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Abstract
Adapters have been positioned as a parameter-
efficient fine-tuning (PEFT) approach. How-
ever, adapters have not been sufficiently analyzed
to understand if PEFT translates to benefits in
training/deployment efficiency and maintainabil-
ity/extensibility. Through extensive experiments
on many adapters, tasks, and languages in su-
pervised and cross-lingual zero-shot settings, we
clearly show that for Natural Language Under-
standing (NLU) tasks, the parameter efficiency
in adapters does not translate to efficiency gains
compared to full fine-tuning of models. More pre-
cisely, adapters are relatively expensive to train
and have slightly higher deployment latency. Fur-
thermore, the maintainability/extensibility ben-
efits of adapters can be achieved with simpler
approaches like multi-task training via full fine-
tuning, which also provide relatively faster train-
ing times. We, therefore, recommend that for
moderately sized models for NLU tasks, practi-
tioners should rely on full fine-tuning or multi-
task training rather than using adapters. Our
code is available at https://github.com/
AI4Bharat/adapter-efficiency.

1. Introduction
Pretraining followed by fine-tuning (Devlin et al., 2019;
Liu et al., 2019b) is the most commonly used paradigm in
NLP, but as pre-trained models grow in size, fine-tuning the
entire model (full fine-tuning) becomes costly. Maintaining
a copy of the model for each task is costly, and parameter
efficient fine-tuning (PEFT) with adapters (Houlsby et al.,
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Figure 1: A comparison of 10 different adapters with simpler
baselines like full fine-tuning (FT) and multi-task learning
(MTL). In the top figure the y-axis shows the zero-shot
performance averaged across all tasks and all languages.
In the bottom figure, the y-axis shows the En performance
averaged across all tasks. The abbreviations used are-‘H’
- Houlsby, ‘B’ - Bapna, ‘HP’ - Houlsby Parallel1, ‘BP’-
Bapna Parallel, ‘PT’- Prefix Tuning, ‘L’- LoRA, ‘C’ - Com-
pacter, ‘AD’- Adapter Drop, ‘AF’ - Adapter Fusion, ‘ME’ -
MADX-en, ‘MH’ - MADX-hi, ‘FT’ - Fine-tuning, ‘MTL’-
Multi-task-learning.

2019) has become an active area of research that focuses
on fine-tuning a minimal number of parameters while still
achieving comparable performance as of full fine-tuning.

Efficiency in the adapters parameter alone is not sufficient
to assess overall efficiency. Several other factors, including
the number of parameters and convergence steps, signifi-
cantly impact latency and compute efficiency. Often, the
compute efficiency of adapters in handling multiple tasks is
overlooked, emphasizing the importance of addressing the
following question: What are adapters really efficient at?

We recommend that to answer this question one should look

1HP is overlapped by PT in this figure.
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beyond the number of parameters and consider other indi-
cators of efficiency, such as, (i) training time and compute
(FLOs 3.4), (ii) deployability via inference latency (iii) and
maintainability. Existing studies have looked at one or more
of the above metrics but a thorough study comparing mul-
tiple popular adapters on different tasks across languages,
especially in a cross-lingual setting, is missing. Compar-
ing against multi-task learning (MTL)(Liu et al., 2019a) is
crucial as it serves as a simpler baseline, yet most adapter
works lack this comparison, hindering a comprehensive
understanding of adapter utility.

In this work, we try to build a clearer picture by experiment-
ing with 10 different adapters and 6 Natural Language Un-
derstanding (NLU) tasks spanning 11 Indian languages. Our
focus is on zero-shot transfer, fine-tuning models solely on
English training data. Our work also lays down a framework
for evaluating adapters along multiple dimensions. Our
key finding (Figure 1) is that while adapters are parameter-
efficient, they are not as good as full fine-tuning and multi-
task learning, where the latter two have better training and
deployment efficiency.

2. Related Work
Parameter Efficient Fine-Tuning (PEFT): Zoph et al.
(2016) pioneered PEFT, showcasing its benefits in reduc-
ing memory requirements and preventing overfitting. This
led to the development of Adapters (Houlsby et al., 2019;
Bapna & Firat, 2019; Hu et al., 2022), Learnable prompts
(Li & Liang, 2021), compacting methods focused on re-
ducing the size of adapters such as compacters (Mahabadi
et al., 2021) and IA3 (Liu et al., 2022) and transfer-focused
approaches like AdapterFusion (Pfeiffer et al., 2021), and
MAD-X (Pfeiffer et al., 2020b). However, These works pri-
oritize parameter efficiency while overlooking training time,
deployability, maintainability, and cross-lingual transfer ef-
fectiveness. AdapterDrop (Rücklé et al., 2021) proposes
to reduce adapter training time but ignores other aforemen-
tioned aspects, a gap which we fill in this paper. Chen et al.
(2022) demonstrated the instability of PEFT across weight
initialization, training time, and training data order, while
comparing its performance to fine-tuning on various dataset
sizes. In addition to focusing on the observation that fine-
tuning cannot be fully replaced by PEFT, our study has also
demonstrated that multi-task learning can be an alternative
to the PEFT method.

Multilingual Pre-trained Models: The introduction of
BERT (Devlin et al., 2019) revolutionized downstream NLP
tasks, followed by multilingual models like XLM-R (Con-
neau et al., 2020), and language group specific models In-
dicBERT (Doddapaneni et al., 2022; Kakwani et al., 2020),
IndoBERT (Koto et al., 2020), and AfriBerta (Ogueji et al.,
2021), etc.

Multi-Task Learning (MTL): MTL focuses on fully fine-
tuning one model for multiple tasks (Caruana, 1993) but
has only recently seen significant adoption (Wei et al., 2021;
Muennighoff et al., 2022). MTL benefits from cross-task
transfer, which we also analyzed in this paper (§4). A gen-
eral overview of MTL in deep learning can be found in
Ruder (2017) and Zhang et al. (2022).

3. Experimental Setup
We now describe the fine-tuning approaches, tasks, datasets,
languages, pre-trained models, and training settings.

3.1. Fine-Tuning Methodologies

We experimented with the following approaches Full Fine-
Tuning (Devlin et al., 2019), Multi-Task-Learning(MTL)
(Liu et al., 2019a) which is similar to full fine-tuning, except
that it uses a shared encoder for all tasks, with each task
having a task-specific “head”, Houlsby Adapter (Houlsby
et al., 2019), Bapna Adapter (Bapna & Firat, 2019), LoRA
(Hu et al., 2022), Compacter (Mahabadi et al., 2021), Prefix-
Tuning (Li & Liang, 2021), MAD-X (Pfeiffer et al., 2020b),
AdapterFusion (Pfeiffer et al., 2021), AdapterDrop (Rücklé
et al., 2021). While LoRA and prefix-tuning are not origi-
nally considered as adapters, He et al. (2022) have shown
that they can be reformulated as adapters and thus all PEFT
approaches we study in this paper are essentially adapters.

3.2. Tasks, Datasets and Languages

We focus on 6 cross-lingual natural language understanding
tasks from the IndicXTREME benchmark (Doddapaneni
et al., 2022) and XTREME benchmark (Hu et al., 2020b).
We give an overview in Appendix Table 5, our training
and validation are conducted on English data, while eval-
uation includes English test sets (supervised/in-language)
and Indian language test sets in IndicXTREME (zero-shot).
For specific information on tasks and languages, please see
Appendix A.1.

3.3. Pre-Trained Models

We mainly experiment with IndicBERT v2 (Doddapaneni
et al., 2022). We also perform ablations with the BASE and
LARGE versions of XLM-R (Conneau et al., 2020) on the
chosen subset of languages.

3.4. Training Details

We have reported FLOs, which represent the total number
of floating-point operations, to assess the computational
efficiency when comparing different methods. For training
details please refer to the Appendix A.2
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Table 1: Comparison on in-language (train and test on English) performance of FT and adapters for IndicBERT. We report
F1 scores for CoNLL-2003 & SQuAD, and accuracy for the other tasks. The abbreviation "AMR" refers to the Amazon
Multilingual Review Dataset. The last three columns show the percent increase in FLOs, inference time, and the number of
fine-tuned parameters compared to full fine-tuning respectively. Here, "best method # " reports the best performing row for
the respective task and "best adapter # " reports the best performing adapter for the respective task.

# Method AMR XNLI COPA PAWS CoNLL
2003 SQuAD Avg. % ↑

FLOs

% ↑
Inference

time

% ↑
#Param.

1 Houlsby 94.0 82.4 61.5 92.3 91.5 81.7 83.9 311.7 44.0 0.9
2 Bapna 93.3 81.9 59.9 91.4 91.0 80.9 83.1 264.7 28.3 0.5
3 Houlsby Parallel 93.1 82.5 61.4 90.6 92.2 82.0 83.6 185.1 41.5 0.9
4 Bapna Parallel 93.1 82.7 60.5 91.3 91.1 81.4 83.4 199.9 21.2 0.5
5 Prefix Tuning 93.8 82.6 61.1 92.2 91.5 81.0 83.7 186.5 33.8 3.8
6 LoRA 93.4 80.3 57.4 90.2 90.4 79.5 81.8 226.2 23.1 0.3
7 Compacter 92.8 74.8 50.8 72.7 89.2 73.0 75.5 371.4 100.5 0.2
8 Adapter Drop 92.7 80.6 52.3 75.0 90.4 70.7 77.0 97.6 27.5 0.7
9 Adapter Fusion 93.2 79.9 59.9 92.2 92.0 81.9 83.2 492.5 178.1 7.9
10 MAD-X - en 93.6 82.1 56.9 91.0 91.5 81.1 82.7 1042.5 56.6 1.1
11 MAD-X - hi 93.0 79.3 58.4 90.6 91.1 79.4 82.0 1025.7 56.6 1.1

Best Adapter # 1 4 1 1 3 3 1 8 2 7

12 FT 93.8 83.0 62.3 93.0 92.8 82.1 84.5 - - -
13 MTL 93.5 80.9 61.4 91.5 91.0 82.1 83.4 20.2 0.0 0.0

Best method # 1 12 12 12 12 12, 13 12 12 12,13 12,13

4. Results
Tables 1 and 2 respectively show the in-language (train and
test on English) and cross-lingual (train on English and
test on Indic) results averaged across Indic languages. See
Appendix A.3 for additional results.

