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Abstract
Current experiments frequently produce high-dimensional, multimodal datasets—such as
those combining neural activity and animal behavior or gene expression and phenotypic
profiling—with the goal of extracting useful correlations between the modalities. Often, the
first step in analyzing such datasets is dimensionality reduction. We explore two primary
classes of approaches to dimensionality reduction (DR): Independent Dimensionality Reduc-
tion (IDR) and Simultaneous Dimensionality Reduction (SDR). In IDR methods, of which
Principal Components Analysis is a paradigmatic example, each modality is compressed
independently, striving to retain as much variation within each modality as possible. In
contrast, in SDR, one simultaneously compresses the modalities to maximize the covaria-
tion between the reduced descriptions while paying less attention to how much individual
variation is preserved. Paradigmatic examples include Partial Least Squares and Canonical
Correlations Analysis. Even though these DR methods are a staple of statistics, their rel-
ative accuracy and data set size requirements are poorly understood. We use a generative
linear model to synthesize multimodal data with known variance and covariance structures
to examine these questions. We assess the accuracy of the reconstruction of the covariance
structures as a function of the number of samples, signal-to-noise ratio, and the number of
varying and covarying signals in the data. Using numerical experiments, we demonstrate
that linear SDR methods consistently outperform linear IDR methods and yield higher-
quality, more succinct reduced-dimensional representations with smaller datasets. Remark-
ably, regularized CCA can identify low-dimensional weak covarying structures even when
the number of samples is much smaller than the dimensionality of the data, which is a
regime challenging for all dimensionality reduction methods. Our work corroborates and
explains previous observations in the literature that SDR can be more effective in detecting
covariation patterns in data. These findings strengthen the intuition that SDR should be
preferred to IDR in real-world data analysis when detecting covariation is more important
than preserving variation.
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1 Introduction

Many modern experiments across various fields generate massive multimodal data sets. For instance, in
neuroscience, it is common to record the activity of a large number of neurons while simultaneously recording
the resulting animal behavior (Stringer et al., 2019; Steinmetz et al., 2021; Urai et al., 2022; Krakauer et al.,
2017). Other examples include measuring gene expressions of thousands of cells and their corresponding
phenotypic profiles, or integrating gene expression data from different experimental platforms, such as RNA-
Seq and microarray data (Clark et al., 2013; Zheng et al., 2017; Svensson et al., 2018; Huntley et al.,
2015; Lorenzi et al., 2018). In economics, important variables such as inflation are often measured using
combinations of macroeconomic indicators as well as indicators belonging to different economic sectors
(Gosselin & Tkacz, 2001; Baillie et al., 2002; Freyaldenhoven, 2022; Rudd, 2020). In all of these examples,
an important goal is to estimate statistical correlations among the different modalities.

Analyses usually begin with dimensionality reduction (DR) into a smaller and more interpretable represen-
tation of the data. We distinguish two types of DR: independent (IDR) and simultaneous (SDR) (Martini &
Nemenman, 2024). In the former, each modality is reduced independently, while aiming to preserve its varia-
tion, which we call self signal. In the latter, the modalities are compressed simultaneously, while maximizing
the covariation (or the shared signal) between the reduced descriptions and paying less attention to preserv-
ing the individual variation. It is not clear if IDR techniques, such as the Principal Components Analysis
(PCA) (Hotelling, 1933), are well-suited for extracting shared signals since they may overlook features of the
data that happen to be of low variance, but of high covariance (Colwell et al., 2014; Borga et al., 1997). In
particular, poorly sampled weak shared signals, common in high-dimensional datasets, can exacerbate this
issue. SDR techniques, such as Partial Least Squares (PLS) (Wold et al., 2001) and Canonical Correlations
Analysis (CCA) (Hotelling, 1936), are sometimes mentioned as more accurate in detecting weak shared sig-
nal (Chin & Newsted, 1999; Hair et al., 2011; Pacharawongsakda & Theeramunkong, 2016). However, the
relative accuracy and data set size requirements for detecting the shared signals in the presence of self signals
and noise remain poorly understood for both classes of methods.

In this study, we aim to assess the strengths and limitations of linear IDR, represented by PCA, and linear
SDR, exemplified by PLS and CCA, in detecting weak shared signals. For this, we use a generative linear
model that captures key features of relevant examples, including noise, the self signal, and the shared signal
components. Using this model, we analyze the performance of the methods in different conditions. We assess
how well these techniques can (i) extract the relevant shared signal and (ii) identify the dimensionality of
the shared and the self signals from noisy, undersampled data. We investigate how the signal-to-noise ratios,
the dimensionality of the reduced variables, and the method of computing correlations combine with the
sample size to determine the quality of the DR. We propose best practices for achieving high-quality reduced
representations with small sample sizes using these linear methods.

Overall, the main contributions of this paper are:

• We define a tractable, generative, linear model for producing multimodal datasets; the model al-
lows us to tune the numbers and the strengths of the shared and the self signals in the generated
modalities.

• We characterize the accuracy and data set requirements for reconstructing the shared signals by
SDR methods (CCA, rCCA, and PLS) and IDR methods (PCA) as a function of the parameters of
the generative model.

• We find that SDR methods generally outperform IDR methods in detecting shared signals in mul-
timodal data; this is true for both the synthetic generative linear model, as well for the non-linear
data derived from the MNIST dataset.
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2 Model

2.1 Relations to Previous Work

The extraction of signals from large-dimensional data sets is a challenging task when the number of observa-
tions is comparable to or smaller than the dimensionality of the data. The undersampling problem introduces
spurious correlations that may appear as signals, but are, in fact, just statistical fluctuations. This poses a
challenge for DR techniques, as they may retain unnecessary dimensions or identify noise dimensions as true
signals. Here, we focus exclusively on linear DR methods. For these, the Marchenko-Pastur (MP) distribu-
tion of eigenvalues of the covariance matrix of pure noise derived using the Random Matrix Theory (RMT)
methods (Marchenko & Pastur, 1967) has been used to introduce a cutoff between noise and true signal in
real datasets. However, recent work (Fleig & Nemenman, 2022a) has shown that, when observations are a
linear combination of uncorrelated noise and latent low-dimensional self signals, then the self signals alter
the distribution of eigenvalues of the sampling noise, questioning the validity of this naive approach.

Moving beyond a single modality, Bouchaud et al. (2007) calculated the singular value spectrum of cross-
correlations between two nominally uncorrelated random signals. However, it remains unknown whether the
linear mixing of self signals and shared signals affects the spectra of noise, and how all of these components
combine to limit the ability to detect shared signals between two modalities from data sets of realistic sizes.
Filling in this gap using numerical simulations is the main goal of this paper, and analytical treatments of
this problem are left for the future.

