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Abstract

Adapters have been positioned as a parameter-
efficient fine-tuning (PEFT) approach. How-
ever, adapters have not been sufficiently analyzed
to understand if PEFT translates to benefits in
training/deployment efficiency and maintainabil-
ity/extensibility. Through extensive experiments
on many adapters, tasks, and languages in su-
pervised and cross-lingual zero-shot settings, we
clearly show that for Natural Language Under-
standing (NLU) tasks, the parameter efficiency
in adapters does not translate to efficiency gains
compared to full fine-tuning of models. More pre-
cisely, adapters are relatively expensive to train
and have slightly higher deployment latency. Fur-
thermore, the maintainability/extensibility ben-
efits of adapters can be achieved with simpler
approaches like multi-task training via full fine-
tuning, which also provide relatively faster train-
ing times. We, therefore, recommend that for
moderately sized models for NLU tasks, practi-
tioners should rely on full fine-tuning or multi-
task training rather than using adapters. Our
code is available at https://github.com/
Al4Bharat/adapter—-efficiency.

1. Introduction

Pretraining followed by fine-tuning (Devlin et al., 2019;
Liu et al., 2019b) is the most commonly used paradigm in
NLP, but as pre-trained models grow in size, fine-tuning the
entire model (full fine-tuning) becomes costly. Maintaining
a copy of the model for each task is costly, and parameter
efficient fine-tuning (PEFT) with adapters (Houlsby et al.,
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Figure 1: A comparison of 10 different adapters with simpler
baselines like full fine-tuning (FT) and multi-task learning
(MTL). In the top figure the y-axis shows the zero-shot
performance averaged across all tasks and all languages.
In the bottom figure, the y-axis shows the En performance
averaged across all tasks. The abbreviations used are-‘H’
- Houlsby, ‘B’ - Bapna, ‘HP’ - Houlsby Parallel!, ‘BP’-
Bapna Parallel, ‘PT’- Prefix Tuning, ‘L’- LoRA, ‘C’ - Com-
pacter, ‘AD’- Adapter Drop, ‘AF’ - Adapter Fusion, ‘ME’ -
MADX-en, ‘MH’ - MADX-hi, ‘FT’ - Fine-tuning, ‘MTL’-
Multi-task-learning.

2019) has become an active area of research that focuses
on fine-tuning a minimal number of parameters while still
achieving comparable performance as of full fine-tuning.

Efficiency in the adapters parameter alone is not sufficient
to assess overall efficiency. Several other factors, including
the number of parameters and convergence steps, signifi-
cantly impact latency and compute efficiency. Often, the
compute efficiency of adapters in handling multiple tasks is
overlooked, emphasizing the importance of addressing the
following question: What are adapters really efficient at?

We recommend that to answer this question one should look

"HP is overlapped by PT in this figure.
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beyond the number of parameters and consider other indi-
cators of efficiency, such as, (i) training time and compute
(FLOs 3.4), (ii) deployability via inference latency (iii) and
maintainability. Existing studies have looked at one or more
of the above metrics but a thorough study comparing mul-
tiple popular adapters on different tasks across languages,
especially in a cross-lingual setting, is missing. Compar-
ing against multi-task learning (MTL)(Liu et al., 2019a) is
crucial as it serves as a simpler baseline, yet most adapter
works lack this comparison, hindering a comprehensive
understanding of adapter utility.

In this work, we try to build a clearer picture by experiment-
ing with 10 different adapters and 6 Natural Language Un-
derstanding (NLU) tasks spanning 11 Indian languages. Our
focus is on zero-shot transfer, fine-tuning models solely on
English training data. Our work also lays down a framework
for evaluating adapters along multiple dimensions. Our
key finding (Figure 1) is that while adapters are parameter-
efficient, they are not as good as full fine-tuning and multi-
task learning, where the latter two have better training and
deployment efficiency.

2. Related Work

Parameter Efficient Fine-Tuning (PEFT): Zoph et al.
(2016) pioneered PEFT, showcasing its benefits in reduc-
ing memory requirements and preventing overfitting. This
led to the development of Adapters (Houlsby et al., 2019;
Bapna & Firat, 2019; Hu et al., 2022), Learnable prompts
(Li & Liang, 2021), compacting methods focused on re-
ducing the size of adapters such as compacters (Mahabadi
etal., 2021) and IA3 (Liu et al., 2022) and transfer-focused
approaches like AdapterFusion (Pfeiffer et al., 2021), and
MAD-X (Pfeiffer et al., 2020b). However, These works pri-
oritize parameter efficiency while overlooking training time,
deployability, maintainability, and cross-lingual transfer ef-
fectiveness. AdapterDrop (Riicklé et al., 2021) proposes
to reduce adapter training time but ignores other aforemen-
tioned aspects, a gap which we fill in this paper. Chen et al.
(2022) demonstrated the instability of PEFT across weight
initialization, training time, and training data order, while
comparing its performance to fine-tuning on various dataset
sizes. In addition to focusing on the observation that fine-
tuning cannot be fully replaced by PEFT, our study has also
demonstrated that multi-task learning can be an alternative
to the PEFT method.

Multilingual Pre-trained Models: The introduction of
BERT (Devlin et al., 2019) revolutionized downstream NLP
tasks, followed by multilingual models like XLM-R (Con-
neau et al., 2020), and language group specific models In-
dicBERT (Doddapaneni et al., 2022; Kakwani et al., 2020),
IndoBERT (Koto et al., 2020), and AfriBerta (Ogueji et al.,
2021), etc.

Multi-Task Learning (MTL): MTL focuses on fully fine-
tuning one model for multiple tasks (Caruana, 1993) but
has only recently seen significant adoption (Wei et al., 2021;
Muennighoff et al., 2022). MTL benefits from cross-task
transfer, which we also analyzed in this paper (§4). A gen-
eral overview of MTL in deep learning can be found in
Ruder (2017) and Zhang et al. (2022).

3. Experimental Setup

We now describe the fine-tuning approaches, tasks, datasets,
languages, pre-trained models, and training settings.

3.1. Fine-Tuning Methodologies

We experimented with the following approaches Full Fine-
Tuning (Devlin et al., 2019), Multi-Task-Learning(MTL)
(Liu et al., 2019a) which is similar to full fine-tuning, except
that it uses a shared encoder for all tasks, with each task
having a task-specific “head”, Houlsby Adapter (Houlsby
et al., 2019), Bapna Adapter (Bapna & Firat, 2019), LoRA
(Hu et al., 2022), Compacter (Mahabadi et al., 2021), Prefix-
Tuning (Li & Liang, 2021), MAD-X (Pfeiffer et al., 2020b),
AdapterFusion (Pfeiffer et al., 2021), AdapterDrop (Riicklé
et al., 2021). While LoRA and prefix-tuning are not origi-
nally considered as adapters, He et al. (2022) have shown
that they can be reformulated as adapters and thus all PEFT
approaches we study in this paper are essentially adapters.

3.2. Tasks, Datasets and Languages

We focus on 6 cross-lingual natural language understanding
tasks from the IndicXTREME benchmark (Doddapaneni
et al., 2022) and XTREME benchmark (Hu et al., 2020b).
We give an overview in Appendix Table 5, our training
and validation are conducted on English data, while eval-
uation includes English test sets (supervised/in-language)
and Indian language test sets in IndicXTREME (zero-shot).
For specific information on tasks and languages, please see
Appendix A.1.

3.3. Pre-Trained Models

We mainly experiment with IndicBERT v2 (Doddapaneni
et al., 2022). We also perform ablations with the BASE and
LARGE versions of XLM-R (Conneau et al., 2020) on the
chosen subset of languages.

3.4. Training Details

We have reported FLOs, which represent the total number
of floating-point operations, to assess the computational
efficiency when comparing different methods. For training
details please refer to the Appendix A.2
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Table 1: Comparison on in-language (train and test on English) performance of FT and adapters for IndicBERT. We report
F1 scores for CONLL-2003 & SQuAD, and accuracy for the other tasks. The abbreviation "AMR" refers to the Amazon
Multilingual Review Dataset. The last three columns show the percent increase in FLOs, inference time, and the number of
fine-tuned parameters compared to full fine-tuning respectively. Here, "best method # " reports the best performing row for
the respective task and "best adapter # " reports the best performing adapter for the respective task.

