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Abstract

The choice of input text prompt plays a criti-
cal role in the performance of Vision-Language
Pretrained (VLP) models such as CLIP. We
present APoLLo , a unified multi-modal ap-
proach that combines Adapter and Prompt
learning for Vision-Language models. Our
method is designed to substantially improve
the generalization capabilities of VLP models
when they are fine-tuned in a few-shot setting.
We introduce trainable cross-attention-based
adapter layers in conjunction with vision and
language encoders to strengthen the alignment
between the two modalities. We enforce consis-
tency between the respective encoder branches
(receiving augmented inputs) to prevent over-
fitting in downstream tasks. Our method is
evaluated on three representative tasks: gener-
alization to novel classes, cross-dataset evalu-
ation, and unseen domain shifts. In practice,
APoLLo achieves a relative gain up to 6.03%
over MaPLe (SOTA) on novel classes for 10
diverse image recognition datasets.

1 Introduction

Recent years have witnessed tremendous success
of largescale pre-trained language models (Devlin
et al., 2018; Liu et al., 2019; Raffel et al., 2020;
Biderman et al., 2023; Scao et al., 2022; Shen et al.,
2023; Touvron et al., 2023) as well as visual mod-
els (Dosovitskiy et al., 2020; Liu et al., 2021b;
Tan and Le, 2019) leading to a surge in pre-trained
Vision-Language models (Dou et al., 2022; Li et al.,
2022a; Yang et al., 2022; Wang et al., 2023a; Li
et al., 2023b,a; Wang et al., 2023b) for multi-modal
downstream tasks. Despite being largely successful
in terms of generalization capabilities, these VLP
models such as CLIP (Radford et al., 2021) are
difficult to fine-tune for few-shot learning-based
downstream tasks (Khattak et al., 2023). This is
mainly because of the massive scale of these mod-
els coupled with the deficiency of training data
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Figure 1: APoLLo sets a new state-of-the-art across
several datasets for the base-to-novel class generaliza-
tion task by learning a vision-language representation
using a unified adapter and prompt tuning strategy under
a few-shot setting. Each axis denotes an accuracy value,
either on base or novel class (specified accordingly) for
the corresponding dataset (refer to Table 1).

(Khattak et al., 2023). Recent studies in literature
propose fine-tuning of these models by introduc-
ing and calibrating the parameters by prompting
(Zhou et al., 2022a) and adapter (Gao et al., 2021a)
techniques. While the former injects tunable pa-
rameters through learned embeddings in one or
more modalities, the latter incorporates in-situ ad-
justments conventionally near the prediction head.

The effectiveness of such fine-tuning-based
methods notwithstanding recent investigations re-
veal (Zhou et al., 2022b) the caveats of these ap-
proaches – such as neglecting the useful knowledge
gained from the preceding pre-training step and
overfitting with the downstream tasks. Although
we find a considerable wealth of studies that in-
volve text-based prompt learning (Lu et al., 2022;
Shu et al., 2022; Huang et al., 2022), the same for
the visual pipeline still remains an under-explored
area.
Main Results: We present APoLLo , a novel
unified adapter and prompt learning approach for
VLP models to tackle the generalizability prob-
lems in few-shot scenarios. We enforce consistency
between intra-modal encoders using consistency-
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guided contrastive loss (Wei et al., 2020). This is
done to teach the association between the query and
the semantically similar negative in-batch keys. To
further enhance cross-modal alignment, we employ
cross-attention in the modality-specific adapter lay-
ers. This leads to better awareness of the multi-
modal features. Experimental results over a varied
range of recognition datasets demonstrate the effi-
cacy of our approach. Some novel aspects of our
work include:
(1) To the best of our knowledge, ours is the first
method that combines adapter and prompt tun-
ing for VLP models (e.g., CLIP) in a unified
manner. This facilitates learning new tasks in a
few-shot setting without compromising on their
zero-shot generalizability.
(2) We propose a novel multi-modal augmen-
tation strategy by leveraging LLMs to gener-
ate descriptive texts as augmented samples in the
text branch, and text-conditioned diffusion mod-
els to generate image augmentations for the image
branch.
(3) Our novel application of multi-modal cross-
attention adapter layers bridges the gap between
the two modalities by generating text-guided visual
features and vice-versa. This promotes the synergy
between the two modalities.
(4) Extensive evaluation on 10 challenging datasets
demonstrates the effectiveness of APoLLo as it
outperforms existing methods by a significant
margin and set a new SOTA (Figure 1) for a range
of downstream tasks including base-to-novel gen-
eralization, cross-dataset recognition, and domain
generalization.

2 Related Works

2.1 Vision Language Models

Recent research has indicated that effectively min-
ing image-text pairs can enable VLP models to
achieve highly satisfactory results on relevant
downstream tasks when compared against uni-
modal frameworks. For example, models like CLIP
(Radford et al., 2021), ALIGN (Jia et al., 2021),
and Florence (Yuan et al., 2021) demonstrate ex-
ceptional performance on a wide range of few-shot
and zero-shot visual recognition tasks. However,
they are impractical to adapt to challenging down-
stream tasks. Prior work include specially designed
approaches pursuing object detection (Bangalath
et al., 2022; Zang et al., 2022; Zhou et al., 2022c)
and, few-shot image recognition (Zhang et al.,

2021; Gao et al., 2021b; Kim et al., 2021) that fare
much better compared to off-the-shelf VLP models
(Radford et al., 2021; Jia et al., 2021). In this paper,
we present a novel image and text augmentation-
based technique for a unified adapter and prompt
learning to enable CLIP based model to generalize
well under few-shot and zero-shot visual recogni-
tion tasks.