Adapters are parameter-efficient, but no single adapter
is best: It is clear that there is no single adapter that per-
forms best in all the tasks. This observation holds true
in both in-language and cross-lingual settings, where one
method performs best in the in-language setting but might
not be the best in the cross-lingual setting. Compacter and
LORA consistently give the lowest performance, possibly
due to the small number of parameters they fine-tune (they
add only 0.2% - 0.3% tunable parameters to the model). On
the other hand, Adapter Fusion, Prefix Tuning, and MADX
add between 1.1% to 7.9% tunable parameters but still per-
form poorly as compared to the Houlsby adapter, which
only adds 0.9% parameters. In general, we recommend the
Houlsby adapter as it tends to perform well across multiple
tasks and languages on average.

Full fine-tuning is the fastest by a significant margin. While
adapters, although parameter efficient, consume more FLOs
to achieve comparable or worse performance comparable
to full fine-tuning. AdapterDrop (row 8 in Table 1) shows
the least increase in FLOs (97.6%) but suffers from reduced
performance, while MAD-X (rows 10, 11) is the costliest
(1042.5%-1025.7%) but still under performs compared to

full fine-tuning. The best performing adapter (Houlsby, row
1) is also computationally expensive. In the Appendix, we
provide the percentage increases in FLOs compared to full
fine-tuning (Table 7), as well as task-specific convergence
details and absolute FLOs (Tables 8).

MTL is a cost-efficient alternative to adapters, with only
20% more FLOs than full fine-tuning while achieving perfor-
mance comparable to the best adapter approaches (Houlsby -
83.9% & MTL - 83.4%). Further, MTL exhibits the best av-
erage cross-lingual performance with respect to adapters as
well as full fine-tuning. It should be noted that MTL signifi-
cantly benefits the paraphrasing task via cross-task transfer,
exhibiting a performance increase of 16.9% accuracy over
full fine-tuning in a cross-lingual setting (experiments in
further sections show that paraphrasing benefits from the
NLI task). Thus, if the full set of tasks to be supported is
known a priori, MTL is simpler and equivalent to adapters
in downstream performance, while being more cost-efficient.
Sanh et al. (2022) show that MTL enables zero-shot task
generalization, further enhancing the attractiveness of MTL
over adapters.

Inference overhead of adapters is shown in Table 1 for dif-
ferent approaches compared to full fine-tuning. MTL does
not add any overhead over full fine-tuning since no new pa-
rameters are added to the model. On the other hand, adapters
have a non-trivial overhead in inference time due to addi-
tional parameters. The Bapna parallel and LoRA methods
show least increase in inference time (of 21.2% and 23.1%,
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Table 2: Comparison on cross-lingual (train on English test on Indic) performance of FT and adapters for IndicBERT. We
report F1 scores for Naamapadam & IndicQA, and accuracy for the other tasks. Here, "best method # " reports the best
performing row for the respective task and "best adapter # " reports the best performing adapter for the respective task.

# Method Indic
Sentiment

Indic
XNLI

Indic
COPA

Indic
XPara

Naama-
padam IndicQA Avg.

1 Houlsby 89.7 72.9 64.1 57.4 65.5 50.0 66.6
2 Bapna 89.0 72.1 60.9 55.9 65.2 48.6 65.3
3 Houlsby Parallel 90.3 72.4 63.7 55.8 66.7 49.2 66.4
4 Bapna Parallel 89.9 72.5 61.4 56.3 64.7 48.9 65.6
5 Prefix Tuning 88.2 73.5 65.3 55.8 67.1 48.4 66.4
6 Lora 85.7 70.7 60.7 55.0 63.3 47.4 63.8
7 Compacter 88.5 69.9 63.2 50.8 61.3 46.4 63.4
8 Adapter Drop 87.8 72.0 61.8 52.9 64.4 44.4 63.9
9 Adapter Fusion 89.3 70.8 59.3 56.3 66.9 48.7 65.2

10 MAD-X - en 89.6 72.4 62.6 55.9 66.0 47.6 65.7
11 MAD-X - hi 88.6 70.8 63.1 56.5 64.1 47.4 65.1

Best Adapter # 3 5 5 1 5 1 1

12 FT 90.9 72.9 62.5 57.3 66.7 49.3 66.6
13 MTL 90.2 70.7 65.3 74.3 65.3 45.5 68.6

Best method # 12 5 5, 13 13 5 1 13

respectively), since they are parallel adapters. Bapna paral-
lel has lesser inference time than Houlsby parallel as it has
almost half the number of parameters. The adapter fusion
method has the highest inference time as it combines all six
task adapters and has an additional fused layer. It also has
the maximum number of additional parameters. Although
Compacter has the least number of parameters, its inference
time is 100.5% more than fine-tuning because the compact
low-rank hypercomplex weight matrices are converted to
high-rank ones via the Kronecker product. These high-rank
matrices are actually used during the forward pass and this
two-step process slows down inferencing2.

Maintainability and Extensibility The primary advan-
tage of adapters is the ability to ‘plug-and-play’ modules,
thus making it easy to extend a pre-trained model to new
tasks without having to make a copy for the new task or
impacting performance on other tasks. This reduces mem-
ory requirements at inference time and makes the system
more modular, maintainable and extensible. We have al-
ready seen that MTL models offer the same performance
with no additional parameters and at a lower computational
cost compared to adapters. To see if they can also be easily
extensible, we experiment with the following setup.

We hold out one task (the target task) and fine-tune the pre-
trained model on the remaining tasks (resulting in model
MTL−1). Next, we continue fine-tuning the model on the

2The current implementation does not pre-compute the high-
rank matrices and thus there is a possibility of reducing the in-
ference time of Compacter, although it will not be faster than the
Houlsby adapter to which it is architecturally similar.

target task as well as 10% data from the tasks the model
has already seen. A sample from the older tasks is included
in the fine-tuning mix to avoid catastrophic forgetting (Mc-
Closkey & Cohen, 1989; French, 1999). For comparison, we
also perform continued fine-tuning on the target task only
(model: MTL+tgt) as well as fine-tuning on all available
tasks (model: MTL).

The results of these experiments are shown in Table 3
for cross-lingual settings (and Table 9 in Appendix for in-
language settings). We see that the target task’s performance
is comparable to both full fine-tuning and MTL with all
tasks. Thus, new tasks can be added to an existing MTL
model while retaining the same performance as full FT
or MTL. Moreover, we see that the MTL+tgt+old model
also retains performance for the older tasks. We also see
that if sample data from the already supported tasks is not
used, the model suffers from catastrophic forgetting (model:
MTL+tgt). Thus, a simple adaptation of MTL can support
multiple tasks in an extensible manner.

The fine-tuning computational cost for MTL+tgt+old is the
sum of computational costs for (a) fine-tuning MTL−1 and
(b) continued fine-tuning required to extend model for the
target task. In Table 3, column "%↑FLOs" reports the per-
centage increase in total FLOs(sum of (a) and (b)) with
respect to total fine-tuning FLOs(i.e. Fine-tuning FLOs sum
over all task). As observed, holding out sentiment task, and
then continual learning of sentiment task along with 10%
data of existing tasks takes only 2.3% more relative FLOs.
The maximum cost is taken by NER task with 68.2% more
relative FLOs. Holding out one task and then adding the
held out task on an average takes 27.4% more relative FLOs,
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Table 3: This table reports cross-lingual (train on English test on Indic) performance for maintainability of MTL. "Target
task" is held out task i.e. pre-trained IndicBERT model is fine-tuned on the remaining 5 task representing MTL−1 model.
MTL+tgt+old represents continual fine-tuning of the MTL−1 model on the target task dataset and 10% of the existing task
dataset. MTL+tgt represents continual fine-tuning of the MTL−1 model on the target task dataset. "Avg -1 " reports the
cross-lingual performance averaged over the tasks included in MTL−1 step. "Avg" reports the cross-lingual performance
averaged over all 6 task. Here, column "%↑FLOs" reports the relative percent increase in the total computation cost for
adding all 6 task to the model with respect to the total computation cost of fine-tuning. Here, text bold indicates the best
value in the column and colored cell represent MTL is performing better than the Best Adapter method.

