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ABSTRACT

Low-Rank Adaptation (LoRA) has become a popular technique for parameter-
efficient fine-tuning of large language models (LLMs). In many real-world sce-
narios, multiple adapters are loaded simultaneously to enable LLM customization
for personalized user experiences or to support a diverse range of tasks. Although
each adapter is lightweight in isolation, their aggregate cost becomes substantial at
scale. To address this, we propose LORAQUANT, a mixed-precision post-training
quantization method tailored to LoRA. Specifically, LORAQUANT reparameter-
izes each adapter by singular value decomposition (SVD) to concentrate the most
important information into specific rows and columns. This makes it possible to
quantize the important components to higher precision, while quantizing the rest
to ultra-low bitwidth. We conduct comprehensive experiments with LLaMA 2-7B,
LLaMA 2-13B, and Mistral 7B models on mathematical reasoning, coding, and
summarization tasks. Results show that our LORAQUANT uses significantly lower
bits than other quantization methods, but achieves comparable or even higher per-
formance[[]

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable performance across a wide range of
natural language tasks (Ouyang et al., 2022 |Wang et al., 2022} |Zhao et al., 2023)), but fine-tuning
LLMs for new applications remains computationally and memory intensive. To address this chal-
lenge, low-rank adaptation (LoRA; Hu et al., [2022) has emerged as a widely adopted method for
parameter-efficient fine-tuning. LoRA introduces small, task-specific low-rank matrices, and during
the adaptation, only these low-rank matrices are trained while the base model is frozen.

An increasingly important use case of LORA is LLM customization, as LLM providers (e.g., OpenAl
and Google) allow users to personalize their own LLMs (OpenAlL 2025; |Google Cloud, |2025)). This
could result in hundreds of millions of customized LLMs addressing diverse tasks, domains, and
users. This imposes significant challenges of storing and using these massive customized LLMs.

A straightforward attempt to solve these challenges is to freeze the base LLM and train a separate
adapter for each customization (Sheng et al.| [2024). During deployment, multiple LoRAs are of-
ten loaded simultaneously due to parallel user requests, and thus, the memory footprint of LoRAs
becomes a concern, especially if the GPU memory is small. This is because, although each indi-
vidual LoRA is relatively lightweight, the cumulative GPU memory consumption for loading many
adapters can become significant.

To scale multi-LoRA systems, |Gabrielsson et al.|(2024) propose a compression technique that clus-
ters different LoORAs and enables representation sharing within each cluster. However, a key limita-
tion of their method is that it requires recomputing the shared parameters whenever a new adapter
is added. Additionally, their evaluation is primarily conducted on relatively simple tasks where the
base LLM already performs well and their approach struggles on more challenging tasks.

In this paper, we propose LORAQUANT, a post-training LoRA quantization method for LLM cus-
tomization. Quantization is a well-established technique for compressing neural networks, and is
able to substantially reduce the parameter space without degrading performance much (Frantar et al.,
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2023} [Lin et al., 2024). Despite this progress, the quantization of LoRA has received little attention
in the literature, compared with quantizing full LLMs. Although existing quantization methods can
be directly applied to LoRA weights, they overlook the unique low-rank structure of LoRA and
perform poorly at ultra-low precisions (e.g., 1-2 bits).

In our work, we observe that a LoRA 1is a product of two low-rank matrices, which can be easily
split into multiple lower-rank adapters (sub-LoRAs). By reparametrizing the LoRA by singular
value decomposition (SVD), we can perform mixed-precision quantization for different sub-LoRAs:
more precisions for more important SVD dimensions and fewer precisions for less important ones.
With our approach, we are able to retain high performance of LoRA while reducing the memory
space to a large extent.

In the experiments, we evaluate our method by training adapters on three representative models
LLaMA2-7B, LLaMA2-13B (Touvron et al., [2023)), and Mistral-7B (Jiang et al.| [2023)), across di-
verse tasks including mathematical reasoning, code generation, and summarization. Our results
demonstrate that LORAQUANT achieves competitive performance even under ultra-low bitwidth for
LoRA (less than 2 bits on average).

2 RELATED WORK

Model quantization. Quantization has become an important technique for reducing the memory
footprint of LLLMs, enabling efficient deployment without a significant loss in accuracy. A vari-
ety of post-training methods have been proposed to compress full-precision weights into lower-bit
representations. For instance, GPTQ (Frantar et al.| [2023) leverages second-order information to
minimize quantization error, while AWQ (Lin et al.,|2024)) incorporates activation statistics to guide
weight quantization. InvarExplore (Wen et al., 2025) leverages model invariances (namely, rota-
tion, scaling, and permutation) to make weights perform better after quantization. SVDQuant (Li
et al.; 2025) performs quantization on a weight matrix, but adds a full-precision SVD with a few
dimensions to improve performance. Our work differs from SVDQuant (although also using SVD)
in that we focus on LoRA quantization and use the SVD decomposition to split the LoRA into two
sub-LoRAs: one containing more important information and the other less important information.