2.2 Prompt Tuning
Prompt tuning (Li and Liang, 2021; Liu et al.,
2021a; Lester et al., 2021) typically refers to
prepending language instructions to the input text
to facilitate a better understanding of the down-
stream tasks. For example, instead of feeding
the system with a fixed template ‘a photo of
a <CLASS>’, task-specific additional information
could be more helpful for the model. More so,
tuning-based methods achieve comparable perfor-
mance as full finetuning but with ∼1000× fewer pa-
rameters. To this end, Context Optimization(CoOp)
(Zhou et al., 2022b) proposes a replacement of
the hand-crafted prompts with the learnable soft
prompts. However, their approach lacks gener-
alizability and demonstrates suboptimal perfor-
mance under a zero-shot setting. CoCoOp (Zhou
et al., 2022a) generates an image-conditional con-
text along with text conditioning through prompt
tuning, while ProDA (Lu et al., 2022) incorpo-
rates the prompt’s prior distribution learning. Pro-
Grad (Zhu et al., 2022) performs prompt updates
where the gradients are aligned with the original
prompt’s knowledge. Recent works (Bahng et al.,
2022; Khattak et al., 2023) leverage a multi-modal
prompting (image + text) technique to exploit the
natural association across modalities.

2.3 Adapter Tuning
Adapter-based methods (Houlsby et al., 2019) in-
ject additional trainable parameters into a pre-
trained model to facilitate customized learning for
downstream tasks. Yuan et al. (2021); Sung et al.
(2022) introduce additional layers near the predic-
tion head to enrich pre-trained models with addi-
tional parameters. Initial efforts to develop adap-
tive methods for computer vision tasks involved in-
cremental learning (Rosenfeld and Tsotsos, 2018)
and domain adaption methods (Rebuffi et al., 2017,
2018). APoLLo leverages adapter and prompting
to boost the performance of the model for down-
stream tasks, while contrastive-consistency loss en-
sures the generalizability of the model.
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Figure 2: Overview of the proposed APoLLo framework for a unified multi-modal adapter and prompt learning in
VLP models. APoLLo unifies prompt and adapter tuning for both the image and text branches. The image (blue) and
text (yellow) adapter layers are coupled with each other through cross-modal interactions via attention which further
improves the alignment between the two modalities. Each modality contains two branches receiving augmented
versions of input texts and images generated using LLM and text-conditioned diffusion models respectively.

3 Methodology

3.1 Brief Review of CLIP
Among the existing Vision-Language models,
CLIP (Radford et al., 2021) demonstrates strong
generalizability for zero-shot image recognition.
Being a multi-modal framework it’s comprised of
image and text encoder modules. In our set-up, we
deploy a transformer-based image encoder (θ) and
text encoder (ϕ).

3.1.1 Image Encoder
Our patch-based image embedding module is com-
prised of K transformer layers that split an image
into M fixed-sized patches which are projected
into patch embeddings E0 ∈ RM×dv . Patch em-
bedding Ei is fed into the next transformer block
combined with a learnable class token ci where
i ∈ {1, . . .K}. Therefore,

[ci+1, Ei+1] = θi+1([ci, Ei]) (1)

The final image representation is obtained by
projecting class token ck of the last transformer
layer to a common latent space:

u = IProj(cK) ;u ∈ Rdvl . (2)

3.1.2 Text Encoder
Text encoder generates feature embedding by tok-
enizing the word sequence. At the (i + 1)th step
Wi is fed as input to the transformer text encoder:

[Wi+1] = ϕi+1(Wi) ;∀i ∈ {1, . . .K}. (3)

Like its image counterpart, the final text repre-
sentation v is obtained by projecting the text em-
bedding of the last transformer block ϕK to a shared

latent space:

v = TProj(wK) ; v ∈ Rdvl . (4)

3.1.3 Zero-Shot Classification
During zero-shot inference, text prompts are pro-
vided with class labels y ∈ {1, 2, . . . C}. Class
label ŷ with the highest cosine similarity score
(sim(·)) w.r.t the input image x is computed, where
τ is the temperature parameter.

p(ŷ | x) =
exp (sim (u, vŷ) /τ)∑C
i=1 exp (sim (u, vi))

. (5)

This template-based approach was found to pro-
duce suboptimal results across domains. To ad-
dress this, CoOp (Zhou et al., 2022b) proposed an
alternative approach that replaces the hand-crafted
prompt with a set of learnable context vectors that
generate task-specific text embeddings. These are
augmented with the previously generated word em-
beddings. Likewise, learnable context vectors are
concatenated with the patch embeddings. We ex-
tend MaPLe (Khattak et al., 2023) to present a
novel multi-modal prompt learning approach to en-
sure generalizability across different downstream
tasks under a zero-shot classification setting.

3.2 Our Approach: APoLLo

We note that prior methods are based on uni-modal
prompt tuning approaches to finetune CLIP to per-
form downstream image recognition. On the other
hand, MaPLe is the only work that uses multi-
modal prompt tuning. In a major departure from
this approach, we introduce a novel unified adapter



and prompt learning method with a novel aug-
mentation strategy to the text and image inputs
to facilitate further regularization. To this end, we
supplement our adapter layers with multi-modal
cross-attention modules that ensure the text and
the image modalities are aligned. The text input
is passed through a pre-trained LLM to obtain a
more descriptive expression of itself while the im-
age branch comprises a text-conditioned diffusion
model to obtain augmentation of the input image
as shown in Figure 2.