The linear model and linear DR approaches studied here do not capture the full complexity of real-world data
sets and state-of-the-art algorithms. However, if sampling issues and self signals limit the ability of linear
DR methods to extract shared signals, it would be surprising for nonlinear methods to succeed in similar
scaling regimes on real data. Thus extending the previous work to explicitly study the effects of linear
mixtures of self signals, shared signals, and noise on limitations of DR methods is likely to result in intuition
transferable to more complex scenarios. Examples of such scenarios might include inference of dynamics of
a system through a latent space (Creutzig et al., 2009; Chen et al., 2022), where shared signals correspond
to latent factors that are relevant for predicting the future of the system from its past, while self signals
correspond to nonpredictive variation (Bialek et al., 2001). In economics, shared and self signals correspond
to diverse macroeconomic indicators that are grouped into correlated distinct categories in structural factor
models (Forni & Gambetti, 2010; Gosselin & Tkacz, 2001; Rudd, 2020; Baillie et al., 2002). In neuroscience,
shared signals can correspond to the latent space, by which neural activity affects behavior, while self signals
encode neural activity that does not manifest in behavior and behavior that is not controlled by the part of
the brain being recorded from (Sponberg et al., 2015; Stringer et al., 2019; Natraj et al., 2022; Sani et al.,
2021; Pang et al., 2016; Urai et al., 2022; Krakauer et al., 2017).

Interestingly, in the context of the neural control of behavior, it was noticed that SDR reconstructs the shared
neuro-behavioral latent space more efficiently and using a smaller number of samples than IDR (Sani et al.,
2021). Similar observations have been made in more general statistical contexts (Chin & Newsted, 1999; Hair
et al., 2011; Pacharawongsakda & Theeramunkong, 2016; Vogelstein et al., 2021), though the agreement is not
uniform (Goodhue et al., 2006; 2012; 2013). Because of this, most practical recommendations for detecting
shared signals are heuristic (Hair Jr et al., 2021), with widely acknowledged limitations (Kock & Hadaya,
2018). Our goal is to ground such rules in numerical simulations and scaling arguments.

2.2 Linear Model with Self and Shared Signals

We consider a linear generative model of data, which includes noise, mself,X, mself,Y self signals that are
relevant to each modality independently, as well as mshared shared signals that capture the interrelationships
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between modalities.1 It results in T observations of two standardized observables, X and Y :[
X̃ ∈ RT ×NX

]
= RX︸︷︷︸

Independent white noise

+ UXVX︸ ︷︷ ︸
Self-Signal for X

+ PQX︸ ︷︷ ︸
Shared-Signal

,

[
Ỹ ∈ RT ×NY

]
= RY︸︷︷︸

Independent white noise

+ UY VY︸ ︷︷ ︸
Self-Signal for Y

+ PQY︸ ︷︷ ︸
Shared-Signal

. (1)

X = X̃/σX̃ , Y = Ỹ /σỸ . (2)

The observations of X and Y are linear combinations of the following: (a) independent white noise com-
ponents RX ∈ RT ×NX and RY ∈ RT ×NY with variances σ2

RX
and σ2

RY
; (b) self-signal components UX and

UY residing in lower-dimensional spaces RT ×mself,X and RT ×mself,Y , respectively, with the corresponding
variances σ2

UX
and σ2

UY
; (c) shared-signal components P in a shared lower-dimensional space RT ×mshared ,

with variance σ2
P . These lower-dimensional components are projected into their respective high-dimensional

spaces RT ×NX and RT ×NY using fixed quenched projection matrices VX ∈ Rmself,X ×NX , VY ∈ Rmself,Y ×NY ,
QX ∈ Rmshared×NX , and QY ∈ Rmshared×NY , with variances σ2

VX
, σ2

VY
, σ2

QX
, and σ2

QY
, respectively. Entries

in these matrices are drawn from Gaussian distributions with zero means and the corresponding variances.
Further, division by σX̃ and σỸ standardizes each column of the data matrices by their empirical standard
deviations. The total variance in the matrix X̃ can be calculated as the sum of the variances of its individual
components: σ2

X̃
= σ2

RX
+ mself,X × σ2

UX
σ2

VX
+ mshared × σ2

P σ2
QX

, and similarly for Ỹ .

We define self and shared signal-to-noise ratios γself,X/Y , γshared,X/Y as the relative strength of signals com-
pared to background noise per component in each modality. These definitions allow us to examine how easily
self or shared signals in each dimension can be distinguished from the noise.

γself,X/Y =
σ2

UX/Y
σ2

VX/Y

σ2
RX/Y

, γshared,X/Y =
σ2

P σ2
QX/Y

σ2
RX/Y

. (3)

Our main goal is to evaluate the ability of linear SDR and IDR methods to reconstruct2 the shared signal
P , while overlooking the effects of the self signals UX/Y on the statistics of the shared ones. We formalize
this goal in the next section by defining a shared signal reconstruction metric RC′.

3 Methods

We apply DR techniques to X and Y to obtain their reduced dimensional forms ZX and ZY , respectively.
ZX , ZY are of sizes that can range from T × 1 to T × NX and T × NY , respectively. As an IDR method, we
use PCA (Hotelling, 1933). As SDR methods, we apply PLS (Wold et al., 2001) and CCA (Hotelling, 1936;
Vinod, 1976; Årup Nielsen et al., 1998), including both normal and regularized versions of the latter. Each
of these methods focuses on specific parts of the overall covariance matrix

CX,Y =
[
CXX CXY

CY X CY Y

]
=

[ 1
T X⊤X 1

T X⊤Y
1
T Y ⊤X 1

T Y ⊤Y

]
. (4)

PCA aims to identify the most significant features that explain the majority of the variance in CXX and
CY Y , independently. PLS, on the other hand, focuses on singular values and vectors that explain the
covariance component CXY . Along the same lines, CCA aims to find linear combinations of X and Y that
are responsible for the correlation (CXY /

√
CXXCY Y ) between X and Y (Borga et al., 1997). See Appendix

A.1 for a detailed description of these methods.
1This model is an extension of the model introduced by Fleig & Nemenman (2022a), and its probabilistic form has been

studied by Murphy (2022). In its turn, the latter is an extension of work by Klami et al. (2012), and Bach & Jordan (2005).
However, within this model, we focus on the intensive limit, common in RMT (Potters & Bouchaud, 2020), where the number
of observations scales as the number of observed variables. This scenario is common in many real-world applications. To our
knowledge, a treatment of the extensive regime to assess different DR methods as a function of various parameters of the system
does not exist.

2In this context, we use “reconstruction” and “detection” interchangeably. Detection means that we are able to capture the
shared signal, which is equivalent to its reconstruction, as the signal is represented by the correlation.
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For every numerical experiment, we generate training and test data sets (Xtrain, Ytrain) and (Xtest, Ytest)
according to Eqs. (1-2)3. We apply PCA, PLS, CCA, and regularized CCA (rCCA) to the training to
obtain the singular directions WXtrain and WYtrain for each method (see Appendix A.1). We then obtain the
projections of the test data on these singular directions

ZX = XtestWXtrain ,

ZY = YtestWYtrain . (5)

Finally, we evaluate the reconstructed correlations metric RC′, which measures how well these singular
directions recover the shared signals in the data, corrected by the expected positive bias due to the sampling
noise, see Appendix A.2 for details. RC′ = 0 corresponds to no overlap between the true and the recovered
shared directions, and RC′ = 1 corresponds to perfect recovery.

