
CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

SILK: Smooth InterpoLation frameworK for motion in-betweening
A Simplified Computational Approach

Anonymous CVPR submission

Paper ID *****

Abstract

Motion in-betweening is a crucial tool for animators, en-001
abling intricate control over pose-level details in each002
keyframe. Recent machine learning solutions for mo-003
tion in-betweening rely on complex models, incorporating004
skeleton-aware architectures or requiring multiple modules005
and training steps. In this work, we introduce a simple yet006
effective Transformer-based framework, employing a sin-007
gle Transformer encoder to synthesize realistic motions in008
motion in-betweening tasks. We find that data modeling009
choices play a significant role in improving in-betweening010
performance. Among others, we show that increasing data011
volume can yield equivalent or improved motion transitions,012
that the choice of pose representation is vital for achieving013
high-quality results, and that incorporating velocity input014
features enhances animation performance. These findings015
challenge the assumption that model complexity is the pri-016
mary determinant of animation quality and provide insights017
into a more data-centric approach to motion interpolation.018
Additional videos and supplementary material are available019
at https://silk-paper.github.io.020

1. Introduction021

In this work, we focus on developing a deep learning-022
based approach for solving animation in-betweening. An-023
imation in-betweening is the process of generating in-024
termediate frames to smoothly transition between artist-025
specified keyframes, creating the illusion of natural move-026
ment. Keyframing and in-betweening remain the primary027
way to create believable animations while allowing anima-028
tors to control pose-level details of each keyframe. Exist-029
ing in-betweening software often fails to generate realistic030
transitions for large keyframe gaps, necessitating animators031
to manually insert additional keyframes. With the rise of032
deep learning, several learning-based solutions have been033
proposed to solve the long horizon in-betweening problem,034
e.g., [9, 15, 16, 42].035

The most successful machine learning models to-date 036
are Transformer-based approaches that treat in-betweening 037
as a sequence-to-sequence problem [22, 24, 26]. In order 038
to create a sequence-to-sequence setup, the missing input 039
frames are pre-filled either with linearly interpolated val- 040
ues [2, 7, 36–38] or the predictions of a separate Trans- 041
former model [26] while learnable position embeddings en- 042
code the positions of missing frames. Training a single 043
Transformer encoder in this setup has so far only achieved 044
inferior results [7, 16] compared to more complex models 045
with several encoders or training stages [22, 24, 26]. 046

In this work, we show that data modeling choices and 047
the quantity of data play a more significant role than archi- 048
tecture design. Contrary to previous findings, we demon- 049
strate that a single Transformer encoder can solve the in- 050
betweening task as well as complex models. We propose a 051
simplified approach to motion in-betweening that achieves 052
comparable or superior results to state-of-the-art methods 053
while significantly reducing architectural complexity. Our 054
key findings are: 055

• We demonstrate that a single transformer architecture per- 056
forms as well as or better than complex models in in- 057
betweening tasks. 058

• We employ only relative position embeddings without 059
any additional embedding types (such as keyframe po- 060
sition embeddings), demonstrating that a single, simple 061
embedding strategy is sufficient. 062

• Contrary to the vast majority of related work, we find that 063
interpolation in the input sequence leads to inferior results 064
compared to simple zero filling. 065

• We demonstrate that creating a more extensive dataset by 066
sampling data points with a smaller offset than used by 067
the related work significantly increases performance for 068
simpler models. 069

• We show that operating directly in trajectory space can 070
have several advantages compared to working in local-to- 071
parent space. 072

• We find that including velocity features in the model input 073
boosts the model’s capabilities. 074

1

https://silk-paper.github.io

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2. Related Work075

Motion in-betweening refers to the constrained motion syn-076
thesis problem in which the final character pose is known077
in advance, and the generation time window is also speci-078
fied. Methods to automatically fill the gaps between hand-079
drawn keyframes have a long history. For example, [18]080
introduced an automatic stroke-based system to interpolate081
between hand-drawn keyframes.082

Time series models such as recurrent neural networks083
(RNNs) have been the main approach for several years.084
[40] introduced an RNN-based system to autocomplete085
keyframes for a simple 2D character. [8] introduced Re-086
current Transition Networks (RTN) to autocomplete more087
complex human motions with a fixed in-betweening length088
of 60 frames. The key idea is to use two separate encoders,089
a target encoder and an offset encoder, to encode parts of090
the future context. RTNs have been extended by [42] to091
allow for variable in-betweening lengths ranging from one092
to thousands of frames. Concurrently, [9] enhanced RTN093
by adding a time-to-arrival embedding to support varying094
transition lengths, as well as using scheduled target noise095
to allow variations and improve robustness in generated096
transitions. Both [9] and [42] leveraged adversarial train-097
ing to further improve the quality of the generated motion.098
The motion manifold model [32] conditions motion tran-099
sitions on control variables, allowing for transition disam-100
biguation while simultaneously ensuring high-quality mo-101
tion. As a non-recurrent model, [15] proposed an end-to-102
end trainable convolutional autoencoder for filling in miss-103
ing frames. Our proposed model, in contrast to previous104
RNN-based or convolution-based methods, employs Trans-105
formers to handle various forms of missing frames in paral-106
lel through a single-shot prediction.107

Several generative models have been designed that also108
support in-betweening, e.g., based on Variational Autoen-109
coders [10] and diffusion models [33]. [17] propose a110
framework that allows for arbitrary sparse keyframe place-111
ment by leveraging diffusion models. It achieves diverse112
and coherent motion synthesis, albeit at the cost of in-113
creased inference time and the need for repeated guidance114
mechanisms to enforce constraints.115