3.2.1 Image and Language Prompting
We facilitate deep image and language prompting
across the hierarchies in the image and text trans-
former backbones (of CLIP) by introducing learn-
able tokens at every transformer layer. It has been
shown (Khattak et al., 2023) that systematic prompt
sharing in successive stages is more intuitive over
independent prompts as consecutive transformer
blocks ensure densely correlated feature learning.

3.2.2 Input Augmentation
Generative data augmentation schemes have been
leveraged very recently (Hu et al., 2023; Trabucco
et al., 2023; Azizi et al., 2023; Shipard et al., 2023;
Yin et al., 2023; Whitehouse et al., 2023), however,
not in a multi-modal context (Appendix A.4). In
our method, we add regularization by using aug-
mented versions of respective modality inputs in
the corresponding frozen encoder branches. In
particular, for the text branch, we employ a pre-
trained frozen LLM (Brown et al., 2020) to gen-
erate sentences about the object referred to in the
text. These sentences are typically descriptions of
the usual characteristics of the object. For example,
as shown in Figure 2, we provide a hand-crafted
template (‘a photo of a <CLASS>’) as input to
the LLM. Considering Cat as the ‘CLASS’, LLM
outputs a descriptive text as: ‘a small carnivorous
mammal with soft fur, retractable claws, and a
tail’. In this regard, KgCoOp (Yao et al., 2023) also
introduces textual augmentations. However, they
get an average embedding from a pre-defined num-
ber of sentences, whereas we restrict our model
to generate a single sentence (on the fly) which is
easier and more diverse. For the image branch we
introduce a text-conditioned diffusion (Rombach
et al., 2022) based augmentation strategy that gen-
erates novel examples of the same class (see Figure
2). Experimental results back our claim that adding
these two separate prompting modules indeed re-

sults in enhanced performance (also see Section
4.4 for detailed ablations).

3.2.3 Multi-modal Cross-attention Adapter
(MCA):

Lately, adapter layers have played a pivotal role in
model finetuning for adaptation to new downstream
tasks (Yuan et al., 2021; Li et al., 2022b; Chen et al.,
2022; Hao et al., 2023). Typically, these adapter
layers are trainable parameters that are added on
top of an encoder to transform the embedding vec-
tor to better adapt to new tasks. Inspired by Chen
et al. (2022), we maintain trainable cross-attention-
based adapter layers, for the respective encoders
individually. In a major departure from MaPLe,
where the authors used multi-modal prompt cou-
pling, we introduce cross-attention modules that
enforce inter-modal alignment.

3.2.4 Loss Formulation
Our training paradigm involves the computation
of two types of losses between the multi-modal
encoders.
Intra-modal Contrastive Consistency: In a typi-
cal contrastive learning setting, the heterogeneous
similarities between the query and other in-batch
negatives are ignored resulting in suboptimal repre-
sentation learning. In order to mitigate this ‘class-
collision’ problem and better deal with sampling
bias (Wei et al., 2020) proposed a consistency-
based contrastive loss. We employ this loss to
enforce consistency between the respective intra-
modality branches as given below:

Lcon = α1 ∗ LI
CO2

+ α2 ∗ LT
CO2

. (6)

In practice we keep α1 = α2 = α for all exper-
iments. We add more details about LCO2 in the
Appendix A.2.2.
Inter-modal Similarity Maximization: The inter-
modality loss is responsible for maximizing the
similarity between the multi-modal branches. The
image-text pairs in a mini-batch are passed through
the respective encoders followed by the adapter lay-
ers. The normalized image and text embeddings are
subsequently utilized to compute the inter-modality
Image-Text Contrastive (ITC) loss given as LIT

sim

(refer to Appendix A.3 for further details).
The total loss is calculated by the weighted aver-

age of the above two losses:

Ltotal = LIT
sim + α ∗ Lcon. (7)



Method ImageNet Caltech101 OxfordPets StanfordCars Flowers102
Base Novel Base Novel Base Novel Base Novel Base Novel

CLIP 72.43 68.14 96.84 94.00 91.17 97.26 63.37 74.89 72.08 77.80
CoOp 76.47 67.88 98.00 89.81 93.67 95.29 78.12 60.40 97.60 59.67
Co-CoOp 75.98 70.43 97.96 93.81 95.20 97.69 70.49 73.59 94.87 71.75
ProGrad 77.02 66.66 98.02 93.89 95.07 97.63 77.68 68.63 95.54 71.87
KgCoOp 75.83 69.96 97.72 94.39 94.65 97.76 71.76 75.04 95.00 74.73
MaPLe 76.66 70.54 97.74 94.36 95.43 97.76 72.94 74.00 95.92 72.46
APoLLo 78.91 73.43 98.69 95.63 97.11 98.94 78.16 75.66 98.07 77.83
∆APoLLo−MaPLe +2.25 +2.89 +0.95 +1.27 +1.68 +1.18 +5.22 +1.66 +2.15 +5.37

Method Food101 FGVCAircraft SUN397 DTD UCF101
Base Novel Base Novel Base Novel Base Novel Base Novel