Although the above approaches primarily target moderate quantization (e.g., 3-8 bits), an even more
extreme direction is binarization, where weights are restricted to two values (Rastegari et al.,[2016).
Pure binary quantization usually achieves very low performance, and researchers have proposed
mixed-precision methods where some weights are binarized while others are kept in high precision.
For example, PB-LLM (Shang et al., |2024) uses an additional bit to indicate whether a weight is
binarized or not, which unfortunately offsets the memory saved. BiLLM (Huang et al., 2024) also
adopts mixed-precision quantization, but restricts the binarization to certain column of the weight
matrix. However, BiLLM still requires an additional indicator bit, as it employs a split binarization
strategy in which the weights are divided into two groups and binarized separately. The extra bit is
needed to indicate the group membership of each weight.

Low-rank adapter (LoRA). LoRA (Hu et al.l 2022) has become a widely adopted approach for
parameter-efficient fine-tuning of LLMs. Building on this idea, several extensions aim to further
reduce memory overhead or improve training effectiveness. Meng et al.|(2024) initialize LoRA with
the SVD of the base weight matrix rather than random values, providing a stronger starting point for
optimization. [Zhang et al|(2023) dynamically adjust the rank of LoRA during training, allocating
higher ranks to more important layers. Hao et al.|(2024) and|Lialin et al.|(2024) address the limitation
that LoRA updates may remain low-rank by iteratively merging and resampling adapters during
training. Kopiczko et al.[(2024)) propose sharing LoRA weights across layers to reduce memory.

LoRA has also been applied to fine-tuning quantized models. QLoRA (Dettmers et al.,|2023) freezes
the quantized base model while training an add-on LoRA in full precision. LoftQ (L1 et al., [2024)
and ApiQ (Liao et al., 2024) improve QLoRA adapter initialization by choosing parameters that
reduce quantization errors instead of random values. QA-LoRA (Xu et al. [2024) extends QLoRA
by ensuring that the adapter weights remain easily quantizable even after being merged with the
original weights at the cost of reducing the representational capacity of the adapters during training.

Note that our LORAQUANT is completely different from QLoRA and its variants, despite similar
names. QLORA uses a full-precision LoRA to fine-tune a quantized model, as the latter cannot
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Figure 1: Overview of our LORAQUANT method.

be easily trained. Our work focuses on the post-training quantization of LoRAs. It is arguable
that LoRA is already a parameter-efficient method, but with increasingly many LoRAs for LLM
customization, the aggregated cost can be substantial.

In the context of serving multiple LoRAs simultaneously, prior work has focused on both hardware
improvement and LoRA compression. S-LoRA (Sheng et al., 2024) proposes a batched inference
strategy to improve throughput when handling concurrent LoRA requests. Punica (Chen et al., 2024)
implements a customized GPU kernel, Segmented Gather Matrix-Vector Multiplication (SGMV),
which enables efficient batching across heterogeneous LoRAs. Complementary to these approaches,
Gabrielsson et al.| (2024) reduce the memory footprint by weight sharing among a cluster of LoRAs
and assigning a few additional parameters for each LoRA. However, our experiments will show that
this approach does not perform well in sophisticated tasks such as math reasoning and coding (§4.2).

3 OUR LORAQUANT METHOD

In our LORAQUANT method, we decompose a LoRA into two lower-rank adapters, called sub-
LoRAs (§3.I). Then, we allocate slightly higher precision to the more important sub-LoRA ,
and perform extreme 1-bit quantization for the less important sub-LoRA (§3.2). To further miti-
gate quantization error, we also apply gradient-based optimization before quantization ( An
overview of the approach is shown in Fig.[T} and the step-by-step procedure is given in Algs.[l|and[2]

3.1 SPLITTING A LORA INTO SUB-LORAS BY SVD

For an update of neural network weights W < W + AW, a low-rank adapter (LoRA; Hu et al.}
2022)) learns two low-rank matrices B € R"*" and A € R"*" to approximate AW, where r <
min(m, n). In other words, the update becomes W +— W + BA.

To enable mixed-precision quantization, we split the LoRA into sub-LoRAs, and in particular, we
have two sub-LoRAs in our experiments. In other words, we need to find sub-LoRAs, namely,
B, Aj and B;A;, such that By A, +B;A; = BA. Later, By, and Ay will be quantized with higher
precisions, whereas B; and A; will be quantized with lower precisions.

