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ABSTRACT

Topological Data Analysis (TDA) allows us to extract powerful topological, and
higher-order information on the global shape of a data set or point cloud. Tools
like Persistent Homology or the Euler Transform give a single complex description
of the global structure of the point cloud. However, common machine learning
applications like classification require point-level information and features to be
available. In this paper, we bridge this gap and propose a novel method to extract
node-level topological features from complex point clouds using discrete variants
of concepts from algebraic topology and differential geometry. We verify the
effectiveness of these topological point features (TOPF) on both synthetic and
real-world data and study their robustness under noise.
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Figure 1: Schematic of Computing Topological Point Features (TOPF). Input. A point cloud X
in n-dimensional space. Step 1. To extract global topological information, the persistent homology
is computed on an α/VR-filtration. The most significant topological features F across all specified
dimensions are selected. Step 2. k-homology generators associated to all features fi,k ∈ F are
computed. For every feature, a simplicial complex is built at a step of the filtration where fi,k is
alive. Step 3. The homology generators are projected to the harmonic space of the simplices. Step 4.
The vectors are normalised to obtain vectors eik indexed over the k-simplices. For every point x and
feature f ∈ F , we compute the mean of the entries of eik corresponding to simplices containing x.
The output is a |X| × |F| matrix which can be used for downstream ML tasks. Optional. We weigh
the simplicial complexes resulting in a topologically more faithful harmonic representative in Step 3.

1 INTRODUCTION

In modern machine learning (Murphy, 2022), objects are described by feature vectors within a
high-dimensional space. However, the coordinates of a single vector can often only be understood in
relation to the entire data set: if the value x is small, average, large, or even an outlier depends on the
remaining data. In a 1-dimensional (or low-dimensional) case this issue can be addressed simply by
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normalising the data points according to the global mean and standard deviation or similar procedures.
We can interpret this as the most straight-forward way to construct local features informed by the
global structure of the data set.

In the case where not all data dimensions are equally relevant, or contain correlated and redundant
information, we can apply (sparse) PCA to project the data points to a lower-dimensional space
using information about the global structure of the point cloud (Zou et al., 2006). For even more
complex data, we may first have to learn the encoded structure itself: indeed, a typical assumption
underpinning many unsupervised learning methods is the so-called “manifold hypothesis” which
posits that real world data can be described well via submanifolds of n-dimensional space (Ma &
Fu, 2012; Fefferman et al., 2016). Using eigenvectors of some Laplacian, we can then obtain a
coordinate system intrinsic to the point cloud (see e.g. Shi & Malik (2000); Belkin & Niyogi (2003);
Coifman & Lafon (2006)). Common to all these above examples is the goal is to construct locally
interpretable point-level features that encode globally meaningful positional information robust to
local perturbations of the data. However, none of these approaches is able to represent higher-order
topological information (as captured by homology in degrees above 0), making point clouds with
these kind of structure inaccessible to point-level machine learning algorithms.

Instead of focussing on the interpretation of individual points, topological data analysis (TDA), Carls-
son & Vejdemo-Johansson (2021), follows a different approach. TDA extracts a global description
of the shape of data, which is typically considered in the form of a high-dimensional point cloud.
This is done measuring topological features like persistent homology, which counts the number of
generalised “holes” in the point cloud on multiple scales. Due to their flexibility and robustness
these global topological features have been shown to contain relevant information in a broad range of
application scenarios: In medicine, TDA has provided methods to analyse cancer progression (Lawson
et al., 2019). In biology, persistent homology has been used to analyse knotted protein structures
(Benjamin et al., 2023), and the spectrum of the Hodge Laplacian has been used for predicting protein
behaviour (Wee et al., 2024).

This success of topological data analysis is a testament to the fact that relevant information is encoded
in the global topological structure of point cloud data. Such higher-order topological information is
however invisible to standard tools of data analysis like PCA or k-means clustering, and can also not
be captured by graph models of the point cloud. We are now faced by the problem that (i) important
parts of the global structure of a complex point cloud can only be described by the language of
applied topology, however (ii) most standard methods to obtain positional point-level information are
not sensitive to the higher-order topology of the point cloud. The goal of our paper is to solve the
above-mentioned problem.

Contributions We introduce TOPF (Figure 1), a novel method to compute node-level topological
features relating individual points to global topological structures of point clouds. TOPF (i) outper-
forms other methods and embeddings for clustering downstream tasks on topologically structured data,
returns (ii) provably meaningful representations, and is (iii) robust to noise. Finally, we introduce the
topological clustering benchmark suite, the first benchmark for topological clustering.

Related Work The intersection of topological data analysis, topological signal processing and
geometry processing has many interesting related developments in the past few years. On the side
of homology and TDA, the authors in De Silva & Vejdemo-Johansson (2009) and Perea (2020) use
harmonic cohomology representatives to reparametrise point clouds based on circular coordinates.
This implicitly assumes that the underlying structure of the point cloud is amenable to such a
characterization.

In Basu & Cox (2022); Gurnari et al. (2023), the authors develop and use harmonic persistent
homology for data analysis. However, among other differences their focus is not on providing robust
topological point features. Carrière et al. (2015) construct point features using Topology as well.
However, their signatures only summarise the local topology of the neighbourhood of the point rather
than the relation between the point and the global topological features. Grande & Schaub (2023a)
uses the harmonic space of the Hodge Laplacians to cluster point clouds respecting topology, but
is unstable against some form of noise, has no possibility for features selection across scales and is
computationally far more expensive than TOPF. An overview over the thriving field of topological
data analysis can be found in (Wasserman, 2018; Munch, 2017). For a more in-depth review of
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related work, see Appendix A. Because there are different views on what constitutes representation
learning, we note that the learnt representations of TOPF are the result of homology and linear algebra
computations, rather than trained features of an autoencoder or other neural network.

Organisation of the paper In Section 2, we give an overview over the main ideas and concepts
behind of TOPF. In Section 3, we describe how to compute TOPF. Finally, we will apply TOPF on
synthetic and real-world data in Section 4. Furthermore, Appendix A contains a brief history of
topology and a detailed discussion of related work. Appendix B contains additional theoretical
considerations. In Appendix C, we give a theoretical result guaranteeing the correctness of TOPF.
Appendix D describes the novel topological clustering benchmark suite, Appendix E contains details
on the implementation and the choice of hyperparameters, Appendix G gives a detailed treatment of
feature selection, Appendix H discusses simplicial weights, and Appendix I discusses limitations in
detail.

Code We provide TOPF as an easy-to-use python package with example Jupyter Notebooks in the
supplementary material.

2 MAIN IDEAS OF TOPF

A main goal of algebraic topology is to capture the shape of spaces. Techniques from topology
describe globally meaningful structures that are indifferent to local perturbations and deformations.
This robustness of topological features to local perturbations is particularly useful for the analysis
of large-scale noisy datasets. To apply the ideas of algebraic topology in our TOPF pipeline, we
need to formalise and explain the notion of topological features. An important observation for
this is that high-dimensional point clouds and data may be seen as being sampled from topological
spaces — most of the time, even low-dimensional submanifolds of Rn (Fefferman et al., 2016).

In this section we provide a broad overview over the most important concepts of topology and TDA
for our context, prioritising intuition over technical formalities. The interested reader is referred
to Bredon et al. (1993); Hatcher (2002); tom Dieck (2008) for a complete technical account of
topology and Munch (2017) for an overview over TDA.

Simplicial Complexes Spaces in topology are continuous (connected), consist of infinitely many
points, and often live in abstract space. Our input data sets however consist of finitely many points
embedded in real space Rn. In order to bridge this gap and open up topology to computational
methods, we need a notion of discretised topological spaces consisting of finitely many base points
with finite description length. A Simplicial Complex is the simplest discrete model that can still
approximate any topological space occuring in practice (Quillen, 1967):
Definition 2.1 (Simplicial complexes). A simplicial complex (SC) S consists of a set of vertices V
and a set of finite non-empty subsets (simplices, S) of V closed under taking non-empty subsets, such
that the union over all simplices

⋃
σ∈S σ is V . In the following, we will often identify S with its set

of simplicies S and denote by Sk the set of simplices σ ∈ S with |σ| = k+1, called k-simplices. We
say that S is n-dimensional, where n is the largest k such that the set of k-simplices Sk is non-empty.
The k-skeleton of SC contains the simplices of dimension at most k. If the vertices V lie in real space
Rn, we call the convex hull in Rn of a simplex σ its geometric realisation |σ|. When doing this for
every simplex of S, we call this the geometric realisation of S, |S| ⊂ Rn.

Concretely, we can construct an n-dimensional SC S in n + 1 steps: First, we start with a set of
vertices V which we can identify with the 0-simplices S0. Second, we connect certain pairs of
vertices with edges, which constitute the set of 1-simplices. We can then choose to fill in some triples
of vertices which are fully connected by 1-simplices with triangles, i.e. 2-simplices. More generally,
in the kth step, we can add a k-simplex for every set σk of k + 1 vertices such that every k-element
subset σk−1 of σk is already a (k − 1)-simplex.