CLIP 90.10 91.22 27.19 36.29 69.36 75.35 53.24 59.90 70.53 77.50
CoOp 88.33 82.26 40.44 22.30 80.60 65.89 79.44 41.18 84.69 56.05
Co-CoOp 90.70 91.29 33.41 23.71 79.74 76.86 77.01 56.00 82.33 73.45
ProGrad 90.37 89.59 40.54 27.57 81.26 74.17 77.35 52.35 84.33 74.94
KgCoOp 90.50 91.70 36.21 33.55 80.29 76.53 77.55 54.99 82.89 76.67
MaPLe 90.71 92.05 37.44 35.61 80.82 78.70 80.36 59.18 83.00 78.66
APoLLo 91.35 92.58 40.62 39.87 82.97 80.62 83.95 65.21 87.88 80.52
∆APoLLo−MaPLe +0.64 +0.53 +3.18 +4.26 +2.15 +1.92 +3.59 +6.03 +4.88 +1.86

Table 1: Comparison of APoLLo with SOTA methods on a Base-to-Novel Class Generalization task.
APoLLo shows strong generalization capabilities across all 10 datasets and outperforms MaPLe (previous SOTA)
in all of them. Best accuracy values are shown in bold and the differences with respect to MaPLe are given in blue.

4 Experimental Details

4.1 Downstream Tasks

Base-to-Novel Class Generalization: We follow
the standard practice of base-to-novel generaliza-
tion under zero-shot evaluation with few-shot fine-
tuning. Datasets are partitioned into base and novel
classes with the model being trained on the base
classes and evaluated on both base and novel cate-
gories.

Cross-Dataset Evaluation: To analyze the zero-
shot generalizability of APoLLo , we perform a
cross-dataset assessment. To facilitate this, the
model trained solely on the ImageNet dataset was
exposed to other 9 datasets. To be consistent with
the prior art, we follow MaPLe and CoCoOp to
train our model under a few-shot setting for a fair
assessment.

Domain Generalization: Taking one step further
towards a more robust evaluation, the performance
of the model was analyzed on its out-of-distribution
generalization capabilities. Like cross-dataset eval-
uation, the performance of the ImageNet trained
model was observed under its four other variants:
ImageNetV2, ImageNetS, ImageNetA, and Ima-
geNetR as these are known to contain sufficient
domain shifts.

4.2 Datasets

To extensively evaluate our model under differ-
ent setting, we consider a total of 10 image clas-
sification datasets covering various recognition
tasks including object classification datasets Im-
ageNet (Deng et al., 2009), Caltech 101 (Fei-
Fei et al., 2004); fine-grained datasets Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause
et al., 2013), Flowers 102 (Nilsback and Zisser-
man, 2008), Food101 (Bossard et al., 2014), FGV-
CAAircraft (Maji et al., 2013); scene recognition
dataset SUN397 (Xiao et al., 2010); action recog-
nition dataset UCF101 (Soomro et al., 2012); and
texture recognition dataset DTD (Cimpoi et al.,
2014). For domain generalization, we rigorously
evaluate on four ImageNet variants: ImageNetV2
(Recht et al., 2019), ImageNetSketch (Wang et al.,
2019), ImageNet-A (Hendrycks et al., 2021b), and
ImageNet-R (Hendrycks et al., 2021a).

4.3 Main Results

4.3.1 Base-to-Novel Class Generalization
We subdivide the generalization evaluation into the
following two categories.

Generalization to Unseen Classes: Table 1
presents the comparison of our method with CLIP,
CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al.,
2022a), ProGrad (Zhu et al., 2022), KgCoOp (Yao



Method Target
Caltech Pets Cars Flowers Food Aircraft SUN DTD UCF

CoOp 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 66.55
Co-CoOp 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 68.21
MaPLe 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 68.69
APoLLo 95.12 91.56 66.21 73.15 86.82 24.96 67.98 47.63 70.38
∆APoLLo−MaPLe +1.59 +1.07 +0.64 +0.92 +0.62 +0.22 +0.97 +1.14 +1.69

Table 2: Comparison of APoLLo with SOTA methods on a cross-dataset evaluation task where the model is
trained on ImageNet and evaluated on the target datasets in a zero-shot manner. APoLLo obtains the best accuracy
among the existing methods suggesting better generalization capabilities. Best accuracies are presented in bold and
improvements over MaPLe (previous SOTA) are shown in blue.

Method Target
ImNetV2 ImNetS ImNetA ImNetR

CLIP 60.83 46.15 47.77 73.96
CoOp 64.20 47.99 49.71 75.21
Co-CoOp 64.07 48.75 50.63 76.18
ProGrad 64.73 47.61 49.39 74.58
KgCoOp 64.10 48.97 50.69 76.70
MaPLe 64.07 49.15 50.90 76.98
APoLLo 64.89 50.17 51.74 78.33
∆APoLLo−MaPLe +0.82 +1.02 +0.84 +1.35

Table 3: Comparison of APoLLo with SOTA
methods on a domain generalization task.
APoLLo demonstrates the best performance across
all datasets. Best accuracies are present in bold and
improvements over MaPLe (previous SOTA) are shown
in blue.

et al., 2023), MaPLe on novel classes. Experimen-
tal results show the superiority of the proposed
approach as it outperforms all existing methods by
a significant margin on zero-shot generalization. It
achieves a relative gain of up to 6.03% over the
most recent baseline. Evaluating on all 10 datasets,
we find an average improvement of 2.69% over
MaPLe on novel categories. As is evident from the
tables none of the existing methods beat pre-trained
CLIP (except MaPLe) underlining the challenges
of achieving satisfactory zero-shot performance
while learning a new task in a few-shot setting.

Our method also enjoys an average improvement
of 2.80% over CLIP on novel classes across all the
datasets. This can be attributed to our unified multi-
modal adapter and prompting technique that en-
ables the model to leverage the mutual association
between visual and language modalities.

