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Abstract: Developing agents that can perform complex control tasks from high-
dimensional observations is a core ability of autonomous agents that requires un-
derlying robust task control policies and adapting the underlying visual represen-
tations to the task. Most existing policies need a lot of training samples and treat
this problem from the lens of two-stage learning with a controller learned on top of
pre-trained vision models. We approach this problem from the lens of Koopman
theory and learn visual representations from robotic agents conditioned on spe-
cific downstream tasks in the context of learning stabilizing control for the agent.
We introduce a Contrastive Spectral Koopman Embedding network that allows
us to learn efficient linearized visual representations from the agent’s visual data
in a high dimensional latent space and utilizes reinforcement learning to perform
off-policy control on top of the extracted representations with a linear controller.
Our method enhances stability and control in gradient dynamics over time, signif-
icantly outperforming existing approaches by improving efficiency and accuracy
in learning task policies over extended horizons.
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1 Introduction

Building agents capable of executing intricate control tasks using high-dimensional inputs, like pix-
els is crucial in many real-world applications. Combining deep learning alongside reinforcement
learning [1, 2, 3], various methods have been developed for learning representations from visual data
in robotics for executing intricate control tasks. Most of these learning algorithms can be fundamen-
tally organized into two interconnected yet distinct research directions (refer to Figure 1 and Table
1): (1) Developing visual predictive models that learn the underlying dynamics [4, 5, 6, 7] in latent
space by predicting the future visual observations. (Figure 1-A ) (2) Using deep RL to perform tasks
with non-linear modeling in an interactive environment[8, 9, 10] (Figure 1-B). The first approach
involves creating predictive models of the environment which are then leveraged for tasks or gener-
ating samples, which model-free methods can then use for learning. However, these models could
have sub-optimal task performance. They may need either task-visual alignment [11, 12, 13] where
pre-trained vision model’s parameters are adapted to the task via end-to-end training or manual task
and control parameters tuning to achieve good task performance. Alternatively, RL-based methods
learn the representation by self-supervised auxiliary tasks but they may need a huge amount of inter-
actions with the environment as the dynamics are learned implicitly in the form of policy networks.
In general, all these approaches are not sample efficient i.e., they need to collect a large number of
samples from environment interactions to achieve satisfactory task performance. Additionally, these
models often use computationally expensive latent dynamics models like transformers, MLP, and
RNN.

In our work, we aim to learn task-conditioned representations (Figure 1-C) from visual observa-
tions in a sample-efficient way without sacrificing task accuracy by modeling the dynamics of
the representations linearly. An important advantage of linear systems is their generalized math-
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ematical frameworks, in contrast to nonlinear systems which have no overarching mathematical
frameworks for general characterization of systems. Linear systems are very well defined by their
spectral decomposition, enabling the development of generalizable and efficient control algorithms.
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Figure 1: A. Prediction-conditioned vision mod-
els used to learn task policies for robots.[14]
B. Traditional RL methods [15] C. Our method
where the visual representations are conditioned
on the task policy.

Prior works [16] have explored learning high
semantic information from visual input with
latent dynamics governed by dense Koopman.
However such models are proven [17][18] to be
computationally inefficient and require a large
number of samples due to bigger parametric
space with no stability guarantees of the sys-
tem. In contrast, we model the dynamics of the
task embedding space with spectral Koopman
decomposition which is proven to learn rich
linear representations for time series model-
ing while also being computationally efficient.
We hypothesize that if we can linearly model
the task embedding space and identify a finite
subset of relevant, stable (negative) eigenval-
ues of the Koopman operator that governs its
dynamics while conditioned on task, we can
learn rich agent representations for the task
with lesser number of environmental interac-
tions while also allowing us to perform ef-
ficient parallelized forward latent prediction.
Our main contributions are as follows: (a.) We
propose a novel contrastive spectral Koopman
encoder to map the visual input to a complex-
valued task embedding space with dynamics
governed by a learnable spectral Koopman op-
erator. We then use reinforcement learning
to learn this embedding space, spectral Koop-
man operator, and its associated linear task con-
troller with prediction as an auxiliary task. Our
network is sample efficient and has better task
performance compared to prior works as shown
in Table 1. (b.) We conduct a theoretical anal-
ysis and examine the convergence behavior of
our method and show that our method converges to the optimal task policy given sufficient environ-
ment interactions. (c.) Through empirical tests on six simulated robotic tasks from deepmind control
environment[19], we demonstrate our model’s superior performance and sample efficiency against
nonlinear and state dynamical models while being robust to sensory errors and external disturbances.

Table 1: Evaluation of Task Performance in Reinforcement Learning: Linear vs. Non-Linear Mod-
els. Task performance is visually indicated by arrows, with green up arrows denoting superior
performance and red down arrows indicating inferior performance. The extent of performance vari-
ation, either improvement or degradation, is qualitatively represented by the number of arrows.

Model Dynamics Model Type Prior Work Sample
Efficiency

Task
Performance

Robust to
External

Disturbances

Theoretical
Analysis

Vision Predictive
Model

Linear Models: Dense
Koopman

[17, 20, 21, 22, 23] × ↑ ✓ ×

Non-Linear Models: MLP,
Lagrangian, Hamiltonian

[7, 24, 25, 26, 27, 28] × ↓↓↓ × ×

RL Models Non-Linear: MLP,
Transformer, GRU

[29, 30, 31, 9] × ↑ ✓ ×

Task Conditioned
Models

Dense Koopman [16] × ↓↓↓ × ×
Spectral Koopman Ours* ✓ ↑↑↑ ✓ ✓
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2 Background

Contrastive Learning: Contrastive Learning has emerged as a powerful framework for learning
representations that capture similarity constraints within datasets when there are no data labels.
It operates on a principle analogous to performing a search within a dictionary, wherein the task
involves identifying matches and mismatches—akin to positive and negative pairs—as if they were
keys to a specific query or anchor point [32, 33, 9, 34, 35]. Methods like Curl [9] and To-KPM [16]
employ contrastive encoders to directly learn representations from images and control the system.
However, these methods require a large number of samples (approximately 1000k) to achieve good
task performance, while Curl attempts to learn the task without any explicit dynamic model [9].

Dynamical Models: Prior works model system dynamics from visual observations through deep
learning networks, mapping high-dimensional observation spaces to latent embeddings. These
networks learn latent embedding evolution using methods like MLP[7], RNNs[36] or neural
ODE[37, 38], enabling accurate future state predictions by extracting relevant features and under-
standing state relations. Methods like HNN [28] employ Hamiltonian dynamics, while Lag-VAE
[24, 25] utilize Lagrangian dynamics for long-term prediction and control. However, these ap-
proaches often face low prediction accuracy and require system state supervision, such as prior
object segmentation [25, 39, 27, 26], to enhance Lagrangian model accuracy.

Self-supervised learning and RL: Multiple works [40, 41, 42] have utilized self-supervised learn-
ing to develop world predictive models, which are subsequently employed for control tasks or spe-
cific tasks. In [7], the authors learn a linearized latent space, which is then controlled using optimal
control methods. However, there is no feedback from the control to guide the task in learning
control-oriented features. Reinforcement Learning (RL) based methods [43, 44, 45] for directly
controlling systems from pixels have witnessed significant advancements in recent years, leverag-
ing deep learning to interpret complex visual inputs. However, one of the significant challenges in
RL, especially when applied to environments with high-dimensional input spaces such as images
(pixels), is sample inefficiency. This inefficiency leads to the requirement for an excessively large
number of interactions with the environment for the agent to learn an effective policy.

