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Abstract
Interest in heterogeneous treatment effects has substantially increased in recent years. Treatment het-
erogeneity describes the case when individuals are differentially affected by an intervention or exposure
according to their characteristics, and accurate estimation of these differential effects can support cost-
effectiveness evaluations of interventions and inform policy decisions about which individuals or groups
will benefit most from an intervention. However, the functional form of heterogeneous treatment effects
can vary and is typically unknown to researchers. For instance, the effect of math tutoring on students’
test scores might vary across students’ prior math scores as a negative quadratic function, meaning that
students who benefit most do not have particularly high or low prior scores. Such “Goldilocks” effects and
other complex treatment functions have motivated the use of nonparametric regression techniques which
make few or no assumptions about the true data generating model. While previous studies have proposed
and compared the performance of different nonparametric methods across different datasets, few studies
have explicitly explored how the complexity of the functional form of the heterogeneous treatment effects
impacts the performance of nonparametric regression tree methods. We initially sought out to explore
how the monotonicity of the treatment effect function impacted performance, but present findings that
pertain to the overall complexity of the treatment effect function. In these proceedings, we 1) explain why
complexity of the treatment effect function is a relevant and important consideration and 2) provide results
from a preliminary simulation study which examines how variation in the functional form of treatment
effects impacts the accuracy of popular nonparametric regression tree approaches in the context of clustered
data with a non-random treatment assignment. We conclude with a discussion of the limitations of the
study and possible avenues for future research. Our results suggest that functional complexity, rather than
monotonicity, plays a more critical role in the accuracy of nonparametric treatment effect estimators.
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1. Introduction
The fields of social and behavioral sciences are in the midst of a heterogeneity revolution. Initiated by
a combination of factors including the replicability crisis, disproportionate attention towards main
effects, and the lack of attention towards generalizability, this shift in the field of behavioral sciences
has motivated research in recent years to increasingly acknowledge and discuss heterogeneous
treatment effects (Bryan et al., 2021; Cikara et al., 2022; Hallsworth, 2023; Szaszi et al., 2022; Walton
et al., 2023; Yeager et al., 2022). Beyond the revolution, heterogeneous treatment effects are also
important to consider when evaluating the cost-effectiveness of interventions or when making policy
decisions about which units should receive an intervention.
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Heterogeneous treatment effects can be represented as a function of the observed characteristics
of individuals and groups in the sample, but this functional form can take a variety of shapes,
and the functional form is usually unknown to researchers. In order to best identify who will
benefit most from an intervention, and under what conditions, accurate estimation of this functional
form is necessary. Previous research has shown that these functional forms can be accurately
estimated using nonparametric and machine learning-based methods, but there has been little
attention given to how different approaches’ results might vary depending on the functional form of
the heterogeneous treatment effect. In these proceedings, we attempt to shed light on this area of
research by demonstrating the situations where different nonparametric methods return similar or
different results depending on the functional form of the heterogeneous treatment effect. We do this
by conducting a simulation study using semi-synthetic data generation. to generate clustered data
with a non-random treatment assignment.

1.1 Potential Outcomes Framework in Clustered Data
We used the Neyman-Rubin potential outcomes framework for causal inference in this study (Rubin,
1974; Splawa-Neyman et al., 1923). We use the extended notation of potential outcomes for the
multilevel structure where units are nested within clusters (Hong & Raudenbush, 2006; Lyu et al.,
2023). Let us assume that there are N individuals nested within M clusters. In this scenario, let Yij(1)
denote the potential outcome if individual i within cluster j received treatment (Tij = 1) and Yij(0)
denote the potential outcome if individual i in cluster j did not receive treatment (Tij = 0), where
i = 1, ..., nj in cluster j = 1, ..., M and

∑M
j=1 nj = N. Under this framework, the observed outcome can

be expressed as

Yij = TijYij(1) + (1 – Tij)Yij(0), (1)

under the stable unit treatment value assumption, or SUTVA (Rubin, 1986). SUTVA states that the
potential outcomes of individuals are not affected by the treatment assignments of other individuals,
and that there are no hidden versions of the treatment. Hong and Raudenbush, and Imbens and
Rubin, provide more detail about SUTVA in multilevel settings (Hong & Raudenbush, 2006; Hong
& Raudenbush, 2013; Imbens & Rubin, 2015). The two potential outcomes Yij(1) and Yij(0) can
never be observed at the same time for the same individual, meaning that individual treatment effects
cannot be calculated outright. However, under certain key assumptions we can express the average
treatment effect τ as