Vietoris–Rips and α-complexes We now need a way to construct a simplicial complex that
approximates the topological structure inherent in our data set X ⊂ Rn. Such a construction will
always depend on the scale of the structures we are interested in. When looking from a very large
distance, the point cloud will appear as a singular connected blob in the otherwise empty and infinite
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real space, on the other hand when we continue to zoom in, the point cloud will at some point appear
as a collection of individual points separated by empty continuous space; all interesting information
can be found in-between these two extreme scales where some vertices are joined by simplices and
others are not. Instead of having to pick a single scale, the Vietoris–Rips (VR) filtration and the
α-filtration take as input a point cloud and return a nested sequence of simplicial complexes indexed
by a scale parameter ε approximating the topology of the data across all possible scales.
Definition 2.2 (VR complex). Given a finite point cloud X in a metric space (M, d) and a non-
negative real number ε ∈ R≥0, the associated VR complex V Rε(X) is given by the vertex set X and
the set of simplices S = {σ ⊂ X | σ ̸= ∅,∀x, y ∈ σ : d(x, y) ≤ ε}.

Intuitively, a VR complex with parameter ε consists of all simplices σ where all vertices x ∈ σ have a
pair-wise distance of at most ε. For r ≤ r′, we obtain the canonical inclusions ir,r′(X) : V Rr(X) ↪→
V Rr′(X). For a simplex σ and a filtration F , we denote by its filtration value F (σ) the smallest ε
such that σ ∈ Fε. The set of VR complexes on X for all possible r ∈ R≥0 together with the inclusions
then form the VR filtration on X . For large point clouds, using the VR complex for computations
becomes expensive due to its large number of simplices. In contrast, the more sophisticated α-
complex approximates the topology of a point cloud using far fewer simplices. Thus we will make
use of α-complexes in settings of ambient dimension lower than 4, where their construction is
computationally feasible. For a complete account and definition of α-complexes and our reason to
use them, see Appendix B. We note that the filtration value of a k-simplex in the α-filtration is related
to the radius of its circum-k-sphere, which differs from its filtration value in the VR filtration.

Boundary matrices So far, we have discussed a discretised version of topological spaces in the
form of SCs and a way to turn point clouds into a sequence of SCs indexed by a scale parameter.
However, we still need an algebraic representation of simplicial complexes that is capable of encoding
the structure of the SC and enables extraction of the topological features: The boundary matrices Bk

associated to an SC S store all structural information of the SC. The rows of Bk are indexed by the
k-simplices of S and the columns are indexed by the (k + 1)-simplices.
Definition 2.3 (Boundary matrices). Let S be a simplicial complex and ⪯ a total order on its vertices
V . Then, the i-th face map in dimension n fn

i : Sn → Sn−1 is given by

fn
i : {v0, v1, . . . , vn} 7→ {v0, v1, . . . , v̂i, . . . , vn}

with v0 ⪯ v1 ⪯ · · · ⪯ vn and v̂i denoting the omission of vi. Now, the n-th boundary operator
Bn : R[Sn+1] → R[Sn] with R[Sn] being the real vector space over the basis Sn is given by

Bn : σ 7→
n+1∑
i=0

(−1)ifn+1
i (σ).

When lexicographically ordering the simplex basis, we can view Bn as a matrix. We call R[Sn] the
space of n-chains. Now, B0 is the vertex-edge incidence matrix of the associated graph consisting of
the 0- and 1-simplices of S and B1 is the edge-triangle incidence matrix of S

Figure 2: Sketch of Persis-
tent Homology, Grande &
Schaub (2023b)

Betti Numbers and Persistent Homology We now turn to the no-
tion of topological features and how to extract them. Homology is
one of the main algebraic invariants to capture the shape of topologi-
cal spaces and SC. From a technical point of view, the k-th homology
module Hk(S) of an SC S with boundary operators Bk is defined as
Hk(S) := kerBk−1/ ImBk. The generator or representative of a ho-
mology class is an element of the kernel kerBk−1. In dimension 1, these
are given by formal sums of 1-simplices forming closed loops in the SC.
Importantly, the rank rkHk(S) is called the k-th Betti number Bk of
S . In dimension 0, B0 counts the number of connected components, B1

counts the number of loops around ‘holes’ of the space, B2 counts the
number of 3-dimensional voids with 2-dimensional boundary, and so on.

If we are now given a filtration of simplicial complexes instead of a single
SC, we can track how the homology modules evolve as the simplicial
complex grows. The mathematical formalisation, persistent homology,
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Algorithm 1 Topological Point Features (TOPF)

Input: Point cloud X ∈ Rn, maximum homology dimension d ∈ N, interpolation coeff. λ.
1. Compute persistent homology with generators in dimension k ≤ d.
2. Select set of significant features (bi, di, gi) with birth, death, and generator in F3 coordinates.
3. Embed gi into real space and project into harmonic subspace of SC at step t = dλi b

1
i − λ or

t = λdi + (1− λ)bi.
4. Normalise projections to eki and compute F i

k(x) := avgx∈σ(e
k
i l(σ)) for all points x ∈ X .

Output: Features of x ∈ X

thus turns a point cloud via a simplicial filtration into an algebraic object summarising the topological
features of the point cloud (Edelsbrunner & Harer, 2008). For better computational performance,
the computations are usually done in one of the small finite fields Z/pZ. Because we will later be
interested in the sign of numbers to distinguish different simplex orientations, we will use Z/3Z-
coefficients, with Z/3Z being the smallest field being able to distinguish 1 and −1.

The Hodge Laplacian and the Harmonic Space In the previous part, we have introduced a
language to characterise the global shape of spaces and point clouds. However, we still need to find
a way to relate these global characterisations back to local properties of the point cloud. We will
do so by using ideas and concepts from differential geometry and topology: The simplicial Hodge
Laplacian is a discretisation of the Hodge–Laplace operator acting on differential forms of manifolds:

Definition 2.4 (Hodge Laplacian). Given a simplicial complex S with boundary operators Bk, we
define the n-th Hodge Laplacian Ln : R[Sn] → R[Sn] by setting

Ln := B⊤
n−1Bn−1 + BnB⊤

n .

The Hodge Laplacian gives rise to the Hodge decomposition theorem:

Theorem 2.5 (Hodge Decomposition (Lim, 2020; Schaub et al., 2021; Roddenberry et al., 2021)).
For an SC S with boundary matrices (Bi) and Hodge Laplacians (Li), we have in every dimension k

R[Sk] = ImB⊤
k−1︸ ︷︷ ︸

gradient space

⊕ kerLk︸ ︷︷ ︸
harmonic space

⊕ ImBk︸ ︷︷ ︸
curl space

.

This, together with the fact that the k-th harmonic space is isomorphic to the k-th real-valued
homology group kerLk

∼= Hk(R) means that we can associate a unique harmonic representative
to every homology class. The harmonic space encodes higher-order generalisations of smooth flow
around the holes of the simplicial complex. Intuitively, this means that for every abstract global
homology class of persistent homology at filtration step t from above we can now compute one unique
harmonic representative in kerLk that assigns every simplex a value based on how much it contributes
to the homology class. Thus, the Hodge Laplacian is a gateway between the global topological
features and the local properties of our SC. It is easy to show that the kernel of the Hodge Laplacian is
the intersection of the kernel of the boundary and the coboundary map kerLk = kerBn−1 ∩ kerB⊤

n .
Because we have finite SCs we can identify the spaces of chains and cochains. This leads to another
characterisation of the harmonic space: The space of chains that are simultaneously homology and
cohomology representatives. We discuss how this relates to the theory of differential forms and
Hodge theory in the continuous case in Appendix B.2.

3 HOW TO COMPUTE TOPOLOGICAL POINT FEATURES

In this section, we will combine the ideas and insights of the previous section to give a complete
account of how to compute topological point features (TOPF). A pseudo-code version can be found in
Algorithm 1 and an overview in Figure 1. We start with a finite point cloud X ⊂ Rn.

Step 1: Computing the persistent homology First, we need to determine the most significant
persistent homology classes which determine the shape of the point cloud. By doing this, we can
also extract the “interesting” scales of the data set. We will later use this to construct SCs to derive

5
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Figure 3: TOPF pipeline applied to NALCN channelosome, a membrane protein (Kschonsak
et al., 2022). Left: Steps 1&2a, when computing persistent 1-homology, three classes are more
prominent than the rest. Centre: Step 2b: The selected homology generators. Right: Step 3: The
projections of the generators into harmonic space are now each supported on one of the rings.

local variants of the global homology features. Thus we first compute the persistent k-homology
modules Pk including a set of homology representatives Rk of X using an α-filtration for n ≤ 3 and
a VR filtration for n > 3. We use Z/3Z coefficients to be sensitive to simplex orientations. In case
we have prior knowledge on the data set, we can choose a real number R ∈ R>0 and only compute
the filtration and persistent homology connecting points up to a distance of at most R. In data sets
like protein atom coordinates, this might be useful as we have prior knowledge on what constitutes
the “interesting” scale, reducing computational complexity. See Figure 3 left for a PH diagram.