3 Proposed Model

3.1 Problem Formulation

We consider an unknown time-invariant dynamical system of the form: s(t+1) = F (s(t),u(t))+ξ
where s(t) ∈ S ⊆ Rn,u(t) ∈ U ⊆ Rm, and ξ ∼ N (0,Σξ) are the system state, control input
and system noise respectively. Function F (s(t),u(t)) : S × U → S governs the transition of the
states of the dynamical system and is assumed to be arbitrary, smooth and non-linear. We assume
that we can only observe the system through the visual depictions x(t). Our objective is to identify a
control sequence u0:T that minimizes the cumulative task cost function c(xk, uk) over T time steps
by learning an implicit embedding function Φ : X → Z that maps the pixel space to some latent
space. Further, the evolution of latent variable ż = g(z,u), g : Z × U → Z is parameterized by a
neural network Λ. The network Λ is constrained to follow linear dynamics with a Koopman operator
K given by Φ(xt+1,ut+1) = KΦ(xt,ut) = Azt + But For control problems, we formulate the
task cost function as the optimal control problem in latent space given by: min

u0:T−1

∑T−1
k=0 c(zk, uz)

subject to zt+1 = Azt + But. We aim to learn this Koopman Operator and linear control policy
u = π(s) with the Koopman embedding function mapping the high dimensional input to latent
space conditioned on the control cost of the system.

3.2 RoboKoop Model Design

Figure 2 presents our overall methodology for learning a parameterized, linear Koopman embed-
ding manifold via a contrastive spectral Koopman encoder. It generates key and query samples
corresponding to each observation at time t. Positive samples are created by applying image aug-
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Figure 2: Our model RoboKoop with contrastive spectral Koopman encoding and RL guided control
conditioning

mentations, such as random cropping [9], to the state xt, whereas negative samples result from
applying analogous augmentations to all other states except xt. These samples are further processed
by dedicated key and query encoders, which update their parameters based on the similarity mea-
sure between the samples. The output of the query encoder is then used to map the visual space
to Koopman embedding space by bifurcating the query vector into real and imaginary components.
This introduces a complex-valued Koopman embedding space, characterized by a spectral Koopman
operator with learnable eigenvalues expressed as µi + jω. Utilizing this embedding space and its
spectral Koopman operator, our approach focuses on deriving optimal control strategies and their
parameters through the iterative optimization of a Linear Quadratic Regulator (LQR) problem for a
predefined finite time horizon, guiding the system towards a specified goal state. This goal state is
also provided in visual space and subsequently mapped to the Koopman embedding space through
the key encoder. Moreover, we construct value functions through dual Q-value functions, serving
as critics within the Soft Actor-Critic (SAC) algorithm framework. Model updates are performed
following the SAC methodology [15], grounded on the cost incurred by the LQR controller. For
training, we iteratively gather data batches from the environment, applying three specific losses
to train our models: 1) SAC loss for the critic and Koopman parameters, 2) Contrastive loss for
optimizing contrastive encoder parameters, and 3) Next latent prediction loss for regularizing the
Koopman embedding space dynamics.

a.) Contrastive Spectral Koopman Representations In our work, we diverge from traditional tem-
poral modeling techniques, which typically process a sequence of consecutive frames to understand
scene dynamics [46]. Instead, inspired by contrastive learning approaches [9] [16], we introduce a
dual-encoder framework consisting of key and query encoders to extract nuanced visual represen-
tations. Each encoder processes high-dimensional inputs to generate corresponding sets of key and
query samples. To enrich the diversity of these samples, we employ a random crop data augmenta-
tion technique on each input sequence X = {xi|i = 0, 1, 2, . . .}, creating positive samples x+i and
negative samples from the augmented states of X \ {xi}. These samples are then embedded via the
encoders to produce embeddings zqi , z+i , and z−j .

Building on this, we map the query embeddings into a complex Koopman embedding space, by
splitting the query embedding vector into real and imaginary components, to model continuous
latent dynamics. This is complemented by a control embedding that maps robot control inputs to a
complex-valued Koopman control space. We postulate that the latent and control spaces within it are
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independent, adhering to a model of continuous latent dynamics. This is mathematically represented
as dz

dt = Kz(t) + Lu(t), where the evolution of the system over time can be resolved through
z(s) = eKsz(0) +

∫ s

0
eK(s−t)Lu(t)dt. Here, eKs denotes the matrix exponential. For practical

applications, this continuous model can be converted into a discrete form as x̂t+1 = K̄xt + L̄ut,
achieved by applying Zero-Order Hold (ZOH) discretization to the original equations, resulting in
K̄ = exp(∆tK) and L̄ = (K)−1(exp(∆tK)−1)L. In scenarios where observations are uniformly
sampled over time, this approach incorporates a learnable time step parameter ∆t for adjustment.

To enhance efficiency in latent space forecasting, we introduce a diagonalized Koopman matrix,
K̃ = diag(λ̃1, . . . , λ̃m), facilitating the use of an m × (τ + 1) Vandermonde matrix V [17] for
straightforward row-wise circular convolutions. This method reduces the computational load by
avoiding complex matrix operations.

The future latent state predictions for latent zt =
[
zit, . . . , z

i
t

]
and control ct = L̄ut are given by[

ẑi(t+1), . . . , ẑ
i
(t+τ)

]
=

[
λ̃i, . . . , λ̃τi

]
zit +

[
1, λ̃i, . . . , λ̃τ−1

i

]
∗
[
cit, . . . , c

i
t+τ−1

]
(1)

where ∗ denotes the circular convolution operation and ct. This formulation allows for efficient
computation, particularly with Fast Fourier Transform (FFT) techniques. For model training, we
use a contrastive loss function, Lcst, defined as

Lcst = Et∼B

[
log

exp(zqi
⊤Wz+i )

exp(zqi
⊤Wz+i ) +

∑
j ̸=i exp(z

q
i
⊤Wz−j )

]
, (2)

and a prediction loss, Lpred, focused on Mean-Squared Error (MSE),

Lpred = Et∼B

∥∥ẑt+1 − K̄zt − L̄ut
∥∥2 . (3)

These losses drive the learning of model parameters to accurately predict future latent states while
learning representations from the visual input.

b.) Koopman Operator and Eigenspetrum Initialization: To construct representations that accu-
rately capture the system dynamics, it is imperative to initialize the Koopman operator appropriately.
The dynamic system’s future state predictions can be expressed as:[

ẑi(t+1), . . . , ẑ
i
(t+τ)

]
=

[
λ̃i, . . . , λ̃τi

]
zit +

[
1, λ̃i, . . . , λ̃τ−1

i

]
∗
[
cit, . . . , c

i
t+τ−1

]
(4)

where λ̄i = µi + iωi denotes the eigenvalues of the diagonal Koopman operator. From a linear
stability perspective, we would like to place the real values of these µi in a negative real plane
with large values so that the system reaches asymptotic stability faster. However, this configuration
may lead to exploding gradient issues, a direct consequence of the exponential increase in gradient
magnitudes proportional to the eigenvalues’ real parts.

Lemma 1 (Exponential Scaling of Gradient Norms): For the discrete dynamic system depicted in
Equation 4, where Lpred = Lt is defined as the latent prediction loss in Equation 3, let zt represent
the latent state and ct = L̄ut the control input at time step t. The gradient norms of Lt with respect
to the j-th components of zj,t and cj,t exhibit exponential scaling compared to the gradient norms at

time step t+1, governed by the real parts of the system’s eigenvalues, µj :
∣∣∣ ∂Lt

∂zj,t

∣∣∣ = e∆tµj

∣∣∣ ∂Lt

∂zj,t+1

∣∣∣ ,
where ∆t denotes the time increment, and µj the real part of the j-th eigenvalue, underscoring the
link between the gradient norms of the loss function, the latent representations, the control inputs,
and the system’s eigenstructure.

