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Abstract

In recent years, machine translation has evolved001
with the integration of multimodal informa-002
tion. Infusion of multi-modality into transla-003
tion tasks decreases ambiguation and enhances004
translation scores. Common modalities in-005
clude images, speech, and videos, which pro-006
vide additional context alongside the text to be007
translated. While multimodal translation with008
images has been extensively studied, video-009
guided machine translation (VMT) has gained010
increasing attention, particularly since Wang011
et al. (2019) first explored this task. In this012
paper, we provide a comprehensive overview013
of VMT, highlighting its unique challenges,014
methodologies, and recent advancements. Un-015
like previous surveys that primarily focus on016
image-guided multimodal translation, this work017
explores the distinct complexities and opportu-018
nities introduced by video as a modality.019

1 Introduction020

Multimodal Machine Translation (MMT) improves021

translation by incorporating more context. This022

context can be in the form of images, audio and023

video. This infusion of extra context helps in dis-024

ambiguation of translated text and makes it more025

meaningful and accurate. MMT often mimics the026

way human translators annotate data. They take027

into account all the information that emanates from028

all modalities while translating the sentence in029

source language to target language. While MMT030

mostly focuses on images being the additional031

modality to the source text sentence, Video-guided032

machine translation has been picking immense in-033

terest as compared to other MMT techniques due034

to its ability to provide richer, more dynamic con-035

textual information than images.036

VMT takes advantage of the temporal and mul-037

timodal nature of videos, which combine visual,038

auditory, and textual data into a single cohesive039

source of information. Unlike static images, videos040

Figure 1: A case. The phrases with semantic ambiguity
are highlighted in red. The wrong translations are in
blue and the correct translations are in yellow taken
from Kang et al. (2023)

capture sequences of events, actions, and interac- 041

tions, offering a more comprehensive understand- 042

ing of the context. This makes VMT particularly 043

effective for tasks such as translating instructional 044

videos, movies, or multimedia content, where tem- 045

poral alignment and multimodal fusion are critical. 046

For example, in a cooking video, the translation of 047

a spoken instruction (e.g., "chop the onions") can 048

be disambiguated by the visual demonstration of 049

the action, ensuring the translation is both accurate 050

and contextually appropriate. In Fig. 1 the phrase 051

“drive shot” is better translated by VMT system by 052

understanding the meaning of “shot”. 053

The importance of video-guided MMT lies in its 054

ability to address several limitations of traditional 055

text-based and image-guided translation systems. 056

Videos provide temporal continuity which enable 057

models to capture the progression of events and 058

actions over time. Second, the integration of mul- 059

tiple modalities (text, audio, and video) allows for 060

more robust disambiguation of ambiguous terms 061
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or phrases. VMT has practical applications in real-062

world scenarios, such as cross-lingual video cap-063

tioning, multimedia content localization, and assis-064

tive technologies for the hearing impaired.065

In this paper, we provide a comprehensive survey066

of video-guided MMT, focusing on its methodolo-067

gies, challenges, and advancements. Unlike previ-068

ous surveys (Shen et al., 2024; Paul et al., 2024)069

that primarily focus on general aspects of MMT070

and image-guided MT, this work specifically high-071

lights the unique aspects of video-guided MMT072

and its growing importance in the field. We sys-073

tematically categorize and analyze state-of-the-art074

approaches and datasets while also identifying key075

open problems and future research directions.076

Our contributions are:077

1. A novel taxonomy for video-guided multi-078

modal machine translation, which systemat-079

ically categorizes existing VMT approaches.080

(Section 4)081

2. Comprehensive comparisons of methods,082

datasets, and state-of-the-art systems provided.083

(Section 7)084

3. Identifing key challenges and future research085

directions to guide further advancements in086

Video guided MT. (Section 9)087

2 Background and Preliminaries088

Machine translation involves translating texts from089

one language to another language. From statistical090

to neural MT has undergone pioneering transfor-091

mations. We discuss below various stages of MT092

developments connecting it with VMT.093

2.1 Neural Machine Translation094

Neural Machine Translation (NMT) has evolved095

significantly through key innovations in neural096

architectures. Sutskever et al. (2014) pioneered097

sequence-to-sequence learning using LSTMs,098

demonstrating that reversing source sentences im-099

proved translation by shortening dependencies,100

achieving a BLEU score of 34.8 on English-French101

tasks. Bahdanau et al. (2016) introduced attention102

mechanisms, enabling dynamic focus on relevant103

source segments and addressing long-sequence lim-104

itations. Luong et al. (2015) refined this with global105

and local attention models. The transformer ar-106

chitecture (Vaswani et al., 2023) eliminated recur-107

rence entirely, using self-attention for superior par-108

allelization. Subword segmentation techniques like109

byte-pair encoding (Sennrich et al., 2016) improved 110

rare-word handling through compositional transla- 111

tion units. Multilingual NMT systems achieved 112

zero-shot translation via shared parameters and lan- 113

guage tokens, revealing interlingual representations 114

(Wu et al., 2016). 115

2.2 Image Guided Machine Translation 116

Image-guided machine translation (IMT), which 117

uses visual information as an additional modal- 118

ity, gained momentum with the introduction of the 119

Multi30K dataset by Elliott et al. (2016). However, 120

the scarcity of paired image-text datasets led to al- 121

ternative approaches such as retrieval-based image 122

machine translation (Fang and Feng, 2022; Tang 123

et al., 2022a; Zhang et al., 2020), which retrieves 124

relevant images, and text-to-image-guided machine 125

translation (Calixto et al., 2019; Li et al., 2022a; 126

Long et al., 2021; Yuasa et al., 2023; Guo et al., 127

2023), where synthetic images are generated from 128

text. 129

2.3 Other Forms 130

Beyond IMT, text-in-image machine translation 131

Chen et al. (2023); Lan et al. (2023); Ma et al. 132

(2022, 2024, 2023) focuses on translating text em- 133

bedded within images. Another development in 134

MMT is simultaneous machine translation (SiMT) 135

Haralampieva et al. (2022); Imankulova et al. 136

(2020); Ive et al. (2021), which generates trans- 137

lations before receiving the full input to reduce 138

latency while maintaining quality. 139

In all of the above cases videos are not a part 140

of the modeling. Therefore video-guided machine 141

translation has emerged which incorporates tempo- 142

ral information alongside visual and textual data 143

for improved translation accuracy. 144

3 Problem Formulation 145

The task of VMT involves contextually appropri- 146

ate translations of source language text by uti- 147

lizing additional modalities such as video and 148

audio. Formally, given a source language text 149

S = {s1, s2, . . . , sn} and a corresponding video 150

frame sequence V = {v1, v2, . . . , vm} (which may 151

include associated audio A = {a1, a2, . . . , ak}), 152

the goal is to produce a target language translation 153

T = {t1, t2, . . . , tp} that is linguistically accurate 154

and contextually aligned with the multimodal in- 155

put. The objective of video-guided MT is to learn a 156

mapping function f that maximizes the likelihood 157
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Figure 2: Taxonomy for Video Guided Machine Translation