% T
CoNLL % 1 % 1

# Method AMR XNLI COPA PAWS 2003 SQuAD Avg. FLOs Int:izll:::ce #Param.
1 Houlsby 940 824 615 923 91.5 81.7 83.9] 311.7 44.0 0.9
2 Bapna 933 819 599 914 91.0 80.9 83.1| 264.7 28.3 0.5
3 Houlsby Parallel | 93.1 825 614 90.6 92.2 82.0 83.6| 185.1 41.5 0.9
4 Bapna Parallel 93.1 827 605 913 91.1 81.4 83.4 1 199.9 21.2 0.5
5 Prefix Tuning 93.8 826 6l.1 92.2 91.5 81.0 83.7| 186.5 33.8 3.8
6 LoRA 934 803 574 902 90.4 79.5 81.8| 226.2 23.1 0.3
7 Compacter 928 748 508 727 89.2 73.0 75.5| 3714 100.5 0.2
8 Adapter Drop 927 806 523 750 90.4 707  77.0| 97.6 27.5 0.7
9 Adapter Fusion | 93.2 799 599 922 92.0 81.9 83.2| 4925 178.1 7.9
10 MAD-X -en 93.6 821 569 910 91.5 81.1 82.7[1042.5 56.6 1.1
11 MAD-X - hi 93.0 793 584 90.6 91.1 79.4  82.0|1025.7 56.6 1.1

Best Adapter # | 1 4 1 1 3 3 1] 8 2 7
12 FT 938 830 623 93.0 92.8 82.1 845 - - -
13 MTL 935 809 614 915 91.0 82.1 834 202 0.0 0.0

Best method # \ 1 12 12 12 12 12,13 12 \ 12 12,13 12,13

4. Results

Tables 1 and 2 respectively show the in-language (train and
test on English) and cross-lingual (train on English and
test on Indic) results averaged across Indic languages. See
Appendix A.3 for additional results.

Adapters are parameter-efficient, but no single adapter
is best: It is clear that there is no single adapter that per-
forms best in all the tasks. This observation holds true
in both in-language and cross-lingual settings, where one
method performs best in the in-language setting but might
not be the best in the cross-lingual setting. Compacter and
LORA consistently give the lowest performance, possibly
due to the small number of parameters they fine-tune (they
add only 0.2% - 0.3% tunable parameters to the model). On
the other hand, Adapter Fusion, Prefix Tuning, and MADX
add between 1.1% to 7.9% tunable parameters but still per-
form poorly as compared to the Houlsby adapter, which
only adds 0.9% parameters. In general, we recommend the
Houlsby adapter as it tends to perform well across multiple
tasks and languages on average.

Full fine-tuning is the fastest by a significant margin. While
adapters, although parameter efficient, consume more FLOs
to achieve comparable or worse performance comparable
to full fine-tuning. AdapterDrop (row 8 in Table 1) shows
the least increase in FLOs (97.6%) but suffers from reduced
performance, while MAD-X (rows 10, 11) is the costliest
(1042.5%-1025.7%) but still under performs compared to

full fine-tuning. The best performing adapter (Houlsby, row
1) is also computationally expensive. In the Appendix, we
provide the percentage increases in FLOs compared to full
fine-tuning (Table 7), as well as task-specific convergence
details and absolute FLOs (Tables 8).

MTL is a cost-efficient alternative to adapters, with only
20% more FLOs than full fine-tuning while achieving perfor-
mance comparable to the best adapter approaches (Houlsby -
83.9% & MTL - 83.4%). Further, MTL exhibits the best av-
erage cross-lingual performance with respect to adapters as
well as full fine-tuning. It should be noted that MTL signifi-
cantly benefits the paraphrasing task via cross-task transfer,
exhibiting a performance increase of 16.9% accuracy over
full fine-tuning in a cross-lingual setting (experiments in
further sections show that paraphrasing benefits from the
NLI task). Thus, if the full set of tasks to be supported is
known a priori, MTL is simpler and equivalent to adapters
in downstream performance, while being more cost-efficient.
Sanh et al. (2022) show that MTL enables zero-shot task
generalization, further enhancing the attractiveness of MTL
over adapters.

Inference overhead of adapters is shown in Table 1 for dif-
ferent approaches compared to full fine-tuning. MTL does
not add any overhead over full fine-tuning since no new pa-
rameters are added to the model. On the other hand, adapters
have a non-trivial overhead in inference time due to addi-
tional parameters. The Bapna parallel and LoRA methods
show least increase in inference time (of 21.2% and 23.1%,
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Table 2: Comparison on cross-lingual (train on English test on Indic) performance of FT and adapters for IndicBERT. We
report F1 scores for Naamapadam & IndicQA, and accuracy for the other tasks. Here, "best method # " reports the best
performing row for the respective task and "best adapter # " reports the best performing adapter for the respective task.

Indic Indic  Indic Indic Naama- .

#  Method Sentiment XNLI COPA XPara padam IndicQA  Avg.
1 Houlsby 89.7 72.9 64.1 57.4 65.5 50.0 66.6
2  Bapna 89.0 72.1 60.9 559 65.2 48.6 65.3
3 Houlsby Parallel 90.3 72.4 63.7 55.8 66.7 49.2 66.4
4 Bapna Parallel 89.9 72.5 614 56.3 64.7 48.9 65.6
5  Prefix Tuning 88.2 73.5 65.3 55.8 67.1 48.4 66.4
6 Lora 85.7 70.7 60.7 55.0 63.3 474 63.8
7  Compacter 88.5 69.9 63.2 50.8 61.3 46.4 63.4
8  Adapter Drop 87.8 72.0 61.8 529 64.4 444 63.9
9  Adapter Fusion 89.3 70.8 59.3 56.3 66.9 48.7 65.2
10 MAD-X-en 89.6 724 62.6 559 66.0 47.6 65.7
11 MAD-X - hi 88.6 70.8 63.1 56.5 64.1 474 65.1

Best Adapter # 3 5 5 1 5 1 1
12 FT 90.9 72.9 62.5 57.3 66.7 49.3 66.6
13 MTL 90.2 70.7 65.3 74.3 65.3 45.5 68.6

Best method # 12 5 5,13 13 5 1 13

respectively), since they are parallel adapters. Bapna paral-
lel has lesser inference time than Houlsby parallel as it has
almost half the number of parameters. The adapter fusion
method has the highest inference time as it combines all six
task adapters and has an additional fused layer. It also has
the maximum number of additional parameters. Although
Compacter has the least number of parameters, its inference
time is 100.5% more than fine-tuning because the compact
low-rank hypercomplex weight matrices are converted to
high-rank ones via the Kronecker product. These high-rank
matrices are actually used during the forward pass and this
two-step process slows down inferencing?.

Maintainability and Extensibility The primary advan-
tage of adapters is the ability to ‘plug-and-play’ modules,
thus making it easy to extend a pre-trained model to new
tasks without having to make a copy for the new task or
impacting performance on other tasks. This reduces mem-
ory requirements at inference time and makes the system
more modular, maintainable and extensible. We have al-
ready seen that MTL models offer the same performance
with no additional parameters and at a lower computational
cost compared to adapters. To see if they can also be easily
extensible, we experiment with the following setup.

We hold out one task (the target task) and fine-tune the pre-
trained model on the remaining tasks (resulting in model
MTL_,). Next, we continue fine-tuning the model on the

The current implementation does not pre-compute the high-
rank matrices and thus there is a possibility of reducing the in-
ference time of Compacter, although it will not be faster than the
Houlsby adapter to which it is architecturally similar.

target task as well as 10% data from the tasks the model
has already seen. A sample from the older tasks is included
in the fine-tuning mix to avoid catastrophic forgetting (Mc-
Closkey & Cohen, 1989; French, 1999). For comparison, we
also perform continued fine-tuning on the target task only
(model: MTL ;) as well as fine-tuning on all available
tasks (model: MTL).

The results of these experiments are shown in Table 3
for cross-lingual settings (and Table 9 in Appendix for in-
language settings). We see that the target task’s performance
is comparable to both full fine-tuning and MTL with all
tasks. Thus, new tasks can be added to an existing MTL
model while retaining the same performance as full FT
or MTL. Moreover, we see that the MTL_4;4 54 model
also retains performance for the older tasks. We also see
that if sample data from the already supported tasks is not
used, the model suffers from catastrophic forgetting (model:
MTL_ ;). Thus, a simple adaptation of MTL can support
multiple tasks in an extensible manner.

The fine-tuning computational cost for MTL  ;4¢ 1 14 is the
sum of computational costs for (a) fine-tuning MTL_; and
(b) continued fine-tuning required to extend model for the
target task. In Table 3, column "%71FLOs" reports the per-
centage increase in total FLOs(sum of (a) and (b)) with
respect to total fine-tuning FLOs(i.e. Fine-tuning FLOs sum
over all task). As observed, holding out sentiment task, and
then continual learning of sentiment task along with 10%
data of existing tasks takes only 2.3% more relative FLOs.
The maximum cost is taken by NER task with 68.2% more
relative FLOs. Holding out one task and then adding the
held out task on an average takes 27.4% more relative FLOs,
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Table 3: This table reports cross-lingual (train on English test on Indic) performance for maintainability of MTL. "Target
task" is held out task i.e. pre-trained IndicBERT model is fine-tuned on the remaining 5 task representing MTL_; model.
MTL ;4¢4014 represents continual fine-tuning of the MTL_{ model on the target task dataset and 10% of the existing task
dataset. MTL_ ;4 represents continual fine-tuning of the MTL_; model on the target task dataset. "Avg -1 " reports the
cross-lingual performance averaged over the tasks included in MTL_; step. "Avg" reports the cross-lingual performance
averaged over all 6 task. Here, column "%1FLOs" reports the relative percent increase in the total computation cost for
adding all 6 task to the model with respect to the total computation cost of fine-tuning. Here, text bold indicates the best
value in the column and colored cell represent MTL is performing better than the Best Adapter method.

