± 0.115 0.068 ± 0.088 0.833 ± 0.085 0.098 ± 0.105

Ours 0.844 ± 0.051 0.015 ± 0.016 0.886 ± 0.077 0.080 ± 0.130 0.855 ± 0.109 0.069 ± 0.094 0.835 ± 0.088 0.089 ± 0.119

Table 5: Real-world experiment results on the COMPAS, Adult, and OULAD datasets. For the
COMPAS dataset, the sensitive attribute is race, and for the Adult dataset, the sensitive attribute is
sex. Both of the sensitive attributes have no parent nodes. For the OULAD dataset, the sensitive
attribute is disability, which can have parent nodes.

COMPAS Full Unaware FairRelax Fair ϵ-IFair Ours

RMSE 0.256 ± 0.022 0.261 ± 0.023 0.261 ± 0.023 0.263 ± 0.022 0.235 ± 0.091 0.219 ± 0.020
Unfairness 0.273 ± 0.048 0.269 ± 0.052 0.260 ± 0.045 0.238 ± 0.045 0.190 ± 0.120 0.179 ± 0.011

Adult Full Unaware FairRelax Fair ϵ-IFair Ours

RMSE 0.433 ± 0.024 0.436 ± 0.024 0.607 ± 0.131 0.611 ± 0.128 0.413 ± 0.010 0.375 ± 0.019
Unfairness 0.506 ± 0.021 0.409 ± 0.029 0.209 ± 0.205 0.187 ± 0.205 0.155 ± 0.009 0.171 ± 0.021

OULAD Full Unaware FairRelax Fair ϵ-IFair Ours

RMSE 0.502 ± 0.041 0.502 ± 0.042 0.503 ± 0.041 0.503 ± 0.041 0.499 ± 0.041 0.491 ± 0.040
Unfairness 0.088 ± 0.024 0.031 ± 0.058 0.029 ± 0.023 0.029 ± 0.023 0.027 ± 0.020 0.024 ± 0.018

0.0 0.5 1.0
Y (Full), RMSE = 0.502

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Factual Counterfactual

(a) Full

0.0 0.5 1.0
Y (Fair), RMSE = 0.503

Factual Counterfactual

(b) Fair

0.0 0.5 1.0
Y (FairRelax), RMSE = 0.503

Factual Counterfactual

(c) FairRelax

0.0 0.5 1.0
Y ( -IFair), RMSE = 0.499

Factual Counterfactual

(d) ϵ-IFair

0.2 0.4 0.6 0.8
Y (Ours), RMSE = 0.491

Factual Counterfactual

(e) Ours

Figure 3: Density plot of the predicted Ŷ |do(A = a) and Ŷ |do(A = a′) on OULAD data.

we randomly generate a DAG as the ground-truth from the learned MPDAG. After obtaining the
DAG, we then divide the data into 100 random batches, and for each batch, we learn an MPDAG
from the observed data and background knowledge. The path coefficients are determined based on
linear regression and regard the residual of the regression as noise. The subsequent steps are the same
as in the synthetic study. The experiment results are shown in Table 5, with density plots in Figure 3.
First, both ϵ-IFair and our method demonstrate the superiority of our approach in both prediction
performance and fairness compared to other baselines. In addition, our method stably outperforms
ϵ-IFair, further validating the effectiveness of the proposed min-max joint learning approach.

5 Conclusion

This paper aims to achieve interventional fairness from observational data when the causal graph
is unknown or partially known. Interestingly, we show it is actually sufficient to enumerate all
possible parental sets of the sensitive attributes via a local approach, instead of enumerating all
DAGs at high computational cost. We then propose a general min-max optimization framework to
achieve interventional fairness that is easy applicable to CPDAGs and maximally oriented PDAGs
(MPDAGs) with the added background knowledge. One limitation of our approach is due to the
proposed approach relying on a CPDAG given by the causal discovery algorithm and estimations of
the propensities, which may lead to mild violations of interventional fairness when the CPDAG or
estimates are inaccurate. Another possible limitation, which also serves as a future research direction,
is to achieve interventional fairness in the presence of hidden variables with partially known DAGs.
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Emilija Perković, Johannes Textor, Markus Kalisch, and Marloes H Maathuis. A complete generalized
adjustment criterion. In UAI, 2015.
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Dominik Rothenhäusler, Jan Ernest, and Peter Bühlmann. Causal inference in partially linear
structural equation models. The Annals of Statistics, 46(6A):2904–2938, 2018.

Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Interventional fairness: Causal database
repair for algorithmic fairness. In SIGMOD, 2019.

12



Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10),
2006.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9(1):62–72, 1991.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.
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Broader Impacts

This paper proposes a general min-max optimization framework that can effectively achieve interven-
tional fairness when the true causal graph is unknown or partially known. In contrast to statistical
fairness, interventional fairness considers possible counterfactual decision-makings, not just based
on the observed data. The implications of achieving interventional fairness in algorithms where the
true causal graph is unknown or partially known are mainly in the following aspects. First, reducing
bias: machine learning models may learn and reflect bias in the training data and unconsciously
apply this bias to individuals in their predictions. interventional fairness helps reduce this possible
bias. Second, improve fairness: if we can achieve interventional fairness on partially known causal
graphs, our models will be prevented from treating unfairly because of the sensitive attributes. Third,
enhancing trust: as our algorithms are able to process data in a fairer way, people’s trust in those
algorithms increases. This is critical in many areas, such as healthcare, finance, and justice. Fourth,
promote policy making: understanding and addressing interventional fairness issues in algorithms
can help policy makers better understand and regulate these technologies to ensure their fairness and
transparency in practice. In a nutshell, studying how to effectively achieve interventional fairness in
scenarios such as unknown causal graphs or the presence of hidden variables is both challenging and
socially significant, and deserves more effort.

A More Discussion on the Previous Work

To tackle the above problem, a recent work [Zuo et al., 2022] proposes to use observed data to
first classify variables into three categories: definite non-descendants, possible descendants, and
definite descendants of the sensitive attributes. Next, by noting that a prediction model would
be counterfactually fair if the prediction model is a function of the non-descendants of sensitive
attributes [Kusner et al., 2017], as shown in Table 6, FAIR method is proposed to use only the definite
non-descendants, and FAIRRELAX method further incorporates possible descendants.

Table 6: Comparison of methods to achieve interventional fairness from PDAGs. Both FAIR and
FAIRRELAX employ a two-stage approach: they first learn a CPDAG from observed data, and then
make prediction with the definite non-descendants (and possible descendants) of the sensitive attribute.
Our method alternatively updates the predictions using all variables and possible counterfactual
treatment effects via a min-max optimization.

Variables (example in Figure 4(b)) FAIR FAIRRELAX OURS

Definite non-descendants (∅) ✓ ✓ ✓
Possible descendants (∅) × ✓ ✓
Definite descendants (∅) × × ✓

However, both FAIR and FAIRRELAX forbid the use of definite descendants for model prediction,
which greatly compromises the prediction accuracy. In particular, the sensitive attribute is usually an
inherent nature of data, making most of the attributes are its descendants [Wu et al., 2019a].

(a) A sample true DAG (b) CPDAG of (a)

Figure 4: A toy example for illustration: FAIR has no available variables for prediction; FAIRRELAX
uses {X1, X2} without further fairness constraint; OURS uses {A,X1, X2} with a min-max constraint
bounding all possible counterfactual treatment effect.

We proceed with a toy example for illustration: Figure 4(a) shows a sampled DAG as the ground-truth,
and given the observed data, FAIR and FAIRRELAX algorithms first learn a Markov equivalence
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Algorithm 3: A local algorithm for finding possible adjustment sets and estimating corresponding
propensity model parameters of the sensitive attribute A.
Input: Sensitive attribute A, CPDAG G∗.

1 Set SA = ∅ and m = 1;
2 for each S(m) ⊂ sib(A,G∗) such that orienting S(m) → A and A→ sib(A,G∗)\S(m) does not

introduce any v-structure collided on A do
3 for number of steps for training the possible propensity model on S(m) do
4 Sample a batch of units {(amk

, xmk
|S(m))}Kk=1;

5 Update ϕ̂(m) by descending along the gradient∇ϕ̂(m)ℓ(ϕ̂(m);S(m));
6 end
7 SA ← SA ∪ S(m) and m← m+ 1;
8 end

Output: A set SA of possible adjustment sets S(m) and propensity model parameters ϕ̂(m).