4 Results

4.1 Results for The Generative Linear Model

We perform numerical experiments to explore the undersampled regime, T ≲ NX , NY . We use T =
{100, 300, 1000, 3000} samples, NX = NY = 1000. We explore the case of one shared signal only, mshared = 1
and we mask this shared signal by a varying number of self signals and by noise. We vary the number of
retained dimensions, (|ZX |, |ZY |4, and explore how many of them are needed to recover the shared signal in
the noise and the self signal background with different SNRs.

For brevity, we explore two cases: (1) one self-signal each in X and Y in addition to the shared signal
(mself = 1); (2) many self-signals in X and Y . For both cases, we calculate the quality of reconstruction
as the function of the shared and the self SNR, γshared and γself. In all figures, we show RC′ for severely
undersampled (first row, T = 300) and relatively well sampled (second row, T = 3000) regimes. We also
show the value of RC0, the bias that we removed from our reconstruction quality metric, for completeness,
see Appendix A.2 for details. Experiments at different parameter values can be found in Appendix A.4.

Figure 1 shows that, in Case 1, when one dimension is retained in DR of X and Y , PCA populates the
compressed variable with the largest variance signals and hence struggles to retain the shared signal when
γself > γshared, regardless of the number of samples5. However, both PLS and rCCA excel in achieving nearly
perfect reconstructions. When T ≪ NX , straightforward CCA cannot be applied (see A.1.3-A.1.4), but it
too achieves a perfect reconstruction when T > NX .

In Fig. 2, we allow two dimensions in the reduced variables. For PCA, we expect this to be sufficient to
preserve both the self and the shared signals. Indeed, PCA now works for all γs and T s, although with a
slightly reduced accuracy for large shared signals compared to Fig. 1. PLS and rCCA continue to deliver
highly accurate reconstructions. So does the CCA for T > NX . Spurious correlations, as measured by RC0
grow slightly with the increasing dimensionality of ZX , ZY compared to Fig. 1. This is expected since more
projections must now be inferred from the same amount of data.

We now turn to mself ≫ mshared. We use mshared = 1, mself = 30 for concreteness. We expect that the
performance of SDR methods will degrade weakly, as they are designed to be less sensitive to the masking
effects of the self signals. In contrast, we expect IDR to be more easily confused by the many strong self-
signals, as IDR is designed to pick up any large variance components, which would include self signals if
they are stronger than the shared signal, degrading the performance. Indeed, Fig. 3 shows that PCA now
faces challenges in detecting shared signals, even when the self signals are weaker than in Fig. 1. Increasing

3We fix σ2
RX/Y

, σ2
VX/Y

, σ2
QX/Y

and allow σ2
UX/Y

, σ2
P to vary –as equally spaced values between 0.05 and 1– when we choose

γself,X/Y , γshared,X/Y . The SNRs of X and Y are symmetric. We first generate the fixed projection matrices VX/Y , QX/Y ,
and we vary RX/Y , UX/Y , P for each trial.

4We use the notation | · | to specify the dimensionality (or the number of dimensions we are keeping after reduction) of a
variable. We reserve the usage of the notation || · || to the matrix norm, as used in defining the RC metric (c.f. A.2)

5The transition from being able to observe the shared signal to not being able to observe it in data as a function of the
sample size resembles the famous BBP transition (Baik et al., 2004), which can be explored analytically for random matrices
of the form Eqs. 1, which we leave for future work.
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Figure 1: Performance of PCA, PLS, CCA, rCCA, and noise in recovery of the shared signal for |ZX | =
|ZY | = 1 = mself. The rows are undersampled (top) and relatively well-sampled (bottom) scenarios, respec-
tively. PCA struggles to detect shared signals when they are weaker than the self signals, even with more
samples. PLS and rCCA demonstrate nearly perfect reconstruction. CCA displays no reconstruction in the
undersampled regime T ≪ NX , and it is nearly perfect for large T .
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Figure 2: Same as Fig. 1, but for |ZX | = |ZY | = 2 = mself + mshared. Now there are enough compressed
variables for PCA to detect the shared signal. Other methods perform similarly to Fig. 1, albeit the noise is
larger.

T improves its performance only slightly. Somewhat surprisingly, PLS performance also degrades, with
improvements at T ≫ NX . CCA again displays no reconstruction when T ≪ NX , switching to near perfect
reconstruction at large T . Crucially, rCCA again shines, maintaining its strong performance, consistently
demonstrating nearly perfect reconstruction.

Since one retained dimension is not sufficient for PCA to represent the shared signal when γshared ≲ γself ,
we increase the dimensionality of reduced variables, |ZX | = |ZY | = mself ≫ mshared, cf. Fig. 4. PCA now
detects shared signals even when they are weaker than the self-signals, γshared < γself , but at a cost of
the reconstruction accuracy plateauing significantly below 1. In other words, when self and shared signals
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Figure 3: Reconstruction results for mself = 30, mshared = 1, and |ZX | = |ZY | = 1. PCA struggles to detect
any shared signals when they are even comparable to the self ones. PLS performance also degrades. CCA
displays its usual impotence at small T . Finally, rCCA demonstrates nearly perfect reconstruction for all
parameter values.

are comparable, they mix, allowing for partial reconstruction. However, even at T ≫ NX , PCA cannot
break into the phase diagram’s lower right corner. Other methods perform similarly, reconstructing shared
signals over the same or wider ranges of sampling and the SNR ratios than in Fig. 3. For all of them, the
improvement comes at the cost of the decreased asymptotic performance. The most distinct feature of this
regime is the dramatic effect of noise, where 30-dimensional compressed variables can accumulate enough
sampling fluctuations to recover correlations that are supposedly nearly twice as high as the data actually
has.

Figure 5 now explores a regime when the dimensionality of the compressed variables is enough to store both
the self and the shared interactions at the same time, |ZX | = |ZY | = mself + mshared = 31. With just one
more dimension than Fig. 4, PCA abruptly transitions to being able to recover shared signals for all SNRs,
albeit still saturating at a far from perfect performance at large T . PLS, CCA, rCCA, and noise show
behavior remain similar to Fig. 4.

Our analysis suggests that there are three relevant factors that determine the ability of DR to reconstruct
shared signals. The first is the strength of the shared and the self signals compared to each other and to
noise. For brevity, in the following analysis, we fix γself and define the ratio γ̃ = γshared/γself to represent
this effect. The second factor affecting the performance is the ratio between the number of shared and self
signals, denoted by m̃ = mshared/mself. The third factor is the number of samples per dimension of the
reduced variable, denoted by q̃ = T/|Z|.