Step 2: Selecting the relevant topological features We now need to select the relevant homology
classes which carry the most important global information. The persistent homology Pk module in
dimension k is given to us as a list of pairs of birth and death times (bki , d

k
i ). We can assume these

pairs are ordered in non-increasing order of the durations lki = dki − bki . This list is typically very
long and consists to a large part of noisy homological features which vanish right after they appear.
In contrast, we are interested in connected components, loops, cavities, etc. that persist over a long
time, indicating that they are important for the shape of the point cloud. Distinguishing between the
relevant and the irrelevant features is in general difficult and may depend on additional insights on
the domain of application. In order to provide a heuristic which does not depend on any a-priori
assumptions on the number of relevant features we pick the smallest quotient qki := lki+1/l

k
i > 0

as the point of cut-off Nk := argmini q
k
i . The only underlying assumption of this approach is that

the band of “relevant” features is separated from the “noisy” homological features by a drop in
persistence. If this assumption is violated, the only possible way to do meaningful feature selection
depends on application-specific domain knowledge. We found that our proposed heuristics work well
across a large scale of applications. See Figure 3 left and centre for an illustration and Appendix G
for more technical details and ways to improve and adapt the feature selection module of TOPF. We
call the chosen k-homology classes including k-homology generators f i

k.

Step 3: Projecting the features into harmonic space and normalising In this step, we need to
relate the global topology extracted in the previous step to the simplices which we will use to compute
the local topological point feature. Every selected feature f i

k of the previous step comes with a birth
time bi,k and a death time di,k. This means that the homology class f i

k is present in every SC of
the filtration between step ε = bi,k and ε = di,k and we could choose any of the SCs for the next
step. Picking a small ε will lead to fewer simplices in the SC and thus to a very localised harmonic
representative. Picking a large ε will lead to many simplices in the SC and thus to a very smooth
and “blurry” harmonic representative with large support. Finding a middle ground between these
regimes returns optimal results. For the interpolation parameter γ ∈ (0, 1), we will thus consider the
simplicial complex Sti,k(X) at step ti,k := b1−γ

i,k dγi,k for k > 0 and at step ti,k := γdi,k for k = 0
of the simplicial filtration. At this point, the homology class f i

k is still alive. We then consider the
real vector space R[Sti,k

k (X)] with formal basis consisting of the k-simplices of the SC Sti,k . From
the persistent homology computation of the first step, we also obtain a generator of the feature f i

k,
consisting of a list Σi

k of simplices σ̂j ∈ Sbi,k
k and coefficients cj ∈ Z/3Z. We need to turn this

formal sum of simplices with Z/3Z-coefficients into a vector in the real vector space R[Sti,k
k (X)]:

Let ι : Z/3Z be the map induced by the canonical inclusion of {−1, 0, 1} ↪→ R. We can now define
an indicator vector eik ∈ R[Sti,k

k (X)] associated to the feature f i
k (Cf. De Silva & Vejdemo-Johansson

6
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(2009)).

eik(σ) :=

{
ι(cj) ∃σ̂j ∈ Σi

k : σ = σ̂j

0 else
.

Empirically, eik is a homology generator for all real coefficients as well, although our construction
only guarantees for Bk−1e

i
k ≡ 0 mod 3. We discuss how to fix the rare case where this does not

work in Appendix B.3 and now assume to work with a real homology representative eik. While
this homology representative lives in a real vector space, it is not unique, has a small support, and
its value can differ largely even between close simplices. All of these problems can be solved by
projecting the homology representative to the harmonic subspace kerLk of R[Sti,k

k (X)]. Rather than
directly projecting eik to the harmonic subspace, we make use of the Hodge decomposition theorem
(Theorem 2.5) which allows us to solve computationally efficient least square problems:

eik,grad := B⊤
k−1 argmin

x∈R[Sk−1]

∥∥eik − B⊤
k−1x

∥∥2
2

and eik,curl := Bk argmin
x∈R[Sk+1]

∥∥eik − eik,grad − Bkx
∥∥2
2

and then obtain the harmonic representative êik := eik − eik,grad − eik,curl. (Cf. Figure 3 right for a
visualisation.) Because homology representatives are gradient-free, we only need to consider the
projection of eik into the curl space.

Step 4: Processing and aggregation at a point level In the previous step, we have computed a set
of harmonic representatives of homology classes. Each harmonic representative assigns each simplex
in the correspondings SCs a value. However, these simplices likely have no real-world meaning and
the underlying simplicical complexes differ depending on the birth and death times of the homology
classes. Hence in this step, we will collect the features on the point-level after performing some
necessary preprocessing. Given a vector êik indexed over simplices and a hyperparameter δ, we now
construct eik : S

ti,k
k (X) → [0, 1] by setting eik : σ 7→∈ {|êik(σ)|/(δmax

σ′∈S
ti,k
k (X)

|êik(σ′)|), 1}
such that êik is normalised to [0, 1], then the values of [0, δ] are mapped linearly to [0, 1] and everything
above is sent to 1. We found empirically that a thresholding parameter of δ = 0.07 works best across
at the range of applications considered below. However, TOPF is not sensitive to small changes to δ
because entries of êik are concentrated around 0 (Cf. Appendix E.1).

For every feature f i
k in dimension k with processed simplicial feature vector eik and simplicial

complex Sti,k , we define the point-level feature map F k
i : X → R mapping from the initial point

cloud X to R by setting

F k
i : v 7→

∑
σk∈S

ti,k
k : v∈σk

eik(σk)

max(1, |{σk ∈ St
k : v ∈ σk}|)

.

For every point v, we can thus view the vector (F k
i (v) : f

k
i ∈ F) as a feature vector for v. We call

this collection of features Topological Point Features (TOPF). (Cf. Figure 4 for an example).

Choosing Simplicial Weights By default, the simplicial complexes of α- and VR filtrations are
unweighted. However, the weights determine the entries of the harmonic representatives, increasing
and decreasing the influence of certain simplices and parts of the simplicial complex. We can use this
observation to increase the robustness of TOPF against the influence of heterogeneous point cloud
structure, which is present in virtually all real-world data sets. For a complete technical account of
how and why we do this, see Appendix H.

4 EXPERIMENTS

In this section, we conduct experiments on real world and synthetic data, compare the clustering
results with clustering by TPCC, other classical clustering algorithms, and other point features, and
demonstrate the robustness of TOPF against noise.

Topological Point Cloud Clustering Benchmark We introduce the topological clustering bench-
mark suite (Appendix D) and report running times and the accuracies of clustering based on TOPF and
other methods and point embeddings, see Table 1. We see that spectral clustering on TOPF vectors
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Figure 4: TOPF on 3D real-world and synthetic point clouds. For every point, we highlight the
largest corresponding topological feature, where colour stands for the different features and saturation
for the value of the feature. (a): Atoms of mutated Cys123 of E. coli (Hidber et al., 2007). We
added auxiliary points on the convex hull and considered 2-homology, to detect the protein pockets
which are crucial for protein-environment interactions (Cf. Oda et al. (2024)) (Green, black, purple:
Detected side pockets, Red: Central hole). (b): Atoms of NALCN Channelosome (Kschonsak et al.,
2022) display three distinct loops. (c): Points sampled in the state space of a Lorentz attractor. The
two features correspond to the two lobes of the attractor. (d): Point cloud spaceship of our newly
introduced topological clustering benchmark suite (See Appendix D). (e): Latent space of a VAE
trained on image patches showing topological structure (See Figure 13 for details).

Figure 5: TOPF on a high-dimensional point cloud. We used TOPF on 6500 points sampled
from the 24-dimensional conformation space of cyclooctane Martin & Watson (2011). Due to the
dimension constraints of papers, we have to show the ISOMAP projection from 24 dimensions down
to 3 dimensions. Left: Three (one 1-dimensional and two 2-dimensional) features automatically
selected by TOPF. Right: Result of clustering for three (automatically chosen by TOPF) and four
clusters.

(listed as TOPF) outperforms all classical clustering algorithms on all but one dataset by a wide margin.
We also see that TOPF closely matches the performance of the only other higher-order topological
clustering algorithm, TPCC on two datasets with clear topological features, whereas TOPF outperforms
TPCC on datasets with more complex structure. In addition, TOPF has a consistently lower running
time with better scaling for the more complex datasets, while not requiring prior knowledge on the
best topological scale. As for the other point embeddings, Node2Vec is not able to capture any
meaningful topological information, whereas the performance of clustering using geometric features
depends on the data set. Furthermore, TOPF outperforms PointNet (Qi et al., 2017) pretrained on
the ShapeNetPart data set and WSDesc (Li et al., 2022) pretrained on the 3DMatch dataset (Zeng
et al., 2017). This does not highlight the fact that TOPF outperforms PointNet or WSDesc in general
but rather that neural network architectures like PointNet need specific application-specific training
data for good performance that is simply not available in all cases. We note that PointNet is not the
current SOTA on ShapenetPart Segmentation (Chang et al., 2015).