of the target translation T given the source text S,158

video V , and audio A, expressed as159

f(S, V,A) = argmax
T

P (T | S, V,A).160

This involves optimizing model parameters to min-161

imize the discrepancy between the predicted trans-162

lation T̂ and the ground truth T , typically using163

cross-entropy loss or other sequence-level objec-164

tives. The integration of video and audio modali-165

ties introduces unique challenges, such as temporal166

alignment and scalability, which distinguish video-167

guided MT from traditional text-based or image-168

guided MT and necessitate specialized approaches169

to effectively harness the rich, dynamic informa-170

tion provided by multimodal inputs. Video-guided171

multimodal MT leverages multiple modalities (text,172

video, and audio) to improve translation quality.173

The approaches can be broadly categorized based174

on how they handle modality fusion. Below and in175

Fig. 2, we present a taxonomy of these approaches,176

with supervised approaches focusing on Late Fu-177

sion, Early Fusion, Hybrid Fusion and unsuper- 178

vised approaches focusing on Video Pivoting. 179

4 Video Guided Machine Translation. 180

4.1 Late Fusion 181

The early approaches in VMT utilized separate en- 182

coders for video and text modalities and combined 183

them at a later stage in the VMT pipeline. 184

Wang et al. (2019) designed a multimodal se- 185

quence to sequence model with temporal attention 186

and source attention for videos and text embed- 187

dings respectively. 188

Hirasawa et al. (2020) introduce a novel ap- 189

proach to video representation in machine transla- 190

tion by incorporating positional encodings, making 191

the model aware of the temporal order of frames. 192

They further enhance the video representation by 193

distinguishing between two types of features: ac- 194

tion and appearance. The action features, captured 195

by a dedicated video encoder, focus on motion in- 196

formation crucial for disambiguating verbs in the 197
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Models Datasets Modelling Approaches En-Zh Zh-En
Wang et al. (2019) VaTex Dual Attention and Dual

Encoder for Text/Video
29.1 26.4

Hirasawa et al.
(2020)

VaTex Order-aware video frames
using positional embed-
dings.

35.4 -

Gu et al. (2021) VaTex Hierarchical Attention
Network (HAN) applied
at object, frame, and video
levels.

35.9 -

Li et al. (2023b) EVA Introduces Frame At-
tention and Ambiguity-
Aware Attention.

- 27.6

Li et al. (2023a) Vatex Uses Video as Pivot be-
tween languages

29.6 26.6

Kang et al. (2023) VaTex
BigVideo

Introduces additional con-
trastive loss.

37.6
44.8

-

Guan et al. (2025) TriFine Uses fine-grained speech
features with soft attention
masks.

38.06 25.51

Lv et al. (2025) TopicVD Uses selective attention
and Bi-Attention on Text
and Videos.

29.33 -

Table 1: Overview of Multimodal Translation Models, Approaches, and BLEU scores in En-Zh and Zh-En Directions

translation process. Conversely, appearance fea-198

tures, extracted by an image encoder, provide de-199

tailed information about objects and scenes within200

each frame, aiding in the disambiguation of nouns.201

This dual-feature approach allows the model to bet-202

ter align visual cues with textual elements.203

Gu et al. (2021) introduce a novel approach to204

video representation inspired by Hierarchical At-205

tention Networks (HAN) (Miculicich et al., 2018).206

Their model divides video input processing into207

two distinct components: motion representation208

and spatial representation. For capturing motion209

dynamics, they employ a pretrained I3D (Carreira210

and Zisserman, 2017) network. The spatial aspect211

is handled by a specialized HAN, which constructs212

a multi-level representation hierarchy: object-level,213

frame-level, and video-level. In this special HAN,214

each successive level of representation serves as215

a helper for the higher level, allowing for a pro-216

gressively more comprehensive understanding of217

the video’s spatial content. The object-level fea-218

tures inform the frame-level representation, which219

in turn contributes to the overall video-level under- 220

standing. This hierarchical approach enables the 221

model to capture both fine-grained spatial details 222

and broader contextual information. For generat- 223

ing the translated sentence, the authors utilize a 224

GRU (Gated Recurrent Unit) (Chung et al., 2014) 225

network as the decoder. 226

Lv et al. (2025). integrates the selective atten- 227

tion module and the bidirectional attention module 228

by taking inspiration from Li et al. (2021) and Tang 229

et al. (2022b). Their architecture utilizes two en- 230

coders each for video and source text and fuses 231

the obtained representations using a cross modal 232

bidirectional attention mechanism. The fused rep- 233

resentations are then decoded into target-language 234

subtitles using an autoregressive transformer de- 235

coder. An empirical evaluation across multiple do- 236

mains reveals that the model’s performance notably 237

diminishes in out-of-domain scenarios. 238
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4.2 Early Fusion239