In Fig. 6, we illustrate how these parameters influence the performance of DR, RC′. Each subplot varies q̃,
while holding T constant and changing |ZX |. We compare the results of PCA (representing IDR) and rCCA
(representing SDR). Each curve is averaged over 10 trials, with error bars indicating 1 standard deviation
around the mean, using algorithmic parameters as described in Appendix A.3.

We see that the relative strength of signals, as represented by γ̃, plays a significant role in determining, which
method performs better. If the shared signals are larger (bottom) both approaches work. However, for weak
shared signals (top), SDR is generally more effective. Further, the ratio between the number of shared and
self signals, m̃, also plays an important role. When m̃ is large (left), IDR is more likely to detect the shared
signal before the self signals, and it approaches the performance of SDR. However, when m̃ is small, IDR is
more likely to capture the self signals before moving on to the shared signals, degrading performance (right).
Finally, not surprisingly, the number of samples per dimension of the compressed variables, q̃, is also critical
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Figure 4: DR performance for |ZX | = |ZY | = mself > mshared). PCA now detects shared signals even when
they are weaker than the self signals. However, the quality of reconstruction is significantly lower than in
Fig. 2. PLS detects signals in a larger part of the phase space, but also with a significant reduction in quality,
which improves with sampling. CCA has its usual problem for T ≪ NX , and, like PLS, it has a significantly
lower reconstruction quality than in the regime in Fig. 3. rCCA is able to detect the signal in the whole
phase space, but again with worse quality. Finally, spurious correlations are high, though they decrease with
better sampling.
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Figure 5: PCA, PLS, CCA, rCCA, and noise results when 31 dimensions are kept after reduction (|ZX | =
|ZY | = mself +mshared). PCA now can detect more shared signals when they are weaker than the self signals
(A1), however, with a significantly lower quality compared to Fig. 2, but suddenly explores the whole phase
space, still with lower accuracy than Case 1. PLS, CCA, rCCA, and noise show similar behavior to figure 4.

to the success. If q̃ is small, the signal is drowned in the sampling noise, and adding more retained dimensions
hurts the DR process. This expresses itself as a peak for SDR performance around |ZX | = mshared. For IDR,
the peak is around |ZX | = mself + mshared, thus requiring more data to achieve performance similar to SDR.
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Figure 6: Performance of PCA (IDR) and rCCA (SDR) for different values of the relevant parameters of
the model: the number of samples per dimension of the compressed variable (q̃), the strength of shared
signals relative to the self ones (γ̃), and the ratio of the number of shared to self signal components (m̃),
while fixing the number of samples (T = 1000) and the number of shared dimensions (mshared = 10). Note
that increasing 1/q̃ (left to right) corresponds to increasing the dimension of the latent space |ZX | at a fixed
number of samples T .

These results can be understood from a simple counting argument. In SDR, the objective function is
based on the cross-covariance or the cross-correlation matrix. In our linear model, the cross-covariance
CXY ∝ σ2

P Q⊤
XQY (up to sampling effects) should depend on the quenched projection matrices QX and QY .

The number of parameters defining these quenched projection matrices is mshared × NX and mshared × NY

respectively. To be able to reconstruct the cross-covariance or the correlation matrix from a DR method,
we need a number of observations that scales with this number of parameters. The data matrices X and
Y have T × NX and T × NY entries respectively. Thus, we need T ≥ mshared samples to have a chance
of having enough samples to capture the shared signal. In contrast, in IDR, the objective function is built
from the variance matrix CXX ∝ σ2

RX
I + σ2

UX
V ⊤

X VX + σ2
P Q⊤

XQX , which jointly depends on the quenched
projection matrices VX and QX , having mself,X ×NX and mshared ×NX parameters, respectively. Therefore,
to get enough samples to reconstruct large correlation dimensions in this matrix, we would need at least
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T ≥ mself,X + mshared measurements. Furthermore, not all parts of the variance matrix CXX are relevant
to the shared signal. Thus, the relative strength of the shared signal to the self signal and the number of
self and shared signals will determine which part of the signal is captured first. Finally, adding unnecessary
dimensions will hurt performance, as there will be fewer samples per dimension.

We observe that the performance of rCCA (SDR) is almost independent of changing m̃ or γ̃, indicating that
it focuses on shared dimensions even if the latter is masked by self signals. The algorithm crucially depends
on q̃, where adding more dimensions (decreasing q̃) than needed hurts the reduction. This is because, for a
fixed number of samples, the reconstruction of each dimension then gets worse. In contrast, for PCA (IDR),
the performance depends on all three relevant parameters, q̃, m̃, and γ̃. At some parameter combinations,
the performance of IDR in reconstructing shared signals approaches SDR. However, in all cases, SDR never
performs worse than IDR on this task.

4.2 Beyond The Linear Model: Noisy MNIST

4.2.1 The Dataset
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Figure 7: Dataset containing paired MNIST digit samples sharing only the same identity (shared signal).
The first row (X) shows MNIST digits randomly subjected to scaling, (0.5 − 1.5), and rotation with an
angle of (0 − π/2), while the second row (Y ) shows MNIST digits with an added background Perlin noise
(self signals). In the bottom row, histograms of self correlations for the X and Y datasets (left and middle,
respectively) illustrate a wide range of correlations, while the histogram of the cross correlation between X
and Y (right) demonstrates a smaller range.

To analyze linear DR methods on nonlinear data, we followed the same procedure as in Fig. 6 for a dataset
inspired by the noisy MNIST dataset (LeCun et al., 1998; Wang et al., 2015; 2016; Abdelaleem et al., 2023).
This dataset has two distinct views of data, each of dimensionality 28 × 28 pixels, examples of which are
shown in Fig. 7. The first view is an image of the digit subjected to a random rotation within an angle
uniformly sampled between 0 and π

2 , along with scaling by a factor uniformly distributed between 0.5 and
1.5. The second view consists of another image with the same digit identity with an additional background
layer of Perlin noise (Perlin, 1985), with the noise factor uniformly distributed between 0 and 1. Both views
are normalized to an intensity range of [0, 1), then flattened to form an array of 784 dimensions.

To cast this dataset into our language, we shuffled the images within labels, retaining the shared label identity
(that is the shared signal), but we still have the view-specific details (which is the self signal). This resulted
in a total dataset size of ∼ 56k images for training and ∼ 7k images for testing. The correlation histogram
of X (or Y ) with itself shows a relatively wide spectrum when compared to the cross correlation between
X and Y , highlighting that the self signal is stronger, and can lead to different DR methods overseeing the
shared one. The complexity of the tasks makes it sufficiently challenging, serving as a good benchmark for
evaluating the performance of the different DR techniques.
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4.2.2 Results
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Figure 8: Performance of PCA, PLS, CCA, rCCA applied to the modified Noisy MNIST dataset across
varying sampling scenarios. Each panel represents different sample sizes (1000, 10, 000, and approximately
56, 000 samples). The x-axis denotes the inverse of the number of samples per retained dimensions (1/q̃),
while the y-axis represents the total corrected correlation between the obtained low-dimensional representa-
tions ZX and ZY .