Target Indic Indic Indic Indic Naama- . % 1
Task Step Sentiment XNLI COPA XPara padam IndicQA Avg-1 Avg FLOs
Baseline Full FT 90.9 729 625 573  66.7 49.3 - 666 -
MTL 88.5 712 649 740  65.8 45.4 - 683 202
Best Adapter Houlsby 89.7 729 64.1 574 655 50.0 - 66.6 311.7
Sentiment ~ MTL_; - 715 648 748 65.1 46.9 646 - -
MTLtgt401a  90.2 70.8 619 729  66.1 48.8 64.1 684 23
MTL ¢4t 89.1 549 522 673 404 349 50.0 565 1.7
XNLI MTL_, 90.5 - 67.8 567 63.6 474 652 - -
MTLtgt401a 90.8 712 63.6 @ 68.7 59.6 48.3 66.2 67.0 20.5
MTL ¢4t 86.0 70.5 645 733  56.2 15.1 59.0 609 12.1
COPA MTL_, 88.8 72.3 - 73.7 650 484 69.7 - -
MTL ttgt+01a  88.3 69.7  65.6 748 654 43.9 684 679 153
MTL 1 ¢g¢ 89.5 664  66.0 755 627 464 68.1 67.7 9.3
Paraphrase = MTL_; 86.0 70.2  64.4 - 65.0 45.0 66.1 - -
MTLtgt4+01a 874 69.8 642 778 65.0 454 66.4 68.3 324
MTL ¢4t 81.1 66.0 644 73.1 30.1 42.5 56.8 59.5 24.1
NER MTL_, 88.0 725 1 657 713 - 47.7 703 - -
MTL gt 4ota  86.7 712 644 763 652 45.1 68.7 68.1 68.2
MTL gt 83.8 679 623 573 | 68.5 39.8 622 632 59.8
QA MTL_, 89.2 723 649 749 654 - 733 - -
MTL; igt401a 859 71.1 639 757 623 46.8 71.8 67.6 25.8
MTL gt 84.9 682 659 669 237 46.6 619 594 212

while adding all tasks at once takes 20.2% more relative
FLOs. Nonetheless, this is still more cost-effective than the
best-performing adapter methods. For instance, the Houlsby
adapter requires around 311% more computation compared
to full fine-tuning. Thus, we see maintainability of MTL
cost-effective. However, average cross-lingual performance
for MTL maintainability (as shown in Table 3), is slightly
inflated due to the inclusion of the paraphrase task. If the
average MTL performance is calculated without the para-
phrase task (i.e. only considering the remaining five tasks),
a slight decrease in performance is observed.

Effect of model size To further study the effect of model
size on different adapters, we experiment with two different
pre-trained models trained on the same pretraining data
but differing only in model size. Specifically, we compare
the XLMR-base and XLMR-large models (Conneau et al.,
2020) which have 270M and 550M parameters, respectively.
We evaluate the adapters on the XNLI, XQuAD and NER
tasks from the XTREME benchmark (Hu et al., 2020a).

We use the English dataset for training and test the cross-
lingual zero-shot performance on 14 languages for XNLI
and WikiANN and 11 languages for XQuAD. The results are
shown in Table 4. We can see that as the model size increase,
the adaptation time relative to full fine-tuning time reduces.
Thus, for large language models, we might see a trend of
adapters being increasingly cost-efficient. In fact, recent
work on large language models have shown adapters to be
promising (Yong et al., 2022). However, larger models still
need heavy compute and deploying them is still challenging.
In this case, there is a line of work that distills LLMs which
can then be fine-tuned (Ganesan et al., 2021). Given that
adapters do not have much compute efficiency in smaller
models, full fine-tuning or MTL are excellent contenders.

Key takeaway Fig | shows a unified summary of task per-
formance and fine-tuning compute required for the various
approaches discussed in the paper. Summarizing observa-
tions previously discussed, we see that MTL outperforms
or is comparable to all adapters in in-language and cross-
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Table 4: Comparison on cross-lingual performance of FT and adapters for XLMR-Base and XLMR-Large model. "Avg."
reports the average cross-lingual perfromance across all task. "%1FLOs" reports the relative increase in FLOs with respect

to fine-tuning.

XL | XLMR-Base | XLMR-Large

Method ‘ NER XNLI QA Avg. %1FLOs ‘ NER XNLI QA Avg. %1FLOs
Houlsby 61.0 72.6 72.5 68.7 484.3 64.6 76.2 78.6 73.1 200.5
Bapna 58.3 71.3 71.0 66.8 547.1 64.3 76.7 78.0 73.0 139.9
Houlsby parallel | 59.2 72.8 712  67.8 197.0 65.3 78.7 77.8 739 143.3
Bapna parallel 57.1 70.3 69.7 65.7 409.1 63.1 78.8 776 732 168.6
Prefixtuning 58.5 69.9 68.8 65.7 256.5 64.7 78.7 77.6  73.7 287.3
LORA 58.6 70.5 684 65.8 734.7 62.3 76.9 77.1 721 270.0
Compacter 55.1 66.8 64.1 62.0 805.3 58.5 76.4 753  70.1 490.1
Adapter drop 60.5 70.2 713 673 345.1 64.6 78.8 78.5 74.0 214.1
FT 61.7 73.7 70.8  68.7 - 63.9 77.0 78.0 73.0 -

language zero-shot settings (particularly for smaller models).
Hence, we recommend that MTL should be considered as
an alternative to adapters in constrained scenarios where rel-
atively smaller models are preferred, computational budgets
are limited and extensibility is important.

5. Conclusion

In this paper, we have conducted a comprehensive analysis
of adapters across different languages and tasks to evaluate
their advantages in terms of training/deployment efficiency
and maintainability/extensibility. We compared adapters
with simpler baseline methods, including fine-tuning and
multi-task learning, in supervised/in-language as well as
zero-shot cross-lingual settings, and found that these sim-
pler methods are more computationally efficient and have
better deployment efficiency, while achieving the compa-
rable performance as that of adapters. Additionally, we
conducted extensive experiments to show that multi-task
learning is a relatively more cost-effective alternative to the
adapters in terms of maintainability, as it allows the model
to be extended for new tasks at a lower cost than adapters.
Therefore, we suggest that simpler baselines be used for
moderately sized models, as they are more efficient than
adapters.
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Limitations

We identify the following limitations of our work:

* Our study is limited to NLU and some of our observa-
tions might not apply in Natural Language Generation
(NLG) settings. While for NLU cross-lingual transfer
through full fine-tuning is as effective as adapters, in
NLG full fine-tuning for zero-shot cross-lingual NLG
is unreliable due to the risk of catastrophic forgetting.
Therefore, adapters might be more important for NLG
(Vu et al., 2022).

* We primarily focus on smaller pre-trained models be-
cause larger models require significant computing re-
sources that not everyone may have access to, and
therefore, our findings may not be applicable to larger
models with billions of parameters. However, active
research on compressing pre-trained models indicates
that fine-tuning compact pre-trained models will re-
main a significant area of research.

e Our analysis focus on 6 NLU tasks, which is rela-
tively fewer compared to the total number of tasks in
benchmarks such as BIG-Bench (bench authors, 2023).
Although focusing on a larger number of tasks will
increase the credibility of our studies, our focus on
cross-lingual performance means that we are currently
limited by the availability of benchmarking data in
other languages for these large number of tasks.
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Table 5: A summary of the tasks and datasets used. ITestl denotes the size of Test Data. |Trainl is the size of English training
sets. [Lang| denotes the number of languages for which we have evaluated its cross-lingual performance.

Task Category Train Data Test Data |Trainl |Testl ILangl Metric
Amazon Multi Reviews  IndicSentiment 160k 1000 11 Acc.
g(;:;::;iccea tion MultiNLI IndicXNLI 392k 5000 11 Acc.
SociallQA IndicCOPA 33k 500 11 Acc.
PAWS IndicParaphrase 49k 2002 10 Acc.
Token Classification = CoNLL-2003 Naamapadam 11k 607-1080 11 F1
Question Answering SQuAD IndicQA 87k 1517-2017 11 Fl1
A. Appendices

A.1. Details of Tasks and Languages

Sentence Classification tasks are Natural Language Inference (NLI), sentiment classification, paraphrase detection and
Choice Of Plausible Alternatives (COPA). For NLI we use the MultiNLI (Williams et al., 2018) dataset for training and test
performance on IndicXNLI for 11 languages. For sentiment classification, we train on the Amazon Multilingual Reviews
(AMR) dataset (Keung et al., 2020) and test on IndicSentiment for 11 languages. For paraphrase detection, we train on the
PAWS-X (Yang et al., 2019) dataset and test on IndicXParaphrase for 10 languages. For the COPA task, which involves
selecting one of two alternatives that more plausibly has a causal relation with a given premise, we train on SociallQA (Sap
et al., 2019) and test on IndicCOPA for 11 languages.