τ = E[Yij(1) – Yij(0)]. (2)

The first assumption is that potential outcomes are independent of treatment assignment Tij. This
can be achieved via random treatment assignment or by establishing unconfoundedness if treatment
assignment was non-random. Often referred to as (conditional) ignorability (Rosenbaum & Rubin,
1983; Rubin, 1978), this assumption states that potential outcomes are independent of treatment
assignment, conditional on individual and cluster covariates, Xij and Zj, respectively:

Unconfoundedness: Yij(1), Yij(0) ⊥ Tij | Xij,Zj (3)

The second assumption necessary for valid causal inference is that the probability that an individual is
assigned to either treatment condition, given their underlying characteristics or covariates, is strictly
between 0 and 1:

Positivity: 0 < e(Xij,Zj) = Pr(Tij = 1 |Xij,Zj) < 1, (4)

where e(Xij,Zj) is the propensity score (Rosenbaum & Rubin, 1983).
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1.2 Heterogeneous Treatment Effects and CATE Estimation
Conditional average treatment effects, or CATEs, are a type of treatment effect that can be estimated
to quantify treatment heterogeneity (Imbens & Rubin, 2015). If we believe that a treatment effect
may vary across the observed individual-level (Xij) and cluster-level (Zj) covariates, then the CATEs
can be estimated as

τij = E[Yij(1) – Yij(0) | Xij,Zj]. (5)

If we could estimate the treatment effect for each individual i within cluster j, conditional upon the
individual-level and cluster-level covariates we would have a vector of individual treatment effects
(ITEs), denoted as τij, conditional upon each individual’s characteristics. These ITEs can be analyzed
and visually inspected to determine whether there are heterogeneous treatment effects.

1.3 Motivating Problem
In a previous study by Kim, Liao, and Loh (Kim et al., 2024), the authors estimated the ITEs for
students in the 2015 Korea TIMSS data conditional upon a variety of individual-level and cluster-level
covariates. Notably, they found evidence of a cross-level interaction between private tutoring and
school resource shortages for math instruction (see Figure 1). The authors also found evidence of
a second cross-level interaction between private tutoring and the school’s emphasis on academic
success (see Figure 2).
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Figure 1. CATE estimates of the impact of private tutoring on students’ TIMSS mathematics scores with respect to school-level
resource shortage.

Two important observations from these findings are that 1) the functional form of the heteroge-
neous treatment effect varies (in Figure 1, the form seems to be quadratic, while in Figure 2 the form
seems to be linear), and 2) depending on the method you used (CF: Causal Forest; BART: Bayesian
Additive Regression Trees; X-RF: X-Learner with Random Forests; X-BART: X-Learner with
BART), the amount of heterogeneity you would ascribe to these interactions would vary. These ob-
servations are the motivation for the current study. Specifically, we wanted to explore how variation
in the functional form of treatment effects impacts the accuracy of popular nonparametric regression
tree approaches in the context of clustered data with a non-random treatment assignment. In the
following sections, we provide a brief overview of how CATEs can be estimated with nonparametric
regression and detail the results from a preliminary simulation study.
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Figure 2. CATE estimates of the impact of private tutoring on students’ TIMSS mathematics scores with respect to school-level
emphasis on academic success.

2. CATE Estimation via Nonparametric Regression
Without pre-existing knowledge of subgroups and the functional form of heterogeneous treatment
effects, CATEs can become difficult to estimate, especially in data with many covariates where
interactions between covariates and treatment are potentially numerous and complex.