The key challenge is to determine how to perform the split to suit mixed-precision quantization.
Intuitively, the more important components should be allocated to the higher-precision sub-LoRA,
while the less important components can be assigned to the lower-precision sub-LoRA. A naive
strategy is to split B and A by selecting certain columns and rows based on weight norms or quan-
tization error. However, information is usually scattered over rows and columns of neural weights,
so such an approach is less effective.

Instead, we propose to reparameterize a low-rank adapter BA into an equivalent factorization B’ A’
such that BA = B’A’, where important information is concentrated in specific rows and columns
of B and A’. This will better suit our mixed-precision quantization scheme.

To accomplish this, we apply the singular value decomposition (SVD) to the original adapter BA:
BA =USV', (1)

where U € R™*" and V € R™*" are orthonormal matrices, and S € R"*" is a diagonal matrix
containing the singular values in descending order. Here, the SVD is truncated to r ranks, since BA
has at most 7 ranks. We reparameterize the LoRA by

B = USl/Q, Al = Sl/ZVT, (2)
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where S'/2 is the diagonal matrix whose entries are the square roots of the singular values. It is easy
to verify B’A’ = (USY/2)(S'/2VT) = USV'" = BA.

This reparameterization ranks the importance of each component (i.e., each column of B’ and cor-
responding row of A’) by the magnitude of its associated singular value. We retain the top-h com-
ponents in higher precision and quantize the remaining » — h components using a lower bitwidth.

Formally, the more important sub-LoRA is given by:

B, = (USY2). on) An = (SY*VT )y 3)
and the less important sub-LoRA is given by:
B, = (USl/Z)[:,h:r}v Al = (Sl/QVT)[h:r,:]7 (4)

where the subscript [-, -] chooses certain columns and rows. We can easily see that B, Ay, +B;A; =
B’A’ = BA, showing that our transformations do not change the functionality of the LoRA.

Determining the ratio of two sub-LoRAs. We employ a dynamic strategy to compute i for each
adapter, based on the coverage of total variance of that adapter. Specifically, we introduce a ratio hy-
perparameter p € (0, 1], which specifies the minimum ratio of total variance that must be preserved.
Given the singular values s1, so, - - - , s, (sorted from largest to smallest) of an adapter, we compute
h as the smallest integer satisfying:

h
>ic1 5t > )
T -
Do 5t
This ensures that the top-h singular directions collectively explain at least p x 100% of the variance
in the adapter product. Compared with directly setting % as a hyperparameter, our strategy allows us

to adaptively allocate more precision to layers that require a greater number of singular components
to preserve their representational capacity.

&)

3.2 QUANTIZATION METHODS

After splitting a LoRA into two sub-LoRAs, we perform mixed-precision quantization. For the
more important sub-LoRA By A}, we use round-to-nearest quantization (RTN; Jacob et al., [2018)
with higher precisions (e.g., 2 bits for a weight). For the less important sub-LoRA B;A;, we use
binary quantization with only one bit for extreme compression. Profoundly, our mixed-precision
quantization with 2 bits and 1 bit allows us to achieve less than 2 bits on average, which is a setting
where existing methods cannot perform well (Shang et al.,2024; |Huang et al.||2024).

In the rest of this part, we present RTN and binary quantization methods in detail. Notice that the
quantization applies to both A, and B, (where the subscript e refers to either h or [). We take A,
as an example in the following presentation.

RTN quantization for the more important sub-LoRA. We employ the widely used round-to-
nearest (RTN) method to quantize B, and Aj. Let us consider A;. RTN maps each real-valued
weight to the closest integer value, but with a scaling factor .S and a zero-point offset Z to cover the
range of the weight values. Formally, the integer weights after quantization, denoted by A}, are

A}, = Qrin(Ay) = round (42) + Z (6)
In RTN, the largest real value in A is mapped to the largest representable integer, and the smallest
value is mapped to the smallest representable integer. Based on this, .S and Z are given by

, Z = round(quin — 2nAL)) (7)

_ max(Ap)—min(Ay)
S = h h L

dmax —qmin
where ¢min and gmax denote the minimum and maximum integers representable under the chosen
bitwidth. When using the weights, we perform dequantization as Drrn(Ayp) = S - (Ap — Z).

In implementation, we apply group-wise quantization (Jacob et al.,[2018), i.e., the above procedure
is performed on a group of contiguous weights instead of the entire matrix. At the cost of introducing
more scaling and offset values for fine-grained treatment, this reduces quantization error.

Binary quantization for the less important sub-LoRA. We perform binary quantization on the
less important sub-LoRA B;A; for extreme compression. The classic RTN method is unsuitable
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in the 1-bit setting, as it maps weights to either {0,4S} or {0,—S} and cause many weights to
collapse to zero due to Eqn. (6)), during which significant information is lost.