Guided Motion Diffusion (GMD) [14] incorporates spa-116
tial constraints into motion synthesis, enabling control over117
global motion trajectories, sparse keyframe placements, and118
obstacle avoidance. However, GMD relies on imputation119
and inpainting techniques, which struggle to consistently120
maintain spatial constraints over longer sequences. Simi-121
larly, Factorized Motion Diffusion (FMD) [30] introduces a122
model that factorizes motion into character-agnostic Bezier123
curves followed by an inverse kinematics module. While124
this allows for precise control of sparse constraints, FMD125
requires an additional step of pose reconstruction, poten-126
tially introducing errors and limiting generalization across127

different character topologies. As we are focusing on deter- 128
ministic motion in-betweening, we will not directly com- 129
pare our model to these methods. 130

2.1. Transformer-based Motion In-betweening 131

A number of Transformer-based approaches have been sug- 132
gested that treat in-betweening as a sequence-to-sequence 133
problem. These solutions present different versions of a set 134
of design choices such as how to represent the input and 135
output data, how to encode frame embeddings, whether and 136
how to pre-fill the missing frames, whether to use additional 137
constraining keyframes during training, the model architec- 138
ture and the loss function. 139

As one of the first Transformer-based in-betweening 140
models, [16] treats motion in-betweening as a masked mo- 141
tion modeling problem, similar to BERT [6] in computa- 142
tional linguistics. [16] aim at a model that can be condi- 143
tioned both on keyframes and semantic information, such 144
as motion types, to produce the intermediate frames. As a 145
sequence-to-sequence Transformer model operates on both 146
the present keyframes and the missing frames, they propose 147
to fill the missing frames with a linear interpolation between 148
the start and end keyframes. Many of the works follow- 149
ing [16] that we describe below employ the same linear in- 150
terpolation strategy for the input values [1, 2, 7, 36, 38]. 151
Extending [16], [7] propose learnable position encoding 152
for keyframes and learn additional embeddings that encode 153
whether a frame is a keyframe, missing or an ignored frame. 154
The model architecture includes a convolutional layer be- 155
fore and after the transformer to encode the temporal struc- 156
ture of the data, and they output joint positions and rotations 157
directly. We simplify this model by removing the convolu- 158
tional layers and the additional embeddings. To account for 159
inter-joint relationships, [38] employs skeleton-aware [1] 160
encoder and decoder networks to interpolate between danc- 161
ing sequences. Similarly, [2] introduce skeleton awareness. 162
Instead of the encoder and decoder, they propose a skeletal 163
graph transformer operating on the joints of the skeleton. 164
Another example is [37], who utilize spatio-temporal graph 165
convolutional layers, skeleton pooling and unpooling layers 166
to extract motion sequence features while employing a U- 167
Net structure to integrate keyframe information. They test 168
their model both with global positions and with quaternions 169
as feature representation. Finally, [36] proposes a Spatial 170
and Temporal Transformer for Motion In-Betweening (ST- 171
TransMIB), a novel spatio-temporal transformer framework 172
for motion in-betweening that is based on interpolated in- 173
put sequences. Their approach introduces a spatial trans- 174
former to model per-frame joint interactions, with the aim 175
to improve generalization across action types. Additionally, 176
they design a multi-scale temporal transformer that captures 177
both global motion trends and fine-grained local variations 178
in order to mitigate over-smoothing. We show that using 179

2

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

zeros as input suffices for a simple transformer architecture180
to solve in-betweening without the need to model spatial181
correlations explicitly.182

The Delta Interpolator introduced by [24] does not use183
linearly interpolated frames as input. Instead, the model184
learns to output the residual that is added to the interpolated185
frames to yield the final prediction. As the only input to186
the model are the keyframes, the model therefore needs to187
learn both linear interpolation and realistic human motion.188
Additionally, this complicates model design as it requires189
two separate encoders, one for existing keyframes and one190
for missing frames. [22] adopts the same output strategy as191
[24] based on residual predictions. They propose a Vision192
Transformers encoder - decoder model with a pose decom-193
position module.194

Moving away from keyframe interpolation as input, [26]195
introduce two Transformer models, a Context and a De-196
tail Transformer, to generate in-betweening frames at dif-197
ferent fidelities. The Context Transformer is a encoder-only198
Transformer that is responsible for generating a rough out-199
line of the transition motion based on the input context and200
the target frame. It thus replaces the need for additional201
interpolated inputs. The Detail Transformer is an encoder-202
only Transformer that refines the output of the Context203
Transformer. While this architecture performs well in ex-204
periments, it adds additional complexity to a rather simple205
learning problem and requires two separate training steps,206
one for each model.207

In this work, we show that the added complexity in208
[22, 24, 26, 36–38] and [4] is unnecessary and that a sin-209
gle Transformer encoder suffices. Importantly, all previous210
methods use some form of global or local-to-parent position211
and rotation features to represent the pose, while we repre-212
sent the pose in root space as discussed in Section 3.1.1.213

3. Methodology214

SILK is a non-autoregressive model that generates the de-215
sired number of in-between frames in a single shot given216
the context and target keyframes. We propose a minimalist217
and yet effective Transformer-based architecture for SILK.218

3.1. Data Representation219

Consider a dataset of N animations denoted by {Xi}Ni=1.220
Each animation Xi consists of a sequence of ni frames. We221
represent Xi as Xi = [X1

i , X
2
i , . . . , X

ni
i], where Xj

i is a222
d-dimensional feature vector that corresponds to the j-th223
frame of the i-th animation. Here, d is the number of fea-224
tures that represent each frame.225

3.1.1. Feature representation226

Unlike many previous in-betweening works, e.g., [9, 26,227
27], we diverge from the conventional use of the local-to-228
parent space joint features. We find that using root space229

pose features, e.g., [11, 25, 39], as the network input results 230
in a more stable training process and achieves higher qual- 231
ity synthesized motions (see Table 3). It is worth noting 232
that while using root space pose features improves the over- 233
all motion quality, it comes at a cost of additional inverse 234
kinematics passes at runtime to generate the required local- 235
to-parent rotations. Although the IK computation can be 236
parallelized across the entire sequence of generated frames, 237
it can still be expensive for complex skeletons, especially if 238
real-time user feedback is required. 239