Figure 8 shows the performance of PCA, PLS, CCA, and rCCA applied to the modified Noisy MNIST dataset
for varying sampling scenarios. The three panels are evaluated for different sample sizes (1000, 10, 000, and
∼ 56, 000 samples), from undersampled to the full dataset.

In each scenario, the training samples are used for the DR methods. Subsequently, the learned projection
matrices onto the singular directions are used to transform a separate test dataset of around 7, 000 samples
into low-dimensional spaces, yielding ZX and ZY . The correlation between these transformed spaces is
computed using the Frobenius norm of the correlation matrix. As before, we then subtracted from it the
correlation value obtained from a random matrix of the same size. This difference is then plotted against
1/q̃, which is the measure of how many dimensions are retained at each sampling ratio.

In the undersampled scenario (1000 samples), rCCA and PLS demonstrate an early detection (in terms of
the number of kept dimensions after reduction) of shared signals, whereas PCA initially lags behind. As
the number of dimensions increases, all methods exhibit a decline in correlation due to increased noise as
we have fewer samples per dimension. CCA does not work in this scenario, since covariance matrices are
degenerate.

Upon increasing the sample size (10, 000 samples), a similar pattern emerges initially, where all methods
experience an increase in total correlation till a certain number of kept dimensions is reached, then a decline
when adding more dimensions. The decline is because one needs to estimate more singular vectors from the
same number of samples. However, beyond a certain number of singular vectors, an increase in correlation
is observed. This is because the number of vectors is now sufficient to learn both the shared and the self
signals. We observe that rCCA maintains superior performance, while PCA reaches peak correlation at
a higher number of kept dimensions, providing a rough estimation of the number of true self and shared
signals. With the full dataset (approximately 56,000 samples), a similar trend is seen. Yet CCA’s performance
approaches that of rCCA.

Notably, these analyses confirm that linear Simultaneous Dimensionality Reduction (SDR) are consistently
better at detecting shared signals than linear Independent Dimensionality Reduction (IDR), even in some
nonlinear datasets.
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5 Discussion

We used a generative linear model which captures multiple desired features of multimodal data with shared
and non-shared signals. The model focused only on data with two measured modalities. However, while not
a part of this study, the model can be readily extended to accommodate more than two modalities (e. g.,
Xi = Ri + UiVi + PQi for i = 1, ..., n, where n represents the number of modalities). Then, methods such
as Tensor CCA, which can handle more than two modalities (Luo et al., 2015), can be used to get insight
into DR on such data.

We analyzed different DR methods on data from this model in different parameter regimes. Linear SDR
methods were clearly superior to their IDR counterparts for detecting shared signals. In particular, SDR
performance peaked around |ZX | = mshared and IDR performance peaked around |ZX | = mself + mshared.
Thus, SDR required fewer samples for similar detection performance to IDR. We observed similar results
on a nonlinear dataset as well. We thus make a strong practical suggestion that, whenever the goal is
to reconstruct a low dimensional representation of covariation between two components of the data, IDR
methods (PCA) should always be avoided in favor of SDR. Of the examined SDR approaches, rCCA is a
clear winner in all parameter regimes and should always be preferred.

While we performed the analysis using specific examples of SDR, such as PLS, (r)CCA, and specific examples
of IDR, like PCA, we anticipate similar results to hold for other SDR and IDR methods. For instance, meth-
ods that optimize a certain aspect within one modality (e. g., Independent Component Analysis Hyvärinen
& Oja (2000), Nonnegative Matrix Factorization Lee & Seung (2000), Autoencoders Hinton & Salakhutdinov
(2006)), or methods using multiple modalities but retaining only certain aspects within each modality (e. g.,
Multiview PCA Xia et al. (2021)) should be able to detect the shared signals only if they are stronger than
the self signals, given the other detection criteria (of having enough number of kept dimensions and enough
samples to sample them properly) are met. Otherwise, they will likely detect the self signals first, wasting
some of their statistical power. Alternatively, methods that work across modalities (e. g., Cross-modal Fac-
tor Analysis Li et al. (2003), Deep Variational Symmetric Information Bottleneck Abdelaleem et al. (2023))
should identify the shared signal first. We leave the verification of this hypothesis across a broader range of
methods for future work. To analyze the behavior of such more complicated methods, we will need gener-
ative models of data that have low-dimensional structure, which cannot, nonetheless, be approximated by
methods that rely on singular value spectra and their nonlinear generalizations; first steps towards creating
such generative models were recently taken Fleig & Nemenman (2022b).

These findings explain the results of, for example, Sani et al. (2021) and others that SDR can recover joint
neuro-behavioral latent spaces with fewer latent dimensions and using fewer samples than IDR methods.
Further, our observation that SDR is always superior to IDR in the context of our model corroborates
the theoretical findings of Martini & Nemenman (2024), who proved a similar result in the context of
discrete data and a different SDR algorithm, namely the Symmetric Information Bottleneck (Friedman
et al., 2013). Vogelstein et al. (2021) made similar conclusions using conditional covariance matrices for the
reduction in the context of classification. More recent work of Abdelaleem et al. (2023) showed similar results
using deep variational methods. Collectively, these diverse investigations, linear and nonlinear, theoretical,
computational, and empirical, provide strong evidence that generic (not just linear) SDR methods are likely
to be more efficient in extracting covariation than their IDR analogs.

Our study also answers an open question in the literature surrounding the effectiveness of SDR techniques.
Specifically, there has been debate about whether PLS, an SDR method, is effective at low sampling (Chin &
Newsted, 1999; Hair et al., 2011; Goodhue et al., 2006; 2012). Our results show that SDR is not necessarily
effective in the undersampled regime. It works well when the number of samples per retained dimension is
high (even if the number of samples per observed dimension is low), but only when the dimensionality of the
reduced description is matched to the actual dimensionality of the shared signals.

Finally, our results can be used as a diagnostic test to determine the number of shared versus self signals
in data. As demonstrated in Fig. 6, total correlations between ZX and ZY obtained by applying PCA and
rCCA increase monotonically as the dimensionality of Zs increases, until this dimensionality becomes larger
than the signal dimensionality. For PCA, the signal dimensionality is equal to the sum of the number of
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the shared and the self signals, mshared + mself. For rCCA, it is only the number of the shared signal. Thus
increasing the dimensionality of the compressed variables and tracking the performance of rCCA and PCA
until they diverge can be used to identify the number of self signals in the data, provided that the data,
indeed, has a low-dimensional latent structure. This approach can be a valuable tool in various applications,
where the characterization of shared and self signals in complex systems can provide insights into their
structure and function.