Instead, we adopt the binary quantization method in |Rastegari et al.| (2016), which maps values to
{=5,+S5} so as to preserve more representational capacity. In other words, the quantization and
dequantization processes are simply given by

A} = Quin(A)) = sign(A,), Duin(A}) =S - Ay, ®)

where sign(z) = 1if 2 > 0, or —1 otherwise. The scaling factor S is set as S = L||A;||1, which
is shown to minimize the Frobenius norm between the original weights A; and the reconstructed
one Dyin(A;) (Rastegari et al 2016). Like RTN, we also use group-wise quantization, where the
scaling factor is computed separately within each group of weights.

3.3 OPTIMIZING THE SUB-LORAS BY STRAIGHT-THROUGH GRADIENT DESCENT

The quantization error can be further reduced by an optimization process. This is typically accom-
plished by searching for an optimal reparameterization B* A* of the original LoRA BA such that
the quantization error is minimized. In our approach, we perform optimization on each column of
B, and its corresponding row of A,, one pair at a time. This is because we have performed SVD
and do not want to mix the singular dimensions during joint optimizationﬂ

Let b; € R™ be the ith column of B,, and a; € R" be the ith row of A,; both b; and a; are column
vectors. The goal is to find b € R™ and a} € R" to

minimize |bia; — D(Q(b]))D(Q(a;"))]| ©)
where D and () are one of the quantization methods in depending on which sub-LoRA we are
handling.

In other words, we reparameterize each SVD dimension such that its quantization has a smaller
error. The vector b] and a; are initialized with b; and a,, respectively, and are learned through
gradient-based optimization. Due to the non-differentiable dequantization function, we employ the
Straight-Through Estimator (STE; Bengio et al., 2013) during backpropagation, which approximates
the gradient by treating the rounding function as an identity function. This allows the gradient to
flow despite the non-differentiable nature of quantization.

In practice, the optimization converges within one hundred gradient steps, and thus is computation-
ally efficient. After optimizing b} and a; for different 7 values, they are put back into two new
matrices B and A% for quantization according to

4 EXPERIMENTS

We provide the setting of our experiment in §4.1} and present our main result in §4.2] Further
analyses and ablation studies are provided in

4.1 SETTINGS

To evaluate the effectiveness of LORAQUANT, we train LoRA for three widely used open-weight
language models: LLaMA 2-7B, LLaMA 2-13B (Touvron et al., 2023)), and Mistral 7B (Jiang et al.,
2023)). We apply the LoRAs to three distinct tasks: mathematical reasoning, code generation, and
summarization. For each task, we use standard benchmark datasets for evaluation. For the math-
ematical reasoning task, we assess performance on the GSM8K (Cobbe et al., [2021) and MATH
(Hendrycks et al [2021) datasets using the LM Evaluation Harness framework (Gao et al., 2024);
we report pass@1 accuracy as the evaluation metric. For code generation, we evaluate our model
on the HumanEval dataset (Chen et al., 2021) with the Code Generation LM Evaluation Harness
framework (Ben Allal et al.| 2022)); the metric is the accuracy of generated programs, where a pro-
gram is considered accurate if it passes all test cases. For summarization, we evaluate on the XSum
dataset (Narayan et al.||2018)) and report ROUGE-L (Lin, [2004) as the metric.

*In our pilot study, we also experimented with joint optimization and observed no noticeable difference.
Nevertheless, we adopt this approach because it is more intuitive.
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Algorithm 1 QUANTIZELORA (B, A, h, bitsnign, bitSiow, T, 1)

Require: LoRA matrices B € R™*" , A € R"*" | ratio p , bitwidth bitsien and bitsiey , Optimiza-
tion steps T, learning rate n

Compute SVD: U, S, V' < SVD(BA)

B’ + UV/S {Square root is applied element-wise }

A+ +/SVT

Find smallest i such that ZZQ ;i >p

=11
B, < first A columns of B’
Ay, < first h rows of A’
B, < last r—h columns of B’
A < last r—h rows of A’
fori =0toh — 1do
10: Bh[t, ’i], Ah[i, 2] — Opt(Bh[I, i}, Ah[i, I], T,n)
11: end for
12: fori =0tor —h—1do
13: Bl[Z, i], Al[i, 2] — Opt(Bl[Z, i], A][i, Z], T, 17)
14: end for
15: By, < quantize(By, bitshign), Ap < quantize(Ay, bitspigh)
16: By < quantize(By, bitsiow ), A| < quantize( Ay, bitsiow)
17: return (Bh; Ah), (Bl; Al)