This fusion occurs when different modalities are240

embedding together before being passed on to a241

shared encoder.242

Kang et al. (2023) introduces a cross-modal243

encoder that jointly processes video and text rep-244

resentations. The model enhances video features245

with positional encodings to capture temporal infor-246

mation. This cross-modal architecture enables the247

model to focus on relevant parts of both text and248

video inputs, facilitating more effective multimodal249

understanding. The training process incorporates250

two key objectives: cross-entropy loss in the de-251

coder for sequence generation, and a novel cross-252

modal contrastive learning (CTR) objective. The253

CTR objective is designed to learn shared seman-254

tics between video and text modalities, encouraging255

similar video-text pairs to have closer representa-256

tions while pushing dissimilar pairs apart in the257

embedding space.258

Guan et al. (2025) introduces the FIAT archi-259

tecture, a uni-modal encoder that integrates mul-260

tiple fine-grained inputs for video-guided transla-261

tion. The model incorporates various types of tags,262

including entities, audio sentiments, locations, ex-263

pressions, and video captions, alongside source264

subtitles. The cross-modal encoder processes these265

diverse inputs jointly, allowing for complex inter-266

actions between different modalities. To capture267

nuanced speech information, the architecture em-268

ploys a soft attention mask that incorporates stress269

patterns from the audio. This attention mecha-270

nism helps the model focus on emphasized parts of271

speech, improving the accuracy and naturalness of272

translations.273

4.3 Hybrid Fusion274

Li et al. (2023b) introduce SAFA (Selective At-275

tention with Frame Attention) that integrates two276

key innovations: frame attention and selective at-277

tention. The frame attention mechanism, inspired278

by gated fusion techniques, encourages the model279

to focus on the most relevant video frames, par-280

ticularly central frames where subtitles typically281

appear. This is implemented through a frame at-282

tention loss. The selective attention component283

dynamically determines when to leverage visual284

information for translation, especially useful for285

handling ambiguous text. To further enhance the286

model’s ability to handle ambiguity, SAFA incorpo-287

rates an ambiguity-aware loss, encouraging heavier288

reliance on video information for ambiguous text 289

while prioritizing textual cues for non-ambiguous 290

cases. 291

4.4 Unsupervised Methods 292

Li et al. (2023a) uses videos to serve as a "univer- 293

sal pivot" to bridge language pairs without parallel 294

corpora, with spatial-temporal graphs providing 295

fine-grained visual grounding for both close and 296

distant language pairs. Video pivoting in MMT 297

leverages visual content from videos as an inter- 298

mediary to align source and target languages in 299

unsupervised settings. This approach addresses the 300

challenge of latent space alignment between lan- 301

guages by exploiting the shared visual-semantic 302

information in videos, which provide richer spatial- 303

temporal context than static images. The core 304

mechanism involves multimodal back-translation 305

combined with pseudo-visual pivoting, where mod- 306

els learn a shared multilingual embedding space. 307

Table 1 presents a comparison between all exist- 308

ing approaches. 309

5 Video Encoders 310

Recent advances in video encoding architectures 311

have significantly expanded the toolkit for video 312

understanding in VMT tasks moving beyond tra- 313

ditional 3D CNNs and ResNet-based approaches 314

to specialized transformer architectures and cross- 315

modal alignment strategies. Transformer-based 316

models like VideoSwin Transformer (Liu et al., 317

2021) introduced locality-constrained spatiotempo- 318

ral attention through shifted window mechanisms 319

which reduced computational costs by 20× com- 320

pared to 3D CNNs through hierarchical feature 321

processing. Concurrently, ViViT (Arnab et al., 322

2021) demonstrated pure-transformer efficacy by 323

factorizing spatial-temporal tokens and leveraging 324

image-pretrained weights through temporal adap- 325

tation of vision transformers. Contrastive learn- 326

ing frameworks such as CLIP4Clip (Luo et al., 327

2021) adapted image-text pretrained CLIP mod- 328

els for video retrieval via parameter-free similar- 329

ity calculation and temporal alignment modules 330

and jointly optimized video-text embeddings. This 331

paradigm was extended by VideoCLIP(Xu et al., 332

2021), which incorporated hard negative mining 333

during contrastive pretraining to boost zero-shot 334

performance on video QA and aslo enabled tem- 335

poral localization without task-specific fine-tuning. 336

Emerging foundational encoders like VideoPrism 337
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(Zhao et al., 2024) unified global-local video under-338

standing through hybrid contrastive and masked au-339

toencoding pretraining. For multimodal integration,340

VideoGPT+ (Maaz et al., 2024b) introduced dual341

spatial-temporal pathways combining ViT-L/14 im-342

age encoders with TimeSformer (Bertasius et al.,343

2021) video models via adaptive pooling gates.344

The MERV (Chung et al., 2025) framework ad-345

vanced specialized knowledge fusion by spatiotem-346

porally aligning features from DINOv2 (Oquab347

et al., 2024), ViViT (Arnab et al., 2021)(temporal),348

and SigLIP (Zhai et al., 2023) encoders through349

cross-attentive mixing, boosting VideoLLM per-350

formances. These architectures collectively ad-351

dress VMT’s core requirements - balancing spatial-352

temporal resolution, cross-modal alignment, and353

computational efficiency - while providing adapt-354

able frameworks for integrating domain-specific355

visual knowledge into translation pipelines.356

6 Analysis357

This section presents a targeted analysis of recent358

multimodal translation models, focusing on three359

critical areas: cross-modal fusion strategies, the360

use of auxiliary loss functions, and the scaling of361

datasets and input modalities.362

Cross-Modal Fusion: The design and depth363

of cross-modal fusion have a significant impact on364

translation quality. Early approaches, such as Wang365

et al. (2019), employed dual attention and dual en-366

coders to handle video and text inputs separately.367

While foundational, these architectures lacked the368

capacity to model complex interactions between369

modalities. Subsequent models introduced more370

sophisticated fusion techniques—Hirasawa et al.371

(2020) encoded frame order through positional em-372

beddings, and Gu et al. (2021) advanced this with373

hierarchical attention across object, frame, and374

scene levels. These enhancements led to notable375

improvements in En-Zh BLEU scores, underscor-376

ing the importance of structured and temporally-377

aware fusion mechanisms. Similarly, Lv et al.378

(2025) introduced discourse-level topic informa-379

tion via selective and bi-attention, though the im-380

pact was relatively modest—indicating that while381

more information can help, effective integration is382

crucial.383

Auxiliary Loss Functions: The introduction384

of auxiliary learning objectives, particularly con-385

trastive losses, has proven effective in strength-386

ening cross-modal alignment. Kang et al. (2023)387

achieved the highest En-Zh BLEU score by com- 388

bining a contrastive loss with standard translation 389

objectives. This allowed the model to more effec- 390

tively discriminate between semantically aligned 391

and unaligned video-text pairs. Similarly, Li et al. 392

(2023b) leveraged ambiguity-aware attention as a 393

form of auxiliary supervision, yielding the highest 394

Zh-En BLEU score. These results demonstrate that 395

auxiliary objectives targeting representation quality 396

and semantic clarity can lead to significant transla- 397

tion gains. (Li et al., 2023a) uses back translation 398

for latent space alignment for videos and text with 399

pseudo-visual pivoting. 400

Scaling of Data and Additional Features: 401

Model performance has also benefited from scal- 402

ing both data and modalities. The use of large- 403

scale datasets, as in Kang et al. (2023), clearly con- 404

tributes to better generalization and more robust 405

cross-modal representations. Additionally, Guan 406

et al. (2025) incorporated fine-grained speech fea- 407

tures alongside video and text, achieving strong 408

En-Zh performance. However, the asymmetry in 409

Zh-En results suggests that the effectiveness of 410

additional modalities such as audio depends on lan- 411

guage direction or modality alignment quality. 412

7 Datasets 413

Table 2 presents all the datasets used in Video- 414

guided machine Translation. 415

Vatex datset introduced in (Wang et al., 2019) 416

is one of the most widely used benchmarks for 417

video-guided multimodal machine translation. It 418

consists of multilingual video descriptions and is 419

designed to facilitate research in video captioning 420

and translation. The dataset contains over 41,000 421

videos collected from the MSR-VTT (Xu et al., 422

2016) dataset, with each video annotated with 10 423

English descriptions and their corresponding trans- 424

lations in Mandarin Chinese. The videos cover a 425

diverse range of topics, including sports, music, 426

and everyday activities, making it a robust resource 427

for training and evaluating multimodal MT models. 428

429

EVA (Li et al., 2023b)is a large-scale resource 430

focused on subtitle ambiguity. It contains 852,000 431

Japanese-English and 520,000 Chinese-English 432

parallel subtitle pairs, each aligned with corre- 433

sponding video clips sourced from movies and TV 434

episodes. EVA also features a specially curated 435

evaluation set where subtitle ambiguity is guaran- 436

teed and the accompanying video is necessary for 437
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Dataset Language Clips Secs Sen Domain Genre AM FT S A-S Alignment TB
How2 En-Pt 186K 5.8 186K Instruction Short Video × × ✓ ✓ ×