Feature Generation In Figure 4, we show qualitatively that TOPF constructs meaningful topological
features on data sets from Biology and Physics, and synthetic data, corresponding to for example
rings and pockets in proteins or trajectories around different attractors in dynamical systems, (for
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Table 1: Quantitative performance comparison of clustering with TOPF and other fea-
tures/clustering algorithms. Four 2D and three 3D data sets of the topological clustering benchmark
suite (Appendix D, cf. Figure 9 for ground truth and Figure 10 for labels by TOPF). We ran each
algorithm 20 times and list the mean adjusted rand index (ARI) with standard deviation σ and mean
running time. We omit σ for algorithms with σ = 0. Spectral clustering on TOPF vectors consistently
outperforms or almost matches the other algorithms while having significantly better run time than
the second best performing algorithm TPCC. Spectral Clustering (SC), DBSCAN, and Agglomerative
Clustering (AgC) (applied on the points) are standard clustering algorithms, ToMATo is a topological
clustering algorithm (Chazal et al., 2013), Geo clusters using 12-dimensional point geometric features
extracted by pgeof, whereas node2vec (Grover & Leskovec, 2016) produces node embeddings on a
k-nearest neighbour graph b.We pretrained PointNet (PN) (Qi et al., 2017) on the ShapeNetPart point
cloud segmentation data set (Chang et al., 2015). “Weakly Supervised 3D Local Descriptor Learning
for Point Cloud Registration” (WSD (Li et al., 2022)) is pretrained on 3DMatch data and produces
32-dimensional feature vectors.We highlight all ARI scores within ±0.05 of the best ARI score.

TOPF TPCC SC DBSCAN AgC ToMATo Geo node2vec PN WSD

4spheres ARI 0.81 0.52±0.17 0.37 0.00 0.45 0.32 0.20 0.00±0.00 0.30 0.13
time (s) 14.5 23.3 0.2 <0.1 <0.1 <0.1 0.2 48.4 <0.1 <0.1

Ellipses ARI 0.95 0.47±0.04 0.25 0.19 0.52 0.29 0.81 0.02±0.00 0.50 0.35
time (s) 12.7 14.4 0.1 <0.1 <0.1 <0.1 0.1 11.2 <0.1 <0.1

4⃝+Grid ARI 0.70 0.39±0.04 0.90 0.92 0.89 0.82 0.41 0.01±0.00 0.55 0.06
time (s) 13.0 28.5 0.5 <0.1 <0.1 <0.1 0.3 63.8 <0.1 <0.1

Halved ⃝ ARI 0.71 0.18±0.12 0.24 0.00 0.20 0.16 0.08 0.00±0.01 0.36 0.00
time (s) 12.2 14.3 0.1 <0.1 <0.1 <0.1 0.1 18.2 <0.1 <0.1

2Spheres2⃝ ARI 0.94 0.97±0.01 0.70 0.00 0.51 0.87 0.12 0.00±0.00 0.55 0.95
time (s) 38.9 1662.2 1.6 <0.1 0.3 <0.1 0.9 348.6 <0.1 <0.1

Spherein⃝ ARI 0.97 0.98±<0.1 0.34 0.00 0.29 0.06 0.69 0.13±0.03 0.39 0.46
time (s) 14.5 8.0 <0.1 <0.1 <0.1 <0.1 0.08 20.1 <0.1 <0.1

Spaceship ARI 0.92 0.56±0.03 0.28 0.26 0.47 0.30 0.87 0.07±0.00 0.41 0.76
time (s) 16.3 341.8 16.7 <0.1 <0.1 <0.1 0.2 49.8 <0.1 <0.1

mean ARI 0.86 0.58 0.44 0.16 0.48 0.40 0.45 0.03 0.44 0.39
time (s) 17.5 298.9 0.4 <0.1 <0.1 <0.1 0.3 80.0 <0.1 <0.1

individual heatmaps see Figure 14). In Figure 5, we show that TOPF works for the high-dimensional
conformation space of cyclooctane.

Robustness Against Noise, Downsampling, and Sampling Heterogeneity We have evaluated the
robustness of TOPF against Gaussian noise on the dataset introduced in (Grande & Schaub, 2023a)
and compared the results against TPCC, Spectral Clustering, Graph Spectral Clustering on the graph
constructed by TPCC, and against k-means in Figure 7 Left. We have also analysed the robustness
of TOPF against the addition of outliers in Figure 7 Right. We see that TOPF performs well in both
cases, underlining our claim of robustness. Finally, in Figure 16 and Figure 15, we show that TOPF
performs well under sampling heterogeneity and under downsampling to sparse point clouds, while
comparing TOPF to the other baselines.

Embedding Space of Variational Autoencoders Variational autoencoders (VAE) are unsupervised
neural networks that learn to extract a low-dimensional embedding of a high-dimensional data set.
We have trained a VAE on 518 33 × 33 image patches which were sampled along a topological
structure on a larger image with a latent space dimension of 3. We show that running TOPF on the
latent space can recover the topological structure underlying the capturing process of the training
set. We visualise the feature vectors on the latent space in Figure 4 (e) and Figure 6 and provide
additional details in Figure 13 and Appendix F.

High-dimensional Point Clouds In Figure 5, we use TOPF on a high-dimensional input point
cloud representing the conformation space of cyclooctane Martin & Watson (2011). We see in the
ISOMAP projections of Figure 5 that TOPF extracts reasonable features representing the topology
of the conformation space. In Figure 6, we apply TOPF to the original 8748-dimensional space
and showcase the result on the centre of the corresponding sampled image patches. This shows the
feasability of TOPF on very high-dimensional spaces.
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Figure 6: VAE experiment described in Figure 13 for a 16-dimensional latent space of the VAE
and the original 8748-dimensional image space. Left: The first three of the 16 dimension of the
latent space embeddings, colour represents the fourth dimension. Centre left: The weighted harmonic
representatives of the selected topological features. Centre right: The features produced by TOPF
overlayed on the centre pixels of the associated image patches, as done in Figure 13 4., just without
the picture of the cow. Right: TOPF features obtained from the original 8748-dimensional image
space. This shows that TOPF can help analyse topological structure in high-dimensional data.
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Figure 7: Performance of TOPF Clustering with noise/outliers on Spherein⃝, 95% CI. The
radii are 3 and 1, the mean distance to the closest neighbour is 0.22. Left: We add i.i.d. Gaussian
noise to every point with standard deviation indicated by the noise parameter. Even when compared
with TPCC on a data set specifically crafted for TPCC, TOPF requires significantly less information
and delivers almost equal performance. Tuned for datasets with a high noise, the TOPF outperform
TPCC. Right: We add outliers with same standard deviation as the point cloud. We then measure ARI
restricted to original points. Compared with TPCC on a data set specifically crafted for TPCC, TOPF
requires significantly less information and delivers matching to superior performance.

5 DISCUSSION

Limitations TOPF can — by design — only produce meaningful output on point clouds with a
topological structure quantifiable by persistent homology. In practice it is thus desirable to combine
TOPF with some geometric or other point-level feature extractor. As TOPF relies on the computation of
persistent homology, its runtime increases on very large point clouds, especially in higher dimensions
where α-filtrations are computationally infeasible. However, subsampling, either randomly or using
landmarks, usually preserves relevant topological features while improving run time (Perea, 2020).
Finally, selection of the relevant features is a very hard problem. While our proposed heuristics
work well across a variety of domains and application scenarios, only domain- and problem-specific
knowledge makes correct feature selection feasible.

Future Work The integration of higher-order TOPF features into ML pipelines that require point-
level features potentially leads to many new interesting insights across the domains of biology, drug
design, graph learning and computer vision. Furthermore, efficient computation of simplicial weights
leading to the provably most faithful topological point features is an exciting open problem.