Token Classification task uses the CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) dataset for training and Naama-
padam (Mhaske et al., 2022) for testing for 11 languages.

Question Answering We use the SQuAD (Rajpurkar et al., 2016) data for training and test on the IndicQA benchmark
(Doddapaneni et al., 2022) available in 11 Indian languages.

A.2. training details

All models are trained with Adapter-hub (Pfeiffer et al., 2020a). All experiments are performed on Nvidia A100-SXM4
40GB GPUs and the results are reported by doing single run. We use the recommended/default settings in Adapter-hub but
wherever possible, we performed hyperparameter tuning on the development set to determine optimal hyperparameters.
Table 6 gives the search space and best performing hyperparameters for Houlsby, Bapna, LoRA and Prefix-Tuning.

For MAD-X, we have used the default configuration as in Adapter-hub for both language and task adapters, as shown in
Table 6. For Adapter-fusion we have trained each task adapter in ST-A (single task adapter) style (Pfeiffer et al., 2021).

For all the tasks using the IndicBERT model, we train models for a maximum of 50 epochs with an early stopping patience
of 3 epochs. We use 2,000 warmup steps for all tasks and settings, except for MTL, where we use 20,000 warmup steps due
to the increased size of the training data. For a fair comparison across all settings, we use a batch size of 32 examples with a
learning rate of 3e-5 and weight decay of 0.1. For MTL, we found that a weight decay of 0.01 gave the best results. For all
the experiments FLOs reported are provided by the HF transformers library (Wolf et al., 2020).

Pretraining MAD-X language adapter is done using the IndicCorp v2 (Doddapaneni et al., 2022) dataset with MLM
objective for the 11 Indic languages and English with 6.5M sentences sampled per language.

A.3. Task-level sensitivity

The efficiency of training is also affected by the task, as shown in Table 7, where the QA task requires relatively more FLOs

compared to the paraphrase task. However, across all tasks the trend remains the same.
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Table 6: This table reports the optimal reduction factor (r), prefix length (1) and LoRA « we have set for adapters. For those
not listed in this table, we have used the default AdapterHub configurations.

Method Hyperparameter Search Space
Houlsby r =16 r=2438,16
Bapna r =16 r=24,816
LoRA r=8 a=16 r=2,4,8,16
Prefix-Tuning =30 [ =10, 20, 30, 40, 50

Table 7: This table reports percentage increase of FLOs for several adapters across tasks with respect to full fine-tuning
on IndicBert model. Column "Total" reports the percentage increase in total FLOs for each method with respect to full
fine-tuning (FLOs are added across all tasks). Since, for Adapter Fusion and MAD-X, task adapters and language adapters,
respectively, are shared across tasks, training FLOs are also shared across tasks. Thus, for these two approaches, FLOs
cannot be reported accurately for individual tasks.

Method Sentiment XNLI COPA Paraphrase NER QA Total
Houlsby 249.8 208.5  376.6 88.5 19.8  599.0 311.7
Bapna 185.2 246.5  321.0 43.6 777  456.7 2647
Houlsby Parallel 105.3 208.5 2742 -5.8 88.0 2750 185.1
Bapna Parallel 62.9 2054  185.7 52.6 269 3894 199.9
Prefix Tuning 190.9 2372 1794 96.2 774  198.1 186.5
Lora 2232 203.1 168.0 93.6 143.6 4029 2262
Compacter 363.9 121.7 6509 25.9 2524 7356 3714
Adapter Drop 1243 225.6  136.4 -40.6 19.8 1.9 97.6

A.4. MTL maintainability

MTL is maintainable as discussed in sec 4, as the MTL model can be extended to new tasks by continually learning with
the new task’s data along with 10% of the existing tasks’ data. We analyze the impact of performance and computational
cost by changing the percentage of an existing task for continual learning of new task as presented in Table 10 and 11. We
tested two additional setups: (a) using 5% data from previously seen tasks (MTL_;) instead of 10%, as reported in the
"MTL {¢4¢+0145" ToW and (b) using the minimum of either 10% of the existing task dataset or the new task dataset, reported
in the row "MTL_ gt 4 o1d+min,, "» and similarly, using the minimum of either 5% of the existing task dataset or the new task
dataset, reported in the row "MTL gt 4 o1d+mins - Our findings show that cross-lingual performance is better when using a
higher percentage of the existing task dataset, while in-language performance is better when using a lower percentage of the
existing task dataset. In terms of computational efficiency, using 5% of the existing dataset requires fewer FLOs compared
to using 10%.
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Table 8: The table reports the total FLOS for FT and various adapters on IndicBERT, across each of the tasks. Total
corresponds to the total FLOS summed over all the tasks for a particular fine-tuning method.

Method Sentiment XNLI COPA  Paraphrase NER QA Total
Houlsby 1.8E+17  4.0E+17 3.8E+17 1.5E+17 42E+15 7.3E+17 1.8E+18
Bapna 1.5E+17  4.5E+17 3.3E+17 1.1E+17 6.2E+15 5.8E+17 1.6E+18

Houlsby Parallel 1.1E+17 4.0E+17 3.0E+17 7.4E+16 6.6E+15 3.9E+17 1.3E+18
Bapna Parallel 8.6E+16 39E+17 2.3E+17 1.2E+17 44E+15 5.1E+17 1.3E+18

Prefix Tuning 1.5E+17 4.4E+17 2.2E+17 1.5E+17 6.2E+15 3.1E+17 1.3E+18
Lora 1.7E+17 39E+17 2.1E+17 1.5E+17 8.5E+15 5.2E+17 1.5E+18
Compacter 2.4E+17 29E+17 5.9E+17 9.8E+16 1.2E+16 8. 7E+17 2.1E+18
Adapter Drop 1.2E+17 42E+17 1.9E+17 4.6E+16 4.2E+15 1.1E+17 8.8E+17
FT 5.3E+16 1.3E+17 7.9E+16 7.8E+16 3.5E+15 1.0E+17 4.5E+17
Total 1.3E+18 33E+18 2.5E+18 9.8E+17 5.6E+16 4.1E+18 1.2E+19

Table 9: This table reports in-language (train and test on English) performance for maintainability of MTL. "Target
task"” is held out task i.e. pre-trained IndicBERT model is fine-tuned on the remaining 5 task representing MTL _; model.
MTL ¢4t 4014 represents continual fine-tuning of the MTL_; model on the target task dataset and 10% of the existing task
dataset. MTL ;4 represents continual fine-tuning of the MTL_; model on the target task dataset. "Avg -1 " reports the
in-language performance averaged over the task included in MTL_; step. "Avg" reports the in-language performance
averaged over all 6 task. Here, text bold indicates the best value in the column and colored cell represent MTL is performing
better than the Best Adapter method.

Target Amazon Multi
Task Step Reviews XNLI COPA PAWS CoNLL2003 SQuAD Avg-1 Avg
Baseline Full FT 93.8 83.0 623 930 92.8 82.1 - 84.5
MTL (full) 93.5 809 614 915 91.0 82.1 - 83.4
Best Adapter Houlsby 94.0 824 615 923 91.5 81.7 - 83.9
Sentiment MTL_; - 81.6 = 63.0 915 92.5 82.5 82.2 -
MTL gt +o1a 93.1 79.0 60.7  89.0 91.4 81.3 80.3 824
MTL gt 93.5 586 471 714 78.3 71.7 65.4 70.1
XNLI MTL_, 94.1 - 60.5 915 91.9 82.4 84.1 -
MTL4 tgt401d 92.9 79.0 587 883 87.7 78.6 81.2 809
MTL gt 90.7 79.6 528  56.5 85.4 36.4 64.4  66.9
COPA MTL_, 93.8 81.9 - 91.6 91.0 81.5 88.0 -
MTL {¢gt+01d 93.5 79.0 @ 625 9038 90.9 78.7 86.6 82.6
MTL ¢4t 92.4 73.8 622 878 89.8 79.2 84.6 80.9
Paraphrase =~ MTL_; 93.9 80.1 624 - 91.9 80.9 81.8 -
MTL ¢ 1gt+o1d 93.9 79.8 602  89.7 91.7 80.9 813 827
MTL 44t 92.9 739 598 922 714 73.8 75.5 783
NER MTL_, 94.0 82.1 | 622 927 - 82.6 82.7 -
MTL gt +otd 93.4 80.8 61.0 912 914 81.0 81.5 83.1
MTL ¢t 93.1 74.1 599 745 92.1 71.6 74.6  77.6
QA MTL_, 94.1 81.6 = 629 934 92.0 - 84.8 -
MTL gt +otd 93.5 80.0 59.7 914 89.9 81.2 829 826
MTL gt 92.4 775 61.0 730 63.5 82.5 73.5 75.0
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Table 10: Table reports cross-lingual performance (train on English test on Indic). Row MTL, 41 014,, and
MTL ¢g4i4014, denotes adding 10% and 5% of existing task data combine with new task dataset respectively.
MTL gt +o0ld+min,, denotes combining the existing task dataset size minimum(10% data , target task dataset size) i.e. to
ensure the existing task dataset is less or equal to new task dataset when combined. similarly MTL | ;44 oid+ming denote
combining the existing task dataset size as minimum(5% data , target task dataset size). "Avg -1 " reports the cross-lingual
perfromance averaged over the task included in MTL_; step. "Avg" reports the cross-lingual performance averaged over all
6 task. Here, column "%1FLOs" reports the relative percent increase in the total computation cost for adding all 6 task with
respect to the total computation cost of fine-tuning. Note, we have MTL ;¢4 o1d+min,, and MTL ;g4 4 o1d+mins Only for
NER and COPA dataset, as dataset size for NER and COPA is less. Here, text bold indicates the best value in the column
and colored cell represent MTL is performing better than the Best Adapter method.