VATEX En-Zh 41K 10 129K Captions Short Video × × ✓ × ×
VISA En-Ja 40K 10 40K Subtitle Film and Television ✓ × × × ×
EVA En-Zh/Ja 1.4M 10 1.4M Subtitle Film and Television ✓ × × × ×

BigVideo En-Zh 3.3M 8 4.5M Subtitle Short Video ✓ × × × ×
MAD-VMT En-Zh 193K - 193K Caption Movies × × × × ×

Trifine En-Zh 2.4M 10 2.4M Subtitle Short Video ✓ ✓ ✓ ✓ ×
TopicVD En-Zh 122K 8.4 122K Subtitle Documentary × × × ✓ ✓

Table 2: Overview of Video Guided Machine Translation Datasets. "Secs" denote the duration of each clip. "Sen"
denote the number of sentences in the dataset. "AM" denote the availability of ambiguity-aware dataset. "FT"
denotes the availability of fine-grained tags of the dataset. "S" denotes the availability of Audio. "A-S" alignment
indicates whether the Audio-Video are aligned. "TB" denotes topic based segragation of the dataset.

disambiguation, directly addressing a major limita-438

tion of prior MMT datasets.439

How2 (Sanabria et al., 2018) was one of the440

first datasets addressing multimodal language un-441

derstanding. It contains 79,114 instructional videos442

along with English subtitles and aligned Portuguese443

subtitles. All the clips contain the summary of the444

event occurring in the clip.445

VISA (Li et al., 2022b) contains clips from446

movies and TV along with parallel subtitles in En-447

glish and Japanese. All subtitles are ambiguous and448

fall into either the "Polysemy" or "Ambiguous" cat-449

egory. Hence, any translation task involving these450

subtitles must rely on the corresponding video clip451

for context.452

BigVideo (Kang et al., 2023) is a large-scale453

dataset specifically focusing on video subtitle trans-454

lation. It contains 4.5 million English-Chinese sen-455

tence pairs aligned with 156,000 unique videos,456

totaling 9,981 hours of content. It is currently the457

largest video-guided machine translation dataset458

available. BigVideo contains two specially anno-459

tated test sets: Ambiguous and Unambiguous. The460

Ambiguous set contains source inputs that require461

video context for accurate translation, while the Un-462

ambiguous set includes self-contained text suitable463

for translation without visual cues.464

The MAD-VMT (Shurtz et al., 2024) (Movie465

Audio Descriptions for Video-guided Machine466

Translation) dataset is derived from the MAD467

dataset, which contains transcribed audio descrip-468

tions of movies typically used for visually impaired469

audiences. To create MAD-VMT, the English tran-470

scriptions from MAD were machine-translated into471

Chinese using Google Translate. This approach472

was adopted to increase the amount and lexical473

diversity of both source and target language pre-474

training data for video-guided machine translation475

tasks.476

TopicVD (Lv et al., 2025) is a topic-based477

dataset designed for VMT of documentaries, ad- 478

dressing the lack of large-scale, diverse video data 479

in long-form videos. It consists of 256 documen- 480

taries spanning eight topics - Economy, Food, His- 481

tory, Figure, Military, Nature, Social, and Technol- 482

ogy, comprising 285 hours of video and 122,930 483

Chinese-English parallel subtitle pairs, with contex- 484

tual information for each video-subtitle pair. The 485

dataset enables research on domain adaptation as 486

experiments show that visual and contextual in- 487

formation significantly enhance translation perfor- 488

mance, especially in in-domain scenarios. 489

Trifine (Guan et al., 2025) is a comprehensive 490

tri modal dataset designed for vision-audio-subtitle 491

analysis and translation tasks. It features a parallel 492

corpus of English-Chinese subtitles, complemented 493

by fine-grained audio labels such as audio senti- 494

ment and stress, as well as video labels including 495

location, entities, expressions, and actions. 496

8 Previous Surveys 497

Shen et al. (2024) explores Multimodal Machine 498

Translation in detail covering various aspects like 499

Image-guided MT, In-Image MT, Video-guided 500

MT and Chat Multimodal MT. It explores image- 501

guided MT in utmost detail, underlining its mod- 502

elling approaches and datasets in detail. It also 503

touches upon various works which analyze the ex- 504

tent of the importance of images in improving the 505

translations. However, Shen et al. (2024) doesn’t 506

explore the intricacies of video-guided MT by go- 507

ing into the depth of modeling and taxonomy of 508

VMT. Similarly, Paul et al. (2024) surveys MMT 509

papers related to Indian Languages with Image- 510

guided MT in focus. Video-guided MT differs 511

from general Multimodal MT which covers wide 512

range of MMT tasks. Since video modality is in- 513

formation heavy, it demands its own analysis and 514

dedicated survey. 515
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9 Challenges and Future Directions516