Conclusion We introduced point-level features TOPF founded on algebraic topology relating global
structural features to local information. We gave theoretical guarantees for the correctness of their
construction and evaluated them quantitatively and qualitatively on synthetic and real-world data sets.
Finally, we introduced the novel topological clustering benchmark suite and showed that clustering
using TOPF outperforms other available clustering methods and features extractors.
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A EXTENDED BACKGROUND

A brief history of topology and machine learning Algebraic topology is a discipline of Mathe-
matics dating back roughly to the late 19th century (Poincaré, 1895). Starting with Henri Poincaré and
continuing in the early 20th century, the mathematical community became interested in developing a
framework to capture the global shapes of manifolds and topological spaces in concise algebraic terms.
This development was partly made possible by the push towards a formalisation of mathematics and
analysis, in particular, which took place inside the mathematical community in the 1800’s and early
1900’s (e.g. Dedekind (1888); Hilbert (1899); Hausdorff (1908)). The axiomatisation of analysis in
the early 20th century is an important result of this process. These abstract ideas made it possible for
Topologists to talk about the now common notions of Euler characteristics, Betti number, simplicial
homology of manifolds, topological spaces, and simplicial and CW complexes. Over the course of the
last 100 years, branching into many sub-areas like low-dimensional topology, differential topology,
K-theory or homotopy theory (Atiyah, 1989; Hu, 1959), algebraic topology has resolved many of
the important questions and provides a comprehensive tool-box for the study of topological spaces.
These achievements were tied to an abstraction and generalisation of concepts: topological spaces
turned into spectra, diffeomorphism to homotopy equvialences and later weak equivalences, and
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Topologists turned to category theory (Eilenberg & MacLane, 1945), model categories (Bousfield,
1975) and recently ∞-categories (Lurie, 2006) as the language of choice.

The 21st century saw the advent and rise of topological data analysis (TDA, (Bubenik et al., 2015;
Chazal & Michel, 2021)). In short, mathematicians realised that the same notions of shape and
topology that their predecessors carefully defined a century earlier were now characterising the
difference between healthy and unhealthy tissue, between normal and abnormal behaviour protein
behaviour, or more general between different categories in their complex data sets.

Related Work The intersection of topological data analysis, topological signal processing and
geometry processing has many interesting related developments in the past few years. On the side
of homology and TDA, the authors in De Silva & Vejdemo-Johansson (2009) and Perea (2020) use
harmonic cohomology representatives to reparametrise point clouds based on circular coordinates.
This implicitly assumes that the underlying structure of the point cloud is amenable to such a charac-
terization. Although circular coordinates are orthogonal to the core goal of TOPF, the approaches
share many key ideas and insights. In Basu & Cox (2022); Gurnari et al. (2023), the authors develop
and use harmonic persistent homology and provide a way to pool features to the point-level. However,
their focus is not on providing robust topological point features and their approach includes no tunable
homology feature selection across dimensions, no support for weighted simplicial complexes, and
they only construct the simplicial complex at birth. In their paper on topological mode analysis,
Chazal et al. (2013) use persistent homology to cluster point clouds. However, they only consider
0-dimensional homology to base the clustering on densities and there is no clear way to generalise
this to higher dimensions.

On the more geometric-centred side, Ebli & Spreemann (2019) already provide a notion of harmonic
clustering on simplices, Chen & Meilă (2021); Chen et al. (2021) analyse the notion of geometry and
topology encoded in the Hodge Laplacian and its relation to homology decompositions, Schaub et al.
(2020) study the normalised and weighted Hodge Laplacian in the context of random walks, and
Grande & Schaub (2023a) use the harmonic space of the Hodge Laplacians to cluster point clouds
respecting topology. Finally, a persistent variant of the Hodge Laplacian is used to study filtrations of
simplicial complexes (Mémoli et al., 2022).

There are other constructions of isometry-invariant local shape descriptors, as for example proposed
in Mémoli (2011). However, their aim is not relate the global topology back to the local features.

In Moor et al. (2020), the authors basically set up a topological loss functions that ensures that
topological features of the original point cloud are preserved in the latent space of the autoencoder.
This is different from the approach TOPF takes, as TOPF tries to detect and extract topological features.
Similar things can be said about topological node-2-vec Hiraoka et al. (2024) and some experiments
in Carriere et al. (2021) or some experiments of Carriere et al. (2024): They all try to come up with
ways to preserve global topological structure while embedding a point cloud, while we on the other
hand construct the embedding based on the relationship between the points and the global topological
structure.

On graphs, Arafat et al. (2024) construct topological representations of graphs to study adversarial
graph learning. They construct a local topological features for nodes and global topological features
for the entire graph. In contrast to our approach, they do not relate the global topological features
back to the local level, but rather consider the local topology on the point level and the single global
topological summary separately. Furthermore when constructing their features, they use vision
transformers on the persistence images of their witness filtrations, which does not allow for the same
amount of interpretability as TOPFdoes.

In Grande & Schaub (2023a), the authors have introduced TPCC, the first method to cluster a point
cloud based on the higher-order topological features encoded in the data set. However, TPCC is
(i) computationally expensive due to extensive eigenvector computations, (ii) depending on high-
dimensional subspace clustering algorithms, which are prone to instabilities and errors, (iii) sensitive
to the correct choice of hyperparameters, (iv) requiring the topological true features and noise to
occur in different steps of the simplicial filtration, and it (v) solely focussed on clustering the points
rather than extracting relevant node-level features. This paper solves all the above by completely
revamping the TPCC pipeline, introducing several new ideas from applied algebraic topology and
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differential geometry. The core insight is: When you have the time to compute persistent homology
with generators on a data set, you get the topological node features with similar computational effort.

B THEORETICAL CONSIDERATIONS

B.1 MORE DETAILS ON VR AND α-FILTRATIONS

Vietoris–Rips complexes are easy to define, approximate the topological properties of a point cloud
across all scales and computationally easy to implement. However for moderately large r, the
associated VR complex contains a large number of simplices — up to

( |X|
n+1

)
n-simplices for large

enough r — leading to poor computational performance for any downstream task on some large
point clouds. One way to see this is the following: After adding the first edge that connects two
components or the final simplex that fills a hole in the simplicial complex the VR complex keeps
adding more and more simplices in the same area that keep the topology unchanged. One way to
mitigate this problem is to pre-compute a set of simplices that are able to express the entire topology
of the point cloud. For a point cloud X ⊂ Rn, the α-filtration consists of the intersection of the
simplicial complexes of the VR filtration on X with the (higher-dimensional) Delaunay triangulation
of X in R. Due to algorithmic reasons, the filtration value of a simplex is then related to the
radius of the circumscribed sphere instead of the maximum pair-wise distance of vertices, where
the filtration value αX(σ) of a simplex σ is given by the minimum ε such that σ is contained in
αε(X), i.e. αX(σ) := inf{ε ∈ R : σ ∈ αε(V )}. This reduces the number of required simplices
across all dimensions to O(|X|⌈n/2⌉). However, the Delaunay triangulation becomes computationally
infeasible for larger n.
Definition B.1 (n-dimensional Delaunay triangulation). Given a set of vertices V ⊂ Rn, a Delaunay
triangulation DT (V ) is a triangulation of V such that for any n-simplex σn ∈ DT (V ) the interior
of the circum-hypersphere of σn contains no point of DT (V ). A triangulation of V is a SC S with
vertex set V such that its geometric realisation covers the convex hull of V hull(V ) = |S| and we
have for any two simplices σ, σ′ that the intersection of geometric realisations |σ| ∩ |σ′| is either
empty or the geometric realisation |σ̂| of a common sub-simplex σ̂ ⊂ σ, σ′.

If V is in general position, the Delaunay triangulation is unique and guaranteed to exist (Delaunay
et al., 1934). We will now first introduce a slightly simpler version of the α-filtration, the α∗-filtration.
Definition B.2 (α∗-complex of a point cloud). Given a finite point cloud X in real space Rn, the
α∗-complex α∗

ε(X) is the subset of the n-dimensional Delaunay triangulation DT (X) consisting of
all k-simplices σk ∈ DT (X) with a radius r of its circumscribed (k − 1)-sphere with r ≤ ε for all
k ≤ n.

The α∗ and α-filtration share the same set of simplices and agree on the filtration values of the
simplices on all top-dimensional simplices and all other simplices which are Gabriel simplices.
Definition B.3 (Gabriel Simplex). Given a set of vertices V ⊂ Rn and its Delaunay triangulation
DT (V ). A simplex σ ∈ DT (V ) is called Gabriel if there exists no point v ∈ V such that v is
contained in the interior of the circumsphere of σ.
Definition B.4 (α-complex of a point cloud, (Kerber & Edelsbrunner, 2013; Edelsbrunner, 2011)).
Given a finite point cloud X in real space Rn, the α-complex αε(X) is the α∗-complex of V , except
that the filtration value α(σ) of all non-Gabriel simplices σ with associated points X in the interior
of the circumsphere of σ is given by minx∈X α(σ ∪ {x}).

We note that due to the definition of the Delaunay triangulation, all n-simplices are Gabriel simplices
and hence this is well-defined. This is an equivalent formulation of the original definition, which was
for example shown in Kerber & Edelsbrunner (2013). We chose to go with the above formulation, as
it is the form used in implementations of α-filtrations.