To compute the root space pose features, we start by pro- 240
jecting the hip joint onto the ground, creating an artificial 241
trajectory joint as the root node of the skeleton. This way, 242
the root position can be represented as a 2-dimensional vec- 243
tor on the xz-plane and the root orientation can be repre- 244
sented as a single rotation about the y-axis. However, to 245
avoid the discontinuity problem with Euler angles, we use 246
the cosine-sine representation for the root orientation. To 247
compute the rest of the joint features, we first find the 4x4 248
joint transformation matrices in global space using forward 249
kinematics, and then we transform the global matrices into 250
root space by multiplying with the inverse of the root trans- 251
formation. Orientations are encoded using the 6D represen- 252
tation described in [41]. 253

We distinguish between input and output features. In 254
particular, output features do not include velocities. Each 255
input frame is of dimension din = (18J + 8), where J 256
corresponds to the number of joints in the skeleton. The 257
input features are the concatenation of root position (R2), 258
root orientation (R2), root linear velocity (R2), root angu- 259
lar velocity (R2), joint positions (R3J), joint orientations 260
(R6J), joint linear velocities (R3J), and joint angular ve- 261
locities (R6J). The output frame, on the other hand, has 262
a dimension dout = (9J + 4), which is a concatenation 263
of root position (R2), root orientation (R2), joint positions 264
(R3J) and joint orientations (R6J). 265

3.2. SILK Architecture and Training Procedure 266

We assume that the model is given a C context frames, the 267
last context frame is considered the start keyframe, and one 268
target keyframe. Providing C context frames is common in 269
the in-betweening literature as a means to guide the motion 270
to follow a desired theme among all the possible in-between 271
animations. 272

3.2.1. Model input 273

The SILK architecture is shown in Figure 1. We provide the 274
model with a sequence of frames that consists of C context 275
frames, M missing frames filled with zeros, and a final tar- 276
get frame. M is a variable parameter that is specified by the 277
animator. 278

3

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Context Frames Zeroed-out Frames

End Keyframe

Synthesized In-betweening Frames

Multi-Head Self-Attention

+

xN

LayerNorm

Inputs

Outputs

Rel. PE

Feedforward Layers

LayerNorm

Linear Output Projection

+

Linear Input Projection

Figure 1. SILK’s architecture. The missing frames are filled with
zeroes and passed to a single Transformer encoder. No masking is
performed such that all frames can attend to all other frames.

Positional encoding In order to equip the model with279
temporal information, we provide positional embeddings as280
an additional input. Following a similar approach to [26],281
we use learned relative positional encoding which repre-282
sents positional information based on the relative distances283
between frames in the animation sequence. At inference,284
this allows the model to handle sequences that are longer285
than sequences seen during training.286

3.2.2. Model architecture287

We use a single Transformer encoder as shown in Figure 1.288
For details on Transformers, we refer the reader to [35].289
The input to the Transformer encoder is the sequence of the290
frames prepared as described in Section 3.2.1. We linearly291
project each frame into the required input dimension prior292
to feeding the animation into the Transformer.293

Note that we are not masking the in-between frames. In-294
stead, all-zero frames are provided to the first layer of the295
Transformer. In every subsequent layer, the representation296
of each frame is allowed to attend to the representation of297
all the other frames, whether they are in-between frames298
or not. This allows for the predictions to remain faithful to299
the context frames and smooth with respect to neighbouring300

frames. 301

3.2.3. Model output 302

The output of the Transformer is mapped back to the orig- 303
inal dimension dout using a linear mapping, forming the 304
final animation. 305

3.2.4. Loss Function 306

We train the model using the L1 norm to measure the dif- 307
ference between the generated animations and the ground 308
truth. Compared to the L2 norm, the L1 norm results in 309
smoother learning curves throughout training and yields su- 310
perior outcomes. Previous approaches often calculate sepa- 311
rate losses for position, rotation, and foot sliding, requiring 312
careful tuning of coefficients to balance these terms. In con- 313
trast, we simplify this by applying a single L1 loss across all 314
features, eliminating the need for complex loss weighting 315
while maintaining effective training performance. 316

4. Experiments 317

This section presents a comprehensive analysis of the 318
SILK’s performance across several evaluation criteria. It 319
includes a comparison to state-of-the-art methods based on 320
the evaluation protocol proposed in [9]. We also investi- 321
gate the impact different training data sub-sampling strate- 322
gies, pose feature representation, pre-filling of the missing 323
frames and the use of velocity features. 324

4.1. Datasets 325

We train and evaluate our model on two different datasets. 326
The majority of experiments focus on the Ubisoft LaFAN1 327
dataset [9]. We follow the same setup as [9] for process- 328
ing the LaFAN1 dataset, which contains approximately 4.5 329
hours of locomotion, fighting, dancing, aiming, ground mo- 330
tions, falling, and recovery data. The key difference in our 331
approach is the slice offset: we use an offset of 5 when seg- 332
menting the training animation data, compared to the offset 333
of 20 used in previous works. This modification results in a 334
training dataset four times larger than the original. We em- 335
phasize that the source training data remains identical—we 336
are simply extracting more sub-animations, which we hy- 337
pothesize will improve the model’s performance by expos- 338
ing it to a greater number of motion transitions and temporal 339
relationships within the same underlying data. 340