To mitigate potential stability issues and constrain gradient magnitudes, we limit the real parts of
the eigenvalues, µj , within the interval [−0.5,−0.01], and initialize the imaginary parts, ωj , in
ascending order of frequency as ωj = jπ similar to [17]. This approach ensures comprehensive fre-
quency mode capture within the system dynamics, fostering stable and efficient learning of dynamic
representations.

c.) Task Conditioning with End-to-End learning : To learn the contrastive spectral representations
and spectral Koopman operator, we condition these networks to learn a linear effective controller
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similar to [16]. Given Spectral Koopman embeddings z = ψθk(x) and its associated linear spectral
latent system as shown in equation 4, we formulate a finite time horizon LQR problem in Koopman
latent space as minu0:T

∑T
k=0

[
(zk − zref)

TQ(zk − zref) + uTkRuk
]

subject to zk+1 = K̄zk + L̄uk
(8) where Q and R are state and control cost diagonal matrices and zref denotes the representation of
goal input. We solve the above equation in an iterative procedure to recursively update the solution
for a small number of iterations, typically T < 10, which is adequate to obtain a satisfactory and
efficient approximation. The control policy is then given by u ∼ πLQR(z|s) ≜ πLQR(z|K̄, L̄, Q,R)
Further to optimize this controller towards the task, we draw inspiration from [9][16], we maximize
the following objective via two Q value estimators as used in soft actor-critic method [15]: LSAC =
Et∼B [mini=1,2Qi(z, u)− α log πSAC(u|z)]

For an end-to-end training of the network, we iteratively collect trajectory data batches from the
task environment E and use the three distinct loss objectives to train the networks in an end-to-end
fashion parameter. The primary objective, Lsac is used to optimize all the task parameters to learn
efficient representations for the task. Additionally, we integrate contrastive learning loss Lcst and
model prediction loss Lm to regularize the task parameter learning process and feature extraction.

4 Analytical Results

In this section, we aim to provide a theoretical analysis of the convergence behavior of our over
network and show that our task network converges to an optimal policy given enough interactions
with the environment. Specifically, we state the following theorems

Theorem 1: (Convergence of Contrastive Loss via Gradient Descent) Let Lcst(θ) be anL-smooth
contrastive loss function for encoder parameters θ and assuming stochastic gradient descent (SGD)
updates with learning rate αt satisfying Robbins-Monro conditions. If ∇̂θLcst is an unbiased esti-
mate of the gradient with bounded variance, then limt→∞ E[∥∇θLcst(θt)∥2] = 0. (Proof)

Theorem 2: (Convergence of Koopman Operator Approximations): Given (i) a discrete-time
linear dynamical system with states z ∈ Rn and control inputs u ∈ Rm, evolving according to
zk+1 = Atruezk + Btrueuk, where Atrue ∈ Rn×n and Btrue ∈ Rn×m are the true system
matrices; and (ii) the Koopman operator approximation estimates A and B such that zk+1 ≈
Azk + Buk, the minimization of Lm(A,B; zk,uk, zk+1) with respect to A and B converges to
the true system matrices, i.e., lim

n→∞
(A,B) = (Atrue,Btrue), where n represents the number of

observations.

Theorem 3: (Convergence of the LQR Control Policy) Given a discrete-time linear system char-
acterized by state transition matrix A ∈ Rn×n and control input matrix B ∈ Rn×m and the LQR
problem aims to minimize a quadratic cost function J =

∑∞
k=0(x

⊤
k Qxk + u⊤

k Ruk) with Q ≥ 0
and R > 0, the DARE solution

Pi+1 = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q,

converges to P∗, ensuring that the optimal control gains G∗ yield a stable and optimal control
policy.

Theorem 4 (LQR within SAC Optimizes Koopman Control Policy): Let Lsac be the SAC loss
for a given policy πsac(u|z) integrated with the LQR control policy πLQR(z|G) in a latent space Z,
derived via the Koopman operator theory for a nonlinear dynamical system. If the SAC loss Lsac is
Lipschitz continuous with respect to the parameter set Ω = {Q,R,A,B, ψθ} and Lsac is bounded
below, then applying gradient descent updates on Ω to minimize Lsac guarantees convergence to a
stationary point of Lsac.

Proofs for these theorems are provided in Appendix Section C Building on these theorems, it is
established that our networks, given an adequate number of samples from the training data, are
guaranteed to converge to an optimal task policy.
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5 Empirical Results

In this section, we conduct simulated experiments primarily to explore these two questions: Firstly,
Can our methodology effectively achieve desirable task performance using linear spectral Koopman
representations across diverse environments exhibiting varying nonlinear dynamics? Secondly, Is it
feasible to develop a globally linear model that aligns closely with the latent space, demonstrating
resilience to noise and external disruptions, while maintaining efficiency in sampling and computa-
tion?

Experimental Settings and Baselines In our work, we implement the model that operates within a
spectral Koopman space, specifically designed with a 128-dimensional complex space. This model
incorporates a control embedding that maps control inputs to a 128-dimensional space as well, and
all the models are trained for 100k and 500k timesteps. We use five distinct robotic control tasks
from the DeepMind Control Suite [19], each characterized by varying state and action space dimen-
sionalities: reacher easy, reacher hard, walker, ball in cup, cheetah, and cartpole. For comparative
analysis, we implement several baseline models. CURL [9] is a model-free RL algorithm using a
contrastive encoder for latent space control learning. Our approach, while also using a contrastive
encoder, uniquely learns a complex-valued linear latent space. We also examine the To-KPM [16],
which employs linear dense representations for dynamic modeling, whereas our model adopts a
spectral Koopman form for efficient and stable system modeling. Additionally, we include model-
based RL algorithms: TD-MPC [47] and PlaNet [30] use real-time planning with different variants
of the Cross-Entropy Method (CEM), while Dreamer [29] employs background planning. SAC-State
[15] serves as an upper performance bound, receiving direct state input from the simulator. Our ex-
perimental framework and the detailed analysis of these baselines are thoroughly documented in
Appendix A.1 and A.2.

Evaluation Metric: In RL, agents learn from interactions with their environment, guided by task
rewards. These rewards provide scalar feedback, allowing agents to refine policies for maximizing
future rewards. For instance, in the cart pole system, the agent receives a fixed reward of +1 for
every timestep the pole remains upright, within a predefined angle from the vertical. Therefore, the
quicker the cartpole reaches a vertical position, the more rewards it will accumulate. In this work,
we set the reward as negative of the LQR cost. The greater the reward, the lower the control cost,
enabling a faster achievement of the desired state. We report the mean reward and the variance of
the distribution across 5 random experiments for all the models.