Target Indic Indic Indic Indic Naama- . %o 1
Task Step Sentiment XNLI COPA XPara padam 1ndicQA Avg-1 Avg gy
Baseline Full FT 90.9 729 625 573 66.7 493 - 666 -

MTL 88.5 712 649 740 65.8 45.4 - 683 20.2
Best Adapter Houlsby 89.7 729 64.1 574 655 50.0 - 66.6 311.7
Sentiment ~ MTL_; - 715 648 748 65.1 46.9 646 -

MTL ttgt+oldro 90.2 70.8 619 729 66.1 48.8 64.1 684 23

MTL 4 ¢gt401ds 90.5 69.1 623 742 62.2 473 63.0 67.6 -04

MTL 4 ¢g¢ 89.1 549 522 @ 67.3 40.4 349 50.0 56.5 1.7
XNLI MTL_; 90.5 - 67.8 56.7 63.6 474 652 -

MTL 4 ¢gt+01dyo 90.8 712 63.6 | 68.7 59.6 48.3 66.2 67.0 20.5

MTL 4 ¢g¢4o01ds 90.5 70.6 | 647 619 63.5 473 65.6 664 -2.6

MTL y¢g¢ 86.0 70.5 | 645 733 56.2 15.1 59.0 609 12.1
COPA MTL_; 88.8 72.3 - 73.7 65.0 48.4 69.7 -

MTL ttgt+oldig 88.3 69.7  65.6 74.8 65.4 43.9 68.4 679 153

MTL gt 4o01ds 90.5 71.1  64.6 73.0 63.7 44.9 68.6 68.0 3.5

MTL ttgt+old+minig 85.5 69.7 665 746 63.6 45.7 67.8 67.6 10.4
MTL 4 ¢g¢+old+mins 90.0 69.8 657 739 638 46.2 68.7 68.2 10.8

MTL 4 ¢g¢ 89.5 66.4  66.0 75.5 62.7 46.4 68.1 67.7 9.3
Paraphrase = MTL_; 86.0 70.2 @ 64.4 - 65.0 45.0 66.1 -

MTL 4 tgt4o01d10 87.4 69.8 642 71.8 65.0 45.4 66.4 68.3 324

MTL gt 4o1ds 86.2 700 648 178.0 64.2 42.7 65.6 67.7 253

MTL ¢4t 81.1 66.0 644 73.1 30.1 42.5 56.8 59.5 24.1
NER MTL_, 88.0 72.5 0 657 773 - 47.7 70.3 -

MTL 4 tgt401d10 86.7 712 | 644 763 65.2 45.1 68.7 68.1 68.2

MTL gt 4o01ds 88.4 704 639 @ 732 65.7 45.7 68.3 67.9 66.6

MTL ¢ gt+o0ld+miny 87.6 712 647 735 66.2 43.7 68.1 67.8 66.6
MTL ¢gt+old+mins 87.8 712 654 713 65.4 45.8 68.3 67.8 63.1

MTL ¢4t 83.8 679 623 573 68.5 39.8 62.2 632 59.8
QA MTL_, 89.2 723 649 749 654 - 733 -

MTL 4 ¢gt401d1o 85.9 711 639 | 757 623 46.8 71.8 67.6 25.8

MTL 4 ¢g¢401ds 87.9 71.6 = 644 75.1 65.6 45.0 729 68.3 22.1

MTL ¢4t 84.9 682 659 669 237 46.6 619 594 212
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Table 11: The table reports performance score on in-language (en). Row MTL ¢t 4 01d,, andMTL ¢ 4¢4 0145 denotes adding
10% and 5% of existing task data combine with new task dataset respectively. MTL ;44 01d+min,, denotes combining
the existing task dataset size minimum(10% data , target task dataset size) i.e. to ensure the existing task dataset is less
or equal to new task dataset when combined. similarly MTL ;41 oid+mins; denote combining the existing task dataset
size as minimum(5% data , target task dataset size). Here, column "%1FLOs" reports the relative percent increase in the
total computation cost for adding all 6 task with respect to the total computation cost of fine-tuning. "Avg -1 " reports the
in-language performance averaged over the task included in MTL_; step. "Avg" reports the cross-lingual performance
averaged over all 6 task. Note, we have MTL ;4 o1d+min,, and MTL gt 4 o1d+mins; Only for NER and COPA dataset, as
dataset size for NER and COPA is less. Here, text bold indicates the best value in the column and colored cell represent
MTL is performing better than the Best Adapter method.

Target Amazon Multi
Task Step Reviews XNLI COPA PAWS CoNLL2003 SQuAD Avg -1 Avg
Baseline Full FT 93.8 83.0 623 93.0 92.8 82.1 - 845
MTL (full) 93.5 809 614 915 91.0 82.1 - 834
Best Adapter Houlsby 94.0 824 615 923 91.5 81.7 - 839
Sentiment ~ MTL_; - 81.6 | 63.0 915 92.5 825 822 -
MTL tg¢401d1 93.1 79.0 60.7 89.0 91.4 81.3 803 824
MTL gt 401ds 93.0 787 60.2 91.0 91.7 81.0 805 82.6
MTL ¢4t 93.5 58.6 47.1 714 78.3 717 654 70.1
XNLI MTL_, 94.1 - 60.5 915 91.9 824 841 -
MTL {¢g¢+o0ldio 929 79.0 58.7 883 87.7 78.6  81.2 809
MTL gt 4o01ds 93.1 77.1  59.0 86.1 89.1 799 814 80.7
MTL ¢4t 90.7 79.6 528 56.5 854 364 644 66.9
COPA MTL_, 93.8 81.9 - 91.6 91.0 815 88.0 -
MTL 4 tgt+o01d; 93.5 79.0 625 90.8 90.9 787  86.6 82.6
MTL gt 4o01ds 93.7 80.8 58.6 9038 91.7 81.1 87.6 828
MTL gt +old+minyg 93.2 793 622 919 91.0 81.1 873 83.1
MTL gt 4o0ld+mins 93.8 79.6  63.2 90.8 90.9 80.6  87.1 83.1
MTL ¢4t 924 73.8 622 8738 89.8 79.2  84.6 80.9
Paraphrase = MTL_; 93.9 80.1 @ 624 - 91.9 809 81.8 -
MTL 4 tgt4o01d;, 93.9 79.8  60.2 89.7 91.7 809 813 827
MTL gt 4o01ds 94.2 80.3 | 61.5 924 90.8 80.7 815 833
MTL ¢4t 929 739 59.8 922 714 73.8 755 783
NER MTL_, 94.0 82.1 | 622 927 - 8.6 827 -
MTL ¢t +01dqg 934 80.8 61.0 0912 914 81.0 815 83.1
MTL gt 4o01ds 93.8 80.5 623 921 91.6 804  81.8 834
MTL gt +old+minyg 93.7 79.8  60.5 913 92.0 81.8 814 832
MTL gt 4o0ld+mins 93.6 803 | 622 91.0 90.8 81.6  81.7 832
MTL ¢ 93.1 74.1 599 745 92.1 71.6 746 71.6
QA MTL_, 94.1 81.6 629 934 92.0 - 84.8 -
MTL gt 401ds, 93.5 80.0 59.7 914 89.9 812 829 826
MTL gt 4o01ds 94.0 81.1 | 62.1 912 90.8 81.6 838 835
MTL ¢ 924 775 610 73.0 63.5 825 735 75.0
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Table 12: Results on IndicSentiment with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te  Avg.XL
Houlsby 940 87.7 90.7 895 92.0 90.5 883 894 89.7 92.0 88.0 89.0 89.7
Bapna 933 87.0 90.1 89.2 91.8 89.1 870 88.6 885 90.2 88.1 889 89.0