PRI RN

°

Algorithm 2 opT(B, A, bits, T, 7)
Require: Factor matrices B , A , target bitwidth bits , optimization step T ,learning rate 7

1: B()pt — B, Aopt — A

2: fort =1to T do

: Qp « quantize(Boy, bits), Qa < quantize( Ay, bits)

Bicc < dequantize(Qp), Ay + dequantize(Qa4)
L+ HBA - BrecArecHF
Backpropagate £ by straight-through estimation
Bopl <~ Bopt - n- vBop(£
Aopl — Aopl -n- VAoplﬁ

9: end for
10: return By, Ay

AN A

For LoRA adapters, we train them separately for each task, mimicking the scenario of LLM cus-
tomization. For mathematical reasoning, we use the MetaMathQA dataset (Yu et al., |2023) for
training, noticing that the training set of GSM8K and MATH is too small. For code generation, we
train the LORA on the Magicoder-Eval-100-Instruct dataset (Wei et al.,2024), since HumanEval is a
test-only dataset. Such training and evaluation follow the common practice in prior work (Biderman
et al.,|2024; Meng et al., 2024). For summarization, we use the standard training split of the XSum
dataset (Narayan et al.| [2018]).

In all experiments, we adopt a widely used LoRA setup (Biderman et al.| 2024), where the rank is
set to 16 and LoRA modules are inserted into every linear layer of the transformer. The training
of LoRA follows that in the QLoRA study (Dettmers et al., [2023), where the base language model
is quantized and frozen whereas the LoRA is trained in half precision (FP16). Training hyperpa-
rameters are provided in Appendix [A] After training, we apply our LORAQUANT method and other
quantization baselines to the LoRA weights and evaluate the performance of each approach.

4.2 MAIN RESULTS

We present the main results in Tab. |1) where we consider the following popular baselines for quan-
tizing LoRA. GPTQ (Frantar et al., 2023) quantizes weights sequentially and adjusts the remaining
weights to reduce quantization error. RTN and BIN are the standard methods introduced in §3.2]
PB-LLM (Shang et al.,|2024) performs mixed-precision quantization with some weight being bina-
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Tasks .
Model # Method GSMSK | MATH | HumanEval | XSum Avg Perf. | Avg Bit
i FP16 5853 | 18.03 34.76 3353 | 3621 6
2 BIN 7889 | 674 20.12 2407 | 19.95 13
3 RTN (1 bit) 0 2.95 9.76 8.27 5.4 113
4 JD-Diagonal 3829 | 691 15.85 3023 | 22.82 533
5 RTN (2 bits) 3936 | 9.94 20.27 3323 | 3045 214
6 GPTQ (2 bits) 5216 | 1323 29.88 3302 | 32.07 2.14
LLaMA 2-7B | 5 PBLLM 50.57 | 11.20 28.05 3242 | 3056 2.83
8 BiLLM 5390 | 13.90 29.88 3286 | 32.63 224
9 | LORAQUANT (2@0.8) 51.25 10.11 24.39 32.43 29.55 1.65
10 | LORAQUANT (200.9) | 52.16 | 12.72 29.27 3243 | 31.65 1.81
11 | LORAQUANT (3@0.8) | 53.60 | 14.57 29.88 3335 | 3286 2.16
12 | LORAQUANT (300.9) | 56.86 | 16.01 3171 3351 | 3452 25
I FP16 5883 | 1946 ERD) 3196 | 3877 16
7 BIN 2926 | 9.8 18.90 874 | 1652 .13
3 RTN (1 bit) 342 | 1137 732 1543 | 1188 113
4 JD-Diagonal 0 6.49 3.66 1508 | 631 533
5 RTN (2 bits) 2608 | 531 3415 3142 | 2424 214
Misial 78| 6 GPTQ (2 bits) 4026 | 9.69 3171 3246 | 28.53 2.14
7 PBLLM 5004 | 17.94 38.41 3343 | 3496 2.83
8 BiLLM 5095 | 1441 42.07 3232 | 3494 224
9 | LORAQUANT (200.8) | 52.08 | 16.43 35.98 3326 | 3444 1.85
10 | LORAQUANT (2@0.9) | 53.90 | 17.94 39.63 3348 | 3624 1.97
11 | LORAQUANT (3@0.8) | 51.18 | 1845 44.51 3301 | 36.79 2.56
12 | LORAQUANT (3@0.9) | 5375 | 18.70 43.90 3275 | 37.28 238
T FP16 6179 | 18.70 36,34 35.16 | 4052 T6
2 BIN 27.37 96 21,34 3197 | 22.57 13
3 RTN (1 bit) 0 413 13.41 1.35 472 113
4 JD-Diagonal 4617 | 851 18.91 3314 | 26.68 533
5 RTN (2 bits) 5330 | 1449 32.93 3454 | 3381 214
6 GPTQ (2 bits) 5777 | 15.08 36.59 34.56 36 2.14
LLaMA2-13B | ; PBLLM 5006 | 1634 32.93 3408 | 35.60 2.83
8 BiLLM 5089 | 17.02 36.59 3479 | 37.07 224
9 | LORAQUANT (2G0.8) | 5663 | 15.08 30.49 3405 | 34.06 1.65
10 | LORAQUANT (2@0.9) | 57.39 | 15.67 35.98 3427 | 3583 1.81
11 | LORAQUANT (3@0.8) | 60.05 | 18.03 35.37 3474 | 37.05 217
12 | LORAQUANT (3@0.9) | 60.8 | 17.44 39.02 3495 | 3806 25