Target
Task Step Indic

Sentiment
Indic
XNLI

Indic
COPA

Indic
XPara

Naama-
padam IndicQA Avg -1 Avg % ↑

FLOs

Baseline Full FT 90.9 72.9 62.5 57.3 66.7 49.3 - 66.6 -
MTL 88.5 71.2 64.9 74.0 65.8 45.4 - 68.3 20.2

Best Adapter Houlsby 89.7 72.9 64.1 57.4 65.5 50.0 - 66.6 311.7

Sentiment MTL−1 - 71.5 64.8 74.8 65.1 46.9 64.6 - -
MTL+tgt+old 90.2 70.8 61.9 72.9 66.1 48.8 64.1 68.4 2.3
MTL+tgt 89.1 54.9 52.2 67.3 40.4 34.9 50.0 56.5 1.7

XNLI MTL−1 90.5 - 67.8 56.7 63.6 47.4 65.2 - -
MTL+tgt+old 90.8 71.2 63.6 68.7 59.6 48.3 66.2 67.0 20.5
MTL+tgt 86.0 70.5 64.5 73.3 56.2 15.1 59.0 60.9 12.1

COPA MTL−1 88.8 72.3 - 73.7 65.0 48.4 69.7 - -
MTL+tgt+old 88.3 69.7 65.6 74.8 65.4 43.9 68.4 67.9 15.3
MTL+tgt 89.5 66.4 66.0 75.5 62.7 46.4 68.1 67.7 9.3

Paraphrase MTL−1 86.0 70.2 64.4 - 65.0 45.0 66.1 - -
MTL+tgt+old 87.4 69.8 64.2 77.8 65.0 45.4 66.4 68.3 32.4
MTL+tgt 81.1 66.0 64.4 73.1 30.1 42.5 56.8 59.5 24.1

NER MTL−1 88.0 72.5 65.7 77.3 - 47.7 70.3 - -
MTL+tgt+old 86.7 71.2 64.4 76.3 65.2 45.1 68.7 68.1 68.2
MTL+tgt 83.8 67.9 62.3 57.3 68.5 39.8 62.2 63.2 59.8

QA MTL−1 89.2 72.3 64.9 74.9 65.4 - 73.3 - -
MTL+tgt+old 85.9 71.1 63.9 75.7 62.3 46.8 71.8 67.6 25.8
MTL+tgt 84.9 68.2 65.9 66.9 23.7 46.6 61.9 59.4 21.2

while adding all tasks at once takes 20.2% more relative
FLOs. Nonetheless, this is still more cost-effective than the
best-performing adapter methods. For instance, the Houlsby
adapter requires around 311% more computation compared
to full fine-tuning. Thus, we see maintainability of MTL
cost-effective. However, average cross-lingual performance
for MTL maintainability (as shown in Table 3), is slightly
inflated due to the inclusion of the paraphrase task. If the
average MTL performance is calculated without the para-
phrase task (i.e. only considering the remaining five tasks),
a slight decrease in performance is observed.

Effect of model size To further study the effect of model
size on different adapters, we experiment with two different
pre-trained models trained on the same pretraining data
but differing only in model size. Specifically, we compare
the XLMR-base and XLMR-large models (Conneau et al.,
2020) which have 270M and 550M parameters, respectively.
We evaluate the adapters on the XNLI, XQuAD and NER
tasks from the XTREME benchmark (Hu et al., 2020a).

We use the English dataset for training and test the cross-
lingual zero-shot performance on 14 languages for XNLI
and WikiANN and 11 languages for XQuAD. The results are
shown in Table 4. We can see that as the model size increase,
the adaptation time relative to full fine-tuning time reduces.
Thus, for large language models, we might see a trend of
adapters being increasingly cost-efficient. In fact, recent
work on large language models have shown adapters to be
promising (Yong et al., 2022). However, larger models still
need heavy compute and deploying them is still challenging.
In this case, there is a line of work that distills LLMs which
can then be fine-tuned (Ganesan et al., 2021). Given that
adapters do not have much compute efficiency in smaller
models, full fine-tuning or MTL are excellent contenders.

Key takeaway Fig 1 shows a unified summary of task per-
formance and fine-tuning compute required for the various
approaches discussed in the paper. Summarizing observa-
tions previously discussed, we see that MTL outperforms
or is comparable to all adapters in in-language and cross-
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Table 4: Comparison on cross-lingual performance of FT and adapters for XLMR-Base and XLMR-Large model. "Avg."
reports the average cross-lingual perfromance across all task. "%↑FLOs" reports the relative increase in FLOs with respect
to fine-tuning.

XL XLMR-Base XLMR-Large

Method NER XNLI QA Avg. %↑FLOs NER XNLI QA Avg. %↑FLOs

Houlsby 61.0 72.6 72.5 68.7 484.3 64.6 76.2 78.6 73.1 200.5
Bapna 58.3 71.3 71.0 66.8 547.1 64.3 76.7 78.0 73.0 139.9
Houlsby parallel 59.2 72.8 71.2 67.8 197.0 65.3 78.7 77.8 73.9 143.3
Bapna parallel 57.1 70.3 69.7 65.7 409.1 63.1 78.8 77.6 73.2 168.6
Prefixtuning 58.5 69.9 68.8 65.7 256.5 64.7 78.7 77.6 73.7 287.3
LORA 58.6 70.5 68.4 65.8 734.7 62.3 76.9 77.1 72.1 270.0
Compacter 55.1 66.8 64.1 62.0 805.3 58.5 76.4 75.3 70.1 490.1
Adapter drop 60.5 70.2 71.3 67.3 345.1 64.6 78.8 78.5 74.0 214.1
FT 61.7 73.7 70.8 68.7 - 63.9 77.0 78.0 73.0 -

language zero-shot settings (particularly for smaller models).
Hence, we recommend that MTL should be considered as
an alternative to adapters in constrained scenarios where rel-
atively smaller models are preferred, computational budgets
are limited and extensibility is important.

5. Conclusion
In this paper, we have conducted a comprehensive analysis
of adapters across different languages and tasks to evaluate
their advantages in terms of training/deployment efficiency
and maintainability/extensibility. We compared adapters
with simpler baseline methods, including fine-tuning and
multi-task learning, in supervised/in-language as well as
zero-shot cross-lingual settings, and found that these sim-
pler methods are more computationally efficient and have
better deployment efficiency, while achieving the compa-
rable performance as that of adapters. Additionally, we
conducted extensive experiments to show that multi-task
learning is a relatively more cost-effective alternative to the
adapters in terms of maintainability, as it allows the model
to be extended for new tasks at a lower cost than adapters.
Therefore, we suggest that simpler baselines be used for
moderately sized models, as they are more efficient than
adapters.
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Limitations
We identify the following limitations of our work:

• Our study is limited to NLU and some of our observa-
tions might not apply in Natural Language Generation
(NLG) settings. While for NLU cross-lingual transfer
through full fine-tuning is as effective as adapters, in
NLG full fine-tuning for zero-shot cross-lingual NLG
is unreliable due to the risk of catastrophic forgetting.
Therefore, adapters might be more important for NLG
(Vu et al., 2022).

• We primarily focus on smaller pre-trained models be-
cause larger models require significant computing re-
sources that not everyone may have access to, and
therefore, our findings may not be applicable to larger
models with billions of parameters. However, active
research on compressing pre-trained models indicates
that fine-tuning compact pre-trained models will re-
main a significant area of research.

• Our analysis focus on 6 NLU tasks, which is rela-
tively fewer compared to the total number of tasks in
benchmarks such as BIG-Bench (bench authors, 2023).
Although focusing on a larger number of tasks will
increase the credibility of our studies, our focus on
cross-lingual performance means that we are currently
limited by the availability of benchmarking data in
other languages for these large number of tasks.
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Table 5: A summary of the tasks and datasets used. |Test| denotes the size of Test Data. |Train| is the size of English training
sets. |Lang| denotes the number of languages for which we have evaluated its cross-lingual performance.

Task Category Train Data Test Data |Train| |Test| |Lang| Metric

Sentence
Classification

Amazon Multi Reviews IndicSentiment 160k 1000 11 Acc.

MultiNLI IndicXNLI 392k 5000 11 Acc.

SocialIQA IndicCOPA 33k 500 11 Acc.

PAWS IndicParaphrase 49k 2002 10 Acc.

Token Classification CoNLL-2003 Naamapadam 11k 607-1080 11 F1

Question Answering SQuAD IndicQA 87k 1517-2017 11 F1

A. Appendices
A.1. Details of Tasks and Languages

Sentence Classification tasks are Natural Language Inference (NLI), sentiment classification, paraphrase detection and
Choice Of Plausible Alternatives (COPA). For NLI we use the MultiNLI (Williams et al., 2018) dataset for training and test
performance on IndicXNLI for 11 languages. For sentiment classification, we train on the Amazon Multilingual Reviews
(AMR) dataset (Keung et al., 2020) and test on IndicSentiment for 11 languages. For paraphrase detection, we train on the
PAWS-X (Yang et al., 2019) dataset and test on IndicXParaphrase for 10 languages. For the COPA task, which involves
selecting one of two alternatives that more plausibly has a causal relation with a given premise, we train on SocialIQA (Sap
et al., 2019) and test on IndicCOPA for 11 languages.

Token Classification task uses the CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) dataset for training and Naama-
padam (Mhaske et al., 2022) for testing for 11 languages.

Question Answering We use the SQuAD (Rajpurkar et al., 2016) data for training and test on the IndicQA benchmark
(Doddapaneni et al., 2022) available in 11 Indian languages.

A.2. training details

All models are trained with Adapter-hub (Pfeiffer et al., 2020a). All experiments are performed on Nvidia A100-SXM4
40GB GPUs and the results are reported by doing single run. We use the recommended/default settings in Adapter-hub but
wherever possible, we performed hyperparameter tuning on the development set to determine optimal hyperparameters.
Table 6 gives the search space and best performing hyperparameters for Houlsby, Bapna, LoRA and Prefix-Tuning.

For MAD-X, we have used the default configuration as in Adapter-hub for both language and task adapters, as shown in
Table 6. For Adapter-fusion we have trained each task adapter in ST-A (single task adapter) style (Pfeiffer et al., 2021).