Table 2: Performance comparison at 100K and 500K steps

Model
100K steps 500K steps

Reacher easy Walker Cartpole Cheetah Ball In Cup Reacher easy Walker Cartpole Cheetah Ball In Cup

Control in State Space - Upper bound performance
Sac State 919 ± 123 604 ± 317 812 ± 45 228 ± 95 957 ± 26 975 ± 5 964 ± 8 870 ± 7 772 ± 60 979 ± 6

Control in Pixel Space
TDMPC [47] 413 ± 62 653 ± 99 747 ± 78 274 ± 69 675 ± 221 722± 184 944 ± 15 860 ± 11 488 ± 74 967 ± 15
Curl [9] 460 ± 65 482 ± 28 547 ± 73 266 ± 27 741 ± 102 929 ± 44 897 ± 26 841 ± 45 518 ± 28 957 ± 6
DrQ [48] 601 ± 213 612 ± 164 759 ± 92 344 ± 67 913 ± 53 942 ± 71 921 ± 46 868 ± 10 660 ± 96 963 ± 9
Dreamer [29] 148 ± 53 216 ± 56 235 ± 73 159 ± 60 172 ± 96 581 ± 160 924 ± 35 711 ± 94 571 ± 109 964 ± 8
Planet [30] 140 ± 256 125 ± 57 303 ± 71 165 ± 123 198 ± 442 351 ± 483 293 ± 114 464 ± 50 321 ± 104 352 ± 467
SLACv1 [49] - 361 ± 73 - 319 ± 56 512 ± 110 - 842 ± 51 - 640 ± 19 852 ± 71
To-KPM [16] 238 ± 352 414 ± 216 797 ± 35 14 ± 6 841 ± 167 968 ± 16 127 ± 59 835 ± 17 259 ± 18 921 ± 56
SAC+AE [15] 145 ± 30 42 ± 12 419 ± 40 197 ± 15 312 ± 63 145 ± 30 42 ± 12 419 ± 40 197 ± 15 312 ± 63
Koopman AE [50] 234 ± 11 320 ± 26 345 ± 10 261 ± 53 301 ± 47 327 ± 42 512 ± 68 400 ± 77 192 ± 31 412 ± 45
Ours 679 ± 300 640 ± 34 864 ± 4.2 305 ± 7.3 940 ± 36 969 ± 7.9 959 ± 15 874 ± 1.7 390 ± 6.9 967 ± 20

Results To operate in a sample-efficient regime, we trained our networks for only 100k steps, in con-
trast to the 500k-step training regimen utilized for all baseline models. Table 2 provides a detailed
comparison of all the models for both 100k and 500k steps. For all the environments except Cheetah,
our model achieves the highest reward, which notably corresponds to the negative of the control cost,
outperforming all other models. We note that control models utilizing autoencoder-type prediction
mechanisms, such as Koopman AE, SAC-AE, Dreamer and Planet, underperform, with SAC-AE,
despite its similar RL exploration strategy to ours, performing particularly poorly. To-KPM, with
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Figure 3: Computational Load of SOTA dynam-
ical models

Figure 4: Performance of models with external
disturbances

its dense Koopman model, also yields comparatively lower rewards than our model. Furthermore,
when comparing our model against state-space model—specifically, state-based SAC —we observe
that our approach surpasses the state-based controllers in terms of reward, even with a limited train-
ing duration of 100k steps, and exhibits very low trial variance for rewards. This underscores the
high expressive power and task-guided representation capabilities of our model. In the cheetah task
evaluation, however, our model has the third-best reward in the 100K step evaluation, only behind
DrQ and SLACv1. This exception may be attributed to these models’ nonlinear dynamics models
with non-linear next step prediction and similar encoder to our model, making them optimized for
state space exploration through deep RL. For more ablation studies of our model, please refer to
Appendix D.

Computational Efficiency for Linear vs Non-Linear dynamics In this section, we evaluate the
computational efficiency of state-of-the-art predictive models in conjunction with linearized control
mechanisms. Specifically, we implement the MLP dynamics model as described in [9] and the Dense
Koopman model from [16] for comparison. Additionally, to assess our method against parallelizable
and causally structured models, we incorporate the Transformer model [51, 31] and a recurrent
model outlined in [29], which are utilized to simulate system dynamics over more than 100 future
steps while concurrently learning a linear control strategy for the system. Figure 3 illustrates the
Multiply-Accumulate (MAC) operations required by each model, from which we deduce that our
approach of using spectral Koopman necessitates the lowest computational effort for both control
and prediction tasks. This comparison underscores the efficiency of our method in managing the
computational demands associated with dynamic system modeling and control.

Performance under external disturbances: In this section, we introduce an external force to
the cart pole system during evaluation, denoted by F , which follows a uniform distribution F ∼
Uniform(amax, 0, amin). The probability of applying this force is represented by p, where amax and
amin correspond to the environment’s maximum and minimum allowable control input values, re-
spectively. Figure 4 illustrates the mean reward and Interquartile Mean (IQM) for the models under
study. Notably, our models demonstrate robust control capabilities, maintaining high performance
even when the probability of external disturbances is increased to 0.25. This resilience is evidenced
by a minimal degradation in performance when compared to alternative approaches.

6 Conclusion and Future Work

In this work, we introduce RoboKoop, a novel approach that integrates a contrastive encoder with
spectral Koopman operators to learn visual representations guided by task learning. We demonstrate
that RoboKoop surpasses current state-of-the-art methods, achieving superior performance while
maintaining sample efficiency and robustness to noise and external disturbances. Looking forward,
we aim to further enhance sample efficiency by exploring alternatives to Soft Actor-Critic (SAC)
methods, potentially reducing the number of samples required for effective learning.
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A Model Details and Experimental Settings

A.1 Simulation Environment for Empirical Study

In our research, we introduce RoboKoop, an algorithm distinguished by its sample efficiency, which
processes pixel-based inputs to simultaneously learn linear dynamics and develop an effective con-
trol policy. This algorithm demonstrates versatility across a broad spectrum of environments. We
have rigorously tested RoboKoop against continuous control challenges within the DeepMind Con-
trol Suite. Our selection of these particular tasks is grounded in several critical considerations:

1. Existing baseline methods exhibit suboptimal performance on these tasks, highlighting a
gap that RoboKoop aims to fill.

2. Recent advancements have introduced both model-free and model-based strategies aimed
at enhancing the sample efficiency of similar algorithms. Our work contributes to this
ongoing dialogue by presenting an alternative approach.

3. The performance metrics obtained from these simulated tasks are highly indicative of real-
world applicability, underscoring the practical relevance of our findings in broader contexts.

Cartpole Swingup This task is centered around the goal of swinging up a pole, initially in a down-
ward orientation, attached to a moving cart, and then maintaining its upright position. Success in
this task requires the precise application of forces to the cart, navigating through a 4D state space
that represents the cart-pole system’s kinematics, complemented by a 1D control space for force
application.
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Cheetah Run The objective here is to orchestrate the movements of a simulated planar cheetah to
achieve rapid and stable running. This involves managing an 18D state space that encapsulates the
kinematics of the cheetah’s entire body, including its joints and limbs, while employing 6D torques
as controls to manipulate the joints for optimal locomotion.

Reacher The Reacher task is designed to test precise motor control by requiring an agent to maneu-
ver a simulated two-joint robotic arm to a target location in a 2D plane. This task involves navigating
through an 11D state space that includes the positions and velocities of the arm’s joints, as well as
the position of the target. The control space is 2D, representing the torques applied at each joint.
Success in this task is measured by the agent’s ability to accurately and efficiently move the arm to
the target position and maintain it there.

Ball in Cup In the Ball in Cup task, the objective is to control a simulated robot arm to swing
and catch a ball attached to a string in a cup. This task is particularly challenging due to the non-
linear dynamics involved in swinging the ball and the precision required to catch it in the cup. The
environment’s state space is 8D, capturing the positions and velocities of the ball and the robot arm,
as well as the angular position of the cup. The control space is 3D, representing the forces applied
to the robot arm to achieve the desired swing motion. Success in this task requires a combination of
dynamic coordination and precise timing.