Nonparametric regression methods, specifically nonparametric regression tree-based methods,
are a useful approach for estimating CATEs because they are "agnostic" to the functional form of
heterogeneous treatment effects and they can consider a large number of covariates as potential
characteristics upon which treatment may vary. In general, nonparametric regression tree-based
methods start with the supposition that the observed outcomes can be defined as the output from
some “unknown” function f (·):

Yij = f (Xij,Zj, Tij) + ϵij, (6)

where Xij is a matrix of individual-level covariates, Zj is a matrix of cluster-level covariates, Tij is an
N × 1 column vector of the binary treatment assignment, and ϵij is some error term with E[ϵij] = 0
and no distributional assumptions. Nonparametric regression tree-based methods vary from each
other in a variety of ways, but in general, their distinguishing characteristics can be organized into
four broad domains:

1. The components included in the functional definition of the outcome.
2. CATE estimation as "counterfactual prediction" vs. "effect estimation"
3. The type and targets of regularization.
4. The statistical framework (Bayesian vs. Frequentist)

The first domain refers to variations of the expression in equation 4. For instance, some methods
may include cluster identification or ID as an additional input in f (·) resulting in

Yij = f (Xij,Zj, Tij, j) + ϵij, (7)

where j now operates in a manner akin to specifying cluster ID as a fixed effect in a parametric
regression model.
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The second domain refers broadly to the "learner" or approach taken to estimate CATEs (Caron
et al., 2022a; Künzel et al., 2019). Tran and colleagues coined the terms "counterfactual prediction"
and "effect estimation" as ways to refer to the most common approaches for estimating CATEs
with nonparametric methods (Tran et al., 2024). Counterfactual prediction refers to approaches
that estimate two models, f1(Xij,Zj, Tij = 1) and f0(Xij,Zj, Tij = 0), for treated and control units
respectively. These fitted models can then be used to predict the unobserved potential outcome for
each unit. Taking the difference between the observed and predicted potential outcomes gives us
an estimate of the ITE conditioned upon the individual-level and cluster-level covariates. Examples
of methods that use counterfactual prediction are BART as a T-learner (Hill, 2011) and stan4bart
(S4BART) (Dorie et al., 2022).

Effect estimation refers to approaches that directly estimate the CATEs by re-specifying the
formula in equation 6 to take the general form of

Yij = f (Xij,Zj, Tij) + ϵij = µ(Xij,Zj) + τ(Xij,Zj) × Tij + ϵij, (8)

where µ(Xij,Zj) is a function that gives the prognostic outcome, and τ(Xij,Zj) is a function that
gives the individual’s CATE. The function τ(Xij,Zj) can be estimated using nonparametric regression
tree-based approaches, such as BART. Examples of methods that use effect estimation are Bayesian
Causal Forest (BCF) (Hahn et al., 2020) and CF (Wager & Athey, 2018).

The third domain refers to which parts of the estimation algorithm or function include regular-
ization and what type of regularization procedure is utilized. In BART, overfitting is mitigated by
nature of the approach being an “ensemble-method” where many “weak-learners” are combined to
provide a full picture of the data. BART is able to combine many small regression trees, and these
trees are kept shallow, meaning they have a few numbers of cut/decision points, via a Bayesian prior.
In this situation, the target of regularization are the regression trees, and the type of regularization is
a Bayesian shrinkage prior.

The final domain, the statistical framework chosen, is self-explanatory, but also has implications
for the third domain, as working within a certain framework gives access to different types of
regularization procedures. Namely, that working in a Bayesian framework allows for the use of
Bayesian shrinkage priors for regularization. In the current study, we identified methods that were
both popular and varied across these four domains in meaningful ways. Namely, we consider CF
(Wager & Athey, 2018), BCF (Hahn et al., 2020), Sparse Bayesian Causal Forest (SBCF) (Caron
et al., 2022b), and S4BART (Dorie et al., 2022). The differences between these selected methods
are summarized in Table 1 and Table 2. For further details about each of these approaches, see their
respective references.

Table 1. Selected methods’ estimation and regularization approaches

Method CATE Estimation Regularization Types Regularization Targets

BCF-FE Effect Estimation BART prior CATE, prognostic outcome, trees

SBCF-FE Effect Estimation BART prior & Dirichlet Prior CATE, prognostic outcome, splitting, trees

CF-FE Effect Estimation Adaptive kernel weighting Nuisance functions, CATE

S4BART Counterfactual Prediction BART prior Trees

3. Simulation: Semi-Synthetic TIMSS data
We conducted a simulation study to answer the following questions: (1) for what functional forms
of heterogeneous treatment effects will different nonparametric methods agree and (2) for what
forms of heterogeneous treatment effects will different nonparametric methods disagree? The data
contexts in which we are interested are observational studies with clustered data, so we wanted to
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Table 2. Selected methods’ outcome specifications