For all the tasks using the IndicBERT model, we train models for a maximum of 50 epochs with an early stopping patience
of 3 epochs. We use 2,000 warmup steps for all tasks and settings, except for MTL, where we use 20,000 warmup steps due
to the increased size of the training data. For a fair comparison across all settings, we use a batch size of 32 examples with a
learning rate of 3e-5 and weight decay of 0.1. For MTL, we found that a weight decay of 0.01 gave the best results. For all
the experiments FLOs reported are provided by the HF transformers library (Wolf et al., 2020).

Pretraining MAD-X language adapter is done using the IndicCorp v2 (Doddapaneni et al., 2022) dataset with MLM
objective for the 11 Indic languages and English with 6.5M sentences sampled per language.

A.3. Task-level sensitivity

The efficiency of training is also affected by the task, as shown in Table 7, where the QA task requires relatively more FLOs
compared to the paraphrase task. However, across all tasks the trend remains the same.
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Table 6: This table reports the optimal reduction factor (r), prefix length (l) and LoRA α we have set for adapters. For those
not listed in this table, we have used the default AdapterHub configurations.

Method Hyperparameter Search Space

Houlsby r = 16 r = 2, 4, 8, 16
Bapna r = 16 r = 2, 4, 8, 16
LoRA r = 8, α = 16 r = 2, 4, 8, 16
Prefix-Tuning l = 30 l = 10, 20, 30, 40, 50

Table 7: This table reports percentage increase of FLOs for several adapters across tasks with respect to full fine-tuning
on IndicBert model. Column "Total" reports the percentage increase in total FLOs for each method with respect to full
fine-tuning (FLOs are added across all tasks). Since, for Adapter Fusion and MAD-X, task adapters and language adapters,
respectively, are shared across tasks, training FLOs are also shared across tasks. Thus, for these two approaches, FLOs
cannot be reported accurately for individual tasks.

Method Sentiment XNLI COPA Paraphrase NER QA Total

Houlsby 249.8 208.5 376.6 88.5 19.8 599.0 311.7
Bapna 185.2 246.5 321.0 43.6 77.7 456.7 264.7
Houlsby Parallel 105.3 208.5 274.2 -5.8 88.0 275.0 185.1
Bapna Parallel 62.9 205.4 185.7 52.6 26.9 389.4 199.9
Prefix Tuning 190.9 237.2 179.4 96.2 77.4 198.1 186.5
Lora 223.2 203.1 168.0 93.6 143.6 402.9 226.2
Compacter 363.9 121.7 650.9 25.9 252.4 735.6 371.4
Adapter Drop 124.3 225.6 136.4 -40.6 19.8 1.9 97.6

A.4. MTL maintainability

MTL is maintainable as discussed in sec 4, as the MTL model can be extended to new tasks by continually learning with
the new task’s data along with 10% of the existing tasks’ data. We analyze the impact of performance and computational
cost by changing the percentage of an existing task for continual learning of new task as presented in Table 10 and 11. We
tested two additional setups: (a) using 5% data from previously seen tasks (MTL−1) instead of 10%, as reported in the
"MTL+tgt+old5

" row and (b) using the minimum of either 10% of the existing task dataset or the new task dataset, reported
in the row "MTL+tgt+old+min10

", and similarly, using the minimum of either 5% of the existing task dataset or the new task
dataset, reported in the row "MTL+tgt+old+min5

". Our findings show that cross-lingual performance is better when using a
higher percentage of the existing task dataset, while in-language performance is better when using a lower percentage of the
existing task dataset. In terms of computational efficiency, using 5% of the existing dataset requires fewer FLOs compared
to using 10%.
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Table 8: The table reports the total FLOS for FT and various adapters on IndicBERT, across each of the tasks. Total
corresponds to the total FLOS summed over all the tasks for a particular fine-tuning method.

Method Sentiment XNLI COPA Paraphrase NER QA Total

Houlsby 1.8E+17 4.0E+17 3.8E+17 1.5E+17 4.2E+15 7.3E+17 1.8E+18
Bapna 1.5E+17 4.5E+17 3.3E+17 1.1E+17 6.2E+15 5.8E+17 1.6E+18
Houlsby Parallel 1.1E+17 4.0E+17 3.0E+17 7.4E+16 6.6E+15 3.9E+17 1.3E+18
Bapna Parallel 8.6E+16 3.9E+17 2.3E+17 1.2E+17 4.4E+15 5.1E+17 1.3E+18
Prefix Tuning 1.5E+17 4.4E+17 2.2E+17 1.5E+17 6.2E+15 3.1E+17 1.3E+18
Lora 1.7E+17 3.9E+17 2.1E+17 1.5E+17 8.5E+15 5.2E+17 1.5E+18
Compacter 2.4E+17 2.9E+17 5.9E+17 9.8E+16 1.2E+16 8.7E+17 2.1E+18
Adapter Drop 1.2E+17 4.2E+17 1.9E+17 4.6E+16 4.2E+15 1.1E+17 8.8E+17
FT 5.3E+16 1.3E+17 7.9E+16 7.8E+16 3.5E+15 1.0E+17 4.5E+17

Total 1.3E+18 3.3E+18 2.5E+18 9.8E+17 5.6E+16 4.1E+18 1.2E+19

Table 9: This table reports in-language (train and test on English) performance for maintainability of MTL. "Target
task" is held out task i.e. pre-trained IndicBERT model is fine-tuned on the remaining 5 task representing MTL−1 model.
MTL+tgt+old represents continual fine-tuning of the MTL−1 model on the target task dataset and 10% of the existing task
dataset. MTL+tgt represents continual fine-tuning of the MTL−1 model on the target task dataset. "Avg -1 " reports the
in-language performance averaged over the task included in MTL−1 step. "Avg" reports the in-language performance
averaged over all 6 task. Here, text bold indicates the best value in the column and colored cell represent MTL is performing
better than the Best Adapter method.

Target
Task Step Amazon Multi

Reviews XNLI COPA PAWS CoNLL2003 SQuAD Avg -1 Avg

Baseline Full FT 93.8 83.0 62.3 93.0 92.8 82.1 - 84.5
MTL (full) 93.5 80.9 61.4 91.5 91.0 82.1 - 83.4

Best Adapter Houlsby 94.0 82.4 61.5 92.3 91.5 81.7 - 83.9

Sentiment MTL−1 - 81.6 63.0 91.5 92.5 82.5 82.2 -
MTL+tgt+old 93.1 79.0 60.7 89.0 91.4 81.3 80.3 82.4
MTL+tgt 93.5 58.6 47.1 71.4 78.3 71.7 65.4 70.1

XNLI MTL−1 94.1 - 60.5 91.5 91.9 82.4 84.1 -
MTL+tgt+old 92.9 79.0 58.7 88.3 87.7 78.6 81.2 80.9
MTL+tgt 90.7 79.6 52.8 56.5 85.4 36.4 64.4 66.9

COPA MTL−1 93.8 81.9 - 91.6 91.0 81.5 88.0 -
MTL+tgt+old 93.5 79.0 62.5 90.8 90.9 78.7 86.6 82.6
MTL+tgt 92.4 73.8 62.2 87.8 89.8 79.2 84.6 80.9

Paraphrase MTL−1 93.9 80.1 62.4 - 91.9 80.9 81.8 -
MTL+tgt+old 93.9 79.8 60.2 89.7 91.7 80.9 81.3 82.7
MTL+tgt 92.9 73.9 59.8 92.2 77.4 73.8 75.5 78.3

NER MTL−1 94.0 82.1 62.2 92.7 - 82.6 82.7 -
MTL+tgt+old 93.4 80.8 61.0 91.2 91.4 81.0 81.5 83.1
MTL+tgt 93.1 74.1 59.9 74.5 92.1 71.6 74.6 77.6

QA MTL−1 94.1 81.6 62.9 93.4 92.0 - 84.8 -
MTL+tgt+old 93.5 80.0 59.7 91.4 89.9 81.2 82.9 82.6
MTL+tgt 92.4 77.5 61.0 73.0 63.5 82.5 73.5 75.0
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Table 10: Table reports cross-lingual performance (train on English test on Indic). Row MTL+tgt+old10 and
MTL+tgt+old5 denotes adding 10% and 5% of existing task data combine with new task dataset respectively.
MTL+tgt+old+min10 denotes combining the existing task dataset size minimum(10% data , target task dataset size) i.e. to
ensure the existing task dataset is less or equal to new task dataset when combined. similarly MTL+tgt+old+min5

denote
combining the existing task dataset size as minimum(5% data , target task dataset size). "Avg -1 " reports the cross-lingual
perfromance averaged over the task included in MTL−1 step. "Avg" reports the cross-lingual performance averaged over all
6 task. Here, column "%↑FLOs" reports the relative percent increase in the total computation cost for adding all 6 task with
respect to the total computation cost of fine-tuning. Note, we have MTL+tgt+old+min10 and MTL+tgt+old+min5 only for
NER and COPA dataset, as dataset size for NER and COPA is less. Here, text bold indicates the best value in the column
and colored cell represent MTL is performing better than the Best Adapter method.