In summary, we highlight a general principle that, when searching for a shared signal between different
modalities of data, SDR methods are preferable to IDR methods. Additionally, the differences in performance
between the two classes of methods can tell us a lot about the underlying structure of the data. Finally,
for a limited number of samples, naive approaches, such as increasing the number of compressed dimensions
indefinitely to overcome the masking of shared signals by self signals are infeasible. Thus, the use of SDR
methods becomes even more essential in such cases.

6 Limitations and Future Work

While this work has provided useful insight, the assumptions made here may not fully capture the complexity
of real-world data. Specifically, our data is generated by a linear model with random Gaussian features. It
is unlikely that real data have this exact structure. Therefore, there is a need for further exploration of
the advantages and limitations of linear DR methods on data that have a low-dimensional, but nonlinear
shared structure. This can be done using more complex nonlinear generative models, such as nonlinearly
transforming the data generated by Eq. (1-2), or random feature two-layered neural network models (Rocks
& Mehta, 2022). Alternatively, analyzing the model, Eq. (1) using various theoretical techniques (Borga
et al., 1997; Vogelstein et al., 2021; Potters & Bouchaud, 2020) is likely to offer even more insights into
its properties. Collectively, these diverse approaches would aid our understanding of different DR methods
under diverse conditions.

A different possible future research direction is to explore the performance of nonlinear DR methods on
data from generative models with a latent low-dimensional nonlinear structure. Autoencoders and their
variational extensions are a natural extension of IDR to learn nonlinear reduced dimensional representations
(Hinton & Salakhutdinov, 2006; Kingma & Welling, 2014; Higgins et al., 2016). Meanwhile, Deep CCA and
its variational extensions (Andrew et al., 2013; Wang et al., 2015; Chandar et al., 2016; Wang et al., 2016)
should be explored as a nonlinear version of SDR. Both of these types of methods can potentially capture
more complex relationships between the modalities and improve the quality of the reduced representations,
and while recent work suggests that (Abdelaleem et al., 2023), it is not clear if the SDR class of methods is
always more efficient than the IDR one.

Further, our analysis depends on the choice of metric used to quantify the performance of DR, and different
choices should also be explored. For example, to capture nonlinear correlations, mutual information can be
utilized to quantify the relationships between the reduced representations.

Despite the aforementioned limitations, we believe that our work provides a compelling addition to the body
of knowledge that SDR outperforms IDR in detecting shared signals quite generally.
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A Appendix

A.1 Linear Dimensionality Reduction Methods

A.1.1 Principal Components Analysis (PCA)

PCA is a widely used linear IDR method that aims to find the orthogonal principal directions, such that
a few of them explain the largest possible fraction of the variance within the data. PCA decomposes the
covariance matrix of the data matrix X, CXX = 1

T X⊤X, into its eigenvectors and eigenvalues through
singular value decomposition (SVD). The SVD yields orthogonal directions, represented by the vectors w

(i)
X ,

that capture the most significant variability in the data. In most numerical implementations (Pedregosa
et al., 2011), these directions are obtained consecutively, one by one, such that the dot product between
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any two directions is zero w
(i)
X · w

(j)
X = δij . The eigenvectors w

(i)
X are obtained as the best solution to the

optimization problem:

w
∗(i)
X = arg max

w
(i)
X

w
(i)
X

⊤
X(i)⊤

X(i)w
(i)
X

w
(i)
X

⊤
w

(i)
X

. (6)

Here X(i) is the ith deflated matrix where X(1) is the original matrix, and for every subsequent i + 1, the
matrix is deflated by subtracting the projection of X on the obtained weights: X(i+1) = X −Σi

s=1Xw(s)w
⊤
(s).

The eigenvectors are sorted in decreasing order according to their corresponding eigenvalues, and the first
k eigenvectors w

(i=1:k)
X are selected to form the projection matrix WX . The obtained vectors determine the

size of the reduced form ZX , where |ZX | = k is the number of vectors retained from the decomposition of
X. The vectors w

(i)
X are then stacked together to form the projection matrix WX . The low-dimensional

representation ZX is then obtained by multiplying the original data matrix X with this projection matrix,
resulting in the reduced data matrix ZX = XWX . Similar treatment is done for Y in order to obtain
ZY = Y WY

One of the main advantages of PCA is its simplicity and efficiency. However, one of the drawbacks of this
method is that it performs DR for X and Y independently, and one then searches for relations between
ZX and ZY by regressing one on the other—the so-called Principal Components Regression. Thus obtained
low-dimensional descriptions may capture variance but not the covariance between the two datasets.

A.1.2 Partial Least Squares (PLS)

PLS performs SDR by finding the shared signals that explain the maximum covariance between two sets of
data (Wold et al., 2001). PLS performs the SVD of the covariance matrix CXY = 1

T X⊤Y (or equivalently
CY X = 1

T Y ⊤X). The left and right singular vectors (w∗(i)
X , w

∗(i)
Y ) are obtained consecutively pair by pair

such that w
(i)
X · w

(j)
Y = δij . They are solutions of the optimization problem:

(w∗(i)
X , w

∗(i)
Y ) = arg max

w
(i)
X

,w
(i)
Y

w
(i)
X

⊤
X(i)⊤

Y (i)w
(i)
Y√

(w(i)
X

⊤
w

(i)
X )(w(i)

Y

⊤
w

(i)
Y )

(7)

The matrices X(i), Y (i) are deflated in a similar manner to PCA A.1.16. The singular vectors are sorted
in the decreasing order of their corresponding singular values, and the first k vectors are selected to form
the projection matrices (WX , WY ). The obtained vectors determine the size of the reduced form (ZX , ZY ),
where |ZX | = |ZY | = k is the number of vectors retained. The vectors (w(i)

X , w
(i)
Y ) are then stacked together

to form the projection matrices (WX , WY ) respectively. The low-dimensional representations (ZX , ZY ) are
obtained by projecting the original data matrices (X, Y ) onto these projection matrices: ZX = XWX , and
ZY = Y WY .

In summary, PLS performs simultaneous reduction on both datasets, maximizing the covariance between the
reduced representations ZX and ZY . This property makes PLS a powerful tool for studying the relationships
between two datasets and identifying the underlying factors that explain their joint variability. In practice,
PLS can suffer from widely distinct variances along different singular directions, as well as covariances within
X or Y . At the very least, in practical implementations, each component of X and Y is typically standardized
to unit variance before applying PLS to avoid some (but not all) of these issues.