This section discusses about various challenges517

in VMT and also points towards possible future518

research directions519

9.1 Challenges520

Information Redundancy and Computational521

Overhead According to Guan et al. (2025), VMT522

requires selecting multiple frames to extract coarse-523

grained visual features. However, not all frames524

contribute equally to translation quality, leading to525

increased computational overhead. The inclusion526

of redundant frames can also introduce regulariza-527

tion issues, impacting model performance.528

Audio Integration in VMT While VMT primar-529

ily relies on visual cues for translation, incorporat-530

ing audio is crucial. Audio provides essential con-531

textual information, such as speaker intent, tone,532

and background sounds, which significantly en-533

hance translation accuracy. However, effectively534

fusing audio with video representations remains a535

challenge. Guan et al. (2025) has only introduced536

a trimodal dataset with audio and fine grained tags.537

Data Scarcity in Low-Resource Languages538

VMT models require triplet data—video, source539

text, and target text—for training. However, such540

datasets are scarce, particularly for low-resource541

languages and underrepresented language families.542

This data bottleneck limits the scalability and gen-543

eralization of VMT models. Table 2 shows that544

most video-guided MT datasets consist of English545

and Chinese data with no representation from other546

language families.547

9.2 Future Directions548

Integrating World Knowledge using Video549

LLMs Enhancing VMT with external world550

knowledge, such as named entities (famous per-551

sonalities, cultural references) and idiomatic ex-552

pressions, could improve translation accuracy.553

Techniques like knowledge graph integration or554

retrieval-augmented generation could be explored.555

Pretrained large-scale multimodal models, trained556

on extensive text-image corpora, could be fine-557

tuned for VMT. Video LLMs like Maaz et al.558

(2024b), Cheng et al. (2024) and Maaz et al.559

(2024a) inherently capture rich cross-modal rep-560

resentations and have instruction following ability561

making them valuable for video-guided translation562

tasks which may involve reasoning. Video-LLMs563

also provide an able ground to explore agentic ma- 564

chine translation setups as seen in Wu et al. (2025) 565

which can further the reasoning and generalization 566

ability of translation systems. 567

High-Quality Multilingual and Domain-Specific 568

Datasets Developing large-scale, high-quality 569

datasets across multiple language families and di- 570

verse domains is essential for improving VMT. 571

This would address current data scarcity challenges 572

and enhance translation performance in various 573

contexts. Only Lv et al. (2025) currently has do- 574

main specific segregation of data in English and 575

Chinese. 576

Real-Time Translation with Low Latency 577

Achieving real-time video-guided translation with 578

minimal latency is a key goal. Optimizations such 579

as efficient frame selection, lightweight transformer 580

architectures, and parallelized inference pipelines 581

could be explored to enable low-latency, high- 582

accuracy translations. Recently Chen et al. (2024) 583

attempted to cruch stream video using Video LLMs. 584

However, they lose out on better representation for 585

spatial and temporal features. 586

10 Conclusion 587

In this paper, we provide a comprehensive overview 588

of video-guided machine translation (VMT). We 589

begin by discussing the background and evolution 590

of multimodal machine translation (MMT) to VMT. 591

Next, we present a taxonomy of various VMT ap- 592

proaches based on their model design. We then 593

review the datasets commonly used for VMT re- 594

search. Finally, we discuss the key challenges in 595

VMT and explore potential future directions for 596

advancing this task. 597

Limitations 598

Since video-guided machine translation is an 599

emerging field, any survey on this topic must be 600

continuously updated to reflect new research de- 601

velopments. As new datasets, models, and ap- 602

proaches are introduced, the landscape of VMT 603

evolves rapidly, making it challenging to maintain 604

a comprehensive and up-to-date overview. 605
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Chen Sun, Mario Lučić, and Cordelia Schmid. 608
2021. Vivit: A video vision transformer. Preprint, 609
arXiv:2103.15691. 610

8

https://arxiv.org/abs/2103.15691


Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua611
Bengio. 2016. Neural machine translation by612
jointly learning to align and translate. Preprint,613
arXiv:1409.0473.614

Gedas Bertasius, Heng Wang, and Lorenzo Torresani.615
2021. Is space-time attention all you need for video616
understanding? Preprint, arXiv:2102.05095.617

Iacer Calixto, Miguel Rios, and Wilker Aziz. 2019. La-618
tent variable model for multi-modal translation. In619
Proceedings of the 57th Annual Meeting of the Asso-620
ciation for Computational Linguistics, pages 6392–621
6405, Florence, Italy. Association for Computational622
Linguistics.623

João Carreira and Andrew Zisserman. 2017. Quo vadis,624
action recognition? a new model and the kinetics625
dataset. In 2017 IEEE Conference on Computer Vi-626
sion and Pattern Recognition (CVPR), pages 4724–627
4733.628

Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong629
Lin, Chenan Song, Difei Gao, Jia-Wei Liu, Ziteng630
Gao, Dongxing Mao, and Mike Zheng Shou. 2024.631
Videollm-online: Online video large language model632
for streaming video. In CVPR.633

Zhuo Chen, Fei Yin, Qing Yang, and Cheng-Lin Liu.634
2023. Cross-lingual text image recognition via635
multi-hierarchy cross-modal mimic. Trans. Multi.,636
25:4830–4841.637

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin638
Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang,639
Ziyang Luo, Deli Zhao, and Lidong Bing. 2024.640
Videollama 2: Advancing spatial-temporal model-641
ing and audio understanding in video-llms. Preprint,642
arXiv:2406.07476.643

Jihoon Chung, Tyler Zhu, Max Gonzalez Saez-Diez,644
Juan Carlos Niebles, Honglu Zhou, and Olga645
Russakovsky. 2025. Unifying specialized visual646
encoders for video language models. Preprint,647
arXiv:2501.01426.648

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,649
and Yoshua Bengio. 2014. Empirical evaluation of650
gated recurrent neural networks on sequence model-651
ing. Preprint, arXiv:1412.3555.652

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-653
cia Specia. 2016. Multi30K: Multilingual English-654
German image descriptions. In Proceedings of the655
5th Workshop on Vision and Language, pages 70–656
74, Berlin, Germany. Association for Computational657
Linguistics.658

Qingkai Fang and Yang Feng. 2022. Neural machine659
translation with phrase-level universal visual repre-660
sentations. In Proceedings of the 60th Annual Meet-661
ing of the Association for Computational Linguistics662
(Volume 1: Long Papers), pages 5687–5698, Dublin,663
Ireland. Association for Computational Linguistics.664

Weiqi Gu, Haiyue Song, Chenhui Chu, and Sadao Kuro- 665
hashi. 2021. Video-guided machine translation with 666
spatial hierarchical attention network. In Proceed- 667
ings of the 59th Annual Meeting of the Association for 668
Computational Linguistics and the 11th International 669
Joint Conference on Natural Language Processing: 670
Student Research Workshop, pages 87–92, Online. 671
Association for Computational Linguistics. 672

Boyu Guan, Yining Zhang, Yang Zhao, and Chengqing 673
Zong. 2025. TriFine: A large-scale dataset of vision- 674
audio-subtitle for tri-modal machine translation and 675
benchmark with fine-grained annotated tags. In Pro- 676
ceedings of the 31st International Conference on 677
Computational Linguistics, pages 8215–8231, Abu 678
Dhabi, UAE. Association for Computational Linguis- 679
tics. 680

Wenyu Guo, Qingkai Fang, Dong Yu, and Yang Feng. 681
2023. Bridging the gap between synthetic and au- 682
thentic images for multimodal machine translation. 683
In Proceedings of the 2023 Conference on Empiri- 684
cal Methods in Natural Language Processing, pages 685
2863–2874, Singapore. Association for Computa- 686
tional Linguistics. 687

Veneta Haralampieva, Ozan Caglayan, and Lucia Specia. 688
2022. Supervised visual attention for simultaneous 689
multimodal machine translation. J. Artif. Intell. Res., 690
74:1059–1089. 691

Tosho Hirasawa, Zhishen Yang, Mamoru Komachi, and 692
Naoaki Okazaki. 2020. Keyframe segmentation and 693
positional encoding for video-guided machine trans- 694
lation challenge 2020. ArXiv, abs/2006.12799. 695

Aizhan Imankulova, Masahiro Kaneko, Tosho Hirasawa, 696
and Mamoru Komachi. 2020. Towards multimodal 697
simultaneous neural machine translation. In Proceed- 698
ings of the Fifth Conference on Machine Translation, 699
pages 594–603, Online. Association for Computa- 700
tional Linguistics. 701