Target
Task Step Indic

Sentiment
Indic
XNLI

Indic
COPA

Indic
XPara

Naama-
padam IndicQA Avg -1 Avg % ↑

FLOs

Baseline Full FT 90.9 72.9 62.5 57.3 66.7 49.3 - 66.6 -
MTL 88.5 71.2 64.9 74.0 65.8 45.4 - 68.3 20.2

Best Adapter Houlsby 89.7 72.9 64.1 57.4 65.5 50.0 - 66.6 311.7

Sentiment MTL−1 - 71.5 64.8 74.8 65.1 46.9 64.6 -
MTL+tgt+old10 90.2 70.8 61.9 72.9 66.1 48.8 64.1 68.4 2.3
MTL+tgt+old5 90.5 69.1 62.3 74.2 62.2 47.3 63.0 67.6 -0.4
MTL+tgt 89.1 54.9 52.2 67.3 40.4 34.9 50.0 56.5 1.7

XNLI MTL−1 90.5 - 67.8 56.7 63.6 47.4 65.2 -
MTL+tgt+old10 90.8 71.2 63.6 68.7 59.6 48.3 66.2 67.0 20.5
MTL+tgt+old5 90.5 70.6 64.7 61.9 63.5 47.3 65.6 66.4 -2.6
MTL+tgt 86.0 70.5 64.5 73.3 56.2 15.1 59.0 60.9 12.1

COPA MTL−1 88.8 72.3 - 73.7 65.0 48.4 69.7 -
MTL+tgt+old10 88.3 69.7 65.6 74.8 65.4 43.9 68.4 67.9 15.3
MTL+tgt+old5 90.5 71.1 64.6 73.0 63.7 44.9 68.6 68.0 3.5
MTL+tgt+old+min10 85.5 69.7 66.5 74.6 63.6 45.7 67.8 67.6 10.4
MTL+tgt+old+min5 90.0 69.8 65.7 73.9 63.8 46.2 68.7 68.2 10.8
MTL+tgt 89.5 66.4 66.0 75.5 62.7 46.4 68.1 67.7 9.3

Paraphrase MTL−1 86.0 70.2 64.4 - 65.0 45.0 66.1 -
MTL+tgt+old10 87.4 69.8 64.2 77.8 65.0 45.4 66.4 68.3 32.4
MTL+tgt+old5 86.2 70.0 64.8 78.0 64.2 42.7 65.6 67.7 25.3
MTL+tgt 81.1 66.0 64.4 73.1 30.1 42.5 56.8 59.5 24.1

NER MTL−1 88.0 72.5 65.7 77.3 - 47.7 70.3 -
MTL+tgt+old10 86.7 71.2 64.4 76.3 65.2 45.1 68.7 68.1 68.2
MTL+tgt+old5 88.4 70.4 63.9 73.2 65.7 45.7 68.3 67.9 66.6
MTL+tgt+old+min10 87.6 71.2 64.7 73.5 66.2 43.7 68.1 67.8 66.6
MTL+tgt+old+min5 87.8 71.2 65.4 71.3 65.4 45.8 68.3 67.8 63.1
MTL+tgt 83.8 67.9 62.3 57.3 68.5 39.8 62.2 63.2 59.8

QA MTL−1 89.2 72.3 64.9 74.9 65.4 - 73.3 -
MTL+tgt+old10 85.9 71.1 63.9 75.7 62.3 46.8 71.8 67.6 25.8
MTL+tgt+old5 87.9 71.6 64.4 75.1 65.6 45.0 72.9 68.3 22.1
MTL+tgt 84.9 68.2 65.9 66.9 23.7 46.6 61.9 59.4 21.2

14



A Comprehensive Analysis of Adapter Efficiency

Table 11: The table reports performance score on in-language (en). Row MTL+tgt+old10 andMTL+tgt+old5 denotes adding
10% and 5% of existing task data combine with new task dataset respectively.MTL+tgt+old+min10 denotes combining
the existing task dataset size minimum(10% data , target task dataset size) i.e. to ensure the existing task dataset is less
or equal to new task dataset when combined. similarly MTL+tgt+old+min5

denote combining the existing task dataset
size as minimum(5% data , target task dataset size). Here, column "%↑FLOs" reports the relative percent increase in the
total computation cost for adding all 6 task with respect to the total computation cost of fine-tuning. "Avg -1 " reports the
in-language performance averaged over the task included in MTL−1 step. "Avg" reports the cross-lingual performance
averaged over all 6 task. Note, we have MTL+tgt+old+min10 and MTL+tgt+old+min5 only for NER and COPA dataset, as
dataset size for NER and COPA is less. Here, text bold indicates the best value in the column and colored cell represent
MTL is performing better than the Best Adapter method.

Target
Task Step Amazon Multi

Reviews XNLI COPA PAWS CoNLL2003 SQuAD Avg -1 Avg

Baseline Full FT 93.8 83.0 62.3 93.0 92.8 82.1 - 84.5
MTL (full) 93.5 80.9 61.4 91.5 91.0 82.1 - 83.4

Best Adapter Houlsby 94.0 82.4 61.5 92.3 91.5 81.7 - 83.9

Sentiment MTL−1 - 81.6 63.0 91.5 92.5 82.5 82.2 -
MTL+tgt+old10 93.1 79.0 60.7 89.0 91.4 81.3 80.3 82.4
MTL+tgt+old5 93.0 78.7 60.2 91.0 91.7 81.0 80.5 82.6
MTL+tgt 93.5 58.6 47.1 71.4 78.3 71.7 65.4 70.1

XNLI MTL−1 94.1 - 60.5 91.5 91.9 82.4 84.1 -
MTL+tgt+old10 92.9 79.0 58.7 88.3 87.7 78.6 81.2 80.9
MTL+tgt+old5 93.1 77.1 59.0 86.1 89.1 79.9 81.4 80.7
MTL+tgt 90.7 79.6 52.8 56.5 85.4 36.4 64.4 66.9

COPA MTL−1 93.8 81.9 - 91.6 91.0 81.5 88.0 -
MTL+tgt+old10 93.5 79.0 62.5 90.8 90.9 78.7 86.6 82.6
MTL+tgt+old5 93.7 80.8 58.6 90.8 91.7 81.1 87.6 82.8
MTL+tgt+old+min10 93.2 79.3 62.2 91.9 91.0 81.1 87.3 83.1
MTL+tgt+old+min5 93.8 79.6 63.2 90.8 90.9 80.6 87.1 83.1
MTL+tgt 92.4 73.8 62.2 87.8 89.8 79.2 84.6 80.9

Paraphrase MTL−1 93.9 80.1 62.4 - 91.9 80.9 81.8 -
MTL+tgt+old10 93.9 79.8 60.2 89.7 91.7 80.9 81.3 82.7
MTL+tgt+old5 94.2 80.3 61.5 92.4 90.8 80.7 81.5 83.3
MTL+tgt 92.9 73.9 59.8 92.2 77.4 73.8 75.5 78.3

NER MTL−1 94.0 82.1 62.2 92.7 - 82.6 82.7 -
MTL+tgt+old10 93.4 80.8 61.0 91.2 91.4 81.0 81.5 83.1
MTL+tgt+old5 93.8 80.5 62.3 92.1 91.6 80.4 81.8 83.4
MTL+tgt+old+min10 93.7 79.8 60.5 91.3 92.0 81.8 81.4 83.2
MTL+tgt+old+min5 93.6 80.3 62.2 91.0 90.8 81.6 81.7 83.2
MTL+tgt 93.1 74.1 59.9 74.5 92.1 71.6 74.6 77.6

QA MTL−1 94.1 81.6 62.9 93.4 92.0 - 84.8 -
MTL+tgt+old10 93.5 80.0 59.7 91.4 89.9 81.2 82.9 82.6
MTL+tgt+old5 94.0 81.1 62.1 91.2 90.8 81.6 83.8 83.5
MTL+tgt 92.4 77.5 61.0 73.0 63.5 82.5 73.5 75.0
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Table 12: Results on IndicSentiment with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 94.0 87.7 90.7 89.5 92.0 90.5 88.3 89.4 89.7 92.0 88.0 89.0 89.7
Bapna 93.3 87.0 90.1 89.2 91.8 89.1 87.0 88.6 88.5 90.2 88.1 88.9 89.0
Houlsby Parallel 93.1 88.1 91.8 90.5 93.0 91.0 88.7 90.3 90.3 91.7 88.2 90.0 90.3
Bapna Parallel 93.1 87.1 91.1 90.1 92.7 90.0 88.5 89.3 90.2 91.2 88.3 90.2 89.9
Prefix Tuning 93.8 85.1 88.9 88.4 91.7 88.7 86.2 89.0 87.7 90.3 85.7 88.9 88.2
Lora 93.4 83.6 86.3 85.5 85.3 85.6 82.3 86.8 87.1 86.2 86.1 88.4 85.7
Compacter 92.8 87.0 90.1 89.0 89.2 89.2 88.1 86.2 88.0 89.6 87.8 89.2 88.5
Adapter Drop 92.7 85.5 89.3 88.2 89.1 87.0 86.2 87.3 88.4 90.3 86.8 88.1 87.8
Adapter Fusion 93.2 87.4 91.0 89.6 91.3 89.9 87.1 88.7 89.2 91.4 87.7 88.7 89.3
MADX - en 93.6 88.2 90.4 89.0 91.4 90.3 88.4 89.5 88.9 91.8 89.1 89.0 89.6
MADX - hi 93.0 86.2 88.1 88.2 89.0 87.8 87.9 89.2 90.1 91.0 88.6 88.1 88.6

FT 93.8 89.3 91.7 91.8 93.2 91.7 89.1 91.4 90.3 92.4 88.2 91.1 90.9
MTL 93.5 87.2 90.2 90.5 92.9 89.4 87.8 90.6 90.6 91.3 86.0 88.9 90.2