We note two things: (i) The α∗-filtration and α-filtration have fewer simplices than the VR filtration
and (ii) the filtration values of individual simplices differ between the α∗, the α and the VR filtration.
In particular, the order of the filtration values can be different across the two types of filtration. For
the 1-skeleton, the α∗ and VR filtrations are equivalent: The VR filtration value of an edge is its length
l, whereas its α∗-filtration value is the radius r = l/2 of the associated 0-sphere consisting only of
the two vertices.
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B.2 DIFFERENTIAL FORMS AND A CONTINUOUS ANALOGUE OF TOPF

In this section, we will discuss how a continuous analogue of TOPF on Riemannian manifolds would
look like. Simply considering the simplicial homology of the manifold, as we did in the case of a
discrete simplicial complex, is however not sufficient: Harmonic cycles and cocycles don’t exist
in the simplicial chain complex of the manifold. This is because the space of chains in simplicial
homology on manifolds is infinite-dimensional. Thus, we cannot canonically identify the space
of chains with its dual, the space of cochains. From an intuitive point of view, a harmonic chain
would need to take infinitesimal small values on every simplex which is not allowed. Rather, the
right language to formalise harmonic representatives is Differential Geometry, Hodge Theory, and
harmonic forms. Dodziuk proved in Dodziuk (1976) that the discrete Hodge Laplacian as used in
this paper converges to the Hodge Laplacian on differential forms which are arbitrary-dimensional
integrands over manifolds.

There is a beautiful connection between differential geometry and algebraic topology: A theorem
by de Rham states that given a Riemannian manifold M , the real-valued homology Hk(M ;R) with
coefficients in R is isomorphic to the de Rham cohomology Hk

dR(M ;R) on differential forms on M
for arbitrary k ∈ Z≥0, some form of cohomology defined via the chain complex of vector spaces of
differential k-forms on M . We can define an analogue of the discrete Hodge Laplacian on differential
forms by the differential induced via exterior derivates d and its adjoint σ:

∆ := δd+ dδ

The kernel ker∆ of the Hodge Laplacian is called the space of harmonic forms. Similar to the
discrete case, the Hodge theorem now gives us a natural vector space isomorphism between the space
of harmonic k-forms on M , Hk(M), and the kth real-valued homology group

Hk(M ;R) ∼= Hk(M).

We can rephrase this as follows: the harmonic forms can be seen as unique and natural homology
representatives.

Let us now get some intuition for what this means for continuous TOPF features: In dimension 0,
0-forms are functions f : M → R. In this case, we can simply take their value f(x) at x ∈ M as the
corresponding point feature at x. In dimension 1, there is a correspondence between 1-forms and
vector fields on M . In this case, we can take the norm of the vector field that corresponds to a given
harmonic form at a point x via the map x 7→ |v(x)|.
In general in dimension k, this is more complicated. Luckily, as we are interested in point-features,
we can do all computations point-wise. We consider a point x ∈ M and a harmonic form ω. At
point x, ω determines an element in the exterior algebra on the dual of the tangent space of M at
x, i.e ωx ∈

∧k
T ∗
xM and we need to define a norm on this space. An orthonormal basis on T ∗

xM ,
e1(x), . . . , en(x) gives rise to a basis consisting of elements ei1(x) ∧ ... ∧ eik(x) of the exterior
algebra. We can now evaluate ωx on the elements of this basis ωx(ei,1(x) ∧ ... ∧ ei,k(x)) and take
the square root of the sum of squares of the individual results

TOPFω : x 7→
√ ∑

1≤i1<···<ik≤n

ωx (ei1(x) ∧ · · · ∧ eik(x))
2
.

As one can show, this result is independent of the choice of ONB of T ∗
xM and gives a point-wise

norm of the differential forms.

In the discrete case discussed in this paper, however, we don’t evaluate on all basis elements as
described above, but rather on all k-simplices adjacent to x. These k-simplices can thus be seen as
samples from the exterior algebra of x. This sampling induces some differences to the continuous
case, which we address with the post-processing procedure as described in the paper.

B.3 FIXING REAL LIFTS OF HOMOLOGY GENERATORS IN Z/3Z-COEFFICIENTS

In step 3. of the TOPF algorithm in Section 3, we attempt to lift a homology generator with simplices
σj ∈ Σk and coefficients cj in Z/3Z-coefficients to a homology generator in R-coefficients using the
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Figure 8: Z/3Z-homology generator with “faulty” lift to R-coefficients. Left: Initial lift produced
in Z/3Z-coefficients. Right: Fixed lift with light blue edges representing the original lift with coeffi-
cients in {−1, 1} and dark blue edges representing the fix with coefficients in 3Z. The underlying
data is the trefoil knot embedded in R3, as generated by Perea et al. (2023).

embedding

eik(σ) :=

{
ι(cj) ∃σ̂j ∈ Σi

k : σ = σ̂j

0 else
.

where ι : Z/3Z is the map induced by the canonical inclusion of {−1, 0, 1} ↪→ R. Thus, we know
that eik is a cycle modulo 3: Bk−1e

i
k ≡ 0 mod 3. A-prior however, there is no reason why this

equality should hold in R as well. As it turns out, in virtually all examples in practice, we already
have eik ∈ kerBk−1 which is very convenient. The same phenomenon occurs for cocycles as well, see
De Silva & Vejdemo-Johansson (2009). We will now assume to be in a rare case of eik ̸∈ kerBk−1.
We can now attempt to fix this using a linear integer program finding y ∈ Z|Sk| such that

3Bk−1y = Bk−1e
i
k.

And then we set fix(eik) := eik − 3y. If this linear program is not feasible, eik has no integer/real lift
and TOPF will skip the associated topological feature. In Figure 8, we give a visual example of a
faulty lift and a fix obtained by the above procedure.

C THEORETICAL GUARANTEES

In this section, we want to investigate possible theoretical guarantees for TOPF computed on idealised
datasets. Instead of directly working with the α-complexes, we will first prove guarantees for the
closely related construction of α∗-complexes. α∗ filtrations (Definition B.2) are closely related to
α-filtrations (Definition B.4) used in the implementation and agree on the filtration values on most of
the simplices, have however nicer properties. Finally, we give conditions on when this result applies
to the α-filtrations, which is relevant to the actual implementation of TOPF.
Theorem C.1 (Topological Point Features of Spheres). Let X consist of at least (n + 2) points
(denoted by S) sampled uniformly at random from a unit n-sphere in Rn+1 and an arbitrary number
of points with distance of at least 2 to S. When we now consider the α∗-filtration on this point cloud,
with probability 1 we have that (i) there exists an n-th persistent homology class generated by the
n-simplices on the convex hull of S, and (ii) the support of the associated topological point feature
(TOPF) F∗

n is precisely S: supp(F∗
n) = S. (iii) The same holds true for point clouds sampled from

multiple ni-spheres if the above conditions are met on each individual sphere. (iv) If there are no
other points contained in or on the circumspheres of the n-simplices of the convex hull of S, then
the same above holds true for TOPF computed using the α-filtration. (v) More generally, for any
contractible subset M of the (n+ 1)-simplices such that all n-simplices on the boundary fulfill the
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above condition, this holds when using the α-filtration, the discussed n-simplices (i) and the subset
of points contained in M (ii).

We will give a proof of this after the following remark.
Remark C.2. The key idea of the proof is to use that α∗-filtrations and partially α-filtrations assign
the filtration value based on the radius of the circumsphere of the k-simplex. Because all points
in S lie on the same n-sphere, with probability 1 we can write down the filtration value of the
(n+ 1)-simplices explicitly. This is of course a very idealised setting. However in practice, datasets
with topological structure consist in a majority of cases of points sampled with noise from deformed
n-spheres. The theorem thus guarantees that TOPF will recover these structural information in an
idealised setting. Experimental evidence suggests that this holds under the addition of noise as well
which is plausible as harmonic persistent homology is robust against some noise (Basu & Cox, 2022).
For the 2D setting, condition (iv) is equivalent to assuming that there is no line through the centre of
the circle such that one half plane does not contain any points of S.

We will now give the proof of the theorem that guarantees that TOPF works. We discuss the
assumptions of the theorem in Remark C.3.

Proof. Assume that we are in the scenario of the theorem. Now because the n-volume of (n− 1)-
submanifolds is zero, we have that with probability 1 the points of S don’t lie on a single (n − 1)
sphere inside the n-sphere. Let us now look at the α-filtration of the simplices in S: Recall that the
filtration values of a k-simplex is given by the radius of the (k − 1)-sphere determined by its vertices.
Because all of the (n+1)-simplices σn+1 with vertices V ⊂ S in S lie on the same unit n-sphere Sn,
they all share the filtration value of α(σn+1) = 1. By the same argument as above, with probability 1
there are no (n+ 1) points in S that lie on an unit (n− 1)-sphere. Thus all of the n-simplices σn lie
on (n − 1)-spheres Sn with a radius r < 1 smaller than 1 and hence have a filtration value α(σn)
smaller than 1. Let

b := max ({α(σn) : σn ⊂ ∂ hull(S)})
be the maximum filtration value of an n-simplex on the boundary of the convex hull of S. Then, a
linear combination g of the n-simplices of the boundary of the convex hull of S with coefficients in
±1 is a generator of a persistent homology class with life time (b, 1) (this follows from the fact that
n-spheres and their triangulations are orientable). This proves claim (i).