Generalization and Performance on Base
Classes: CoCoOp extends CoOp by introducing
image-conditioned prompts thus securing consid-
erable generalizability and obtaining a significant

performance boost over the latter. The downside is
unsatisfactory performance on base classes as it is
only effective on 2 / 10 datasets with a large drop
in average performance. MapLe on the other hand
betters CoCoOp on most of the datasets (Table 1).
Note that CoOp lacks generalizability over novel
classes due to its massive overfitting with the base
classes. In contrast, APoLLo alleviates this limi-
tation and sees a large gain over its predecessors
proving its effectiveness in learning new classes
while maintaining a stable performance on base
classes. Note that, our method outperforms the
current benchmark over all 10 datasets to obtain
few-shot performance improvements up to 5.22%
on base categories and 2.66% overall. This sug-
gests that the gain under a zero-shot setting does
not affect its few-shot performance or the other way
around.

4.3.2 Cross-Dataset Evaluation

Table 2 presents the results on a cross-dataset eval-
uation where the model is trained solely on Ima-
geNet and evaluated on other 9 datasets under the
zero-shot setting. We find APoLLo surpasses all
other methods and observe the best zero-shot im-
provement of 1.69% over MaPLe (SOTA) on the
UCF dataset.

4.3.3 Domain Generalization

Table 3 illustrates domain generalization results
of APoLLo . We use the ImageNet dataset as
the base and test our model on ImageNetV2, Im-
ageNetS, ImageNetA, and ImageNetR where all
of them are from vastly different distributions. We
notice strong generalizability across different do-
mains as APoLLo outperforms all prior baselines
by achieving the best zero-shot improvement of
1.35% over MaPLe on the ImageNetR dataset.



Figure 3: Impact of Prompt Layer, Adapter Layer, and Loss Balancing Factor (α) on the performance of APoLLo .

Intra-modal Adap. Cross-attn. Avg.(Base) Avg.(Novel)
✗ ✗ ✗ 81.49 75.62
✓ ✗ ✗ 82.36 76.45
✓ ✓ ✗ 83.05 77.22
✗ ✓ ✗ 82.30 76.21
✗ ✓ ✓ 82.93 77.07
✓ ✓ ✓ 83.77 78.03

Table 4: Impact of Intra-modal contrastive consis-
tency, Adapter tuning, and Cross-attention strategies
on the performance of APoLLo . Our method gives the
best accuracy values (averaged on 10 datasets for base-
to-novel generalization task) when all three components
are considered.

4.4 Ablations

Impact of Intra-modal Contrastive Consis-
tency, Adapter, and Cross-attention: We assess
the importance of the individual components in
APoLLo and report the average accuracy scores
(on 10 datasets) for the Base-to-Novel Class Gener-
alization task (see Table 4). We show 3 main com-
ponents in APoLLo , i.e., Intra-modal Contrastive
Consistency, Adapter Layers, and the utility of the
Cross-attention strategy. Note that Prompt Learn-
ing is present in all these experiments. Further-
more, input augmentation is present in cases where
intra-modal consistency is taken into account. We
observe the lowest performance with only prompt
learning, shown in (1st row) in Table 4. Upon addi-
tion of intra-modal contrastive consistency, we no-
tice a significant boost (+0.87% in base and +0.83
% in novel) in performance. Therefore, enforcing
the mutual synergy between the same modalities re-
sults in a much better generalization across several
datasets. Intra-modal consistency when paired with
an adapter gives a further improvement (+0.69%
in base and +0.77 % in novel) in performance sug-
gesting that they mutually aid each other in the
generalization task. Finally, when cross attention
is employed in the adapter layers we obtain +0.63
% and +0.86 % relative improvements in the base
and novel classes respectively.

Impact of Prompt Layers: We evaluate the av-
erage performance of APoLLo on 10 datasets for
the base-to-novel generalization with respect to the
prompt depth, i.e., the number of prompt layers (see
Figure 3). Unlike MaPLe (Khattak et al., 2023),
while conducting ablation, we consider the same
depth (num layers) in both vision and language
encoders. The general trend suggests that with
increased prompt depth, the overall performance
improves. Further, unlike MaPLe, we obtain a
slight improvement in accuracy values for the gen-
eralization task when prompt depth is increased
from 9 to 12. The reason for such an observation
can be attributed to the presence of adapter lay-
ers and intra-modal contrastive consistency losses
which negatively impact performance related to in-
creasing prompt depth beyond 9. Therefore, we
maintain the value of prompt depth to 12 in all our
experiments.

Impact of Adapter Layers: To evaluate the im-
portance of adapters we employ a dual setup strat-
egy. First, we study the utility of adapters in in-
dividual modalities (see Appendix Table 8). We
notice that adding a text adapter is more beneficial
than adding only an image adapter. This is consis-
tent with the findings outlined in Gao et al. (2021c).
However, unlike them, we notice an increase in
accuracy values when adapters are used with both
modalities. A key difference in this respect (as
compared to Gao et al. (2021c)) is the presence
of cross-attention which plays an important role
in alignment. This demonstrates the importance
of yet another component of APoLLo , i.e., the
intra-modal contrastive consistency. This under-
lines that dual-modality adapters are not beneficial
in the case of naive few-shot tuning, whereas our
approach (having both cross-attention and intra-
modal consistency) leads to better generalization
with more tunable parameters on both modalities.
Second, we study the role of the number of adapter
layers using 4 different configurations as shown in



Figure 4: Cross-attention visualizations as heatmaps superimposed on the respective original images showing
how objects (in red) in text prompts attend to relevant regions in the images. These maps depict the cross-modal
alignment which improves generalization in downstream tasks.