4.2. Training and Hyperparameters 341

SILK is an encoder-style Transformer model consisting of 342
6 transformer layers and 8 attention heads per layer. Each 343
layer contains the self-attention mechanism and a two-layer 344
feedforward neural network. The model’s internal repre- 345
sentation size, dmodel, is set to 1024 and the dimension of 346
the feedforward layer, dff, is 4096. In the transformer archi- 347
tecture, we ensure that layer normalization takes place prior 348

4

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Comparing L2P, L2Q, and NPSS Metrics on the LaFAN1 Dataset Using Various Methods. We only include results that report
comparable numbers for the SLERP and RMIB baselines as discrepancies indicate differences in metric computation (e.g. [5, 29]. Lower
values indicate better performance. For easier comparison, we added the task that the respective model was designed to solve. Motion
In-betweening (MIB) is the standard setting. Some models have been designed for real-time Motion In-betweening (RT-MIB), Motion
In-betweening with semantic conditioning (S-MIB) or to solve a range of motion modeling tasks such as prediction. We call the latter
group Motion In-betweening plus (MIB+).

Task L2P ↓ L2Q ↓ NPSS ↓
Length (frames) 5 15 30 45 5 15 30 45 5 15 30 45

SLERP MIB 0.37 1.38 2.49 3.45 0.22 0.62 0.97 1.25 0.0023 0.040 0.225 0.45
RMIB [9] MIB 0.23 0.65 1.28 2.24 0.17 0.42 0.69 0.94 0.0020 0.026 0.133 0.33
HHM [20] MIB+ - - - - 0.24 0.54 0.94 1.2 - - - -
UMC [7] MIB+ 0.23 0.56 1.06 - 0.18 0.37 0.61 - 0.0018 0.024 0.122 -
CMIB [16] S-MIB - - 1.19 - - - 0.59 - - - - -
RTC [32] RT-MIB 0.20 0.56 1.11 - - - - - 0.0055 0.070 0.346 -
TWE [28] MIB 0.21 0.59 1.21 - 0.16 0.39 0.65 - 0.0019 0.026 0.136 -
TST [26] MIB 0.10 0.39 0.89 1.68 0.10 0.28 0.54 0.87 0.0011 0.019 0.112 0.32
∆-I [24] MIB 0.13 0.47 1.00 - 0.11 0.32 0.57 - 0.0014 0.022 0.122 -
CTL [23] MIB 0.30 0.71 1.26 - 0.21 0.40 0.63 - 0.0019 0.028 0.139 -
DPS [27] RT-MIB - 0.45 0.99 1.59 - 0.32 0.57 0.92 - 0.020 0.120 0.30
DMT [4] MIB 0.12 0.49 1.04 - 0.09 0.31 0.52 - 0.0010 0.022 0.120 -
UNI-M [22] MIB+ 0.14 0.46 0.97 - 0.12 0.32 0.57 - 0.0014 0.022 0.120 -
DC [38] MIB - - 1.04 - - - 0.54 - - - 0.121 -
STG [37] MIB - 0.71 - - - 0.36 - - - 0.027 - -
ST-TMIB [36] MIB 0.13 0.40 0.89 1.62 0.11 0.29 0.55 0.84 0.0014 0.020 0.117 0.32

SILK MIB 0.13 0.38 0.83 1.59 0.11 0.27 0.50 0.79 0.0012 0.018 0.105 0.30

Figure 2. Four sample in-between animations generated by SILK
based on the LAFAN1 dataset.

to attention and feedforward operations. The model is op-349
timized using the AdamW optimizer with a noam learning350
rate scheduler same as [26]. We set the batch size to 64. We351
make use of the code provided by [26] to train benchmark352
models.353

4.3. LaFAN1 Benchmark Evaluation354

We evaluate our model on the LaFAN1 dataset using the355
same procedure as [9], namely, training on subjects 1356

through 4 and testing on subject 5. The model is trained on 357
samples with 10 context frames and one target keyframe. 358
For training with variable length inbetweening frames, we 359
uniformly sample the transition lengths between 5 and 30. 360
At evaluation time, the transition length is fixed to 5, 15, 30 361
or 45. We follow previous work and compute three metrics: 362
the normalized L2 norm of global positions (L2P), the L2 363
norm of global quaternions (L2Q), and normalized power 364
spectrum similarity (NPSS) [9, 16, 26]. 365

Table 1 shows the quantitative comparison between 366
SILK and previous works. In summary, SILK demonstrates 367
similar or superior performance for all metrics across nearly 368
all different lengths. While the model was trained on se- 369
quences with up to 30 missing frames, its performance on 370
the 45-frame condition demonstrates its ability to extrapo- 371
late effectively to an unseen number of frames. 372

For visual comparisons between TST and SILK, we re- 373
fer the reader to the supplementary videos. In contrast to 374
TST, it is important to note that we are not employing post- 375
processing and removing foot-sliding. When comparing the 376
predicted sequences by the two models, it is apparent that 377
the predictions are often indistinguishable for shorter gaps 378
(five and fifteen missing frames). As short gaps not allow 379
for a lot of variability, models at a similar capability level 380

5

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Comparing L2P, L2Q, and NPSS Metrics on the LaFAN1
Dataset using different offsets when sampling training data.