Because of the assumption that all points not contained in S have a distance of at least 2 to the points
in S, all (n+1)-simplices σn+1 with vertices both in S and its complement in X will have a filtration
value α(σn+1) ≥ 1 of at least 1. Recall that all (n+ 1)-simplices σn+1 ⊂ S with vertices inside S
have a filtration value of α(σn+1) = 1. Thus the adjoint of the n-th boundary operator B⊤

n is trivial
on the homology generator g for a simplicial complex constructed during (b, 1). Thus, we have that
for the n-th Hodge Laplacian

Lng = B⊤
n−1Bn−1g + BnB⊤

n g = 0 + 0 = 0

and hence g is a harmonic generator for the entire filtration range of (b, 1). Claim (ii) and (iii) then
follow from the construction of the TOPF values.

For claim (iv), it suffices to notice that the n-simplices σ on the convex hull are precisely non-Gabriel
simplices iff there exist a point x ∈ S lying inside the circumsphere of σ. Because the assumption
of part (iv) excludes this case, all n-simplices are Gabriel simplices and the α-filtration values
(Definition B.4) and α∗-filtration values (Definition B.2) agree on the n-simplices and (n + 1)-
simplices of the Delaunay triangulation. Because these are the only considered filtration values for
the proof, the claim follows.

Finally for part (v), we see that the same argument now applies to the simplices on the boundary,
consisting of n-simplices of M , consisting of (n + 1)-simplices. Because M is contractible, it is
connected and has trivial homology. Thus, its boundary is homotopy equivalent to an n-sphere.
Because in this case only the points X ′ on the boundary of M are contained in the generating
n-simplices of the considered homology class, the associated TOPF feature will have support on X ′.
This concludes the proof. □

Remark C.3. The setting of the theorem is a very special setting. In general on data, harmonic chains
have entries with absolute values somewhere in [0, 1]. In the setting of the theorem however, the
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a) b) c) d)

Figure 9: Data sets of the Topological Clustering Benchmark Suite (TCBS) with true labels.
Top: 2D data sets. From left to right: a): 4Spheres (656 points), b): Ellipses (158 points), c):
Spheres+Grid (866 points), d): Halved Circle (249 points). Bottom: 3D data sets. From
left to right: e): 2Spheres2Circles (4600 points), f): SphereinCircle (267 points), g):
spaceship (650 points).

harmonic representative will take values in −1, 0, 1. We will briefly explain why this is the case:
Consider a k-homology representative r with simplex-values in {−1, 0, 1}. We consider the harmonic
projection h of r into the harmonic space. Then, for a k-simplex σ, we have that h(σ) = ±1 iff
r(σ) = 1 and σ is not the face of any (k + 1)-simplices.

This can for example be seen by representing h as the difference of r and its gradient and curl parts
h = r − rgrad − rcurl. Because r is already a cycle, Bkr = 0 and thus rgrad = 0. Now, the curl part
can be written as stemming from a signal on the the k + 1-simplices, rcurl = Bk+1xcurl. However,
because σ is not the face of a k + 1-simplex, rcurl(σ) = 0 and thus h(σ) = r(σ).

The setting of the theorem precisely constructs a case where we have k-simplices and no (k + 1)-
simplices in the relevant part of the filtration. This is the case because in an α-filtration, the filtration
value of a k-simplex is the radius of its circumscribed (k − 1)-sphere. All relevant (k + 1)-simplices
in the theorem lie on the k-unit sphere, and thus have filtration value 1. This is however an idealised
setting. Because we construct the simplicial complex to compute the harmonic representative
somewhere in the middle (determined by the interpolation coefficient) between the birth and death
time of the homology class, empirically the majority of the k- simplices of the k-homology generators
are faces of (k + 1)-simplices. In this case, the harmonic representative smooths out the feature.

D TOPOLOGICAL CLUSTERING BENCHMARK SUITE

We introduce seven point clouds for topological point cloud clustering in the topological clustering
benchmark suite (TCBS). Some of these point clouds have been adapted from Grande & Schaub
(2023a). The ground truth and the point clouds are depicted in Figure 9. The point clouds represent
a mix between 0-, 1- and 2-dimensional topological structures in noiseless and noisy settings in
ambient 2-dimensional and 3-dimensional space. The results of clustering according to TOPF can be
found in Figure 10.

We constructed the benchmark by sampling from topologically different shapes with varying sampling
density in different ambient dimensions. For example for the point cloud 2Spheres2Circles,
we combined points sampled from two spheres and two circles. We then divided the point cloud into
four ground truth clusters, one for each of the two spheres and two circles and assigned every point
the cluster corresponding to the object it was sampled from. Thus, the ground truth labels of a point
corresponds to the topological structure it was sampled from.
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a) b) c) d)

Figure 10: Data sets of the Topological Clustering Benchmark Suite (TCBS) with labels generated
by TOPF. Top: 2D data sets. From left to right: a): 4Spheres (0.81 ARI), b): Ellipses (0.95
ARI), c): Spheres+Grid (0.70 ARI), d): Halved Circle (0.71 ARI). Bottom: 3D data sets.
From left to right: e): 2Spheres2Circles (0.94 ARI), f): SphereinCircle (0.97 ARI), g):
spaceship (0.92 ARI).

E IMPLEMENTATION

We have created an easy-to-use python package TOPF which can be found in the supplementary
material. The package currently works under macOS and Linux. The package contains both the code
to generate the topological point features, as well as the code to reproduce the various visualisation
steps in this paper.

All experiments were run on a Apple M1 Pro chipset with 10 cores and 32 GB memory. TOPF and the
experiments are implemented in Python and Julia. For persistent homology computations, we used
GUDHI (The GUDHI Project, 2015) (© The GUDHI developers, MIT license) and Ripserer (Čufar,
2020) (© mtsch, MIT license), which is a modified Julia implementation of (Bauer, 2021). For the
least square problems, we used the LSMR implementation of SciPy (Fong & Saunders, 2011). We used
the Node2Vec python implementation https://github.com/eliorc/node2vec (© Elior
Cohen, MIT License) based on the Node2Vec Paper (Grover & Leskovec, 2016). We used the pgeof
Python package for computation of geometric features https://github.com/drprojects/
point_geometric_features (© Damien Robert, Loic Landrieu, Romain Janvier, MIT li-
cense). We use parts of the implementation of TPCC https://git.rwth-aachen.de/
netsci/publication-2023-topological-point-cloud-clustering (© Compu-
tational Network Science Group, RWTH Aachen University, MIT license). We use the implementation
of WSDesc Li et al. (2022), https://github.com/craigleili/WSDesc (Lei Li, Hongbo
Fu, Maks Ovsjanikov. CC BY-NC 4.0 License). The idea for the implementation of the fix of the lift
of the Z/3Z-representative to R-coefficients was inspired by DREiMac, Perea et al. (2023).

E.1 HYPERPARAMETERS

All the relevant hyperparameters are already mentioned in their respective sections. However, for
convenience we gather and briefly discuss them in this section. We note that TOPF is robust and
applicable in most scenarios when using the default parameters without tuning hyperparameters. The
hyperparameters should more be thought of as an additional way where detailed domain-knowledge
can enter the TOPF pipeline. We have performed additional experiments to validate the robustness of
TOPF to moderate changes in parameters, see Figure 11.

Maximum Homology Dimension d The maximum homology dimension determines the dimen-
sions of persistent homology the algorithm computes.
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Figure 11: Hyperparameter robustness of TOPF on the TCBS. TOPF performs reasonably well
across a large range around the default parameters (Interpolation coefficient: 0.3, δ: 0.07, damping
coefficient (non-negative): 0, Clustering method: spectral). The clustering method is used on the
TOPF vectors to determine the cluster-ids.

For the choice of the maximum homology degree d to be considered there are mainly three heuristics
which we will list in decreasing importance (Cf. Grande & Schaub (2023a)):

I. In applications, we usually know which kind of topological features we are interested in, which
will then determine d. This means that 1-dimensional homology and d = 1 suffices when we
are looking at loops of protein chains. On the other hand, if we are working with voids and
cavities in 3d histological data, we need d = 2 and thus compute 2-dimensional homology.

II. Algebraic topology tells us that there are no closed n-dimensional submanifolds of Rn. Hence
their top-homology will always vanish and all interesting homological activity will appear for
d < n.

III. In the vast majority of cases, the choice will be between d = 1 or d = 2 because empirically
there are virtually no higher-dimensional topological features in practice.

In our quantitative experiments, we have always chosen d = n− 1.