Figure 3. Note that increasing adapter depth from
1 to 2 leads to an improvement in performance in-
dicating its role in understanding more complex
relationships between the two modalities via cross-
modal alignment. However, the performance drops
beyond the depth of 2 suggesting that overparame-
terization may lead to an overfitting issue under a
few-shot setting.

Impact of Input Augmentations: Augmentation
plays a pivotal role in enforcing consistency across
different branches (Chen et al., 2020; Zbontar et al.,
2021). For text augmentation, we use two strategies
– Easy Data Augmentation (Wei and Zou, 2019) and
LLM-generated augmentation. We show that us-
ing a more descriptive text of the object employing
LLM is more beneficial for learning intra-modal
consistency than using the EDA-based approach
(see Table 9). For image augmentation, we consider
two schemes – standard image augmentations such
as cropping, flipping, solarization, and color inver-
sion, and text-conditioned diffusion-based augmen-
tation. We observe that the latter performs better in
our case (Table 9).

Impact of Loss Balancing Factor: To study the
impact of the Loss Balancing (Weighting) Factor
(α), we report the average accuracy values (on 10
datasets) of Base and Novel classes in the Base-
to-Novel Generalization task. As shown in Figure
3, an increase in the value of α leads to an in-
creased weightage of intra-modal loss compared
to the inter-modal similarity loss – this leads to
an improvement in performance. We achieve op-
timal results for α = 2 which we use in all the
experiments. However, an over-emphasis on the

intra-modal loss leads to poor cross-modal align-
ment affecting the overall performance.

Different LLMs as Text Augmentors Table 5 re-
ports the performances of ApoLLo under different
LLM-based text augmenters.

LLM Text Augmentor Avg.(Base) Avg.(Novel)
VICUNA 83.16 77.29

GPT 83.77 78.03

Table 5: Performance comparison between different
LLM-based text augmenters.

Adapters on Different Image and Text Branches
Our method contains two image and text branches
(where Image Branch 1, Image Branch 2, Text
Branch 1, and Text Branch 2 are in order from left
to right in Figure 2 and represent the augmented im-
age, original image, original text, and augmented
text respectively). Here, we add the following table
which demonstrates the effects of adapter layers
on different image and text branch combinations.
Please note that all these combinations involve both
self- and cross-attentions. We obtain similar accu-
racy values in two cases: (a) Image Branch 2 -
Text Branch 1 combination, and (b) when all four
branches are taken into account. However, we se-
lect case (a) with Image Branch 2 and Text Branch
1 combination because the number of trainable pa-
rameters in this scenario is half that in the latter.
Moreover, Image Branch 2 - Text Branch 1 combi-
nation of adapters gives the highest (mean) accu-
racy values on base and novel classes as shown in
Table 6.



Img. Br. 1 Img. Br. 2 Txt. Br. 1 Txt. Br. 2 Avg.(Base) Avg.(Novel)
✓ ✗ ✓ ✗ 83.28 77.32
✗ ✓ ✗ ✓ 83.19 77.24
✓ ✗ ✗ ✓ 83.16 77.23
✓ ✓ ✓ ✓ 83.77 78.01
✗ ✓ ✓ ✗ 83.77 78.03

Table 6: Impact of adding adapters on different im-
age and text branches.

Incorporating Attentions in Adapter Layers
We add the following ablations in Table 7 w.r.t
the Adapter layers: (a) Adapter layers having no
attention (b) Adapter layers with only self-attention
(c) Adapter layers with self + cross attention. Ex-
perimental results in Table 7) demonstrate optimal
performance is achieved in (c) when cross attention
is employed between the adapters leading to better
multi-modal alignment.

No-attn. Self-attn. Cross-attn. Avg.(Base) Avg.(Novel)
✓ ✗ ✗ 82.54 76.98
✗ ✓ ✗ 83.05 77.22
✗ ✓ ✓ 83.77 78.03

Table 7: Impact of incorporating attention in adapter
layers.

4.5 Qualitative Results

Through Figure 4 and Appendix Figure 6 we visu-
alize cross-attention maps guided by the respective
text prompts. The cross-attention scores between
the image and the associated text token referring to
the object (highlighted in red in each prompt) are
extracted and bilinearly interpolated to match the
image dimension and superimposed on the original
image. These maps depict the alignment between
images and corresponding texts for a variety of
classes, including fish, food, and vehicles. Such
cross-modal awareness leads to better downstream
tasks.

Qualitative Analysis on Multi-object Setting
Examples of the cross-attention visualization on
images with multiple objects are shown in Figure
5. Here, each of the images contains more than
one object category. We generate textual prompts
using the same template ‘A photo of a <CLASS>’
for individual objects as shown in the figure. The
attention maps are activated in the corresponding re-
gions showing fine-grained alignment of APoLLo
under challenging scenarios with objects from mul-
tiple categories. Please note that here we did a
zero-shot transfer on these images with the model

trained on ImageNet using our method.

Figure 5: Cross-attention visualizations as heatmaps
superimposed on the respective original images in a
multi-object setting.