Table 13: Results on IndicXNLI task with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 82.4 69.3 74.0 73.3 75.2 74.1 72.9 70.6 71.5 74.6 73.4 72.8 72.9
Bapna 81.9 68.7 73.3 71.1 73.4 73.3 73.0 69.3 71.5 73.9 72.9 72.8 72.1
Houlsby Parallel 82.5 69.2 73.0 72.7 73.8 73.6 72.6 70.2 71.7 74.4 72.6 72.7 72.4
Bapna Parallel 82.7 69.7 73.7 71.9 73.2 73.5 73.0 69.7 72.2 74.2 73.5 73.0 72.5
Prefix Tuning 82.6 70.9 74.3 73.7 75.6 74.0 73.5 72.1 72.6 75.2 73.1 73.4 73.5
Lora 80.3 68.1 71.7 69.8 72.5 72.2 70.5 68.5 69.5 72.7 70.7 71.3 70.7
Compacter 74.8 68.1 71.0 70.5 72.1 70.2 69.1 66.7 69.6 71.8 69.9 69.7 69.9
Adapter Drop 80.6 69.7 71.8 71.7 74.4 73.1 72.1 70.0 71.1 73.7 72.5 72.4 72.0
Adapter Fusion 79.9 68.0 71.6 70.2 72.8 71.9 71.8 68.2 70.0 73.0 70.9 69.9 70.8
MADX -en 82.1 69.9 73.3 72.9 73.8 73.0 72.4 69.5 70.7 74.2 73.2 73.0 72.4
MADX - hi 79.3 68.3 72.1 70.1 72.5 71.5 70.5 68.7 70.3 73.2 70.9 71.1 70.8

FT 83.0 69.4 73.1 73.5 75.1 74.4 72.6 71.0 71.4 75.0 72.8 73.0 72.9
MTL 80.9 67.4 71.9 71.5 72.9 71.7 69.9 68.9 69.8 72.9 70.0 70.6 70.7

Table 14: Results on IndicCOPA with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 61.5 63.0 66.4 64.7 66.4 63.8 62.2 63.3 59.2 63.2 66.2 66.6 64.1
Bapna 59.9 61.4 66.4 60.5 58.6 60.2 59.2 62.1 59.6 59.6 61.4 60.4 60.9
Houlsby Parallel 61.4 61.2 65.6 63.2 61.7 62.2 62.6 65.5 60.8 63.6 68.0 66.8 63.7
Bapna Parallel 60.5 60.4 63.0 61.6 59.0 60.4 61.4 64.4 59.8 60.2 64.2 61.4 61.4
Prefix Tuning 61.1 62.2 65.6 67.4 66.8 66.6 61.8 61.9 65.2 64.2 69.6 67.2 65.3
Lora 57.4 60.0 64.2 58.7 62.1 64.6 60.0 61.5 58.0 58.4 59.2 60.8 60.7
Compacter 50.8 59.8 66.6 62.9 63.5 64.0 63.0 63.3 58.2 62.4 66.0 66.0 63.2
Adapter Drop 52.3 59.6 64.0 61.2 60.4 64.6 62.4 61.7 57.2 61.6 64.0 63.0 61.8
Adapter Fusion 59.9 57.6 65.2 58.5 58.4 58.8 57.8 61.0 58.8 59.4 58.6 58.4 59.3
MADX -en 56.9 60.8 65.8 61.8 63.3 62.8 57.8 64.8 60.0 62.8 63.6 64.8 62.6
MADX - hi 58.4 62.2 67.2 62.3 63.5 63.0 59.4 63.0 60.2 64.0 66.0 63.4 63.1

FT 62.3 61.2 65.2 60.5 59.5 61.8 62.0 60.8 61.0 63.4 68.0 63.8 62.5
MTL 61.4 64.6 66.6 62.5 64.4 66.6 64.4 67.3 65.8 64.6 65.4 66.6 65.3
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Table 15: Results on IndicXParaphrase with IndicBERT. Metric: Accuracy.Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa te Avg.XL

Houlsby 92.3 57.8 50.8 75.7 51.2 59.7 57.4 54.6 57.6 53.8 55.5 57.4
Bapna 91.4 56.5 49.6 72.6 49.9 57.2 56.0 53.0 55.8 54.0 54.6 55.9
Houlsby Parallel 90.6 56.6 49.8 71.2 50.3 57.2 55.8 53.1 55.9 53.9 54.2 55.8
Bapna Parallel 91.3 56.7 50.0 72.8 50.7 57.6 56.4 53.0 56.6 53.8 55.1 56.3
Prefix Tuning 92.2 55.3 49.1 73.8 49.7 55.5 54.8 53.6 55.2 57.1 53.7 55.8
Lora 90.2 54.8 50.0 70.0 50.0 55.8 54.6 51.8 53.8 54.9 53.9 55.0
Compacter 72.7 49.6 47.0 63.9 48.3 45.1 46.3 48.9 47.1 59.8 52.5 50.8
Adapter Drop 75.0 50.8 49.5 68.1 50.2 47.7 49.6 50.2 49.6 58.6 54.6 52.9
Adapter Fusion 92.2 57.1 49.8 73.5 50.4 57.0 56.6 52.9 56.6 54.2 55.0 56.3
MADX -en 91.0 56.5 49.9 72.5 50.4 56.5 55.2 53.2 55.2 54.9 54.9 55.9
MADX - hi 90.6 57.1 49.6 73.4 50.3 58.4 55.7 53.5 56.7 54.9 54.9 56.5

FT 93.0 56.8 50.9 76.5 51.1 57.8 56.5 55.0 56.7 56.2 55.0 57.3
MTL 91.5 70.7 88.3 81.3 81.7 74.7 73.6 75.9 66.2 58.7 71.6 74.3

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 91.5 41.7 69.2 77.5 78.3 71.8 77.6 76.5 16.4 63.9 68.8 79.1 65.5
Bapna 91.0 37.5 70.0 78.3 76.2 70.9 78.3 77.9 16.1 65.1 67.9 79.3 65.2
Houlsby Parallel 92.2 46.2 72.0 77.2 75.9 74.1 79.7 77.9 17.3 63.1 69.1 81.2 66.7
Bapna Parallel 91.1 34.6 70.5 76.9 75.7 72.3 78.2 74.8 16.9 62.6 69.1 79.6 64.7
Prefix Tuning 91.5 42.6 72.1 77.7 76.2 75.0 79.7 78.1 17.3 68.6 69.1 81.2 67.1
Lora 90.4 40.7 70.7 75.0 72.7 71.0 75.6 74.1 17.1 60.0 61.4 78.3 63.3
Compacter 89.2 38.5 65.8 73.9 72.6 67.0 72.5 71.1 16.6 59.4 64.1 73.1 61.3
Adapter Drop 90.4 30.2 71.2 76.3 75.4 71.4 77.4 78.3 16.8 66.7 65.4 79.1 64.4
Adapter Fusion 92.0 42.6 71.8 79.2 75.1 76.2 79.4 78.5 16.5 66.3 69.8 80.7 66.9
MADX -en 91.5 43.6 69.1 78.9 75.3 73.9 78.8 76.6 16.2 63.8 68.7 81.1 66.0
MADX - hi 91.1 34.6 69.9 76.6 75.6 70.8 76.8 74.2 17.0 63.5 66.7 79.3 64.1

FT 92.8 38.7 71.6 77.4 77.8 75.3 79.3 78.7 17.1 65.6 70.7 81.6 66.7
MTL 91.0 34.0 69.8 78.3 76.0 74.2 77.9 78.4 16.1 66.9 66.7 79.7 65.3

Table 16: Results on IndicNER task with IndicBERT. Metric: F1 Score. Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 81.7 44.7 52.9 45.2 54.9 46.7 46.2 48.9 51.8 52.4 44.9 60.9 50.0
Bapna 80.9 44.1 51.4 44.0 55.6 46.4 42.5 45.9 49.8 52.4 43.0 60.0 48.6
Houlsby Parallel 82.0 43.9 52.6 44.4 55.2 47.5 43.9 46.2 50.7 53.2 43.6 60.3 49.2
Bapna Parallel 81.4 44.2 52.0 43.6 55.6 47.2 43.6 45.4 50.8 52.8 43.4 59.7 48.9
Prefix Tuning 81.0 43.0 50.9 43.9 52.7 46.8 43.2 46.5 51.1 50.8 43.5 59.9 48.4
Lora 79.5 41.9 50.6 43.9 52.9 44.3 43.0 44.3 48.8 51.4 43.1 57.8 47.4
Compacter 73.0 40.8 48.5 42.3 50.9 43.9 41.6 45.1 46.8 49.6 42.0 59.2 46.4
Adapter Drop 70.7 38.3 46.8 40.9 50.1 42.3 40.3 43.0 46.3 47.4 38.1 55.2 44.4
Adapter Fusion 81.9 44.4 51.9 43.9 55.8 46.0 42.8 45.5 50.1 52.1 43.6 59.5 48.7
MADX-en 81.1 41.4 50.6 43.3 53.8 45.3 42.4 44.8 49.8 52.1 42.5 58.1 47.6
MADX-hi 79.4 41.1 50.2 43.7 54.9 44.9 41.9 44.3 49.0 51.4 41.5 58.6 47.4

FT 82.1 44.4 52.8 44.9 54.6 46.9 44.6 46.5 51.3 52.0 43.9 60.3 49.3
MTL 82.1 39.8 49.1 42.6 48.9 42.9 42.2 43.6 48.1 47.3 39.7 56.2 45.5