Table 1: Performance and average bitwidth for different methods. “Avg Perf.” refers to average
performance. In Rows 5-12, we bold the best task performance, as well as the least average bit
among models.

rized and others maintained in full precision; note that an additional indicator bit is needed for each
weight. BILLM (Huang et al., |2024)) works similarly, except that each column must be either quan-
tized or maintained in full precision while using a split binarization strategy. All baselines perform
group quantization with a group size of 128, which is a common practice in the literature (Lin et al.,
2024; [Frantar et al., [2023).

We also consider JD-Diagonal (Gabrielsson et al., 2024), which is not a quantization method but is
related to the general objective of our research: reducing memory for multiple LoRAs. Specifically,
JD-Diagonal clusters different LoRAs and performs weight sharing, while introducing a few (r-
many) additional parameters for each task. In our evaluation, we treat the three tasks as a cluster for
weight sharing.

Our comparison focuses on two aspects: (1) output quality measured by the standard metric of
each task, and (2) average number of bits per LoORA parameter which reflects the effectiveness of
memory saving. When computing the average bits, we also consider the scale and the zero point
parameter in our computation. The values reported in Tab. [T| represent the average bitwidth across
the three task-specific adapters. For detailed per-adapter bitwidth, refer to Appendix [C]

3Notice that our paper focuses on LLM customization where massive numbers of LoRAs are loaded to a
base, high-performing LLM. Therefore, our base LLM follows a standard QLoRA treatment and its parameter
size (which is a constant) is not considered in the metric. Appendix [D|provides a memory analysis with the
base LLM.
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Figure 2: Comparison of sub-LoRA splitting strategies. Here, h denotes the rank of the high-
precision sub-LoRA and is fixed globally for all LoRAs in a model.
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Figure 3: Study on optimization and quantization of LORAQUANT. LoraQuant is the proposed
method. Prune truncates the less important sub-LoRA components. No Opt omits the gradient-
based optimization step. LoraQuant w/ RTN replaces the specialized binarization with 1-bit RTN
quantization.

As shown in Tab. [T} FP16 (Row 1) achieves the highest overall performance across all models,
which is expected. Various quantization methods (Rows 2-3 and Rows 5-8) provide a spectrum of
performance-memory tradeoff. However, all previous methods require at least two bits to achieve
reasonable performance. As we see, binary quantization (Row 2) yields 30-point degradation in
accuracy on GSM8K with LLaMA 2-7B, whereas RTN (1 bit) almost collapses the model, leading
to extremely poor accuracy.

We also observe that JD-Diagonal fails to achieve reasonable performance in our experiments. We
hypothesize that the discrepancy between our experiment and that in |Gabrielsson et al.| (2024) is
due to the tasks and evaluation metric. |Gabrielsson et al| (2024) only consider simple tasks with
in-context learning samples, which can already be handled well by the base model. In our pilot
study, we find that even reducing the LoRA rank to 1 via SVD has little impact on the performance
of their trained adapters, suggesting that the LoRA parameters contribute minimally in their settings.
Also, they only use ROUGE-L as their metric, while in our setting math and coding require exact
matching.

We then examine our LORAQUANT approach (Rows 9-12). LORAQUANT performs mixed-
precision quantization, where the more important sub-LoRA is quantized to ¢ bits (¢ = 2 or 3),
and the less important sub-LoRA is always quantized to 1 bit. The fraction is controlled by the
hyperparameter p, which is the total variation explained (§3.I). Our variant is denoted by Lo-
RAQUANT(i@p).

As seen, the 2@0.8 and 2@0.9 variants (Rows 9-10) consistently operate under 2 bits, while achiev-
ing high performance comparable to, or even higher than, PB-LLM and BiLLM, which are also
mixed-precision quantization but use more bits than ours. To enable a fair comparison with these
binarization methods at a similar average bitwidth, we also experiment with quantizing the more
important sub-LoRA to 3 bits. Our 3@0.8 and 3@0.9 variants (Rows 11-12) consistently achieve
higher task performance than both PB-LLM and BiLLM.