5 Conclusions and Future Work

We present APoLLo , a unified multi-modal
adapter and prompt tuning method to facilitate few-
shot learning without compromising zero-shot gen-
eralizability. To this end, we leverage contrastive-
consistency loss and ensure cross-modal synergy
which results in an improved performance on three
carefully chosen downstream tasks: base-to-novel
generalization, cross-dataset evaluation, and do-
main generalization on 10 benchmark datasets as
observed from the experimental results. Moreover,
the ablation analysis outlines the salient contribu-
tions of each of the sub-modules. Future work can
include assessing the performance of such frame-
works for fine-grained tasks which remains an open
problem. Moreover, the adapter layers may lead
to over-parameterization which can be further opti-
mized in subsequent works.

Acknowledgement: The research has been sup-
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne
Longpre, Jason Wei, Hyung Won Chung, Barret
Zoph, William Fedus, Xinyun Chen, et al. 2023.
Flan-moe: Scaling instruction-finetuned language
models with sparse mixture of experts. arXiv preprint
arXiv:2305.14705.

Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh,
Wei Xiang, and Clinton Fookes. 2023. Diversity is
definitely needed: Improving model-agnostic zero-
shot classification via stable diffusion. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 769–778.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom
Goldstein, Anima Anandkumar, and Chaowei Xiao.
2022. Test-time prompt tuning for zero-shot gener-
alization in vision-language models. arXiv preprint
arXiv:2209.07511.

Khurram Soomro, Amir Roshan Zamir, and Mubarak
Shah. 2012. Ucf101: A dataset of 101 human ac-
tions classes from videos in the wild. arXiv preprint
arXiv:1212.0402.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5227–5237.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Re-
thinking model scaling for convolutional neural net-
works. In International conference on machine learn-
ing, pages 6105–6114. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and
Ruslan Salakhutdinov. 2023. Effective data aug-
mentation with diffusion models. arXiv preprint
arXiv:2302.07944.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. 2019. Learning robust global representations
by penalizing local predictive power. Advances in
Neural Information Processing Systems, 32.

Jinpeng Wang, Pan Zhou, Mike Zheng Shou, and
Shuicheng Yan. 2023a. Position-guided text prompt
for vision-language pre-training. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 23242–23251.

Wenhui Wang, Hangbo Bao, Li Dong, Johan
Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit
Som, et al. 2023b. Image as a foreign language: Beit
pretraining for vision and vision-language tasks. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19175–
19186.

Chen Wei, Huiyu Wang, Wei Shen, and Alan Yuille.
2020. Co2: Consistent contrast for unsuper-
vised visual representation learning. arXiv preprint
arXiv:2010.02217.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. arXiv preprint arXiv:1901.11196.

Chenxi Whitehouse, Monojit Choudhury, and Al-
ham Fikri Aji. 2023. Llm-powered data augmen-
tation for enhanced crosslingual performance. arXiv
preprint arXiv:2305.14288.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude
Oliva, and Antonio Torralba. 2010. Sun database:
Large-scale scene recognition from abbey to zoo. In
2010 IEEE computer society conference on computer
vision and pattern recognition, pages 3485–3492.
IEEE.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei
Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu, and Li-
juan Wang. 2022. Unitab: Unifying text and box
outputs for grounded vision-language modeling. In
Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XXXVI, pages 521–539. Springer.

Hantao Yao, Rui Zhang, and Changsheng Xu. 2023.
Visual-language prompt tuning with knowledge-
guided context optimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6757–6767.

Yuwei Yin, Jean Kaddour, Xiang Zhang, Yixin Nie,
Zhenguang Liu, Lingpeng Kong, and Qi Liu. 2023.
Ttida: Controllable generative data augmentation via
text-to-text and text-to-image models. arXiv preprint
arXiv:2304.08821.



Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, et al. 2021. Florence:
A new foundation model for computer vision. arXiv
preprint arXiv:2111.11432.

Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and
Chen Change Loy. 2022. Open-vocabulary detr with
conditional matching. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part IX, pages
106–122. Springer.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stéphane Deny. 2021. Barlow twins: Self-supervised
learning via redundancy reduction. In International
Conference on Machine Learning, pages 12310–
12320. PMLR.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng
Li. 2021. Tip-adapter: Training-free clip-adapter
for better vision-language modeling. arXiv preprint
arXiv:2111.03930.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022a. Conditional prompt learning
for vision-language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16816–16825.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022b. Learning to prompt for vision-
language models. International Journal of Computer
Vision, 130(9):2337–2348.

Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp
Krähenbühl, and Ishan Misra. 2022c. Detecting
twenty-thousand classes using image-level supervi-
sion. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part IX, pages 350–368. Springer.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and
Hanwang Zhang. 2022. Prompt-aligned gradient for
prompt tuning. arXiv preprint arXiv:2205.14865.



A Appendix

A.1 Details for Radar Chart Figure 1

In this section, we explain the details of the radar
chart shown in Figure 1. Each axis denotes an accu-
racy value, either on base or novel class (specified
accordingly) for the Base-to-Novel Generalization
task. In total, there are 10 datasets for this task and
therefore we plot 10 vertices where each denotes
a ratio relative to our performance. This is calcu-
lated on the basis of normalizing the performance
of either APoLLo or previous SOTA (i.e., MaPLe)
by that of APoLLo , and is therefore kept in the
range of (0, 1]. Here we set the radar chart’s origin
to be 90% and the outermost frame to be 100%.
This essentially separates the adjacent frames for
better readability. The accuracy values annotated
against the vertices are the absolute values (without
normalization) obtained using both methods.

A.2 Intra-modal Contrastive Consistency
Loss

Our intra-modal contrastive consistency loss differs
from a conventional contrastive loss in the aspect
that it contains consistency terms that prevent class-
collision problem (Wei et al., 2020). Therefore, it
has two terms - a contrastive loss and a consistency
loss.