Table 17: Results on IndicQA task with IndicBERT. Metric: F1 score. Column "Avg.XL" reports average cross-lingual
zero-shot performance.
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Method en as bn gu hi kn ml mr or pa ta te

Houlsby 83.9 60.7 67.4 71.0 69.7 67.8 67.4 67.2 57.7 66.7 68.3 70.7
Pfeiffer 83.1 59.2 66.8 69.3 67.6 66.2 66.0 66.1 56.9 65.9 66.7 69.3
Houlsby Parallel 83.6 60.8 67.4 69.9 68.3 67.6 67.2 67.2 57.8 66.6 68.3 70.9
Pfeiffer Parallel 83.4 58.8 66.7 69.5 67.8 66.8 66.8 66.1 57.8 65.8 67.7 69.8
Prefix Tuning 83.7 59.9 66.8 70.8 68.8 67.8 66.5 66.9 58.2 67.7 68.2 70.7
Lora 81.8 58.2 65.6 67.1 65.9 65.6 64.3 64.5 55.7 63.9 64.1 68.4
Compacter 75.5 57.3 64.8 67.1 66.1 63.2 63.4 63.5 54.4 65.4 66.0 68.3
Adapter Drop 77.0 55.7 65.4 67.7 66.6 64.3 64.7 65.1 54.9 66.4 65.3 68.8
Adapter Fusion 83.2 59.5 66.9 69.1 67.3 66.6 65.9 65.8 56.9 66.1 66.1 68.7
MADX - en 82.7 60.1 66.5 69.7 68.0 67.0 65.8 66.4 56.8 66.6 67.4 70.1
MADX - hi 82.0 58.3 66.2 69.0 67.7 66.1 65.4 65.5 57.2 66.3 66.7 69.2
FT 84.5 60.0 67.6 70.8 68.6 68.0 67.4 67.2 58.0 67.4 68.7 70.8

Table 18: This table compares the performance of various adapters and FT with results averaged across all tasks.

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 1.8E+17 249.8 17 240
Bapna 1.5E+17 185.2 14 180
Houlsby Parallel 1.1E+17 105.3 10 100
Bapna Parallel 8.6E+16 62.9 8 60
Prefix Tuning 1.5E+17 190.9 13 160
Lora 1.7E+17 223.2 16 220
Compacter 2.4E+17 363.9 23 360
Adapter Drop 1.2E+17 124.3 11 120
FT 5.3E+16 0.0 5 0
Avg Adapter 1.5E+17 188.2 14 180

Table 19: This table report the total computation cost on Sentiment task for FT and various adapters using IndicBERT. Here
% ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent increase of
epoch relative to epoch of FT

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 4.0E+17 208.5 15 200
Bapna 4.5E+17 246.5 17 240
Houlsby Parallel 4.0E+17 208.5 15 200
Bapna Parallel 3.9E+17 205.4 15 200
Prefix Tuning 4.4E+17 237.2 15 200
Lora 3.9E+17 203.1 15 200
Compacter 2.9E+17 121.7 11 120
Adapter Drop 4.2E+17 225.6 16 220
FT 1.3E+17 0.0 5 0
Average Adapter 4.0E+17 207.1 14.88 197.5

Table 20: This table report the total computation cost on XNLI task for FT and various adapters using IndicBERT.. here % ↑
FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent increase of epoch
relative to epoch of FT
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Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 3.8E+17 376.6 28 366.7
Bapna 3.3E+17 321.0 25 316.7
Houlsby Parallel 3.0E+17 274.2 22 266.7
Bapna Parallel 2.3E+17 185.7 17 183.3
Prefix Tuning 2.2E+17 179.4 15 150.0
Lora 2.1E+17 168.0 16 166.7
Compacter 5.9E+17 650.9 45 650.0
Adapter Drop 1.9E+17 136.4 14 133.3
FT 7.9E+16 0.0 6 0.0
Average Adapter 3.1E+17 286.5 22.75 279.2

Table 21: This table report the total computation cost on COPA task for FT and various adapters using IndicBERT.. here
% ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent increase of
epoch relative to epoch of FT

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 1.5E+17 88.5 22 83.3
Bapna 1.1E+17 43.6 17 41.7
Houlsby Parallel 7.4E+16 -5.8 11 -8.3
Bapna Parallel 1.2E+17 52.6 18 50.0
Prefix Tuning 1.5E+17 96.2 21 75.0
Lora 1.5E+17 93.6 23 91.7
Compacter 9.8E+16 25.9 15 25.0
Adapter Drop 4.6E+16 -40.6 7 -41.7
FT 7.8E+16 0.0 12 0.0
Total Adapter 1.1E+17 44.2 16.75 39.6

Table 22: This table report the total computation cost on Paraphrase task for FT and various adapters using IndicBERT. here
% ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent increase of
epoch relative to epoch of FT

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 4.2E+15 19.8 14 16.7
Bapna 6.2E+15 77.7 21 75.0
Houlsby Parallel 6.6E+15 88.0 22 83.3
Bapna Parallel 4.4E+15 26.9 15 25.0
Prefix Tuning 6.2E+15 77.4 19 58.3
Lora 8.5E+15 143.6 29 141.7
Compacter 1.2E+16 252.4 42 250.0
Adapter Drop 4.2E+15 19.8 14 16.7
FT 3.5E+15 0.0 12 0.0
Average Adapter 6.6E+15 88.2 22 83.3

Table 23: This table report the total computation cost on NER task for FT and various adapters using IndicBERT. here % ↑
FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent increase of epoch
relative to epoch of FT
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Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 7.3E+17 599.0 41 583.3
Bapna 5.8E+17 456.7 33 450.0
Houlsby Parallel 3.9E+17 275.0 22 266.7
Bapna Parallel 5.1E+17 389.4 29 383.3
Prefix Tuning 3.1E+17 198.1 16 166.7
Lora 5.2E+17 402.9 30 400.0
Compacter 8.7E+17 735.6 50 733.3
Adapter Drop 1.1E+17 1.9 6 0.0
FT 1.0E+17 - 6 -
Avg Adapter 5.0E+17 382.3 28.4 372.9

Table 24: This table report the total computation cost on QA task for FT and various adapters using IndicBERT. here % ↑
FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent increase of epoch
relative to epoch of FT

Method XLMR-Base XLMR-Large
Houlsby 484.3 200.5
Bapna 547.1 139.9
Houlsby Parallel 197.0 143.3
Bapna Parallel 409.1 168.6
Prefixtuning 256.5 287.3
Lora 734.7 270.0
compacter 805.3 490.1
Adapter drop 345.1 214.1

Table 25: This table reports the percentage increase in total FLOs with respect to FT for both XLMR-Base and XLMR-Large
model

XLMR-Base XLMR-Large

Method WikiANN XNLI XQuAD Total WikiANN XNLI XQuAD Total

Houlsby 506.4 483.1 484.0 484.3 316.4 75.6 299.6 200.5
Bapna 439.4 464.6 582.0 547.1 172.3 73.7 194.3 139.9
Houlsby Parallel 270.3 483.1 86.0 197.0 103.8 126.8 160.0 143.3
Pfeiffer Parallel 643.4 409.2 401.0 409.1 71.1 167.5 175.9 168.6
Prefixtuning 157.4 237.7 267.0 256.5 200.6 226.3 344.9 287.3
Lora 474.3 404.0 869.0 734.7 332.1 57.9 446.9 270.0
Compacter 905.8 818.2 797.0 805.3 528.9 336.8 618.4 490.1
Adapter drop 281.9 409.2 323.0 345.1 617.0 153.1 240.0 214.1

Table 26: This table reports the percentage increase in computational cost with respect to FT for XLM-R model for task
NER, XNLI and QA. "Total" reports the percentage increase of total FLOs for the method relative to total FT FLOs

EN XLMR-Base XLMR-Large

Method NER XNLI QA Average NER XNLI QA Average

Houlsby 81.0 82.7 84.1 82.6 83.5 85.9 88.2 85.9
Bapna 79.9 81.3 83.2 81.5 83.1 86.4 87.4 85.7
Houlsby parallel 80.5 83.5 83.7 82.6 83.0 87.9 88.0 86.3
Bapna parallel 80.8 80.9 82.8 81.5 82.5 88.0 87.7 86.1
Prefixtuning 79.0 79.5 81.7 80.1 83.2 88.2 88.3 86.5
Lora 78.6 79.7 81.7 80.0 81.7 85.6 86.9 84.7
compacter 72.3 76.4 76.6 75.1 76.1 85.6 85.0 82.2
Adapter drop 81.1 80.3 82.7 81.4 82.6 88.0 88.0 86.2
FT 82.3 83.1 83.3 82.9 82.8 87.3 88.0 86.0

Table 27: Overall performance on English for XLMR-B and XLMR-L model
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XL XLMR-Base XLMR-Large

Method NER XNLI QA Average NER XNLI QA Average

Houlsby 61.0 72.6 71.5 68.4 64.6 76.2 78.6 73.1
Bapna 58.3 71.3 69.9 66.5 64.3 76.7 78.0 73.0
Houlsby Parallel 59.2 72.8 70.1 67.4 65.3 78.7 77.8 73.9
Bapna Parallel 57.1 70.3 69.7 65.7 63.1 78.8 77.6 73.2
Prefixtuning 58.5 69.9 67.7 65.4 64.7 78.7 77.6 73.7
Lora 58.6 70.5 68.4 65.8 62.3 76.9 77.1 72.1
Compacter 55.1 66.8 64.1 62.0 58.5 76.4 75.3 70.1
Adapter drop 60.5 70.2 71.3 67.3 64.6 78.8 78.5 74.0
FT 61.7 73.7 70.8 68.7 63.9 77.0 78.0 73.0