Houlsby Parallel 93.1 88.1 91.8 90.5 930 910 887 903 903 91.7 882 90.0 90.3
Bapna Parallel 93.1 87.1 91.1 90.1 927 90.0 885 893 902 912 883 90.2 89.9
Prefix Tuning 93.8 851 889 884 91.7 887 862 8.0 877 903 857 889 88.2
Lora 934 836 863 855 853 856 823 86.8 87.1 862 86.1 884 85.7
Compacter 92.8 87.0 90.1 89.0 892 892 881 862 880 89.6 878 89.2 88.5
Adapter Drop 92.7 855 893 882 89.1 87.0 862 873 884 903 86.8 88.1 87.8
Adapter Fusion  93.2 874 910 896 913 899 &87.1 887 892 914 877 887 89.3

MADX - en 93.6 882 904 89.0 914 903 884 895 889 91.8 89.1 89.0 89.6
MADX - hi 93.0 862 88.1 882 89.0 87.8 879 892 90.1 91.0 88.6 88.1 88.6
FT 93.8 893 917 918 932 91.7 891 914 903 924 882 911 90.9
MTL 935 872 902 905 929 894 878 90.6 90.6 913 86.0 889 90.2

Table 13: Results on IndicXNLI task with IndicBERT. Metric: Accuracy. Column "Avg. XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL
Houlsby 824 693 74.0 733 752 741 729 706 715 746 734 728 729
Bapna 819 68.7 733 71.1 734 733 730 693 715 739 729 728 721

Houlsby Parallel 82.5 69.2 73.0 727 738 73.6 72.6 702 71.7 744 72.6 7277 724
Bapna Parallel  82.7 69.7 737 719 732 735 730 69.7 722 742 735 73.0 725
Prefix Tuning 82.6 709 743 73.7 75.6 740 735 72.1 72.6 752 73.1 734 735
Lora 80.3 68.1 71.7 69.8 725 722 705 685 69.5 727 70.7 713  70.7
Compacter 74.8 68.1 71.0 705 721 702 69.1 66.7 69.6 71.8 69.9 69.7 699
Adapter Drop 80.6 69.7 71.8 71.7 744 73.1 721 70.0 71.1 73.7 725 724 720
Adapter Fusion 79.9 68.0 71.6 702 728 719 71.8 682 70.0 73.0 709 699 708

MADX -en 82.1 699 733 729 738 73.0 724 69.5 70.7 742 732 73.0 724
MADX - hi 79.3 683 721 70.1 725 71.5 705 687 703 732 709 71.1 708
FT 83.0 694 731 735 751 744 726 71.0 714 750 728 73.0 729
MTL 809 674 719 715 729 717 699 689 69.8 729 700 70.6 70.7

Table 14: Results on IndicCOPA with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL
Houlsby 61.5 63.0 664 647 664 638 622 633 592 632 662 66.6 64.1
Bapna 59.9 614 664 605 586 60.2 592 621 596 59.6 614 604 60.9

Houlsby Parallel 61.4 612 656 632 61.7 622 626 655 60.8 636 680 668 63.7
Bapna Parallel 60.5 604 630 61.6 59.0 604 614 644 598 0602 642 614 61.4
Prefix Tuning 61.1 622 656 674 668 666 61.8 619 652 642 69.6 67.2 65.3
Lora 574 600 642 587 621 64.6 60.0 615 580 584 592 60.8 60.7
Compacter 50.8 59.8 666 629 635 64.0 630 633 582 624 66.0 66.0 63.2
Adapter Drop 523 596 640 612 604 64.6 624 61.7 572 61.6 64.0 63.0 61.8
Adapter Fusion 599 57.6 652 585 584 588 578 61.0 58.8 594 586 584 59.3

MADX -en 569 60.8 658 61.8 633 628 57.8 648 600 628 63.6 64.8 62.6
MADX - hi 584 622 672 623 635 63.0 594 630 602 640 66.0 634 63.1
FT 623 612 652 605 595 61.8 620 608 61.0 634 68.0 638 62.5
MTL 614 64.6 66.6 625 644 666 644 673 658 64.6 654 066.6 65.3
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Table 15: Results on IndicXParaphrase with IndicBERT. Metric: Accuracy.Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa te Avg XL
Houlsby 923 57.8 508 757 512 597 574 546 576 538 555 57.4
Bapna 914 565 496 726 499 572 560 530 558 540 546 55.9

Houlsby Parallel 90.6 56.6 498 712 503 572 558 53.1 559 539 542 55.8
Bapna Parallel 913 56.7 50.0 728 507 576 564 530 56.6 53.8 55.1 56.3
Prefix Tuning 922 553 491 738 4977 555 548 53,6 552 571 537 55.8
Lora 90.2 548 500 70.0 500 558 546 518 538 549 539 55.0
Compacter 727 49.6 470 639 483 451 463 489 471 598 525 50.8
Adapter Drop 75.0 50.8 495 681 502 477 49.6 502 49.6 586 54.6 529
Adapter Fusion 922 57.1 49.8 735 504 570 566 529 566 542 550 56.3

MADX -en 91.0 565 499 725 504 565 552 532 552 549 549 55.9
MADX - hi 90.6 57.1 49.6 734 503 584 557 535 567 549 549 56.5
FT 93.0 56.8 509 765 51.1 578 565 550 567 562 550 57.3
MTL 915 70.7 883 813 817 747 73.6 759 662 587 71.6 74.3
Method en as bn gu hi kn ml mr or pa ta te  Avg.XL
Houlsby 915 417 692 775 783 71.8 776 765 164 639 688 79.1 65.5
Bapna 91.0 375 700 783 762 709 783 779 161 651 679 793 65.2

Houlsby Parallel 92.2 46.2 72.0 772 759 741 797 779 173 63.1 69.1 81.2 66.7
Bapna Parallel 91.1 346 705 769 757 723 782 748 169 626 69.1 79.6 64.7
Prefix Tuning 915 426 721 777 762 750 79.7 78.1 173 68.6 69.1 81.2 67.1
Lora 904 407 707 750 727 71.0 756 741 171 60.0 614 783 63.3
Compacter 89.2 385 658 739 726 670 725 7.1 166 594 64.1 73.1 61.3
Adapter Drop 904 302 712 763 754 714 774 783 168 667 654 79.1 64.4
Adapter Fusion  92.0 42.6 71.8 792 751 762 794 785 165 663 69.8 80.7 66.9

MADX -en 915 436 69.1 789 753 739 788 766 162 638 68.7 81.1 66.0
MADX - hi 91.1 346 699 766 756 708 768 742 17.0 635 667 793 64.1
FT 928 387 716 774 778 753 793 787 171 656 70.7 81.6 66.7
MTL 91.0 340 698 783 76.0 742 779 784 16.1 669 66.7 79.7 65.3

Table 16: Results on IndicNER task with IndicBERT. Metric: F1 Score. Column "Avg.XL" reports average cross-lingual
zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te  Avg.XL
Houlsby 81.7 44.7 529 452 549 467 462 489 518 524 449 609 50.0
Bapna 809 44.1 514 440 556 464 425 459 498 524 430 600  48.6

Houlsby Parallel 82.0 439 52.6 444 552 475 439 462 50.7 532 436 603 49.2
Bapna Parallel 814 442 520 43.6 556 472 436 454 508 52.8 434 597 48.9
Prefix Tuning 81.0 43.0 509 439 527 468 432 465 51.1 508 435 599 48.4
Lora 79.5 419 506 439 529 443 430 443 488 514 431 578 474
Compacter 73.0 40.8 485 423 509 439 41.6 451 468 49.6 42.0 59.2 46.4
Adapter Drop 70.7 383 468 409 50.1 423 403 430 463 474 381 552 44.4
Adapter Fusion 819 444 519 439 558 460 428 455 50.1 521 436 595 48.7

MADX-en 81.1 414 50.6 433 53.8 453 424 448 498 521 425 58.1 47.6
MADX-hi 794 41.1 502 437 549 449 419 443 490 514 415 58.6 47.4
FT 821 444 528 449 546 469 446 465 513 520 439 603 49.3
MTL 82.1 39.8 49.1 42.6 489 429 422 436 48.1 473 39.7 562 45.5

Table 17: Results on IndicQA task with IndicBERT. Metric: F1 score. Column "Avg.XL" reports average cross-lingual
zero-shot performance.
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Method en as bn gu hi kn ml mr or pa ta te
Houlsby 839 607 674 710 69.7 678 674 672 577 667 683 70.7
Pfeiffer 83.1 592 668 693 67.6 662 660 66.1 569 659 667 693

Houlsby Parallel 83.6 608 674 699 683 676 672 672 578 666 683 70.9
Pfeiffer Parallel 834 58.8 66.7 695 678 668 668 66.1 578 658 677 6938
Prefix Tuning 837 599 668 70.8 688 678 665 669 582 67.7 682 70.7
Lora 81.8 582 656 671 659 656 643 645 557 639 641 684
Compacter 755 573 648 671 661 632 634 635 544 654 660 683
Adapter Drop 710 557 654 677 666 643 647 651 549 664 653 6838
Adapter Fusion 832 595 669 69.1 673 666 659 658 569 66.1 66.1 68.7

MADX - en 827 60.1 665 697 680 670 658 664 568 666 674 70.1
MADX - hi 82.0 583 662 690 677 66.1 654 655 572 663 667 69.2
FT 84.5 60.0 676 70.8 686 680 674 672 580 674 68.7 708

Table 18: This table compares the performance of various adapters and FT with results averaged across all tasks.