Walker The Walker task involves controlling a bipedal robot to achieve stable and efficient loco-
motion. The state space for this task is 17D, encompassing the kinematic properties of the robot’s
body and legs, including joint positions and velocities. The control space is 6D, corresponding to the
torques applied to the robot’s joints. The objective is to navigate the robot through various terrains,
maintaining balance and forward motion. Success in this task is determined by the robot’s ability to
move swiftly and stably without falling.

A.2 Model Hyper parameters

Table 3 provides a comprehensive enumeration of the hyperparameters employed in our model,
along with detailed descriptions of each parameter. For To-KPM [16] also, we use the same hyper-
parameters as our model for a fair evaluation.

A.3 Algorithm Design

For an end-to-end training of the network, we iteratively collect trajectory data batches from the
task environment E and use the three distinct loss objectives to train the networks in an end-to-end
fashion. The primary objective, Lsac, is used to optimize all the task parameters to learn efficient
representations for the task. Additionally, we integrate contrastive learning loss Lcst and model pre-
diction loss Lm to regularize the task parameter learning process and feature extraction. Algorithm
1 describes the loss computation and parameter updates for the model.

Algorithm 1 Model Training
0: Initialize parameters: Koopman control Q,R, Dynamics K̄, L̄, Encoder ψθ.
0: Reset task environment E.
0: Initialize data replay buffer D.
0: for each iteration η do
0: Collect roll-outs τη by executing policy πLQR, store in D.
0: Sample batch B from D.
0: Compute Lcst: Update ψθ to minimize Lcst.
0: Compute Lsac: Update Q,R, K̄, L̄ to minimize Lsac (excluding ψθ).
0: Compute Lm: Update K̄, L̄ to minimize Lm.
0: end for=0
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Table 3: Hyperparameters and Configuration Details

Name Value Description
Environment

Pre transform image size 100 Initial size of images before applying transforms.
Frame stack 3 Number of frames stacked together as input.
Image size 84 The resolution of input images to the network.
Replay buffer capacity 100000 Maximum size of the replay buffer.

Agent
Hidden dim 1024 Dimension of hidden layers in neural networks.
Discount factor 0.99 Discount factor for future rewards (γ).
Init temperature 0.1 Initial temperature parameter for SAC algorithm.
Alpha lr 0.0001 Learning rate for the temperature parameter.
Alpha beta 0.5 Beta parameter for the Adam optimizer for temperature.
Actor lr 0.001 Learning rate for the actor network.
Actor beta 0.9 Beta parameter for the Adam optimizer for the actor net-

work.
Actor update freq 1 Frequency of actor network updates.
Critic lr 0.001 Learning rate for the critic network.
Critic beta 0.9 Beta parameter for the Adam optimizer for the critic net-

work.
Critic tau 0.01 Tau parameter for soft updates of the target networks.
Critic target update freq 1 Frequency of target network updates.
Encoder feature dim 256 Dimensionality of the encoded features.
Control encode dim 128 Dimensionality of the encoded control input.
Encoder lr 0.001 Learning rate for the encoder.
Encoder tau 0.05 Tau parameter for soft updates of the encoder.
Num layers 4 Number of layers in the convolutional neural networks.
Num filters 32 Number of filters in the first convolutional layer.
Curl latent dim 128 Dimensionality of the latent space in CURL.
Koopman update freq 1 Frequency of updating the Koopman operator.
Koopman fit optim lr 0.001 Learning rate for optimizing the Koopman operator.
Koopman fit coeff 0.1 Coefficient for fitting the Koopman operator.
Koopman horizon 5 Horizon length for Koopman predictions.

Training
Init steps 1000 Number of steps collected with random actions at the start

of training.
Num train steps 150000 Total number of training steps.
Batch size 128 Batch size for training.

B Baselines

This section delineates the comparative analysis of baselines utilized in our study and elucidates
how our approach diverges from them.

B.1 CURL: Contrastive Unsupervised Representations for Reinforcement Learning [9]

CURL, which stands for Contrastive Unsupervised Representations for Reinforcement Learning,
employs contrastive learning to derive high-level features from raw pixels for reinforcement learning
tasks. Our methodology, however, adopts a spectral Koopman operator model to explicitly learn
system dynamics, a feature absent in CURL. This distinction permits an in-depth analysis of system
stability and provides valuable insights into controller design. Unlike non-linear control policies
that lack a comprehensive system analysis, linear systems can be thoroughly examined through
eigenvalue analysis. We demonstrate this through a pole analysis of the Koopman operators in
Section 5, highlighting the methodological differences and advantages.

B.2 To-KPM [16]

To-KPM introduces a task-oriented approach that integrates a contrastive encoder with Koopman-
based control. Unlike our model, To-KPM relies on a dense Koopman operator, leading to unstable
poles and reduced sample efficiency due to the increased parameters required for learning the Koop-
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man operator. These limitations are substantiated by the instability of poles (refer to Figures 4 and
5 in Section 5 of our paper) and underscore the efficiency of our approach.

B.3 Planet [30]

Planet is a model-based agent that discerns environment dynamics directly from pixels, facilitating
action selection through online planning within a compact latent space. The latent space is structured
around a recurrent state-space model, which is computationally intensive, as evidenced in Section 5
(Figure 6). Additionally, its emphasis on multi-step prediction in pixel space compromises sample
efficiency, necessitating extensive interactions with the environment.

B.4 Koopman AE [20]

The Koopman AE methodology leverages a soft actor-critic policy, underpinned by a regularized
autoencoder (AE), to learn a latent space model atop AE features. Unlike Planet, this approach also
explicitly models dynamics using a Koopman operator. In contrast, our method eschews the use
of VAEs or AEs for pixel reconstruction, opting instead to learn features via contrastive learning
alone. This strategy ensures the prioritization of task-relevant features over the reconstruction of
pixel space, enhancing task efficiency and model performance.

C Analytical Results

C.1 Convergence of Contrastive Learning

Definitions and Assumptions

1. Smoothness: The function Lcst is assumed to be L-smooth with respect to θ, meaning it has
Lipschitz continuous gradients:

∥∇Lcst(θ1)−∇Lcst(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2.

2. Unbiased Gradient Estimates: The stochastic gradient ∇̂θLcst is an unbiased estimate of the
true gradient:

E[∇̂θLcst(θ)] = ∇θLcst(θ).

3. Bounded Variance: The variance of the stochastic gradient is bounded by a constant σ2:

E[∥∇̂θLcst(θ)−∇θLcst(θ)∥2] ≤ σ2.

4. Diminishing Learning Rates: The learning rate αt satisfies the Robbins-Monro conditions:
∞∑
t=1

αt = ∞,

∞∑
t=1

α2
t <∞.

Convergence of Contrastive Loss via Gradient Descent

Theorem 1.: Let Lcst(θ) be an L-smooth contrastive loss function for encoder parameters θ
and assuming stochastic gradient descent (SGD) updates with learning rate αt satisfying Robbins-
Monro conditions. If ∇̂θLcst is an unbiased estimate of the gradient with bounded variance, then
limt→∞ E[∥∇θLcst(θt)∥2] = 0.

Proof: Given the Lipschitz continuity of ψθ, and assuming the loss Lcst inherits this property with
respect to θ, the Descent Lemma can be applied. The lemma states that for a Lipschitz continuous
function f with Lipschitz constant L,

f(x+∆x) ≤ f(x) +∇f(x)⊤∆x+
L

2
∥∆x∥2.

Given the L-smoothness of Lcst, we have for any θ1, θ2:
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Lcst(θ2) ≤ Lcst(θ1) +∇Lcst(θ1)
⊤(θ2 − θ1) +

L

2
∥θ2 − θ1∥2.