Length (frames)
Model Offset 5 15 30 45

L2P ↓
SILK 5 0.13 0.38 0.83 1.59
SILK 20 0.16 0.41 0.98 1.94
TST [26] 5 0.10 0.40 0.93 1.73
TST [26] 20 0.10 0.39 0.89 1.68

L2Q ↓
SILK 5 0.11 0.27 0.50 0.79
SILK 20 0.12 0.28 0.56 0.93
TST [26] 5 0.10 0.29 0.56 0.86
TST [26] 20 0.10 0.28 0.54 0.87

NPSS ↓
SILK 5 0.0012 0.018 0.105 0.30
SILK 20 0.0015 0.019 0.120 0.40
TST [26] 5 0.0011 0.019 0.115 0.32
TST [26] 20 0.0011 0.019 0.112 0.32

are prone to make highly similar predictions in this case.381
The longer gaps (thirty and forty-five missing frames) are382
more indicative of performance differences.383

We present Table 1, which includes, to the best of our384
knowledge, the vast majority of published work that has385
conducted experiments on the LaFAN1 dataset. For the sake386
of comparability, we omit results of papers that report di-387
verging numbers for the SLERP and RMIB baselines [5, 29]388
as well as works that train under different conditions, e.g.389
by including foot-contact as input [19] or with increased390
context length during training [12]. For fair comparison,391
we specify the primary task each model was designed for.392
Models not exclusively focused on motion in-betweening393
(MIB) as defined in [9] may show lower performance on394
the LAFAN1 benchmark compared to specialized models.395
This includes models designed for real-time applications396
(RT-MIB), those incorporating semantics (S-MIB), or those397
addressing multiple motion modeling tasks (MIB+). An ex-398
amination of the related work reveals two notable observa-399
tions. First, several studies have deviated from using the400
established set of standard missing frames (5, 15, 30, and401
45) and metrics. Second, the numerical results show lim-402
ited progress in the field since [26] and [24], despite many403
works focusing specifically on the motion in-betweening404
task. This lack of advancement may be attributed to a ten-405
dency among in-betweening papers to omit important state-406
of-the-art methods in their comparison.407

4.4. Impact of training data sampling 408

As described in Section 4.1, we opt to subsample the data 409
with an offset of 5 instead of 20 frames. While this cre- 410
ates a larger dataset, it also increases similarity between 411
data points. For example, for an offset of 5, a data point 412
of length 40 has an overlap of 35 frames with its immediate 413
neighbor but only 20 frames for an offset of 20. For sim- 414
pler models such as SILK, this additional information can 415
guide the learning process and results in better performance 416
as shown in Table 2. To our surprise, this is not the case for 417
more complex models. We trained a TST [26] model using 418
an offset of 5 during training and the publically available 419
code. As shown in Table 2, the TST with an offset of 20 420
performs as well or better than the TST with an offset of 5. 421
We hypothesize that TST, with its larger capacity, overfits 422
slightly to the training data when sampling with an offset of 423
5. It might therefore be of importance to adjust the training 424
data construction based on the model’s capacity. 425

4.5. Impact of Feature Design Choices 426

The comparable performance of SILK, relative to more 427
complex models, is primarily due to the larger quantity of 428
training data, improved frame representation, and specific 429
design choices. This section explores three key aspects: 430
pose representation (Section 4.5.1), the choice of handling 431
missing frames (Section 4.5.2) and the impact of using ve- 432
locity features (Section 4.5.3). 433

4.5.1. Impact of Pose Representation 434

In this section, we explore the importance of feature rep- 435
resentation in pose data. Unlike traditional in-betweening 436
methods that utilize local-to-parent space features, we train 437
SILK using root space features. To evaluate the effect of 438
feature representation, we also trained SILK with local-to- 439
parent space features as both input and output. The results, 440
shown in Table 3, demonstrate that feature representation 441

Table 3. Comparing L2P, L2Q, and NPSS Metrics on the LaFAN1
Dataset using different pose representations.

Length (frames) 5 15 30 45

L2P ↓
root-space 0.13 0.38 0.83 1.59
local-space 0.16 0.46 1.0 1.95

L2Q ↓
root-space 0.107 0.27 0.50 0.79
local-space 0.11 0.3 0.56 0.84

NPSS ↓
root-space 0.0012 0.018 0.105 0.30
local-space 0.0013 0.02 0.12 0.37

6

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 4. Comparing L2P, L2Q, and NPSS Metrics on the LaFAN1
Dataset using different filling of missing frames.

Length (frames) 5 15 30 45

L2P ↓
zeros 0.13 0.37 0.83 1.59
slerp 0.2 0.41 0.91 1.90

L2Q ↓
zeros 0.11 0.27 0.50 0.79
slerp 0.14 0.28 0.55 0.94

NPSS ↓
zeros 0.0012 0.018 0.105 0.30
slerp 0.002 0.019 0.12 0.35

significantly impacts model performance, with errors in-442
creasing notably when using SILK local-space compared to443
the SILK trained on the features in the root space.444

4.5.2. Impact of Filling Missing Frames445

We explore the implications of two approaches for handling446
missing frames: replacing them with linear interpolation447
values as the vast majority of related work and filling them448
with zeros. Linear interpolation involves computing values449
between the last context keyframe and the target keyframe450
for both positions and rotations, utilizing spherical linear451
interpolation (SLERP) for rotations. The results, as shown452
in Table 4, demonstrate that SILK with zero-filled middle453
frames outperforms the SILK filled with SLERP for middle454
frames across all lengths, with the performance gap widen-455
ing as the length increases. This might be caused by the456
SLERP input biasing the model to predict values close to457
the interpolated values.458

4.5.3. Impact of Using Velocity Features459

A small number of in-betweening works have used veloc-460
ity features as input to their models. These include both461
joint velocity [29, 32] and root velocity [15] features. While462
modeling velocity has proven highly beneficial for motion463
prediction [21], its application in in-betweening has been464
considerably less explored.465

In our experimental setup, we investigated the impact of466
velocity features on motion prediction performance. While467
position and rotation features capture the static pose infor-468
mation at each frame, velocity features can provide valu-469
able information about the dynamic aspects of motion. We470
calculate these velocity features (linear velocity for posi-471
tions and angular velocity for rotations) using two consec-472
utive frames - specifically, requiring one additional frame473
after both the start and target keyframes. This velocity cal-474
culation approach means that during inference, animators475
need to specify one additional frame after their keyframes476

Table 5. Comparing L2P, L2Q, and NPSS Metrics on the LaFAN1
Dataset using different velocity configuration.