Method Outcome Specification

BCF-FE Yij = µ(Xij,Zj, j) + τ(Xij,Zj, j) × Tij + ϵij

SBCF-FE Yij = µ(Xij,Zj, j) + τ(Xij,Zj, j) × Tij + ϵij

CF-FE Yij = (Tij – π(Xij,Zj, j))τ(Xij,Zj, j) – m(Xij,Zj, j) + ϵij

S4BART Yij = f (Xij,Zj, Tij) + U0j + ϵij

use a data generating procedure that would mimic these situations. To accomplish this, we used
a semi-synthetic data generation process (Buhrman et al., 2024; Hill, 2011). Our semi-synthetic
approach differs from previous approaches in that we generated covariates based on the covariance
structure of real data rather than randomize or sample from real data. Specifically, we used covariates
from the 2019 United States TIMSS data to obtain the covariance structure used in our simulation.
All analyses were performed using R Statistical Software (R Core Team, 2025). Implementation of
BCF and SBCF was performed using the SparseBCF package (Caron, 2020), implementation of CF
was performed using the grf package (Tibshirani et al., 2024), and implementation of S4BART was
performed using the stan4bart package (Dorie, 2024).

3.1 Data and Variables
The 2019 United States TIMSS data includes several context variables for both students and schools.
Student and family-related covariates we used to generate a covariance structure for the data genera-
tion process include student gender, household socioeconomic status, student’s confidence in math,
student’s fondness for math, student’s value of math, and the number of absences a student had. School-
or cluster-level covariates include the percentage of male students, the average SES of students, the
school’s emphasis on academic success, the school’s strictness in disciplinary policies, and the degree to
which mathematics instruction was affected by school resource shortage. We school-mean centered
student-level covariates prior to obtaining the covariance structures for student- and school-level
covariates. Using these covariance structures, we generated clustered data with random intercepts.

We generated data for 30 clusters with cluster size ranging from 22 to 38 with an average cluster
size of 30. The unconditional interclass correlation (ICC) was 0.15. Our goal was to generate
data for the effect of some non-random individual-level treatment assignment on student’s math
performance, where this treatment effect followed different functional forms according to some
other covariate. We generated an individual-level non-random treatment assignment, which we
framed as student participation in extra-curricular math activities like Math Olympiad, based on the
following propensity score function

πij = logit(–0.25 – 0.25Absencesij + 0.25SESij + 0.5Confidenceij + 0.25Emphasisj – 0.75Shortagej + Wj), (9)

where πij is the probability that student i in school j participates in an extra-curricular math activity,
Wj ∼ N(0, 0.01) and the binary treatment indicator is Tij ∼ Bernoulli(πij).

We also generated heterogeneous treatment effects based on three different functional forms:
(1) linear, (2) quadratic, and (3) logistic. Each form can be thought of as a cross-level interaction
between a school-level covariate and the treatment indicator. These can be expressed as

τij(linear) =
Shortagej + 2

8
, (10)

τij(quadratic) =
–Shortage2

j + 5

10
, (11)
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τij(logistic) =
0.5

1 + e–Shortagej/0.25 . (12)

We generated 1000 iterations of data under each of these functional form conditions and estimated the
ITEs conditional on covariates for each iteration using each of the four methods previously described.
This left us with the true ITEs conditional on covariates and the estimated ITEs conditional on
covariates for 1000 iterations of each functional form specification. As an aside, we estimated
propensity scores the same way for every method, using BART with random intercepts.

To quantify the performance of each method, we used the Precision of Estimation of Hetero-
geneous Effects (PEHE) (Hill, 2011) to evaluate and compare methods’ performances. The PEHE
is a measure of both bias and variance of the estimated ITEs conditioned on covariates. However,
because our simulated data are observational, it is possible for there to be regions of non-overlap for
certain covariates. Estimating CATE on regions of non-overlap produces biased estimates, so we use
PEHE on treated, or PEHET, as the evaluation criteria. PEHET can be expressed as

PEHET =

√√√√ 1
NT

NT∑
i

(τi – τ̂i)2, (13)

where NT is the number of treated units, τi is the true ITE conditional on covariates for individual i,
and τ̂i is the estimated ITE conditional on covariates for individual i.