Figure 5: The visualization of four rules of Meek’s criteria. If the graph on the left-hand side of a rule
is an induced subgraph of a PDAG G, then orient the undirected edge such that the resulting subgraph
is the one on the right-hand side of the rule.

class of DAGs that encode the same set of conditional independencies from the data, also known
as a completely partially directed acyclic graph (CPDAG), as shown in Figure 4(b). One on hand,
the definite non-descendants of sensitive attribute A is a empty set, thus FAIR is unable to return
valid prediction model. On the other hand, the possible descendants of the sensitive attribute A are
{X1, X2}, thus FAIRRELAX uses both X1 and X2 to predict Y by minimizing the empirical risk
without imposing any further fairness constraint. However, such relaxation would lead to a serious
violation of interventional fairness, due to the nodes used (X1 and X2 in this example) for outcome
regression might be descendants of the sensitive attribute A in the true DAG, as in Figure 4(a).

When the true causal graph is unknown, to the best of our knowledge, Zuo et al. [2022] performed
the first work to obtain an interventional fairness predictor on an MPDAG, which focuses on utilizing
the properties of the causal graph (Level 1 in Kusner et al. [2017]) – to make predictions with the
definite non-descendants (and possible descendants) of the sensitive attribute, as shown in Table
6. However, further incorporating the descendants of sensitive attribute into the predictor may also
achieve interventional fairness by ”cancelling out” the counterfactual treatment effects, which utilizes
the observed variables more sufficiently and further improves the accuracy of the prediction.

We provide an intuition for the rationality and the advantages of using all variables by adopting the
toy example in Figure 4. Suppose the structural equations in Figure 4(a) are: A = UA, X1 = A+U1,
X2 = A+ U2, and Y = 2X1 +X2 + UY , which satisfies the faithfulness assumption [Uhler et al.,
2013]. In such a case, as discussed before, the FAIR algorithm proposed in Zuo et al. [2022] prevents
all variables from predicting Y , while the FAIRRELAX algorithm uses both X1 and X2 to predict Y
without imposing any fairness constraints, and therefore cannot achieve counterfactual unfairness,
since X1 and X2 are descendants of A. To achieve more accurate predictions with interventional
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Algorithm 4: Constructing the MPDAGH from CPDAG G∗ and Bd Using Meek’s Rules
Input: A CPDAG G∗, a set of directed edges Bd.
Output: An MPDAGH or FAIL.

1 SetH = G∗;
2 while Bd ̸= ∅ do
3 Choose an edge u→ v from Bd;
4 Bd = Bd \ {u→ v};
5 if u→ v or u− v is inH then
6 Orient u→ v inH;
7 Orient the other edges under the Meek’s rules in Figure 5;
8 else
9 return FAIL;

10 end
11 end
12 return MPDAGH;

fairness guarantees, one may notice that a function of X1 −X2 can be used to predict Y . On the
one hand, this is strictly counterfactually fair due to the fact that X1 − X2 = U1 − U2, which is
independent of the sensitive attribute A. On the other hand, this is informative for predicting Y due
to Cov(X1 −X2, Y ) = 2Var(U1)−Var(U2) ̸= 0.

However, the true DAG and the corresponding structural equations are unknown in many real-world
scenarios, which poses a great challenge to estimate the possible counterfactual treatment effects. To
address this problem, an intuitive approach is to first find a Markov equivalence class over all vertices,
which can be achieved using standard causal discovery methods, e.g., PC [Spirtes et al., 2000] and
GES [Chickering, 2002b], and then to globally enumerate all the possible DAGs in the equivalence
class and estimate their causal effects for each. However, as discussed in Section 7 of Zuo et al.
[2022], this intuitive way to enumerate all DAGs is computationally expensive and unrealistic.
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Justification: We present detailed proofs in the Appendix.
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• The answer NA means that the paper does not include theoretical results.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
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(c) If the contribution is a new model (e.g., a large language model), then there should
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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that is necessary to appreciate the results and make sense of them.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are reported with error bars.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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