Julia Ive, Andy Mingren Li, Yishu Miao, Ozan 702
Caglayan, Pranava Madhyastha, and Lucia Specia. 703
2021. Exploiting multimodal reinforcement learning 704
for simultaneous machine translation. In Proceed- 705
ings of the 16th Conference of the European Chap- 706
ter of the Association for Computational Linguistics: 707
Main Volume, pages 3222–3233, Online. Association 708
for Computational Linguistics. 709

Liyan Kang, Luyang Huang, Ningxin Peng, Peihao Zhu, 710
Zewei Sun, Shanbo Cheng, Mingxuan Wang, Degen 711
Huang, and Jinsong Su. 2023. BigVideo: A large- 712
scale video subtitle translation dataset for multimodal 713
machine translation. In Findings of the Association 714
for Computational Linguistics: ACL 2023, pages 715
8456–8473, Toronto, Canada. Association for Com- 716
putational Linguistics. 717

Zhibin Lan, Jiawei Yu, Xiang Li, Wen Zhang, Jian Luan, 718
Bin Wang, Degen Huang, and Jinsong Su. 2023. Ex- 719
ploring better text image translation with multimodal 720
codebook. In Proceedings of the 61st Annual Meet- 721
ing of the Association for Computational Linguistics 722

9

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2102.05095
https://arxiv.org/abs/2102.05095
https://arxiv.org/abs/2102.05095
https://doi.org/10.18653/v1/P19-1642
https://doi.org/10.18653/v1/P19-1642
https://doi.org/10.18653/v1/P19-1642
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/TMM.2022.3183386
https://doi.org/10.1109/TMM.2022.3183386
https://doi.org/10.1109/TMM.2022.3183386
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/2501.01426
https://arxiv.org/abs/2501.01426
https://arxiv.org/abs/2501.01426
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/2022.acl-long.390
https://doi.org/10.18653/v1/2022.acl-long.390
https://doi.org/10.18653/v1/2022.acl-long.390
https://doi.org/10.18653/v1/2022.acl-long.390
https://doi.org/10.18653/v1/2022.acl-long.390
https://doi.org/10.18653/v1/2021.acl-srw.9
https://doi.org/10.18653/v1/2021.acl-srw.9
https://doi.org/10.18653/v1/2021.acl-srw.9
https://aclanthology.org/2025.coling-main.547/
https://aclanthology.org/2025.coling-main.547/
https://aclanthology.org/2025.coling-main.547/
https://aclanthology.org/2025.coling-main.547/
https://aclanthology.org/2025.coling-main.547/
https://doi.org/10.18653/v1/2023.emnlp-main.173
https://doi.org/10.18653/v1/2023.emnlp-main.173
https://doi.org/10.18653/v1/2023.emnlp-main.173
https://api.semanticscholar.org/CorpusID:246240389
https://api.semanticscholar.org/CorpusID:246240389
https://api.semanticscholar.org/CorpusID:246240389
https://api.semanticscholar.org/CorpusID:219981511
https://api.semanticscholar.org/CorpusID:219981511
https://api.semanticscholar.org/CorpusID:219981511
https://api.semanticscholar.org/CorpusID:219981511
https://api.semanticscholar.org/CorpusID:219981511
https://aclanthology.org/2020.wmt-1.70/
https://aclanthology.org/2020.wmt-1.70/
https://aclanthology.org/2020.wmt-1.70/
https://doi.org/10.18653/v1/2021.eacl-main.281
https://doi.org/10.18653/v1/2021.eacl-main.281
https://doi.org/10.18653/v1/2021.eacl-main.281
https://doi.org/10.18653/v1/2023.findings-acl.535
https://doi.org/10.18653/v1/2023.findings-acl.535
https://doi.org/10.18653/v1/2023.findings-acl.535
https://doi.org/10.18653/v1/2023.findings-acl.535
https://doi.org/10.18653/v1/2023.findings-acl.535
https://doi.org/10.18653/v1/2023.acl-long.192
https://doi.org/10.18653/v1/2023.acl-long.192
https://doi.org/10.18653/v1/2023.acl-long.192
https://doi.org/10.18653/v1/2023.acl-long.192
https://doi.org/10.18653/v1/2023.acl-long.192


(Volume 1: Long Papers), pages 3479–3491, Toronto,723
Canada. Association for Computational Linguistics.724

Jiaoda Li, Duygu Ataman, and Rico Sennrich. 2021.725
Vision matters when it should: Sanity checking mul-726
timodal machine translation models. In Proceedings727
of the 2021 Conference on Empirical Methods in Nat-728
ural Language Processing, pages 8556–8562, Online729
and Punta Cana, Dominican Republic. Association730
for Computational Linguistics.731

Mingjie Li, Po-Yao Huang, Xiaojun Chang, Junjie Hu,732
Yi Yang, and Alex Hauptmann. 2023a. Video pivot-733
ing unsupervised multi-modal machine translation.734
IEEE Transactions on Pattern Analysis and Machine735
Intelligence, 45(3):3918–3932.736

Yi Li, Rameswar Panda, Yoon Kim, Chun-Fu Chen,737
Rogério Schmidt Feris, David D. Cox, and Nuno738
Vasconcelos. 2022a. Valhalla: Visual hallucination739
for machine translation. 2022 IEEE/CVF Conference740
on Computer Vision and Pattern Recognition (CVPR),741
pages 5206–5216.742

Yihang Li, Shuichiro Shimizu, Chenhui Chu, Sadao743
Kurohashi, and Wei Li. 2023b. Video-helpful mul-744
timodal machine translation. In Proceedings of the745
2023 Conference on Empirical Methods in Natural746
Language Processing, pages 4281–4299, Singapore.747
Association for Computational Linguistics.748

Yihang Li, Shuichiro Shimizu, Weiqi Gu, Chenhui Chu,749
and Sadao Kurohashi. 2022b. VISA: An ambigu-750
ous subtitles dataset for visual scene-aware machine751
translation. In Proceedings of the Thirteenth Lan-752
guage Resources and Evaluation Conference, pages753
6735–6743, Marseille, France. European Language754
Resources Association.755

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,756
Stephen Lin, and Han Hu. 2021. Video swin trans-757
former. arXiv preprint arXiv:2106.13230.758

Quanyu Long, Mingxuan Wang, and Lei Li. 2021. Gen-759
erative imagination elevates machine translation. In760
Proceedings of the 2021 Conference of the North761
American Chapter of the Association for Computa-762
tional Linguistics: Human Language Technologies,763
pages 5738–5748, Online. Association for Computa-764
tional Linguistics.765

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen766
Lei, Nan Duan, and Tianrui Li. 2021. CLIP4Clip:767
An empirical study of clip for end to end video clip768
retrieval. arXiv preprint arXiv:2104.08860.769