Substituting the gradient descent update θt+1 = θt − αt∇̂θLcst(θt):

Lcst(θt+1) ≤ Lcst(θt)− αt∇Lcst(θt)
⊤∇̂θLcst(θt) +

Lα2
t

2
∥∇̂θLcst(θt)∥2.

Taking expectations on both sides, and using the fact that E[∇̂θLcst] = ∇θLcst (unbiased gradient
estimates) and the bounded variance assumption:

E[Lcst(θt+1)] ≤ E[Lcst(θt)]− αt∥∇θLcst(θt)∥2 +
Lα2

t

2
(σ2 + ∥∇θLcst(θt)∥2).

Rearranging the terms, we aim to show that:

αt(1−
Lαt

2
)∥∇θLcst(θt)∥2 ≤ E[Lcst(θt)]− E[Lcst(θt+1)] +

Lα2
tσ

2

2
.

Given αt satisfies the Robbins-Monro conditions and 1−Lαt

2 > 0 for sufficiently small αt, summing
both sides over t and applying the law of total expectation give:

∞∑
t=1

αt(1−
Lαt

2
)E[∥∇θLcst(θt)∥2] ≤ Lcst(θ1)− Lcst(θ

∗) +

∞∑
t=1

Lα2
tσ

2

2
,

where θ∗ is a local minimum of Lcst.

Given the right-hand side is bounded (due to the boundedness of

Lcst and the conditions on αt), and
∑∞

t=1 αt(1 − Lαt

2 ) = ∞, it follows from the quasi-martingale
convergence theorem and the Robbins-Monro conditions that:

lim
t→∞

E[∥∇θLcst(θt)∥2] = 0.

This implies that, in expectation, the gradient norm converges to 0, indicating convergence to a
stationary point. Now using the Polyak-Łojasiewicz condition, it can be shown that this is a local
minimum.

The exact form of Lcst and its gradient ∇θLcst. The Lipschitz constants for ψθ and Lcst Conditions
under which the stochastic gradient is an unbiased estimate of the true gradient and has bounded
variance. A suitable learning rate schedule αt that guarantees convergence.

C.2 Stability and Convergence of the Koopman Operator Approximation

Theorem 2: Convergence of Koopman Operator Approximations: Given (i) a discrete-time
linear dynamical system with states z ∈ Rn and control inputs u ∈ Rm, evolving according to
zk+1 = Atruezk + Btrueuk, where Atrue ∈ Rn×n and Btrue ∈ Rn×m are the true system
matrices; and (ii) the Koopman operator approximation approach, which seeks to estimate matrices
A and B such that zk+1 ≈ Azk + Buk, based on a loss function Lm(A,B; zk,uk, zk+1), the
minimization of Lm with respect to A and B over the observed data converges to the true system
matrices, i.e.,

lim
n→∞

(A,B) = (Atrue,Btrue),

where n represents the number of observations.

17



Proof

We model the evolution of the system’s state as a linear regression problem, where:

• Znext is the matrix of next states zk+1,

• X is the design matrix composed of current states zk and control inputs uk,

• Θ is the parameters matrix to be estimated, combining A and B,

• ϵ is the error term.

The equation Znext = XΘ+ ϵ encapsulates this linear relationship.

The objective function to minimize the difference between the predicted next states and the actual
next states, quantified by the Frobenius norm of their difference can be written as:

Lm = ∥Znext −XΘ∥2F ,

where ∥ · ∥F denotes the Frobenius norm. To minimize Lm, we calculate the gradient of the loss
function with respect to Θ and set it to zero: ∇ΘLm = −2X⊤(Znext −XΘ) = 0.

Solving this equation for Θ gives: Θ = (X⊤X)−1X⊤Znext. This is the least squares solution,
providing the best estimate of Θ given the data.

With the assumption that the observations X and Znext sufficiently cover the entire state and control
input space and as the number of observations n approaches infinity (N → ∞), the matrices X⊤X
and X⊤Znext will converge to their expected values. This ensures that the estimated parameters Θ,
which combine A and B, converge to the true system matrices Atrue and Btrue that govern the
system’s dynamics.

The solution involves setting the gradient of Lm with respect to Θ to zero, leading to:

∇ΘLm = −2X⊤(Znext −XΘ) = 0

Solving this equation yields the estimate for Θ:

Θ = (X⊤X)−1X⊤Znext

Given a sufficiently diverse and large dataset (n → ∞), the estimates converge to the true system
dynamics because the matrices X⊤X and X⊤Znext approach their expected values, ensuring the
estimated parameters (A and B) converge to the true parameters (Atrue and Btrue).

This proof assumes sufficient data coverage across the state and control input space, which guaran-
tees the convergence of the Koopman operator approximations to the true system dynamics, thereby
validating the theorem.

C.3 Convergence of the LQR Control Policy

Theorem 3: Convergence of the LQR Control Policy Given a discrete-time linear system char-
acterized by state transition matrix A ∈ Rn×n and control input matrix B ∈ Rn×m and the LQR
problem aims to minimize a quadratic cost function J =

∑∞
k=0(x

⊤
k Qxk + u⊤

k Ruk) with Q ≥ 0
and R > 0, the iterative solution to the Discrete-time Algebraic Riccati Equation (DARE)

Pi+1 = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q,

converges to the optimal solution P∗ for the LQR problem, ensuring that the optimal control gains
G∗ = −(R+B⊤P∗B)−1B⊤P∗A yield a stable and optimal control policy.

Proof:
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To prove the convergence of the Linear Quadratic Regulator (LQR) control policy, we focus on the
discrete-time setting, where the goal is to design an optimal control policy that minimizes a given
cost function. The essence of the proof involves showing that the solution to the Discrete-time
Algebraic Riccati Equation (DARE) converges to a unique positive semidefinite matrix, which then
defines the optimal control gains.

We are given a discrete-time linear system:

xk+1 = Axk +Buk,

and aim to minimize the infinite-horizon quadratic cost function:

J =

∞∑
k=0

(
x⊤
k Qxk + u⊤

k Ruk

)
,

where Q ≥ 0 (positive semidefinite) and R > 0 (positive definite) are the state and control weight
matrices, respectively.

The optimal control policy for this problem can be derived using dynamic programming, leading to
the DARE:

P = A⊤PA−A⊤PB
(
R+B⊤PB

)−1
B⊤PA+Q,

where P is the solution that defines the optimal cost-to-go matrix.

The convergence of the LQR control policy essentially means proving that the iterative solution to
the DARE converges to a unique positive semidefinite matrix P∗. Here are the key steps:

1. Monotonicity and Boundedness:

To prove that the sequence {Pi} generated by the Discrete-time Algebraic Riccati Equation (DARE)
iterations is monotonically decreasing and bounded below, thus ensuring convergence, let’s delve
into equations and inequalities that illustrate these properties. Consider the iterative update rule for
the DARE:

Pi+1 = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q,

where:

- A and B define the system dynamics, - R is the control weighting matrix, which is positive
definite (R > 0), - Q is the state weighting matrix, which is positive semidefinite (Q ≥ 0), - Pi is
the cost-to-go matrix at iteration i.

To show that Pi+1 ≤ Pi, we need to establish that Pi − Pi+1 is positive semidefinite for each
i. The Riccati update aims to minimize the cost function Ji associated with using the control law
derived from Pi. Therefore, if we define the cost reduction as ∆Pi = Pi −Pi+1, we seek to show
that ∆Pi ≥ 0 (i.e., ∆Pi is positive semidefinite).