To conclude, our LORAQUANT method is able to reduce the memory of LoRAs by a large margin
while achieving comparable performance with full precision baseline. Our approach also largely
advances extreme quantization with less than two bits per parameter in the LoRA setting.
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Figure 4: Comparison of h selection strategy. Ratio denotes our method explained in where
the ratio hyperparameter varies from 0.1 to 0.95 in increments of 0.05, while Static sets h to a fixed
value ranging from 1 to 12.

4.3 IN-DEPTH ANALYSES

We conduct in-depth analyses on the LLaMA-2-7B model using the GSM8K and MATH datasets.
We restrict our analyses to this setting due to computational constraints.

Sub-LoRA split strategy. In Fig. 2] we compare splitting sub-LoRAs using SVD against two
baseline strategies: (i) selecting columns of B and the corresponding rows of A at random, and (ii)
selecting the high-precision components according to the magnitude of b;a; (where b; denotes the
ith column of B and a; denotes the ith row of A), measured by its Frobenius norm. The intuition
behind the norm-based strategy is that components with larger norms contribute more substantially
to the overall LoRA update, and thus are more suitable for higher-precision quantization. In this
analysis, we do not choose h dynamically (§3.I) but directly set the value of h to ensure a fair
comparison with the random and norm-based strategies. As seen in the plots, our SVD split strategy
generally outperforms the other methods. This is consistent with our intuition that SVD identifies
the important dimensions, for which we should preserve more information during quantization.

Ablation study. In Fig. [3] we analyze the effect of different components of our approach. First,
we ablate the gradient-based optimization, which searches for reparameterization (after splitting
the sub-LoRAs) to reduce quantization error (§3.3). Fig. 3] shows that the optimization generally
improves the performance of LORAQUANT, with higher improvement for higher ratios; therefore,
we adopt the optimization process in our approach.

Next, we ablate our approach by pruning the less important sub-LoRA entirely to test whether it
contributes to performance. As shown in Fig. 3] pruning collapses the model at lower ratios, which
is expected. As the ratio increases, the performance of pruning also increases, but is consistently
lower than our LORAQUANT. This verifies that the less important sub-LoRA, even quantized to 1
bit per weight, still plays a role in the model.

We also experiment an alternative variant of LORAQUANT, where the less important sub-LoRA is
quantized by 1-bit RTN, instead of sign-based binarization (§3.2). This setting performs similarly to
pruning the less important sub-LoRA, as 1-bit RTN effectively maps lots of values to zero. The result
justifies our different quantization methods used: RTN for the important sub-LoRA and sign-based
binary quantization for the less important one.

In Fig. 4} we compare our ratio-based dynamic h selection with a static strategy that fixes h as a
global value. The results show that a dynamic h generally yields better performance, particularly
when we allow for slightly more bits (e.g., more than 1.5 bits), which is a more practical setup.

5 CONCLUSION

In this paper, we address the problem of memory reduction when multiple LoRAs are loaded si-
multaneously in the scenario of LLM customization (e.g., for different tasks and/or users). We
propose LORAQUANT, a mixed-precision quantization method tailored for LoRAs, where we split
each LoRA into two sub-LoRAs via SVD. The more important sub-LoRA is preserved with more
bitwidth, whereas the less important sub-LoRA is quantized to one bit; we further adopt straight-
through gradient optimization to improve the quantization. Experimental results demonstrate that
LORAQUANT maintains strong performance even under extremely low bitwidth settings. We further
present in-depth analyses to verify the effectiveness of each component in our approach.
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A IMPLEMENTATION DETAILS

We follow the hyperparameter settings of Biderman et al|(2024), except that we reduce the batch
size because they train across multiple GPUs while we only use a single GPU.

* optimizer: adamw_torch (5 = [0.9, 0.95])

* learning rate: 2 x 1074

* scheduler: cosine_with_-warmup (o = 0.01, tyarmup = 0.3 dur)
* weight decay: 0

* precision: fpl6

* device_train_microbatch_size: 6

* gradient clipping: norm (threshold = 1)

* num_epochs: 2

* num_gpus: 1

For both mathematical reasoning and summarization tasks, we set max_seq_len to 1024. For the
code domain, we use max_seq_len = 4096. The batch _size is 16 for Mistral and LLaMA-2-7B, and
8 for LLaMA-2-13B.

B QUANTIZING ALONG COLUMN OR ROwW

In our approach, we perform group quantization, where B’ is quantized column-wise and A’ row-
wise. This follows naturally from the SVD reparameterization of the adapter weight: the square
root of each singular value is multiplied with the corresponding columns of U to form B’, and rows
of VT to form A’. Under this scheme, the singular values can be absorbed into the RTN scaling
factors stored in FP16, ensuring that the singular values are preserved without error.