Length (frames) 5 15 30 45

L2P ↓
Input Vel 0.13 0.38 0.83 1.59
Full Vel 0.14 0.39 0.83 1.82
Static Only 0.16 0.51 1.0 2.1

L2Q ↓
Input Vel 0.11 0.27 0.50 0.79
Full Vel 0.11 0.28 0.51 0.80
Static Only 0.12 0.34 0.6 0.92

NPSS ↓
Input Vel 0.0012 0.018 0.10 0.30
Full Vel 0.0013 0.019 0.11 0.37
Static Only 0.0016 0.022 0.13 0.4

to enable velocity computation. While this creates an ex- 477
tra requirement for the animation pipeline, we hypothesized 478
that the temporal information provided by velocity features 479
could significantly improve motion prediction quality. 480

To validate this hypothesis, we conducted an ablation 481
study with three configurations: 482

1. Static features only: using joint positions, joint rotations, 483
and global trajectory information for both input and out- 484
put [Static Only] 485

2. Mixed features: using static features plus velocities as 486
input, while predicting only static features as output [In- 487
put Vel] 488

3. Full features: using both static features and velocities 489
for input and output, requiring the model to predict all 490
features including velocities [Full Vel] 491

Table 5 presents the quantitative results for these con- 492
figurations. The results demonstrate that incorporating ve- 493
locity features as input while not explicitly predicting them 494
(Input Vel) yields the best performance across all metrics. 495
This improvement can be attributed to the velocity features 496
providing valuable temporal information about the motion 497
dynamics, helping the model better understand the move- 498
ment patterns and transitions. However, explicitly predict- 499
ing velocity (Full Vel appears to make the learning task 500
more challenging without providing additional benefits, po- 501
tentially due to the increased complexity of the output space 502
and the accumulation of prediction errors in velocity esti- 503
mates. 504

4.6. Additional Temporal Signals 505

While our model uses relative positional encoding for han- 506
dling variable-length sequences, we investigated whether 507
additional temporal signals could enhance the model’s un- 508

7

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

derstanding of sequence structure. Specifically, we were509
inspired by the key-position embeddings from [26], which510
provide explicit information about proximity to key frames.511
For our project setup of setting middle frames to zero, this512
additional signal did not make a noticeable improvement513
for lengths seen during training. However, for extrapolat-514
ing or processing sequences longer than those seen during515
training, it significantly degraded performance.516

This result suggests that the combination of relative po-517
sitional encoding and our input structure already provides518
sufficient temporal information. During training, we set the519
middle frames (which need to be predicted) to zero while520
keeping the boundary frames at their actual values. This521
creates a clear pattern where the model can identify:522

• Known boundary frames through their non-zero values523
• Frames to be predicted through their zero values524
• Relative positioning through the positional encoding525

The model appears to learn temporal relationships effec-526
tively from this implicit structure without requiring explicit527
signals about proximity to key frames. This finding indi-528
cates that when using relative positional encoding, the nat-529
ural contrast between zero and non-zero values in the in-530
put sequence provides sufficient context for temporal un-531
derstanding and generalization.532

To further examine this hypothesis, we tested adding533
key-position embeddings when the middle is filled with534
slerp values. In this case, this additional signal seems to535
be helpful to the model and improved performance slightly536
for some lengths.537

Table Table 6 shows a comparison of results with and538
without the use of key-positional embeddings as an addi-539
tional temporal signal when filling missing frames with ze-540
ros and SLERP values, respectively.541

5. Future Work542

Currently, SILK does not capture the probabilistic nature of543
human movements. Since multiple realistic solutions can544
exist for any given context and target poses, a model ca-545
pable of generating several solutions is preferred. Recent546
advances in diffusion-based models [3, 34] offer promising547
directions for modeling the probability density of human548
movements. Another area for future research is evaluat-549
ing models across multiple datasets. While many studies550
use various datasets like Human3.6M [13], Anidance [31],551
and the Quadruple motion dataset [39], there is a need for a552
dataset specifically designed for in-betweening. Finally, de-553
veloping standardized metrics to assess motion data quality554
and its impact on model performance is crucial. This could555
establish guidelines for data collection and preprocessing in556
motion synthesis tasks.557

Table 6. Comparing L2P, L2Q, and NPSS Metrics on the LaFAN1
Dataset with and without the use of key-positional embeddings
(KeyPos) when the missing frames are filled with zeros or slerp.

Length (frames)
Filling KeyPos 5 15 30 45

L2P ↓
zeros without 0.13 0.37 0.83 1.59
zeros with 0.13 0.38 0.82 2.28
slerp without 0.22 0.41 0.91 1.91
slerp with 0.17 0.39 0.87 1.92

L2Q ↓
zeros without 0.11 0.27 0.50 0.79
zeros with 0.11 0.27 0.50 0.93
slerp without 0.14 0.28 0.55 0.95
slerp with 0.12 0.28 0.53 0.90

NPSS ↓
zeros without 0.0012 0.018 0.105 0.30
zeros with 0.0012 0.018 0.104 0.35
slerp without 0.0020 0.019 0.120 0.35
slerp with 0.0015 0.019 0.110 0.33

6. Conclusions 558

In this work, we proposed a simple Transformer-based 559
model for animation in-betweening. We demonstrated the 560
effectiveness of our in-betweener in generating interme- 561
diate frames that seamlessly interpolate between existing 562
key-frames. Compared to other state-of-the-art models, 563
our approach achieves comparable or better results while 564
employing a simpler and more efficient model architec- 565
ture and without requiring elaborate training procedures. 566