Table 28: Overall cross-lingual performance for XLMR-B and XLMR-L model

Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 83.5 45.6 81.6 79.3 79.9 76.2 78.7 71.1 68.0 68.2 0.6 82.0 69.1 77.5 26.2 64.6
Bapna 83.1 41.0 81.4 78.1 77.2 77.0 78.7 73.2 71.5 68.3 2.0 79.3 69.1 76.8 26.2 64.3
houlsby parallel 83.0 46.4 83.1 79.2 79.2 76.1 79.0 70.0 71.4 70.4 0.6 82.0 75.6 76.6 24.7 65.3
Bapna parallel 82.5 48.3 79.3 77.9 77.9 72.7 78.3 66.5 71.5 68.8 1.4 80.0 63.3 75.0 22.2 63.1
prefixtuning 83.2 48.5 79.2 77.8 79.1 76.8 79.8 73.5 69.1 66.5 4.3 79.9 71.1 75.6 24.6 64.7
lora 81.7 46.0 80.0 77.9 76.9 68.7 77.8 66.9 67.9 66.6 2.5 76.4 65.7 76.8 21.5 62.3
compacter 76.1 38.8 75.5 75.5 74.8 73.8 74.8 62.7 58.7 60.2 1.2 75.9 65.5 69.1 12.2 58.5
Adapter drop 82.6 48.0 82.0 78.5 78.7 75.0 79.8 68.0 69.4 68.1 1.0 80.0 75.0 76.4 24.0 64.6
FT 82.8 49.3 81.6 79.1 76.6 77.7 81.1 70.6 70.9 66.9 0.4 78.3 60.7 77.7 23.1 63.9

Table 29: Results on WikiANN task with XLM-R Large model, metric: F1 score

Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 81.0 44.4 76.0 73.6 74.3 71.6 76.1 70.1 61.7 69.3 1.5 75.8 65.5 68.9 25.2 61.0
Bapna 79.9 41.7 73.2 72.3 73.0 73.7 74.9 62.9 59.2 67.6 2.0 72.6 56.2 62.7 23.6 58.3
houlsby parallel 80.5 44.7 75.8 73.3 73.8 67.7 74.7 66.4 62.1 66.7 1.8 74.0 57.5 64.8 26.0 59.2
Bapna parallel 80.8 42.1 74.3 72.4 70.6 70.3 74.3 62.0 61.1 61.7 1.0 71.3 51.3 62.6 24.4 57.1
prefixtuning 79.0 46.5 75.9 70.0 70.6 72.8 74.8 62.4 59.7 62.3 1.1 70.8 64.2 67.4 20.2 58.5
lora 78.6 42.8 74.6 71.2 70.7 71.7 74.1 62.4 57.8 67.0 2.9 70.6 63.0 68.0 23.7 58.6
compacter 72.3 42.0 72.9 70.2 68.3 61.6 67.6 59.9 54.4 62.8 0.7 69.0 56.8 63.5 21.6 55.1
Adapter drop 81.1 45.7 76.8 73.8 74.5 69.2 74.7 66.1 62.4 66.0 1.9 74.8 65.7 67.4 27.1 60.5
FT 82.3 48.5 77.0 73.3 74.7 75.3 75.7 67.7 63.0 69.2 3.8 76.6 64.7 69.8 24.1 61.7

Table 30: Results on WikiANN task with XLM-R Base model, metric: F1 score

Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 85.9 75.0 80.0 80.4 78.8 81.2 80.0 73.4 76.8 69.7 74.1 76.2 68.3 76.8 75.4 76.2
Bapna 86.4 75.5 80.3 81.0 79.2 81.2 80.6 73.8 77.8 69.7 74.9 76.3 70.4 77.1 76.3 76.7
houlsby parallel 87.9 77.7 82.3 82.6 80.9 83.7 82.3 77.1 79.6 71.2 77.0 78.3 72.1 78.5 78.8 78.7
Bapna parallel 88.0 78.4 82.9 82.7 81.2 84.0 82.7 76.1 79.5 71.3 76.4 78.4 72.2 78.7 78.1 78.8
prefixtuning 88.2 78.4 82.3 81.6 81.6 83.3 82.7 76.0 79.6 71.1 77.3 78.5 72.6 78.9 78.3 78.7
lora 85.6 75.3 80.8 80.5 79.7 81.7 80.9 74.5 78.5 70.0 75.1 76.9 70.1 77.0 76.3 76.9
compacter 85.6 74.2 80.2 80.5 78.9 80.7 80.5 74.7 77.3 69.7 74.9 75.9 69.7 76.5 76.4 76.4
Adapter drop 88.0 77.7 82.8 82.5 82.1 84.0 82.6 76.1 80.1 72.2 76.7 78.8 71.3 79.0 77.6 78.8
FT 87.3 76.1 81.9 80.5 79.5 82.3 81.7 73.9 79.5 65.5 75.7 76.0 68.7 78.4 78.4 77.0

Table 31: Results on XNLI task with XLM-R Large model, metric: Accuracy
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Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 82.7 70.9 77.1 76.3 74.7 77.9 77.9 68.6 74.3 64.5 71.1 71.8 65.5 73.4 72.5 72.6
Bapna 81.3 68.8 75.3 74.2 73.4 76.7 75.8 67.6 73.5 64.0 69.7 71.2 64.0 72.8 71.2 71.3
houlsby parallel 83.5 70.3 77.0 75.9 74.8 78.0 77.7 69.6 74.7 65.1 71.3 71.7 65.4 74.8 73.1 72.8
Bapna parallel 80.9 68.0 74.7 73.2 72.1 76.2 75.0 67.2 72.4 63.2 68.1 70.1 62.3 71.5 69.8 70.3
prefixtuning 79.5 68.7 73.7 72.6 71.7 74.1 74.2 66.3 71.3 62.9 69.5 69.1 62.9 72.0 70.1 69.9
lora 79.7 68.4 75.0 73.6 72.2 75.3 74.5 66.6 72.2 63.6 68.1 70.9 63.6 71.4 71.3 70.5
compacter 76.4 64.1 70.7 70.6 69.4 72.8 71.8 61.7 70.0 60.4 63.4 67.4 59.0 68.1 66.5 66.8
Adapter drop 80.3 68.1 74.4 73.6 71.1 75.9 75.3 67.2 72.1 63.3 68.9 69.9 62.1 71.7 70.0 70.2
FT 83.1 71.3 78.0 76.6 75.3 78.6 76.9 71.3 75.4 64.0 73.0 73.0 67.5 75.6 74.7 73.7

Table 32: Results on XNLI task with XLM-R Base model, metric: Accuracy

Method en ar de el es hi ro ru th tr vi zh Avg.XL

houlsby 88.2 77.3 81.2 80.3 83.3 77.0 85.0 80.8 74.3 75.2 80.0 70.1 78.6
Bapna 87.4 75.7 79.9 80.5 82.6 75.6 84.1 80.7 75.6 73.9 79.8 69.7 78.0
houlsby parallel 88.0 75.3 81.4 80.4 81.9 76.2 84.2 79.9 74.2 74.2 79.2 68.7 77.8
Bapna parallel 87.7 75.2 80.4 80.4 82.0 75.6 84.1 79.9 73.7 73.7 79.4 69.4 77.6
prefixtuning 88.3 75.4 81.5 80.5 82.3 75.6 83.0 79.3 74.5 73.9 78.6 68.8 77.6
lora 86.9 75.8 80.6 78.5 81.2 75.0 82.5 79.1 75.2 72.7 77.9 69.4 77.1
compacter 85.0 73.7 77.7 77.6 79.5 74.7 80.9 78.3 70.8 70.5 76.9 68.2 75.3
Adapter drop 88.0 76.1 81.3 81.1 83.2 76.7 85.1 80.7 74.3 74.6 80.3 69.6 78.5
FT 88.0 76.3 80.7 80.3 81.8 76.2 84.2 79.6 75.0 74.4 79.8 69.7 78.0

Table 33: Results on Squad, XQAUD task with XLM-R Large model, metric: F1 score

Method en ar de el es hi ro ru th tr vi zh Avg.XL

houlsby 84.1 67.0 75.0 73.3 76.8 69.8 79.0 72.6 68.3 66.6 73.8 64.6 71.5
Bapna 83.2 64.5 73.6 71.0 75.1 66.1 77.5 72.6 65.6 66.3 72.9 63.4 69.9
houlsby parallel 83.7 65.9 74.6 72.0 75.5 66.5 77.9 72.8 64.4 66.5 71.9 62.9 70.1
Bapna parallel 82.8 64.4 73.2 72.6 74.0 65.4 77.4 73.0 65.0 65.4 72.0 63.9 69.7
prefixtuning 81.7 63.1 71.3 70.0 72.1 64.4 75.3 70.2 62.6 63.5 69.9 62.1 67.7
lora 81.7 61.4 71.8 71.2 72.9 65.4 76.7 71.9 63.1 65.4 71.3 61.0 68.4
compacter 76.6 60.7 67.0 64.9 68.8 62.4 70.3 66.8 58.6 59.5 68.9 57.3 64.1
Adapter drop 82.7 66.6 74.3 73.6 75.3 70.2 77.0 74.6 68.2 66.8 74.5 62.8 71.3
FT 83.3 66.5 74.6 72.2 75.1 66.8 77.5 73.4 66.8 67.5 73.2 65.4 70.8

Table 34: Results on SQUAD, XQUAD task with XLM-R Base model, metric: F1 score
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