We also explore alternative quantization strategies. Our hypothesis is that column-wise quantization
of B’ and row-wise quantization of A’ should yield stronger performance. The results of this com-
parison are presented in Fig.[5] As shown, this hypothesis holds for the GSM8K dataset, where this
configuration performs best, but on the MATH dataset, no singular strategy wins consistently. That
being said, the performance difference remains small, and we adopt column-wise quantization of B’
and row-wise quantization of A’ as the default setting in our approach since it makes more sense
intuitively.

C AVERAGE BITWIDTH OF LORAQUANT

In our work, we use AvgBits to measure the memory usage, given by

total bits for LoRAs across different layers

AvgBits = (10)

total # of LoRA parameters across different layers

In the main experiment (Tab. [T)), we present the average bitwidth across multiple tasks, due to table
formatting reasons. In this appendix, we show the bitwidth for individual tasks in Tab.[2] Notice
that we have a dynamic allocation strategy, so the average bits vary slightly based on the task.
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Figure 5: Study on the column-wise and row-wise quantization of LORAQUANT. Each entry is
denoted as B (0) A (_), where each underscore can be either col or row. Here, col indicates column-
wise quantization and row indicates row-wise quantization of the corresponding component.

Model Method GSMS8Kk & MATH | HumanEval | Xsum
LORAQUANT (2@0.8) 1.65 1.55 1.74

LORAQUANT (2@0.9) 1.82 1.74 1.89

LLaMA 2-7B | 1 o r AQUANT (3@0.8) 2.17 1.98 234
LORAQUANT (3@0.9) 2.51 2.34 2.65

LORAQUANT (2@0.8) 1.86 1.82 1.85

. LORAQUANT (2@0.9) 1.98 1.95 1.97
Mistral 7B | 1 AQUANT (3@0.8) 2.59 251 2.58
LORAQUANT (3@0.9) 2.83 2.76 2.81

LORAQUANT (2@0.8) 1.61 1.56 1.77

LORAQUANT (2@0.9) 1.79 1.75 1.91

LLaMA2-13B | 1 1 AQUANT (3@0.8) 2.09 2.00 2.40
LORAQUANT (3@0.9) 2.44 2.37 2.69

Table 2: Average bitwidth of LORAQUANT variants.

D MEMORY ANALYSIS FOR LLM CUSTOMIZATION

In this appendix, we provide an analysis of memory savings when loading different numbers of
adapters, where we use the average bitwidth reported in the main experiments (specifically, the
2@0.8 setup on the GSM8K dataset in Tab.[I). As shown in Fig.[6] the memory usage of FP16 grows
substantially when the number of LoRAs increases. For instance, loading only 50 LoRAs requires
2 times more memory than the base LLM. This justifies our motivation that the memory of multiple
LoRAs can build up and become non-negligible, even if each LoRA is relatively lightweight. On
the contrary, the memory grows slowly in our LORAQUANT method, showing its practical values
for LLM customization.

E LIMITATIONS AND FUTURE WORK

Our paper proposes a novel LoORA quantization method for LLM customization. In the experiments,
we have tried four datasets and three language models (12 evaluations in total). Due to the limit
of our computing resources, we are unable to perform commercial scale experiments (e.g., having
millions of LoRAs). Luckily, our method treats different LoORAs independently, and thus is easily
scalable, as opposed to |Gabrielsson et al.| (2024) who require recomputing cluster parameters. Ap-
pendix [D|has shown the practival values of our model, and we leave the commercial applications of
our method to the industry.

Moreover, our SVD-based mixed-precision quantization is specific to LoORA models and is not di-
rectly applicable to a full weight matrix. This is because, if a matrix is not low-rank, splitting a
matrix into two products of sub-matrices would in fact increase the number of parameters. In the
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Figure 6: Memory usage when loading multiple LoRAs and the base LLM.

future work, we plan to adapt our method to general weight matrices by truncating the SVD dimen-
sions. However, this is clearly beyond the scope of this paper. That being said, our LORAQUANT
approach can be combined with other quantization methods, and in our experiments, we have already
used a four-bit quantized base models.

F REPRODUCIBILITY STATEMENT

The code for running the experiments and training adapters is released as an anonymous repository
(Footnote 1). The datasets used for training and evaluation are all publicly available.

G LLM USAGE DISCLOSURE

ChatGPTS5 was used in a limited capacity to check grammar, rephrase certain expressions, and help
format the tables in LaTeX and figures in Matplotlib. However, we came up with the research ideas,
conducted the analyses, and presented the contents without using Al tools.
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