567

References 568

[1] Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine- 569
Hornung, Daniel Cohen-Or, and Baoquan Chen. Skeleton- 570
aware networks for deep motion retargeting. ACM Transac- 571
tions on Graphics (TOG), 39(4):62–1, 2020. 2 572

[2] Dhruv Agrawal, Jakob Buhmann, Dominik Borer, Robert W 573
Sumner, and Martin Guay. Skel-betweener: a neural motion 574
rig for interactive motion authoring. ACM Transactions on 575
Graphics (TOG), 43(6):1–11, 2024. 1, 2 576

[3] Simon Alexanderson, Rajmund Nagy, Jonas Beskow, and 577
Gustav Eje Henter. Listen, denoise, action! audio-driven 578
motion synthesis with diffusion models. ACM Transactions 579
on Graphics (TOG), 42(4):1–20, 2023. 8 580

[4] Zhi Chai and Hong Qin. Dynamic motion transition: A hy- 581
brid data-driven and model-driven method for human pose 582
transitions. IEEE Transactions on Visualization and Com- 583
puter Graphics, 2024. 3, 5 584

[5] Yuchen Chu and Zeshi Yang. Real-time diverse motion in- 585

8

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

betweening with space-time control. In Proceedings of the586
17th ACM SIGGRAPH Conference on Motion, Interaction,587
and Games, pages 1–8, 2024. 5, 6588

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina589
Toutanova. Bert: Pre-training of deep bidirectional590
transformers for language understanding. arXiv preprint591
arXiv:1810.04805, 2018. 2592

[7] Yinglin Duan, Yue Lin, Zhengxia Zou, Yi Yuan, Zhehui593
Qian, and Bohan Zhang. A unified framework for real time594
motion completion. In Proceedings of the AAAI Conference595
on Artificial Intelligence, pages 4459–4467, 2022. 1, 2, 5596

[8] Félix G. Harvey and Christopher Pal. Recurrent transition597
networks for character locomotion. In SIGGRAPH Asia 2018598
Technical Briefs, New York, NY, USA, 2018. Association for599
Computing Machinery. 2600

[9] Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and601
Christopher Pal. Robust motion in-betweening. ACM Trans-602
actions on Graphics (TOG), 39(4):60–1, 2020. 1, 2, 3, 4, 5,603
6604

[10] Chengan He, Jun Saito, James Zachary, Holly Rushmeier,605
and Yi Zhou. Nemf: Neural motion fields for kinematic an-606
imation. Advances in Neural Information Processing Sys-607
tems, 35:4244–4256, 2022. 2608

[11] Daniel Holden, Taku Komura, and Jun Saito. Phase-609
functioned neural networks for character control. ACM610
Trans. Graph., 36(4):42:1–42:13, 2017. 3611

[12] Seokhyeon Hong, Haemin Kim, Kyungmin Cho, and Jun-612
yong Noh. Long-term motion in-betweening via keyframe613
prediction. In Computer Graphics Forum, page e15171. Wi-614
ley Online Library, 2024. 6615

[13] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian616
Sminchisescu. Human3.6m: Large scale datasets and predic-617
tive methods for 3d human sensing in natural environments.618
IEEE Transactions on Pattern Analysis and Machine Intelli-619
gence, 36(7):1325–1339, 2014. 8620

[14] Korrawe Karunratanakul, Konpat Preechakul, Supasorn621
Suwajanakorn, and Siyu Tang. Guided motion diffusion for622
controllable human motion synthesis. In Proceedings of the623
IEEE/CVF International Conference on Computer Vision,624
pages 2151–2162, 2023. 2625

[15] Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece,626
Remo Ziegler, and Otmar Hilliges. Convolutional autoen-627
coders for human motion infilling. In 2020 International628
Conference on 3D Vision (3DV), pages 918–927, 2020. 1,629
2, 7630

[16] Jihoon Kim, Taehyun Byun, Seungyoun Shin, Jung-631
dam Won, and Sungjoon Choi. Conditional motion in-632
betweening. Pattern Recognition, 132:108894, 2022. 1, 2,633
5634

[17] Nam Hee Kim, Hung Yu Ling, Zhaoming Xie, and Michiel635
van de Panne. Flexible motion optimization with modulated636
assistive forces. Proc. ACM Comput. Graph. Interact. Tech.,637
4(3), 2021. 2638

[18] Alexander Kort. Computer aided inbetweening. In Pro-639
ceedings of the 2nd International Symposium on Non-640
Photorealistic Animation and Rendering, page 125–132,641
New York, NY, USA, 2002. Association for Computing Ma-642
chinery. 2643

[19] Hao Li, Ju Dai, Rui Zeng, Junxuan Bai, Zhangmeng Chen, 644
and Junjun Pan. Foot-constrained spatial-temporal trans- 645
former for keyframe-based complex motion synthesis. Com- 646
puter Animation and Virtual Worlds, 35(1):e2217, 2024. 6 647

[20] Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang, 648
Zhengfei Kuang, Hao Li, and Yajie Zhao. Task-generic hi- 649
erarchical human motion prior using vaes. In 2021 Inter- 650
national Conference on 3D Vision (3DV), pages 771–781. 651
IEEE, 2021. 5 652

[21] Julieta Martinez, Michael J Black, and Javier Romero. On 653
human motion prediction using recurrent neural networks. 654
In Proceedings of the IEEE Conference on Computer Vision 655
and Pattern Recognition, pages 2891–2900, 2017. 7 656

[22] Esteve Valls Mascaró, Hyemin Ahn, and Dongheui Lee. A 657
unified masked autoencoder with patchified skeletons for 658
motion synthesis. In Proceedings of the AAAI Conference 659
on Artificial Intelligence, pages 5261–5269, 2024. 1, 3, 5 660