Starting from the DARE update rule and rearranging terms gives us:

∆Pi = Pi −Pi+1 = A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA,

Given that R > 0 and Pi is positive semidefinite, it follows that the right-hand side of the equation
above is positive semidefinite. This is because the term inside the parenthesis, R + B⊤PiB, is
positive definite, making its inverse also positive definite, and thus ∆Pi is positive semidefinite,
indicating that Pi+1 ≤ Pi.
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The sequence is bounded below by the zero matrix, given that the cost-to-go matrices Pi represent
quadratic cost functions which are non-negative:

Pi ≥ 0 ∀i,

implying that the sequence cannot decrease indefinitely and is bounded below by a matrix where all
elements are greater than or equal to zero. Given the monotonicity and boundedness of the sequence
{Pi}, it follows from the Monotone Convergence Theorem for matrices that the sequence converges
to a limit, say P∗, which is the solution to the DARE and represents the optimal cost-to-go matrix:

lim
i→∞

Pi = P∗,

where P∗ satisfies the DARE and thus confirms the optimality and stability of the LQR control
policy derived from it.

By establishing the monotonic decrease and boundedness below of the sequence {Pi}, we have
shown that this sequence converges to a matrix P∗ that minimizes the LQR cost function. This P∗

is the fixed point of the DARE, providing the optimal cost-to-go estimate and ensuring the stability
and optimality of the LQR control policy derived from it.

2. Fixed Point Convergence: Under the assumptions that A, B, Q, and R satisfy certain control-
lability and observability conditions, it can be shown that the iteration converges to a fixed point.
To prove that the limit of the sequence {Pi}, denoted as P∗, satisfies the Discrete-time Algebraic
Riccati Equation (DARE) and is thus a fixed point of the iteration process, we employ the properties
of convergence and continuity of matrix operations.

Given the iterative process:

Pi+1 = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q,

we aim to show that, as i→ ∞, Pi → P∗ and that P∗ satisfies the DARE:

P∗ = A⊤P∗A−A⊤P∗B
(
R+B⊤P∗B

)−1
B⊤P∗A+Q.

From previous steps, we have shown that the sequence {Pi} is monotonically decreasing and
bounded below, which guarantees convergence to a limit P∗ due to the Monotone Convergence
Theorem for matrices.

The operations involved in the iterative update rule, including matrix addition, multiplication, and
inversion, are continuous functions of their arguments. This means that if a sequence of matrices
{Xi} converges to X, then the limit of a continuous function f(Xi) is f(X). The update rule can
be seen as the application of a continuous function f to Pi:

f(Pi) = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q.

Given the convergence Pi → P∗, by continuity, we have:

lim
i→∞

f(Pi) = f( lim
i→∞

Pi) = f(P∗).

This implies:

P∗ = A⊤P∗A−A⊤P∗B
(
R+B⊤P∗B

)−1
B⊤P∗A+Q,
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which is precisely the DARE. By showing that P∗ satisfies the DARE, we’ve proven that P∗ is a
fixed point of the iteration process. This fixed point represents the solution to the DARE, establishing
the optimality of the limit matrix P∗ for the LQR problem.

Thus, by leveraging the properties of monotonicity, boundedness, convergence, and the continuity
of matrix operations, we’ve demonstrated that the limit of the sequence {Pi}, P∗, satisfies the
Discrete-time Algebraic Riccati Equation, making it the optimal solution and a fixed point of the
iterative process.

The convergence of the LQR control policy to an optimal solution involves demonstrating that the
iterative solution to the DARE converges to a unique matrix that minimizes the cost function and
that the corresponding control policy stabilizes the system. The proof relies on algebraic properties
of the Riccati equation, control theory, and the system’s controllability and observability conditions.

C.4 Integration of LQR within SAC Framework Optimizes Koopman Control Policy

Lemma: Given a loss function L that is Lipschitz continuous with respect to the parameters Ω,
and bounded below, the sequence {Ωt} generated by the gradient descent updates:

Ωt+1 = Ωt − η∇ΩL(Ωt),

with a sufficiently small, fixed learning rate η > 0, converges to a stationary point Ω∗, where
∇ΩL(Ω∗) = 0.

Proof: Given that L is Lipschitz continuous with Lipschitz constant L, we have for the gradient
descent update:

L(Ωt+1) ≤ L(Ωt) +∇ΩL(Ωt)
⊤(Ωt+1 −Ωt) +

L

2
∥Ωt+1 −Ωt∥2. (5)

⇒Ωt+1 −Ωt = −η∇ΩL(Ωt). (6)

⇒L(Ωt+1) ≤ L(Ωt)− η∥∇ΩL(Ωt)∥2 +
Lη2

2
∥∇ΩL(Ωt)∥2. (7)

Choosing η: Select η such that 0 < η < 2
L , ensuring that:

L(Ωt+1) ≤ L(Ωt)−
(
η − Lη2

2

)
∥∇ΩL(Ωt)∥2.

Since L is bounded below, and L(Ωt+1) ≤ L(Ωt) for all t, the sequence {L(Ωt)} is non-increasing
and bounded. This implies convergence of the loss function values.

The reduction of the loss at each step is proportional to the square of the norm of the gradient. If the
sequence {Ωt} did not converge to a stationary point, the gradient norm would not approach zero,
contradicting the boundedness and convergence of the loss function values. Therefore, the gradient
norm must approach zero, i.e., ∇ΩL(Ω∗) = 0, indicating convergence to a stationary point.

Theorem 4: Let Lsac be the Soft Actor-Critic (SAC) loss function for a given policy πsac(u|z) in-
tegrated with the Linear Quadratic Regulator (LQR) control policy πLQR(z|G) in a latent space Z,
derived via the Koopman operator theory for a nonlinear dynamical system. If the SAC loss Lsac is
Lipschitz continuous with respect to the parameter set Ω = {Q,R,A,B, ψθ} and Lsac is bounded
below, then applying gradient descent updates on Ω to minimize Lsac guarantees convergence to a
stationary point of Lsac.

Proof: Assume Lsac satisfies the Lipschitz condition with Lipschitz constant L > 0, i.e.,

|Lsac(Ω1)− Lsac(Ω2)| ≤ L∥Ω1 −Ω2∥,
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for any Ω1,Ω2 in the parameter space.

Now, the update rule for the parameters Ω via gradient descent is given by:

Ωt+1 = Ωt − η∇ΩLsac(Ωt),

where η > 0 is the learning rate.

Using Lemma 1, given Lsac is bounded below and Lipschitz continuous, the sequence {Ωt} pro-
duced by the gradient descent updates will converge to a stationary point Ω∗, characterized by:

∇ΩLsac(Ω
∗) = 0.

Hence we show the optimality and stability via LQR Integration. The integration of the LQR policy
πLQR ensures that within the linear approximation of the dynamical system dynamics in the latent
space Z, the SAC framework, enhanced with LQR, converges towards optimal control actions. The
LQR component provides an optimal control policy for linearized dynamics around the current state
and control, ensuring that the SAC algorithm’s policy updates enhance both stability and optimality
in control decisions.

For a linear system zk+1 = Azk +Buk, the LQR aims to minimize the cost function:

J =

∞∑
k=0

(
z⊤k Qzk + u⊤

k Ruk

)
,

where Q ≥ 0 and R > 0. The optimal control law is u∗
k = −Kzk with K = (R +

B⊤PB)−1B⊤PA, where P solves the Algebraic Riccati Equation (ARE):

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q.

The SAC algorithm seeks to optimize the policy πsac(u|z) by solving:

max
π

E

[ ∞∑
k=0

γk (R(zk,uk) + αH(π(·|zk)))

]
,

where H denotes the entropy of the policy, promoting exploration, and α is the temperature param-
eter that balances reward and entropy.