Method FLOP % 1 FLOS Epoch % 1 Epoch
Houlsby 1.8E+17 249.8 17 240
Bapna 1.5E+17 185.2 14 180
Houlsby Parallel 1.1E+17 105.3 10 100
Bapna Parallel 8.6E+16 62.9 8 60
Prefix Tuning 1.5E+17 190.9 13 160
Lora 1.7E+17 223.2 16 220
Compacter 2A4E+17 363.9 23 360
Adapter Drop 1.2E+17 124.3 11 120
FT 5.3E+16 0.0 5 0
Avg Adapter 1.5E+17 188.2 14 180

Table 19: This table report the total computation cost on Sentiment task for FT and various adapters using IndicBERT. Here
% 1 FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % 1 Epoch reports percent increase of
epoch relative to epoch of FT

Method FLOP % T FLOS Epoch % 1 Epoch
Houlsby 4.0E+17 208.5 15 200
Bapna 4.5E+17 246.5 17 240
Houlsby Parallel ~ 4.0E+17 208.5 15 200
Bapna Parallel 3.9E+17 205.4 15 200
Prefix Tuning 4.4E+17 237.2 15 200
Lora 3.9E+17 203.1 15 200
Compacter 2.9E+17 121.7 11 120
Adapter Drop 4.2E+17 225.6 16 220
FT 1.3E+17 0.0 5 0
Average Adapter  4.0E+17 207.1 14.88 197.5

Table 20: This table report the total computation cost on XNLI task for FT and various adapters using IndicBERT.. here % 1
FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % 1 Epoch reports percent increase of epoch
relative to epoch of FT
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Method FLOP % 1T FLOS Epoch % 1 Epoch
Houlsby 3.8E+17 376.6 28 366.7
Bapna 3.3E+17 321.0 25 316.7
Houlsby Parallel ~ 3.0E+17 274.2 22 266.7
Bapna Parallel 2.3E+17 185.7 17 183.3
Prefix Tuning 2.2E+17 179.4 15 150.0
Lora 2.1E+17 168.0 16 166.7
Compacter 5.9E+17 650.9 45 650.0
Adapter Drop 1.9E+17 136.4 14 133.3
FT 7.9E+16 0.0 6 0.0
Average Adapter  3.1E+17 286.5 22.75 279.2

Table 21: This table report the total computation cost on COPA task for FT and various adapters using IndicBERT.. here
% 1 FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % 1 Epoch reports percent increase of
epoch relative to epoch of FT

Method FLOP % T FLOS Epoch % 1 Epoch
Houlsby 1.5E+17 88.5 22 83.3
Bapna 1.1E+17 43.6 17 41.7
Houlsby Parallel 7.4E+16 -5.8 11 -8.3
Bapna Parallel 1.2E+17 52.6 18 50.0
Prefix Tuning 1.5E+17 96.2 21 75.0
Lora 1.5E+17 93.6 23 91.7
Compacter 9.8E+16 259 15 25.0
Adapter Drop 4.6E+16 -40.6 7 -41.7
FT 7.8E+16 0.0 12 0.0
Total Adapter 1.1E+17 442 16.75 39.6

Table 22: This table report the total computation cost on Paraphrase task for FT and various adapters using IndicBERT. here
% 1 FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % 1 Epoch reports percent increase of
epoch relative to epoch of FT

Method FLOP % 1T FLOS Epoch % 1 Epoch
Houlsby 4.2E+15 19.8 14 16.7
Bapna 6.2E+15 71.7 21 75.0
Houlsby Parallel ~ 6.6E+15 88.0 22 83.3
Bapna Parallel 4.4E+15 26.9 15 25.0
Prefix Tuning 6.2E+15 77.4 19 58.3
Lora 8.5E+15 143.6 29 141.7
Compacter 1.2E+16 252.4 42 250.0
Adapter Drop 4.2E+15 19.8 14 16.7
FT 3.5E+15 0.0 12 0.0
Average Adapter  6.6E+15 88.2 22 83.3

Table 23: This table report the total computation cost on NER task for FT and various adapters using IndicBERT. here % 1
FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % 1 Epoch reports percent increase of epoch
relative to epoch of FT
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Method FLOP % T FLOS Epoch % 1 Epoch
Houlsby 7.3E+17 599.0 41 583.3
Bapna 5.8E+17 456.7 33 450.0
Houlsby Parallel  3.9E+17 275.0 22 266.7
Bapna Parallel 5.1E+17 389.4 29 383.3
Prefix Tuning 3.1E+17 198.1 16 166.7
Lora 5.2E+17 402.9 30 400.0
Compacter 8. 7TE+17 735.6 50 733.3
Adapter Drop 1.1E+17 1.9 6 0.0
FT 1.0E+17 - 6 -
Avg Adapter 5.0E+17 3823 28.4 372.9

Table 24: This table report the total computation cost on QA task for FT and various adapters using IndicBERT. here % 1
FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % 1 Epoch reports percent increase of epoch
relative to epoch of FT

Method XLMR-Base XLMR-Large
Houlsby 484.3 200.5
Bapna 547.1 139.9
Houlsby Parallel 197.0 143.3
Bapna Parallel 409.1 168.6
Prefixtuning 256.5 287.3
Lora 734.7 270.0
compacter 805.3 490.1
Adapter drop 345.1 214.1

Table 25: This table reports the percentage increase in total FLOs with respect to FT for both XLMR-Base and XLMR-Large
model

| XLMR-Base XLMR-Large
Method ‘ WikiANN XNLI XQuAD Total ‘ WikiANN XNLI XQuAD Total
Houlsby 506.4 483.1 484.0 484.3 316.4 75.6 299.6 200.5
Bapna 439.4 464.6 582.0 547.1 172.3 73.7 194.3 139.9
Houlsby Parallel 270.3 483.1 86.0 197.0 103.8 126.8 160.0 143.3
Pfeiffer Parallel 643.4 409.2 401.0 409.1 71.1 167.5 175.9 168.6
Prefixtuning 157.4 237.7 267.0 256.5 200.6 226.3 344.9 287.3
Lora 474.3 404.0 869.0 734.7 332.1 57.9 446.9 270.0
Compacter 905.8 818.2 797.0 805.3 528.9 336.8 618.4 490.1
Adapter drop 281.9 409.2 323.0 345.1 617.0 153.1 240.0 214.1

Table 26: This table reports the percentage increase in computational cost with respect to FT for XLLM-R model for task
NER, XNLI and QA. "Total" reports the percentage increase of total FLOs for the method relative to total FT FLOs

EN | XLMR-Base | XLMR-Large
Method | NER XNLI QA Average | NER XNLI QA Average
Houlsby 81.0 827 84.1 82.6 83.5 859 882 85.9
Bapna 79.9 81.3 832 81.5 83.1 86.4 874 85.7

Houlsby parallel | 80.5  83.5 83.7 82.6 83.0 879 88.0 86.3
Bapna parallel 80.8 809 828 81.5 825 88.0 877 86.1

Prefixtuning 79.0 795 817 80.1 832 882 883 86.5
Lora 786 797 81.7 80.0 81.7 856 869 84.7
compacter 723 764 76.6 75.1 76.1 856 85.0 822
Adapter drop 81.1 803 827 81.4 82.6 88.0 88.0 86.2
FT 823 831 833 82.9 828 873 88.0 86.0

Table 27: Overall performance on English for XLMR-B and XLMR-L model
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XL

| XLMR-Base | XLMR-Large

Method

NER XNLI QA Average \ NER XNLI QA Average

Houlsby
Bapna

61.0 726 715 68.4 646 762 178.6 73.1
583 713 699 66.5 643 767 78.0 73.0

Houlsby Parallel | 59.2  72.8  70.1 67.4 653 787 778 73.9
Bapna Parallel 571 703  69.7 65.7 63.1 788 77.6 73.2
Prefixtuning 585 699 677 65.4 64.7 787 716 73.7