Thang Luong, Hieu Pham, and Christopher D. Manning.770
2015. Effective approaches to attention-based neural771
machine translation. In Proceedings of the 2015 Con-772
ference on Empirical Methods in Natural Language773
Processing, pages 1412–1421, Lisbon, Portugal. As-774
sociation for Computational Linguistics.775

Jinze Lv, Jian Chen, Zi Long, Xianghua Fu, and Yin776
Chen. 2025. Topicvd: A topic-based dataset of video-777
guided multimodal machine translation for documen-778
taries. Preprint, arXiv:2505.05714.779

Cong Ma, Xu Han, Linghui Wu, Yaping Zhang, Yang 780
Zhao, Yu Zhou, and Chengqing Zong. 2024. Modal 781
contrastive learning based end-to-end text image ma- 782
chine translation. IEEE/ACM Transactions on Audio, 783
Speech, and Language Processing, 32:2153–2165. 784

Cong Ma, Yaping Zhang, Mei Tu, Xu Han, Linghui 785
Wu, Yang Zhao, and Yu Zhou. 2022. Improving end- 786
to-end text image translation from the auxiliary text 787
translation task. 2022 26th International Conference 788
on Pattern Recognition (ICPR), pages 1664–1670. 789

Cong Ma, Yaping Zhang, Mei Tu, Yang Zhao, Yu Zhou, 790
and Chengqing Zong. 2023. E2timt: Efficient and 791
effective modal adapter for text image machine trans- 792
lation. 793

Muhammad Maaz, Hanoona Rasheed, Salman Khan, 794
and Fahad Shahbaz Khan. 2024a. Video-chatgpt: 795
Towards detailed video understanding via large vision 796
and language models. Preprint, arXiv:2306.05424. 797

Muhammad Maaz, Hanoona Rasheed, Salman Khan, 798
and Fahad Shahbaz Khan. 2024b. Videogpt+: Inte- 799
grating image and video encoders for enhanced video 800
understanding. arxiv. 801

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas, 802
and James Henderson. 2018. Document-level neural 803
machine translation with hierarchical attention net- 804
works. In Proceedings of the 2018 Conference on 805
Empirical Methods in Natural Language Processing, 806
pages 2947–2954, Brussels, Belgium. Association 807
for Computational Linguistics. 808

Maxime Oquab, Timothée Darcet, Théo Moutakanni, 809
Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer- 810
nandez, Daniel Haziza, Francisco Massa, Alaaeldin 811
El-Nouby, Mahmoud Assran, Nicolas Ballas, Woj- 812
ciech Galuba, Russell Howes, Po-Yao Huang, Shang- 813
Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, 814
Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien 815
Mairal, Patrick Labatut, Armand Joulin, and Pi- 816
otr Bojanowski. 2024. Dinov2: Learning ro- 817
bust visual features without supervision. Preprint, 818
arXiv:2304.07193. 819

Binnu Paul, Dwijen Rudrapal, Kunal Chakma, and Anu- 820
pam Jamatia. 2024. Multimodal machine translation 821
approaches for indian languages: A comprehensive 822
survey. JUCS - Journal of Universal Computer Sci- 823
ence, 30:694–717. 824

Ramon Sanabria, Ozan Caglayan, Shruti Palaskar, 825
Desmond Elliott, Loïc Barrault, Lucia Specia, and 826
Florian Metze. 2018. How2: A large-scale dataset 827
for multimodal language understanding. ArXiv, 828
abs/1811.00347. 829

Rico Sennrich, Barry Haddow, and Alexandra Birch. 830
2016. Neural machine translation of rare words with 831
subword units. Preprint, arXiv:1508.07909. 832

Huangjun Shen, Liangying Shao, Wenbo Li, Zhibin 833
Lan, Zhanyu Liu, and Jinsong Su. 2024. A survey 834
on multi-modal machine translation: Tasks, methods 835
and challenges. Preprint, arXiv:2405.12669. 836

10

https://doi.org/10.18653/v1/2021.emnlp-main.673
https://doi.org/10.18653/v1/2021.emnlp-main.673
https://doi.org/10.18653/v1/2021.emnlp-main.673
https://doi.org/10.1109/TPAMI.2022.3181116
https://doi.org/10.1109/TPAMI.2022.3181116
https://doi.org/10.1109/TPAMI.2022.3181116
https://api.semanticscholar.org/CorpusID:247936049
https://api.semanticscholar.org/CorpusID:247936049
https://api.semanticscholar.org/CorpusID:247936049
https://doi.org/10.18653/v1/2023.emnlp-main.260
https://doi.org/10.18653/v1/2023.emnlp-main.260
https://doi.org/10.18653/v1/2023.emnlp-main.260
https://aclanthology.org/2022.lrec-1.725/
https://aclanthology.org/2022.lrec-1.725/
https://aclanthology.org/2022.lrec-1.725/
https://aclanthology.org/2022.lrec-1.725/
https://aclanthology.org/2022.lrec-1.725/
https://doi.org/10.18653/v1/2021.naacl-main.457
https://doi.org/10.18653/v1/2021.naacl-main.457
https://doi.org/10.18653/v1/2021.naacl-main.457
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://arxiv.org/abs/2505.05714
https://arxiv.org/abs/2505.05714
https://arxiv.org/abs/2505.05714
https://arxiv.org/abs/2505.05714
https://arxiv.org/abs/2505.05714
https://api.semanticscholar.org/CorpusID:264107217
https://api.semanticscholar.org/CorpusID:264107217
https://api.semanticscholar.org/CorpusID:264107217
https://api.semanticscholar.org/CorpusID:264107217
https://api.semanticscholar.org/CorpusID:264107217
https://api.semanticscholar.org/CorpusID:252780920
https://api.semanticscholar.org/CorpusID:252780920
https://api.semanticscholar.org/CorpusID:252780920
https://api.semanticscholar.org/CorpusID:252780920
https://api.semanticscholar.org/CorpusID:252780920
https://doi.org/10.48550/arXiv.2305.05166
https://doi.org/10.48550/arXiv.2305.05166
https://doi.org/10.48550/arXiv.2305.05166
https://doi.org/10.48550/arXiv.2305.05166
https://doi.org/10.48550/arXiv.2305.05166
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2406.09418
https://arxiv.org/abs/2406.09418
https://arxiv.org/abs/2406.09418
https://arxiv.org/abs/2406.09418
https://arxiv.org/abs/2406.09418
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://doi.org/10.3897/jucs.109227
https://doi.org/10.3897/jucs.109227
https://doi.org/10.3897/jucs.109227
https://doi.org/10.3897/jucs.109227
https://doi.org/10.3897/jucs.109227
https://api.semanticscholar.org/CorpusID:53186236
https://api.semanticscholar.org/CorpusID:53186236
https://api.semanticscholar.org/CorpusID:53186236
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669
https://arxiv.org/abs/2405.12669