A.1.3 Canonical Correlations Analysis (CCA)

CCA is another SDR method, which aims to find the directions that explain the maximum correlation
between two datasets Hotelling (1936). However, unlike PLS, CCA obtains the shared signals by performing
SVD on the correlation matrix CXY√

CXX

√
CY Y

. The singular vectors (w∗(i)
X , w

∗(i)
Y ) are obtained consecutively

6This PLS implementation with iterative deflation is often referred to as PLSCanonical. An alternative simpler approach
based on direct SVD calculation of the covariance matrix is often known as PLSSVD Pedregosa et al. (2011).
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pair by pair such that w
(i)
X · w

(j)
Y = δij . CCA enforces the orthogonality of w

(i)
X , w

(i)
Y independently as well,

such that w
(i)
X · w

(j)
X = w

(i)
Y · w

(j)
Y = δij . The singular vectors are obtained by solving the optimization

problem:

(w∗(i)
X , w

∗(i)
Y ) = arg max

w
(i)
X

,w
(i)
Y

w
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⊤
X(i)⊤
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(i)
Y√

(w(i)
X

⊤
X(i)⊤

X(i)w
(i)
X )(w(i)

Y

⊤
Y (i)⊤

Y (i)w
(i)
Y )

. (8)

Like in PLS A.1.2, the matrices X(i), Y (i) are deflated in a similar manner. In addition, the first k singular
vectors (w∗(i)

X , w
∗(i)
Y ) are stacked together to form the projection matrices (WX , WY ), which then are used

to obtain the reduced data matrices ZX = XWX , and ZY = Y WY .

One of the key differences between PLS and CCA is that while both perform SDR, CCA also simultaneously
performs IDR implicitly. Indeed, it involves multiplication of CXY by C

−1/2
XX on the left and C

−1/2
Y Y on the

right, which, in turn, requires finding singular values of the X and the Y data matrices independently.

A.1.4 Regularized CCA - rCCA

While CCA is a useful method for finding the maximum correlating features between two sets of data,
it does have some limitations. Specifically, in the undersampled regime, where T ≤ max(NX , NY ), the
matrices CXX and CY Y are singular and their inverses do not exist. Using the pseudoinverse to solve the
problem can lead to numerical instability and sensitivity to noise. Regularized CCA (rCCA) (Vinod, 1976;
Årup Nielsen et al., 1998) overcomes this problem by adding a small regularization term to the covariance
matrices, allowing them to be invertible. Specifically, one tales

C̃XX = CXX + cXIX , (9)
C̃Y Y = CY Y + cY IY , (10)

where C̃XX , C̃Y Y are the new regularized matrices, cX , cY > 0 are small regularization parameters and
IX , IY are identity matrices with sizes NX × NX , NY × NY respectively.

This original implementation of rCCA resulted in correlation matrices with diagonals not equal to one. Thus,
a better implementation uses a different form of regularization (Årup Nielsen et al., 1998) by adding the
regularization parameters cX and cY individually to the equations as an affine combination (i. e.,

∑n
i ci = 1)

as the following:

C̃XX = 1
T

(cX1w⊤
XX⊤XwX + cX2w⊤

XwX), (11)

C̃Y Y = 1
T

(cY1w⊤
Y Y ⊤Y wY + cY2w⊤

Y wY ). (12)

This results in the regularized equations for X and Y :

C̃XX = 1
T

(
(1 − cX)w⊤

XX⊤XwX + cXw⊤
XwX

)
, (13)

C̃Y Y = 1
T

(
(1 − cY )w⊤

Y Y ⊤Y wY + cY w⊤
Y wY

)
, (14)

where cX and cY are the regularization parameters, with values between 0 and 1. Hence our new optimization
problem becomes:

(w∗(i)
X , w

∗(i)
Y ) = arg max

w
(i)
X

,w
(i)
Y

w
(i)
X

⊤
X(i)⊤

Y (i)w
(i)
Y√

C̃XXC̃Y Y

. (15)

Writing the regularization conditions in this form is, in fact, a convex interpolation problem between PLS
and CCA, which is a more robust solution and does not suffer from shortening the length of correlations due
to the added regularization. As a result, this implementation of rCCA achieves the best accuracy among all
other methods 7.

7Conceptually, the main difference between PLS and CCA is that PLS does not enforce orthogonality among the weights w
(i)
X

and w
(i)
Y that diagonalize CXX and CY Y , whereas CCA does. For instance, while two pairs of singular vectors (w(1)

X , w
(1)
Y ) and
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A.2 Assessing Success and Sampling Noise Treatment

To assess the success of DR, we calculated the ratio between the total correlation between ZXtest and ZYtest ,
defined as in Eq. (5), and the total correlation between X and Y , which we input into the model. Specifically,
we take the total correlation as the Frobenius norm of the correlation matrix, ||A||F =

√∑
i σ2

i (A), where
σ(A) are the singular values of the matrix A. Therefore, the metric of the quality of the DR is

RC = ||Corr(ZXtest , ZYtest)||F
||Corr(P, P )||F

= ||Corr(ZXtest , ZYtest)||F
mshared

, (16)

where Corr stands for the correlation matrix between its arguments, and we use ||Corr(P, P )||F = mshared as
the total shared correlation that one needs to recover. Statistical fluctuations aside, RC should vary between
zero (bad reconstruction of the shared variables) and one (perfect reconstruction)8.
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Figure 9: The resulting correlations are averages of all the points in the phasespace, then averaged over 10
different realizations of the matrices. The error bars are for two standard deviations around the mean

In many real-world applications, the number of available samples, T , is often limited compared to the
dimensionality of the data, NX and NY . This undersampling can introduce spurious correlations. We are
not aware of analytical results to calculate the effects of the sampling noise on estimating singular values

(w(2)
X , w

(2)
Y ) are mutually orthogonal as pairs, w

(1)
X and w

(2)
X are not orthogonal to each other. This partial overlap can result

in signals not being fully expressed in these directions, reducing the total correlation compared to CCA, where each direction
w

(i)
X and w

(i)
Y is orthogonal to every other direction, allowing each signal to fully occupy these directions and maximizing total

correlation. Therefore, our goal is to make CCA work, but due to inversion issues, rCCA serves as a substitute. This is evident
in Figures 1-5, where, under good sampling conditions, rCCA and CCA yield almost identical results.