Lora

58.6 705 684 65.8 623 769 77.1 72.1

Compacter 55.1 668 64.1 62.0 585 764 753 70.1
Adapter drop 60.5 702 713 67.3 64.6 788 785 74.0

FT 61.7 737 7038 68.7 639 77.0 78.0 73.0

Table 28: Overall cross-lingual performance for XLMR-B and XLMR-L model
Method en ar bg de e e fr hi ru sw th tr ur vi zh AvgXL
houlsby 83.5 45.6 81.6 79.3 79.9 76.2 78.7 71.1 68.0 68.2 0.6 82.0 69.1 77.5 262 64.6
Bapna 83.1 41.0 814 78.1 77.2 77.0 78.7 732 71.5 68.3 2.0 79.3 69.1 76.8 262 643
houlsby parallel 83.0 46.4 83.1 79.2 79.2 76.1 79.0 70.0 71.4 704 0.6 82.0 75.6 76.6 247 653
Bapna parallel 82.5 48.3 79.3 77.9 779 72.7 783 66.5 71.5 68.8 1.4 80.0 63.3 75.0 22.2 63.1
prefixtuning 83.2 485 79.2 77.8 79.1 76.8 79.8 73.5 69.1 66.5 4.3 79.9 71.1 75.6 24.6 64.7
lora 81.7 46.0 80.0 77.9 769 68.7 77.8 669 67.9 66.6 2.5 764 65.7 76.8 21.5 62.3
compacter 76.1 38.8 75.5 755 74.8 73.8 74.8 62.7 58.7 60.2 1.2 759 655 69.1 12.2 585
Adapter drop ~ 82.6 48.0 82.0 78.5 78.7 75.0 79.8 68.0 69.4 68.1 1.0 80.0 75.0 76.4 24.0 64.6
FT 82.8 49.3 81.6 79.1 76.6 77.7 81.1 70.6 709 66.9 04 783 60.7 77.7 23.1 639

Table 29: Results on WikiANN task with XLLM-R Large model, metric: F1 score
Method en ar bg de el e fr hi ru sw th tr wur vi zh AvgXL
houlsby 81.0 44.4 76.0 73.6 743 71.6 76.1 70.1 61.7 69.3 1.5 75.8 65.5 68.9 252 61.0
Bapna 79.9 41.7 73.2 723 73.0 73.7 749 629 59.2 67.6 2.0 72.6 562 62.7 23.6 58.3
houlsby parallel 80.5 44.7 75.8 73.3 73.8 67.7 7477 66.4 62.1 66.7 1.8 74.0 57.5 64.8 26.0 59.2
Bapna parallel  80.8 42.1 74.3 72.4 70.6 70.3 74.3 62.0 61.1 61.7 1.0 71.3 51.3 62.6 244 57.1
prefixtuning 79.0 46.5 759 70.0 70.6 72.8 74.8 62.4 59.7 62.3 1.1 70.8 64.2 67.4 202 58.5
lora 78.6 42.8 74.6 71.2 70.7 71.7 74.1 624 57.8 67.0 2.9 70.6 63.0 68.0 23.7 58.6
compacter 723 42.0 729 70.2 68.3 61.6 67.6 59.9 544 62.8 0.7 69.0 56.8 63.5 21.6 55.1
Adapter drop 81.1 45.7 76.8 73.8 74.5 69.2 74.7 66.1 62.4 66.0 1.9 748 65.7 674 27.1 60.5
FT 82.3 485 77.0 733 74.7 753 7577 67.7 63.0 69.2 3.8 76.6 64.7 69.8 24.1 61.7

Table 30: Results on WikiANN task with XLM-R Base model, metric: F1 score
Method en ar bg de e e fr hi ru sw th tr wur vi zh AvgXL
houlsby 85.9 75.0 80.0 80.4 78.8 81.2 80.0 73.4 76.8 69.7 74.1 76.2 68.3 76.8 754 76.2
Bapna 86.4 75.5 80.3 81.0 79.2 81.2 80.6 73.8 77.8 69.7 749 76.3 704 77.1 763 76.7
houlsby parallel 87.9 77.7 82.3 82.6 80.9 83.7 82.3 77.1 79.6 71.2 77.0 783 72.1 785 78.8 78.7
Bapna parallel 88.0 78.4 82.9 82.7 81.2 84.0 82.7 76.1 79.5 71.3 764 784 722 78.7 78.1 788
prefixtuning 88.2 78.4 82.3 81.6 81.6 83.3 82.7 76.0 79.6 71.1 77.3 78.5 72.6 789 783 78.7
lora 85.6 75.3 80.8 80.5 79.7 81.7 80.9 74.5 78.5 70.0 75.1 76.9 70.1 77.0 763 76.9
compacter 85.6 74.2 80.2 80.5 789 80.7 80.5 74.7 773 69.7 749 759 69.7 76.5 764 764
Adapterdrop  88.0 77.7 82.8 82.5 82.1 84.0 82.6 76.1 80.1 722 76.7 78.8 71.3 79.0 77.6 78.8
FT 87.3 76.1 819 80.5 79.5 823 81.7 73.9 79.5 65.5 75.7 76.0 68.7 784 784 77.0

Table 31: Results on XNLI task with XLLM-R Large model, metric: Accuracy
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Method en ar bg de e e fr hi ru sw th tr wur vi zh AvgXL
houlsby 82.7 709 77.1 763 7477 779 779 68.6 743 64.5 71.1 71.8 65.5 73.4 725 72.6
Bapna 81.3 68.8 753 742 734 76.7 75.8 67.6 73.5 64.0 69.7 71.2 64.0 72.8 71.2 71.3
houlsby parallel 83.5 70.3 77.0 759 74.8 78.0 77.7 69.6 747 65.1 71.3 71.7 654 748 73.1 72.8
Bapna parallel 80.9 68.0 74.7 73.2 72.1 76.2 75.0 67.2 72.4 63.2 68.1 70.1 623 71.5 69.8 70.3
prefixtuning 79.5 68.7 73.7 72.6 71.7 74.1 742 66.3 713 629 69.5 69.1 629 72.0 70.1 699
lora 79.7 68.4 75.0 73.6 722 753 74.5 66.6 72.2 63.6 68.1 709 63.6 71.4 71.3 70.5
compacter 76.4 64.1 70.7 70.6 694 72.8 71.8 61.7 70.0 60.4 63.4 67.4 59.0 68.1 66.5 66.8
Adapter drop 80.3 68.1 744 73.6 71.1 759 753 67.2 72.1 63.3 689 699 62.1 71.7 70.0 70.2
FT 83.1 71.3 78.0 76.6 75.3 78.6 769 71.3 754 64.0 73.0 73.0 67.5 75.6 74.7 73.7
Table 32: Results on XNLI task with XLLM-R Base model, metric: Accuracy
Method en ar de el es hi ro ru th tr vi zh Avg XL
houlsby 882 773 81.2 803 833 770 850 808 743 752 80.0 70.1 78.6
Bapna 874 757 799 805 826 756 84.1 807 756 739 798 69.7 78.0
houlsby parallel 88.0 753 814 804 819 762 842 799 742 742 792 68.7 77.8
Bapna parallel 877 752 804 804 820 756 841 799 737 737 794 694 77.6
prefixtuning 883 754 815 805 823 756 830 793 745 739 786 68.8 77.6
lora 869 758 80.6 785 812 750 825 79.1 752 727 719 694 77.1
compacter 85.0 737 7777 776 795 747 809 783 708 70.5 769 68.2 75.3
Adapter drop 88.0 76.1 81.3 81.1 832 767 851 807 743 746 803 69.6 78.5
FT 88.0 763 80.7 803 81.8 762 842 796 750 744 798 69.7 78.0
Table 33: Results on Squad, XQAUD task with XLLM-R Large model, metric: F1 score
Method en ar de el es hi ro ru th tr vi zh  AvgXL
houlsby 84.1 670 750 733 768 698 790 726 683 66.6 73.8 64.6 71.5
Bapna 832 645 736 710 751 66.1 715 726 656 663 729 634 69.9
houlsby parallel 83.7 659 746 720 755 665 779 728 644 665 719 629 70.1
Bapna parallel 828 644 732 726 740 654 774 730 650 654 720 639 69.7
prefixtuning 81.7 63.1 71.3 700 72.1 644 753 702 626 635 699 62.1 67.7
lora 81.7 614 71.8 712 729 654 767 719 631 654 713 61.0 68.4
compacter 766 60.7 670 649 688 624 703 668 586 595 689 573 64.1
Adapter drop 82.7 666 743 736 753 702 770 746 682 668 745 62.8 71.3
FT 833 665 746 722 751 668 775 734 668 675 732 654 70.8

Table 34: Results on SQUAD, XQUAD task with XLLM-R Base model, metric: F1 score
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