Ammon Shurtz, Lawry Sorenson, and Stephen D.837
Richardson. 2024. The effects of pretraining in video-838
guided machine translation. In Proceedings of the839
2024 Joint International Conference on Computa-840
tional Linguistics, Language Resources and Evalu-841
ation (LREC-COLING 2024), pages 15888–15898,842
Torino, Italia. ELRA and ICCL.843

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.844
Sequence to sequence learning with neural networks.845
In Proceedings of the 28th International Conference846
on Neural Information Processing Systems - Volume847
2, NIPS’14, page 3104–3112, Cambridge, MA, USA.848
MIT Press.849

ZhenHao Tang, XiaoBing Zhang, Zi Long, and Xi-850
angHua Fu. 2022a. Multimodal neural machine trans-851
lation with search engine based image retrieval. In852
Proceedings of the 9th Workshop on Asian Trans-853
lation, pages 89–98, Gyeongju, Republic of Korea.854
International Conference on Computational Linguis-855
tics.856

ZhenHao Tang, XiaoBing Zhang, Zi Long, and Xi-857
angHua Fu. 2022b. Multimodal neural machine trans-858
lation with search engine based image retrieval. In859
Proceedings of the 9th Workshop on Asian Trans-860
lation, pages 89–98, Gyeongju, Republic of Korea.861
International Conference on Computational Linguis-862
tics.863

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob864
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz865
Kaiser, and Illia Polosukhin. 2023. Attention is all866
you need. Preprint, arXiv:1706.03762.867

Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-868
Fang Wang, and William Yang Wang. 2019. Vatex:869
A large-scale, high-quality multilingual dataset for870
video-and-language research. In 2019 IEEE/CVF In-871
ternational Conference on Computer Vision (ICCV),872
pages 4580–4590.873

Minghao Wu, Jiahao Xu, Yulin Yuan, Gholamreza Haf-874
fari, Longyue Wang, Weihua Luo, and Kaifu Zhang.875
2025. (perhaps) beyond human translation: Harness-876
ing multi-agent collaboration for translating ultra-877
long literary texts. Preprint, arXiv:2405.11804.878

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,879
Mohammad Norouzi, Wolfgang Macherey, Maxim880
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff881
Klingner, Apurva Shah, Melvin Johnson, Xiaobing882
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,883
Taku Kudo, Hideto Kazawa, Keith Stevens, George884
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason885
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,886
Greg Corrado, Macduff Hughes, and Jeffrey Dean.887
2016. Google’s neural machine translation system:888
Bridging the gap between human and machine trans-889
lation. Preprint, arXiv:1609.08144.890

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,891
Armen Aghajanyan, Florian Metze, Luke Zettle-892
moyer, and Christoph Feichtenhofer. 2021. Video-893

clip: Contrastive pre-training for zero-shot video-text 894
understanding. Preprint, arXiv:2109.14084. 895

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr- 896
vtt: A large video description dataset for bridging 897
video and language. In 2016 IEEE Conference on 898
Computer Vision and Pattern Recognition (CVPR), 899
pages 5288–5296. 900

Ryoya Yuasa, Akihiro Tamura, Tomoyuki Kajiwara, 901
Takashi Ninomiya, and Tsuneo Kato. 2023. Mul- 902
timodal neural machine translation using synthetic 903
images transformed by latent diffusion model. In 904
Proceedings of the 61st Annual Meeting of the As- 905
sociation for Computational Linguistics (Volume 4: 906
Student Research Workshop), pages 76–82, Toronto, 907
Canada. Association for Computational Linguistics. 908

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, 909
and Lucas Beyer. 2023. Sigmoid loss for language 910
image pre-training. Preprint, arXiv:2303.15343. 911

Zhuosheng Zhang, Kehai Chen, Rui Wang, Masao 912
Utiyama, Eiichiro Sumita, Z. Li, and Hai Zhao. 2020. 913
Neural machine translation with universal visual rep- 914
resentation. In International Conference on Learning 915
Representations. 916

Long Zhao, Nitesh B. Gundavarapu, Liangzhe Yuan, 917
Hao Zhou, Shen Yan, Jennifer J. Sun, Luke Friedman, 918
Rui Qian, Tobias Weyand, Yue Zhao, Rachel Hor- 919
nung, Florian Schroff, Ming-Hsuan Yang, David A. 920
Ross, Huisheng Wang, Hartwig Adam, Mikhail 921
Sirotenko, Ting Liu, and Boqing Gong. 2024. Video- 922
prism: A foundational visual encoder for video un- 923
derstanding. Preprint, arXiv:2402.13217. 924

11

https://aclanthology.org/2024.lrec-main.1380/
https://aclanthology.org/2024.lrec-main.1380/
https://aclanthology.org/2024.lrec-main.1380/
https://aclanthology.org/2022.wat-1.11/
https://aclanthology.org/2022.wat-1.11/
https://aclanthology.org/2022.wat-1.11/
https://aclanthology.org/2022.wat-1.11/
https://aclanthology.org/2022.wat-1.11/
https://aclanthology.org/2022.wat-1.11/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICCV.2019.00468
https://doi.org/10.1109/ICCV.2019.00468
https://doi.org/10.1109/ICCV.2019.00468
https://doi.org/10.1109/ICCV.2019.00468
https://doi.org/10.1109/ICCV.2019.00468
https://arxiv.org/abs/2405.11804
https://arxiv.org/abs/2405.11804
https://arxiv.org/abs/2405.11804
https://arxiv.org/abs/2405.11804
https://arxiv.org/abs/2405.11804
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2109.14084
https://arxiv.org/abs/2109.14084
https://arxiv.org/abs/2109.14084
https://arxiv.org/abs/2109.14084
https://arxiv.org/abs/2109.14084
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.18653/v1/2023.acl-srw.12
https://doi.org/10.18653/v1/2023.acl-srw.12
https://doi.org/10.18653/v1/2023.acl-srw.12
https://doi.org/10.18653/v1/2023.acl-srw.12
https://doi.org/10.18653/v1/2023.acl-srw.12
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://api.semanticscholar.org/CorpusID:214522790
https://api.semanticscholar.org/CorpusID:214522790
https://api.semanticscholar.org/CorpusID:214522790
https://arxiv.org/abs/2402.13217
https://arxiv.org/abs/2402.13217
https://arxiv.org/abs/2402.13217
https://arxiv.org/abs/2402.13217
https://arxiv.org/abs/2402.13217

	Introduction
	Background and Preliminaries
	Neural Machine Translation
	Image Guided Machine Translation
	Other Forms

	Problem Formulation
	Video Guided Machine Translation.
	Late Fusion
	Early Fusion
	Hybrid Fusion
	Unsupervised Methods

	Video Encoders
	Analysis
	Datasets
	Previous Surveys
	Challenges and Future Directions
	Challenges
	Future Directions

	Conclusion