Integration means adjusting the SAC optimization to include the LQR solution as a baseline or
regularization term. The objective becomes:

max
π

E

[ ∞∑
k=0

γk (R(zk,uk) + αH(π(·|zk))− λJLQR(zk,uk))

]
,

where λ is a weighting coefficient, and JLQR is the LQR cost function introduced above. This
formulation explicitly guides the SAC policy towards the LQR’s optimal policy within the linear
approximation of the dynamics.

The optimal policy π∗ and the corresponding control law u∗ from this integrated optimization prob-
lem are given by (1) the policy π∗ that maximizes the augmented objective, and (2) the control law
that minimizes the LQR cost, ensuring stability as P guarantees the eigenvalues of (A − BK) lie
within the unit circle, ensuring the system’s stability.

The parameter update rule incorporating both SAC optimization and LQR regularization is given
by:
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Figure 5: Eigenspectrum of To-KPM Figure 6: Eigenspectrum of our model

Ωt+1 = Ωt − η∇Ω (Lsac(Ωt)− λJLQR(Ωt)) ,

where Lsac and JLQR are differentiable with respect to Ω, ensuring that the gradient descent steps
move the parameters towards minimizing the SAC loss while adhering to the LQR optimality cri-
teria. Given the Lipschitz continuity and differentiability of Lsac − λJLQR, the updates guarantee
convergence to a stationary point Ω∗ where ∇Ω (Lsac(Ω

∗)− λJLQR(Ω
∗)) = 0, encapsulating both

the optimal policy in the SAC framework and the stability provided by the LQR control law.

Thus, we’ve shown how this combined approach integrating LQR within the SAC framework lever-
ages LQR’s optimality and stability, guiding the policy updates in SAC towards enhanced control
decisions. The integration explicitly incorporates the LQR’s linear control optimality into SAC’s
nonlinear policy optimization, ensuring convergence towards optimal and stable control actions in
the latent space Z. Thus, we show that under the conditions of Lipschitz continuity and boundedness
of the SAC loss function, gradient descent optimization of the combined SAC and LQR policies in
the Koopman latent space converges to a stationary point, optimizing the overall Koopman control
policy. This integration not only leverages the strengths of both SAC and LQR but also ensures that
the optimization process is theoretically grounded and guaranteed to reach a point of stability and
optimality.

D Empirical Results

In this section, we conduct an ablation study to identify which components of our network contribute
to its superior performance with a limited number of training steps. First, to demonstrate the effect
of nonlinearity, we use CURL[9] as a baseline. CURL features a contractive encoder similar to
ours but employs nonlinear dynamics, unlike our spectral dynamics. For comparison with a linear
dense model, we use ToKPM[16], which relies on dense linear dynamics as opposed to our spectral
model. Throughout the ablation studies, we demonstrate that our model outperforms both baselines.
For this section, we present the results for models trained for 150,000 steps, as the other baselines
showed poor performance when evaluated at 100,000 time steps.

D.1 Eigenspectrum of our model

In Figures 5 and 6, we present the eigenspectrum contour plots for the To-KPM model and our
proposed model, respectively. Analysis reveals that the eigenvalues of the To-KPM model predom-
inantly reside on the positive real axis, with an average value of approximately 0.4. Conversely,
our model exhibits a symmetric distribution of eigenvalues across the imaginary axis, featuring an
equal proportion of positive and negative real eigenvalues. This distribution aligns with an increas-
ing trend of eigenvalues as per ω = jπ. Within the framework of the Koopman operator theory,
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Figure 7: Performance of models in rainy conditions.

negative eigenvalues signify that the system’s observables exhibit exponential decay over time, as
these eigenvalues are integral to the exponential term in the solution to the linear system governed
by the Koopman operator. Hence, negative eigenvalues are indicative of stable observable behaviors,
whereas positive eigenvalues suggest exponential growth in observables, pointing to instability. The
presence of positive eigenvalues in the To-KPM model undermines its ability to learn stable rep-
resentations from images using a finite-dimensional Koopman operator, leading to inferior perfor-
mance compared to our model, which benefits from a balanced distribution of positive and negative
eigenvalues.

D.2 Ablation Study on Spectral Koopman Operator Initialization

In this section, we conduct an ablation study to evaluate various initialization strategies for the
Koopman spectral method, as detailed in Section 3.2. Our baseline configuration sets the Koopman
operator’s real value at -0.2, with frequencies arranged in increasing order. To assess the impact
of initialization on performance, we explore three additional designs: (a) learnable real values with
increasing frequency, (b) constant real values with random frequency, and (c) learnable real val-
ues with random frequency. This examination seeks to identify the initialization method that most
effectively enhances the accuracy and stability of the spectral Koopman method.

Table 4 presents the mean reward for all the models across cheetah and cartpole simulations. Our
analysis reveals that the strategy of employing constant real values with increasing frequency for the
imaginary component of the initialization yields superior results.

Table 4: Summary of Experimental Results for Different Model Initializations

Model Initialization Cartpole Cheetah

µi ωi Reward Reward

Constant Random 85 21.36
Learnable Random 85 9.04
Learnable Increasing freq 155 285
Constant Increasing freq 874 311.19
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Figure 8: Performance of models with camera jerk

Figure 9: Performance of Models under Gaussian Noise

D.3 Ablation study on Performance under Imperfect Sensing

This section delves into the resilience of our model when faced with imperfect sensing conditions
during evaluation. We specifically examine its performance in two challenging scenarios: a.) Rainy
Environment with Structured Noise: Unlike Gaussian noise, rain noise[52] presents a more struc-
tured and challenging interference, making it difficult for common denoising techniques to effec-
tively mitigate[53][54]. We evaluate the model’s performance under three distinct levels of rain
density: Low (0.03), Medium (0.75), and High (0.0125). The comparison encompasses predictive
models equipped with dynamic predictors, and the outcomes are depicted in Figure 7. The results
indicate a general degradation in control performance across all models under test, except for ours,
which notably excels by achieving a reward of approximately 400. This demonstrates our model’s
superior capability to maintain effective system control even in the presence of high noise levels.
b.) Imperfect Sensing due to Camera Jerk: To further assess our model’s robustness, we intro-
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duce random camera jerks into the video input stream, simulating real-world sensing imperfections.
Three levels of camera jerk are considered: Low jerk (SSIM > 0.8), Medium Jerk (SSIM between
0.4 and 0.5), and High Jerk (SSIM < 0.3). Our findings from Figure 8 reveal that our model con-
sistently outperforms the others under these conditions as well. However, it’s noteworthy that the
performance gap between our model and the To-KPM model narrows as the jerk intensity increases,
with both models exhibiting similar performance metrics at higher jerk levels. Conversely, meth-
ods based on autoencoders demonstrate significantly lower performance across all jerk conditions.
These evaluations underscore our model’s robustness and adaptability to imperfect sensing scenar-
ios, highlighting its potential for real-world applications where sensing conditions are often less than
ideal.

D.4 Ablation Study on Performance under Gaussian Noise

In this experiment, we analyze the robustness of our model’s control performance under the influence
of Gaussian noise. We introduce zero-mean Gaussian noise to the input images with increasing
standard deviation. Figure 9 illustrates the comparative performance of our model and to-kpm [16]
model in the presence of Gaussian noise. We exclude models that under performed significantly from
this figure, as their performance was too low to be meaningful. Notably, our model demonstrates
exceptional resilience, maintaining high performance even under substantial Gaussian noise in the
visual input.
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