A.2.1 Contrastive Loss
A typical contrastive loss function in the form of
an InfoNCE loss is given as:

LNCE = − log
exp(q · p/τ)

exp(q · p/τ) +
∑
nk

exp(q · nk/τ)

(8)
where p represents the positive key, q represents

the query, and nk represents the negative key in a
minibatch.

A.2.2 Consistency Loss
Taking inspiration from semi-supervised learning,
consistency loss is proposed by Wei et al. (2020) to
strengthen the consistency between the similarities
of the query data and the positive data.

The similarity between the query q and the neg-
ative keys nk can be represented in the form of a
probability Q(i) which is denoted as:

Q(i) =
exp(q · ni/τcon)∑

nk

exp(q · nk/τcon)
(9)

The similarity between the positive p and the neg-
ative keys ni(i ∈ {1, 2, . . . ,K}) in the form of a
probability P(i) is written as:

P(i) =
exp(p · ni/τcon)∑

nk

exp(p · nk/τcon)
(10)

Consistency between the probability distributions
P and Q is imposed in the form of a Symmetric
KL Divergence Loss.

Lconsistency =
1

2
(KL(P,Q)+KL(Q,P)) (11)

The predicted similarity distribution of the positive
key to each crop of the other data, P , acts as a
soft pseudo label to that of the query, Q. The total
loss is a weighted combination of contrastive and
consistency losses given as:

LCO2 = LNCE + βLconsistency (12)

where β is the balancing coefficient. We follow the
recommended values of τcon and β as mentioned in
Wei et al. (2020) since they have shown to perform
the best in our experiments.

A.3 Inter-modal Similarity Maximization
During training we consider a mini-batch (N ) con-
taining image-captions pairs, {Ij , Tj}Nj=1, where
Ij and Tj represent jth image and text pair, respec-
tively. After passing these image-text pairs through
respective encoders (and adapter layers) we obtain
the normalized image embedding as zIj ∈ Rd and
text embedding as zTj ∈ Rd. These representa-
tions are also aware of each other (modality-wise).
They are subsequently used to compute this inter-
modality Image-Text Contrastive (ITC) loss given
as LIT

sim.

LIT
sim = − 1

2N

N∑
j=1

log

 exp
(
⟨zIj , zTj ⟩/τ

)
∑N

l=1 exp
(
⟨zIj , zTl ⟩/τ

)


︸ ︷︷ ︸
Contrasting images with the texts

− 1

2N

N∑
l=1

log

 exp
(
⟨zIl , zTl ⟩/τ

)∑N
j=1 exp

(
⟨zIj , zTl ⟩/τ

)


︸ ︷︷ ︸
Contrasting texts with the images

(13)

where ⟨·, ·⟩ denotes inner product, and τ is the
temperature parameter.



Figure 6: Cross-attention visualizations as heatmaps superimposed on the respective original images showing
how objects (in red) in text prompts attend to relevant regions in the images (Extension of Figure 4).

A.4 Generative Data Augmentation

Generative data augmentation is an emerging field
where generative models are used to generate aug-
mented (perturbed) samples of the data (Hu et al.,
2023; Trabucco et al., 2023; Azizi et al., 2023;
Shipard et al., 2023; Yin et al., 2023; Whitehouse
et al., 2023). It is prominent in the field of Natural
Language Processing where Large Language Mod-
els (LLMs) are used as data augmenters (White-
house et al., 2023; Yin et al., 2023). Given a
prompt, LLMs provide several descriptive versions
of it which can potentially be used to increase
the size of the dataset, especially in a low-dataset
regime. Further, text-to-image generation and dif-
fusion models (Yin et al., 2023; Trabucco et al.,
2023; Azizi et al., 2023; Shipard et al., 2023) are
also used for effective data augmentation strategies.
However, these types of augmentation schemes
have not been explored together previously in a
multi-modal (vision-language) context. To the best
of our knowledge, ours is the first to leverage the
capabilities of LLMs and text-conditioned image
generation (diffusion) models together in a unified
framework for effective augmentation in a multi-
modal learning context.

A.5 Implementation Details

Following MaPLe (Khattak et al., 2023), we uti-
lize the pre-trained ViT-B/16 CLIP model as our
vision-language backbone. In all experiments, we
fine-tune the model employing a few-shot train-
ing strategy with 16 samples randomly sampled
from each class for all known classes. We train
our model on a single GPU for 10 epochs using an

SGD optimizer with a base learning rate of 0.004.
We follow MaPLe for setting the values of prompt
depths and lengths in our experiments.

A.6 Ablation Tables
A.6.1 Impact of Adapter Layers
The impact of adapter layers is shown in Table 8.

Image Text Average
Base Novel

✓ ✗ 83.16 77.31
✗ ✓ 83.41 77.48
✓ ✓ 83.77 78.03

Table 8: Impact of using different adapters on the
performance of APoLLo . Our method gives the best
accuracy values when both image and language adapters
are used.

A.6.2 Impact of Input Augmentations
Impact of input augmentation is shown in Table 9.

Modality Augmentation Average
Base Novel

Image Standard 83.28 77.45
Diffusion 83.77 78.03

Text EDA 82.81 77.04
LLM 83.77 78.03

Table 9: Impact of different input augmentation
strategies on the performance of APoLLo . Our
method gives the best accuracy values when LLM is
used for text augmentation and the text-condition image
generation model is used for image augmentation.