8We note that the choice of RC is not unique, and other choices could be valid as well. However, we believe that RC is suitable
for our study. For example, one could use mutual information I(ZX ; ZY ) Shannon (1948) to quantify how much information
ZX and ZY carry about each other. Mutual information is a fundamental statistic that is 0 if and only if the two variables are
statistically independent. However, its estimation is a challenging problem, as it depends on the probabilities p(ZX), p(ZY ),
and p(ZX , ZY ) Antos & Kontoyiannis (2001); Paninski (2003). In this setup, while the individual matrices of X and Y are
Gaussian with known probability density functions, their product is not. Consequently, a closed analytical form of mutual
information is not known. Even if we assumed ZX and ZY to be Gaussian and used the formula I(ZX ; ZY ) = − 1

2 ln |CX,Y |,
where |.| denotes the determinant of the original correlation matrix CXY /

√
CXX · CY Y , we might end up with directions that

do not carry information due to having more dimensions in ZX (or ZY ) than needed, thus creating numerical instabilities.
These instabilities are often addressed by employing a threshold on the determinant (considering the determinant as the product
of singular values, we threshold the small singular values). However, we chose not to use such a method, focusing instead on
RC for the following reasons: (i) With this choice, we do not need to employ thresholding, and by using a metric that uses the
singular values of the correlation matrix in an additive fashion, rather than multiplicative as in mutual information, we avoid
this issue. (ii) Correlation is an intuitive metric, commonly used by practitioners, with clear meaning and bounds between
-1 and +1. While one could use the covariance matrix rather than the correlation matrix, such a choice does not affect the
optimization process, as X and Y are standardized. Therefore, the covariance and correlation matrices of the original data are
equivalent, and the difference would lie in the calculation of Cov(ZX , ZY ) vs Corr(ZX , ZY ), potentially increasing the accuracy
of PLS in such a case. However, due to the intuitiveness and utility of correlation, we use it in the RC metric.
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in the model in Eq. (1) (Bun et al., 2017). Thus, to estimate the effect of the sampling noise, we adopt an
empirical approach. Specifically, we generate two random matrices, ZXrandom and ZYrandom , of sizes T × |ZX |
and T × |ZY |, respectively. We then calculate the correlation between these matrices, denoted as RC0, for
multiple such trials using the metric in Eq. (16). For random ZXrandom and ZYrandom , RC should be zero.
However, Fig. 9 shows that, especially for large dimensionalities of the compressed variables and small T ,
the sampling noise results in a significant spurious RC0 > 0, which may even be larger than 1! Crucially,
RC0 does not fluctuate around its mean across trials, so that the sampling bias is narrowly distributed.

To compensate for this sampling bias, we subtract it from the reconstruction quality metric,

RC′ = RC − RC0. (17)

It is this RC′ that we plot in all Figures in this paper as the ultimate metric of the reconstruction quality.
While subtracting the bias is not the most rigorous mathematically, it provides a practical approach for
reducing the effects of the sampling noise.

A.3 Implementation

We used Python and the scikit-learn (Pedregosa et al., 2011) library for performing PCA, PLS, and CCA,
while the cca-zoo (Chapman & Wang, 2021) library was used for rCCA. For PCA, SVD was performed
with default parameters. For PLS, the PLS Canonical method was used with the NIPALS algorithm. For
both PLS and CCA, the tolerance was set to 10−4 with a maximum convergence limit of 5000 iterations.
For rCCA, regularization parameters were set as c1 = c2 = 0.1. All other parameters not explicitly here
were set to their default values.

All figures shown in this paper were averaged over 10 independent realizations of RX , RY , UX , UY , P , while
fixing the projection matrices VX , VY , QX , QY . We then performed an additional round of averaging every-
thing over 10 realizations of the projection matrices themselves. The simulations were parallelized and run
on Amazon Web Services (AWS) servers of various instance types.

A.4 Extended Figures

In this section, we provide results of simulations similar to the main text Figs. 1, 2, 3, 4, 5, but with a wider
range of T .
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Figure 10: Performance of PCA, PLS, CCA, and rCCA in detecting shared signals with one self signal and
one dimension kept after DR.
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Figure 11: Performance of PCA, PLS, CCA, and rCCA in detecting shared signals with one self signal and
two dimensions kept after DR.
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Figure 12: Performance of PCA, PLS, CCA, and rCCA in detecting shared signals with 30 self signals and
one dimension kept after DR.

RC′

0.0

0.2

0.4

0.6

0.8

1.0
RC0

0.5

1.0

1.5

2.0

2.5

3.0

01
01

Adding 30 self-signals, keeping 30 dimensions after reduction

T
 =

 1
00

T
 =

 3
00

T
 =

 1
00

0
T

 =
 3

00
0

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A1
PCA

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A2

          

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

γ
sh
a
re
d

A4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B1
PLS

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C1
CCA

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D1
rCCA

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E1
Noise

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E2

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

γself

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E4

Figure 13: Performance of PCA, PLS, CCA, and rCCA in detecting shared signals among 30 self signals
and with 30 dimensions kept after DR.
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Figure 14: Performance of PCA, PLS, CCA, and rCCA in detecting shared signals among 30 self signals
and with 31 dimensions kept after DR.
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A.5 Additional Figures

Here we provide additional figures that show the singular value spectra of the matrices CXX and CXY

(Eq. 4). The original X and Y matrices are generated using the same parameters as in Fig. 6.
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Figure 15: Singular values obtained from CXX and CXY (Eq. 4) for the parameters used in Fig. 6. Using
two generated data matrices X and Y with NX = NY = 1000, mshared = 10 while we change mself to get
the corresponding m̃, and γself = 1 while we change γshared to get the corresponding γ̃. We calculate their
corresponding CXX and CXY and plot their singular values versus their order for 100 samples. We observe
similar behavior to Fig. 6, in the sense that if the shared signal is strong (Panels A3, B3, C3, where γ̃ = 10),
then we see 10 distinct singular values that correspond to the shared signal for all the different values of m̃.
This is a regime where the results of applying IDR and SDR are equivalent (we even see the first 10 singular
values are on top of each other). In Panel A1, we see one singular value of CXX standing out, followed by
another 10 values of the shared signals, while CXY only identifies those 10 shared signals first. Panel A2
shows similar behavior, but the single self signal is now mixed among the others for CXX . In Panel B2,
while we see 10 distinct singular values of CXX appearing first, these correspond to the self signals, and the
next 10 correspond to the shared signals, meaning that if we stopped in an IDR application after retaining
10 dimensions, we would not capture any shared signals. CXY , on the other hand, shows a continuation of
singular values without a gap, due to undersampling. Panel B2 shows similar behavior for CXY , and for
CXX , we cannot even see a gap between the self and shared singular values. In Panels C1 and C2, the shared
signal is overwhelmed by the self signals, and we cannot see any gap for CXX or CXY due to undersampling.
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Figure 16: Similar to Fig. 15, but for 10000 samples – a well-sampled regime. We observe similar behavior
to Fig. 15 in Panels A1, A2, A3, B3, and C3. In Panel B1, we now see a small gap in the spectrum of
CXY that was not apparent in Fig. 15 due to undersampling. Panel B2 shows an even clearer gap for CXY ,
whereas for CXX , we still cannot see a gap between the self and shared singular values. Panel C1 shows
similar behavior for CXY , but for CXX , we can see a gap after 100 singular values, followed by another small
gap after an additional 10 singular values that correspond to the shared signal. However, if we are using an
IDR method, this means we need to retain 110 dimensions, which is challenging to sample adequately. In
Panel C2, we can now see a clear gap for CXY after 10 singular values corresponding to the shared signals,
while we cannot see any gap for CXX because all the singular values for self and shared signals have equal
power.
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