[23] Clinton A Mo, Kun Hu, Chengjiang Long, and Zhiyong 661
Wang. Continuous intermediate token learning with implicit 662
motion manifold for keyframe based motion interpolation. 663
In Proceedings of the IEEE/CVF Conference on Computer 664
Vision and Pattern Recognition, pages 13894–13903, 2023. 665
5 666

[24] Boris N Oreshkin, Antonios Valkanas, Félix G Harvey, 667
Louis-Simon Ménard, Florent Bocquelet, and Mark J Coates. 668
Motion inbetweening via deep ∆-interpolator. IEEE Trans- 669
actions on Visualization and Computer Graphics, 2023. 1, 670
3, 5, 6 671

[25] Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel 672
Van De Panne. Deeploco: Dynamic locomotion skills us- 673
ing hierarchical deep reinforcement learning. ACM Trans. 674
Graph., 36(4), 2017. 3 675

[26] Jia Qin, Youyi Zheng, and Kun Zhou. Motion in-betweening 676
via two-stage transformers. ACM Trans. Graph., 41(6), 677
2022. 1, 3, 4, 5, 6, 8 678

[27] Tianxiang Ren, Jubo Yu, Shihui Guo, Ying Ma, Yutao 679
Ouyang, Zijiao Zeng, Yazhan Zhang, and Yipeng Qin. Di- 680
verse motion in-betweening from sparse keyframes with dual 681
posture stitching. IEEE Transactions on Visualization and 682
Computer Graphics, 2024. 3, 5 683

[28] Pavithra Sridhar, Madhav Aggarwal, R Leela Velusamy, 684
et al. Transformer based motion in-betweening. In Pro- 685
ceedings of the Asian Conference on Computer Vision, pages 686
289–302, 2022. 5 687

[29] Paul Starke, Sebastian Starke, Taku Komura, and Frank 688
Steinicke. Motion in-betweening with phase manifolds. Pro- 689
ceedings of the ACM on Computer Graphics and Interactive 690
Techniques, 6(3):1–17, 2023. 5, 6, 7 691

[30] Justin Studer, Dhruv Agrawal, Dominik Borer, Seyed- 692
morteza Sadat, Robert W Sumner, Martin Guay, and Jakob 693
Buhmann. Factorized motion diffusion for precise and 694
character-agnostic motion inbetweening. In Proceedings of 695
the 17th ACM SIGGRAPH Conference on Motion, Interac- 696
tion, and Games, pages 1–10, 2024. 2 697

[31] Taoran Tang, Hanyang Mao, and Jia Jia. Anidance: real- 698
time dance motion synthesize to the song. In Proceedings 699
of the 26th ACM international conference on Multimedia, 700
pages 1237–1239, 2018. 8 701

9

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[32] Xiangjun Tang, He Wang, Bo Hu, Xu Gong, Ruifan Yi, Qi-702
long Kou, and Xiaogang Jin. Real-time controllable motion703
transition for characters. ACM Trans. Graph., 41(4), 2022.704
2, 5, 7705

[33] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel706
Cohen-or, and Amit Haim Bermano. Human motion diffu-707
sion model. In The Eleventh International Conference on708
Learning Representations, 2022. 2709

[34] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel710
Cohen-or, and Amit Haim Bermano. Human motion diffu-711
sion model. In The Eleventh International Conference on712
Learning Representations, 2023. 8713

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-714
reit, Llion Jones, Aidan N. Gomez, and Łukasz Kaiser. At-715
tention is all you need. arXiv preprint arXiv:1706.03762v5,716
2017. 4717

[36] Zhiming Wang, Ning Ge, and Jianhua Lu. Motion in-718
betweening with spatial and temporal transformers. IEEE719
Transactions on Circuits and Systems for Video Technology,720
2025. 1, 2, 3, 5721

[37] Leiyang Xu, Qiang Wang, and Chenguang Yang. Spatial-722
temporal graph u-net for skeleton-based human motion in-723
filling. In 2024 IEEE International Conference on Industrial724
Technology (ICIT), pages 1–6. IEEE, 2024. 2, 5725

[38] Ruilin Xu, Vu An Tran, Shree K Nayar, and Gurunandan726
Krishnan. Dancecraft: A music-reactive real-time dance im-727
prov system. In Proceedings of the 9th International Confer-728
ence on Movement and Computing, pages 1–10, 2024. 1, 2,729
3, 5730

[39] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito.731
Mode-adaptive neural networks for quadruped motion con-732
trol. ACM Transactions on Graphics (TOG), 37(4):1–11,733
2018. 3, 8734

[40] Xinyi Zhang and Michiel van de Panne. Data-driven auto-735
completion for keyframe animation. In Proceedings of the736
11th ACM SIGGRAPH Conference on Motion, Interaction737
and Games, New York, NY, USA, 2018. Association for738
Computing Machinery. 2739

[41] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and740
Hao Li. On the continuity of rotation representations in neu-741
ral networks. In Proceedings of the IEEE/CVF Conference742
on Computer Vision and Pattern Recognition, pages 5745–743
5753, 2019. 3744

[42] Yi Zhou, Jingwan Lu, Connelly Barnes, Jimei Yang,745
Sitao Xiang, and Hao Li. Generative tweening: Long-746
term inbetweening of 3d human motions. arXiv preprint747
arXiv:2005.08891, 2020. 1, 2748

10

	Introduction
	Related Work
	Transformer-based Motion In-betweening

	Methodology
	Data Representation
	Feature representation

	SILK Architecture and Training Procedure
	Model input
	Model architecture
	Model output
	Loss Function

	Experiments
	Datasets
	Training and Hyperparameters
	LaFAN1 Benchmark Evaluation
	Impact of training data sampling
	Impact of Feature Design Choices
	Impact of Pose Representation
	Impact of Filling Missing Frames
	Impact of Using Velocity Features

	Additional Temporal Signals

	Future Work
	Conclusions