3.2 Results
We find that stan4bart consistently recovers the true heterogeneous treatment effect with greater
accuracy and less variance compared to the other three methods (see Table 3 and Figure 3). We
also observe that all the methods were most accurate when the heterogeneous treatment effect
took a linear form, and least accurate when the treatment effect took a logistic form (see Figure 3).
This was especially the case for Causal Forest, for which we observe the distribution of PEHETs
under the logistic form condition is highly separated from the distributions of PEHETs under the
linear and quadratic form conditions. Recalling our initial interest in determining whether the
monotonicity of the functional form mattered for heterogeneous treatment estimation, it initially
looks like monotonicity does matter, until you consider the complexity of the functional form. If
you were to only compare linear and quadratic forms, you would come to the conclusion that it
is more difficult for nonparametric regression tree methods to estimate non-monotonic functional
forms. However, when you consider the logistic form, which is monotonic, we can see that it is
functional complexity, not monotonicity, driving the pattern observed in the simulation results.

Table 3. PEHET statistics for each method and functional form condition across 1000 iterations

Linear Form Quadratic Form Logistic Form

Mean (SD) Median [Min, Max] Mean (SD) Median [Min, Max] Mean (SD) Median [Min, Max]

BCF-FE 0.147 (0.040) 0.140 [0.076, 0.313] 0.184 (0.044) 0.177 [0.082, 0.423] 0.205 (0.040) 0.203 [0.096, 0.364]

SBCF-FE 0.165 (0.044) 0.161 [0.051, 0.366] 0.202 (0.047) 0.198 [0.057, 0.410] 0.226 (0.054) 0.232 [0.063, 0.396]

CF-FE 0.158 (0.031) 0.152 [0.086, 0.317] 0.175 (0.046) 0.169 [0.084, 0.413] 0.238 (0.043) 0.242 [0.084, 0.389]

S4BART 0.135 (0.040) 0.130 [0.051, 0.313] 0.156 (0.042) 0.149 [0.066, 0.360] 0.153 (0.045) 0.150 [0.051, 0.298]

4. Discussion
Estimation of heterogeneous treatment effects has become an increasingly important topic of research,
especially in clustered data where the contexts of membership in different clusters may change the
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Figure 3. Distributions of PEHETs by method for each functional form condition

degree to which individuals benefit from an intervention. Nonparametric regression trees are a
popular technique for estimating heterogeneous treatment effects because of their flexibility and
usability. However, little research has paid attention to how the functional form of the treatment
effect affects the performance of specific nonparametric methods and the family of methods overall.
In a preliminary study, we initially hypothesized that monotonicity of the functional form may
impact the accuracy and variance of ITE estimation, but found evidence that functional complexity
was the driving factor for differences across all the methods we investigated. This chapter details
these findings and outlines the key differences between the methods we investigated.

The goal of this work is to find conditions in which the results of different methods are consistent
and to compare these to conditions where the results from different methods are inconsistent. By
finding these conditions, we can begin to identify the characteristics of methods which might
be most relevant for certain conditions. We can apply these findings to practice in the form of
method selection when the objective is to estimate heterogeneous treatment effects in plausible
scenarios, including observational data with uneven treatment allocation, data with multiple sources
of treatment heterogeneity, and clustered data with small or varying cluster sizes.

For the findings presented in this chapter, we suspect that the differences in the accuracy and
variance of ITE estimation can be explained with the four domains we outlined in section 2. Specifi-
cally, we hypothesize that the types and targets of regularization and the way that CATE is estimated
play the largest role in observed differences depending on the condition of functional form. Based
on the results of this study, we recommend the use of stan4bart for general purpose estimation
of heterogeneous treatment effects from multilevel data when treatment is assigned at the lowest
level. However, stan4bart makes a distributional assumption to model the variance between clusters,
meaning that users should still perform diagnostic checks on the parametric component of the model.
Future work in this area could consider the four domains we have described and should consider
functional forms that include multiple covariates. Furthermore, future research should continue to
explore how nonparametric regression tree methods can be best applied in the context of multilevel
data.
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