Thresholding parameter δ In step 4 of the algorithm, we normalise and threshold the harmonic
representatives. After normalising, the entries of the vectors lie in the interval of [0, 1]. The
thresholding parameter δ now essentially determines an interval of [0, δ] which we will linearly map
to [0, 1], while mapping all entries above δ to 1 as well. This is necessary as most of the entries in
the vector eik are very close to 0 with a very small number of entries being close to 1. Without this
thresholding, TOPF would now be almost entirely determined by these few large values. Thus this
step limits the maximum possible influence of a single entry. However, because most of the entries of
eik are concentrated around 0, small changes in δ will not have a large effect and we chose δ = 0.07
in all our experiments.
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Table 2: Runtime of individual TOPF steps on TCBS. We ran TOPF on each of the point clouds of the
TCBS and recorded the runtime of the most important individual steps. Note that there is a difference
between the total time and the sum of the individual steps, which is due to initialisation time for the
julia kernel and other various minor steps. We notice that for smaller and lower-dimensional point
clouds, a major part of the runtime is due to steps performed in julia and ripserer calculations, over
which we have no influence over. For large 2-dimensional point clouds like 2Spheres2Circles,
we see that the homology computation time increases a bit, but the most significant increase is the
time needed to compute the projections to the harmonic representations. Julia imports is the time
needed by the julia kernel to import the relevant libraries, Julia reading is the time Julia needs to read
the data from the input stream, Julia complex is the time Ripserer needs to build an α-complex, Julia
homology is the time needed for the persistent homology computation by Ripserer, Reps extraction is
the time needed for selecting the relevant homology representatives, Harmonic projection denotes the
time needed to build the α-complexes by gudhi and to compute the weighted harmonic representatives,
Clustering and dict is the time needed to perform clustering on the extracted features and condense
the results into a dictionary, total total is the total runtime of a Jupyter Notebook cell executing the
iteration of TOPF.

dataset Julia
imports

Julia
reading

Julia
complex

Julia
homology

Julia
output

Reps
extraction

Harmonic
projection

Clustering
and dict total

4spheres 3.3s 2.9s 2.9s 4.4s 0.9s 0.1s 0.4s 0.3s 15.8s
Ellipses 2.8s 2.7s 2.7s 4.2s 1.0s <0.1s 0.1s 0.1s 14.7s
4⃝+Grid 3.3s 2.7s 2.7s 4.1s 0.9s 0.1s 0.5s 0.3s 15.1s
Halved ⃝ 3.0s 2.6s 2.7s 4.1s 0.9s <0.1s 0.1s 0.1s 14.4s
2Spheres2⃝ 2.7s 2.7s 3.3s 5.5s 1.3s 0.7s 15s 2.0s 34.5s
Spherein⃝ 3.0s 3.0s 2.9s 4.7s 1.1s <0.1s 0.3s 0.3s 16.1s
Spaceship 2.9s 2.9s 2.8s 5.2s 1.2s 0.1s 2.6s 0.3s 19.0s

Interpolation coefficient λ The interpolation coefficient λ ∈ (0, 1) determines whether we build
our simplicial complexes close to the birth or the death of the relevant homological features at time
t = b1−λd. This then in turns controls how localised or smooth the harmonic representative will
be. In general, the noisier the ground data is the higher we should choose λ. However, TOPF is not
sensitive to small changes in λ. We have picked λ = 0.3 for all the quantitative experiments, which
empirically represents a good choice for a broad range of applications.

Feature selection factor β Increasing β leads to TOPF preferring to pick a larger number of relevant
topological features. Without specific domain-knowledge, β = 0 represents a good choice.

Feature selection quotients max_total_quot, min_rel_quot, and min_0_ratio These
are technical hyperparameters controlling the feature selection module of TOPF. For a technical
account of them, see Appendix G. In most of the cases without domain knowledge, they do not have
an effect on the performance of TOPF and should be kept at their default values.

Simplicial Complex Weights Although the simplicial weights are not technically a hyperparameter,
there are many potential ways to weigh the considers SCs that can highlight or suppress different
topological and geometric properties. In all our experiments, we use w∆ weights discussed in
Appendix H.

Ablation study In Table 3, we performed an ablation study and benchmarked TOPF against TOPF
while skipping the harmonic projection step with the Hodge Laplacian (Step 3.). The result show
that in general, skipping the step with the Hodge Laplacian decreases the performance of TOPF by a
wide margin. The exception to this are SphereInCircle or 2Spheres2Circles, where the
two methods have similar performance. In these two last examples, points are directly sampled from
a manifold, and thus the loops and spheres are very "thin". Thus, the homology generator is already a
good approximation of all the simplices responsible for a topological feature. In general however,
this is not the case, necessating the use of Differential Geometry and the Hodge Laplacian.

E.2 RUNTIME

In Table 2, we analyse the runtime of different components of the TOPF pipeline on the point clouds
of the TCBS. In Figure 12, we analyse the runtime of the current TOPF implementation on two point
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Table 3: Ablation study.

dataset ARI TOPF
ARI TOPF

without harmonic projection

4spheres 0.81 0.08
Ellipses 0.95 0.53
4⃝+Grid 0.70 0.11
Halved ⃝ 0.71 0.15
2Spheres2⃝ 0.94 0.95
Spherein⃝ 0.97 1.00
Spaceship 0.92 0.49

mean 0.86 0.47

clouds from the topological clustering benchmark suite. We increase the point density while keeping
the structure of the point cloud intact. The runtime of our implementation with sparsification
= ’off’ in the regime of Figure 12 appears to scale linearly with the total number of points with
a significant constant term. The significant constant term is probably due to our implementation
starting a new julia kernel and communicating between python and julia. A python-only or julia-only
implementation would thus speed up computations significantly.

Theoretical runtime complexity

1. a). Constructing the complex: The Vietoris–Rips complex will have O(nk+1) simplices,
where n is the number of points and k the maximum homology dimension. Apart from
this, there is no significant computational effort needed. Note that we can decrease this if
we set a maximum VR-radius, as done in many works from the literature. Computing the
alpha-complex in ambient dimension d is equivalent to computing the convex hull in ambient
dimension d+1, which has a complexity of ∼ O(nd/2). For a fixed dimension d, the number
of simplices is linear in n. b). Computing persistent homology and generators: As we
need the homology generators, we use the recently introduced involuted persistent homology
Čufar & Virk (2023). While the authors discuss the runtime performance, they do not give
a concrete complexity bound in Čufar & Virk (2023). However, they deduce that it has a
similar run-time to usual persistent cohomology computations, whose performance is for
example discussed in De Silva et al. (2011).

2. Picking the significant generators has negligible impact.
3. Computing the harmonic projections. Given a homology representative r in dimension

k, computing the harmonic representative amounts to computing a sparse matrix vector
product of Bk+1x and a sparse least squares problem lsmr(Bk+1, r), i.e. solving

min
x∈RSk+1

∥r −Bk+1x∥2

where Sk+1 is the number of (k + 1)-simplices in the simplicial complex and Bk+1 has
(k + 2)Sk+1 non-zero entries. This is a sparse least-squares problem, which we solve using
the iterative sparse solver lsmr (Fong & Saunders, 2011). Because this is an iterative solver,
the authors do not give runtime complexity, but discuss the computational requirements in
Fong & Saunders (2011).

4. Pooling and averaging over the simplicial neighbours has negligible runtime constraints.

F MORE DETAILS ON THE EXPERIMENTS

High-dimensional Point Clouds In Figure 5, we use TOPF on a high-dimensional input point cloud
representing the conformation space of cyclooctane Martin & Watson (2011). Because the ambient
dimension is too large for α-filtrations, a Vietoris–Rips filtration with more simplices is used. The
VR filtration depends on the ambient dimension only for computing the distance matrix, which is a
negligible part of the runtime. Hence, a similar performance can be expected for higher dimensions
than 24 as well. To counteract the increase in computational complexity, TOPF automatically
downsamples the point cloud using a mixture of landmark and random sampling. We see in the
ISOMAP projections of Figure 5 that TOPF extracts reasonable features representing the topology of
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Figure 12: Runtime on two examples from Topological Clustering Benchmark Suite while
increasing point density. Left: Halved Circle, Right: 2 Spheres 2 Circles. Experi-
ments kept the topological structure intact while increasing the number of points sampled. Both the
runtime of the vanilla TOPF algorithm, as well as of TOPF using automatic subsampling heuristic as
implemented in the python package, are listed.

the conformation space. Setting nclusters to 4 even reveals the manifold anomalies in a separate cluster
(blue), similar to the results of Stolz et al. (2020). The runtime for this high-dimensional experiment
was 189.8 seconds.

Variational Autoencoders We have trained a VAE on image patches sampled with a topological
structure, see Figure 13. We have sampled the image patches around two loops and a connecting
line. Using TOPF, we could recover this structure in the latent space of the VAE highlighting how
topological point features can help in explainable AI. We note, of course, that many latent spaces
do not carry any higher-order topological information, making characterisation by TOPF infeasible.
Rather we showed that when we expect a topological structure to exist in the data set due to some
specifics of the data, we can recover this topological structure even in the latent space of the VAE
using TOPF. We have repeated the experiments for a higher-dimensional latent space and received
similar results, see Figure 6.

Additional heatmaps on proteins In Figure 14, we provide additional experiments of TOPF on
protein data. This time, we report every single feature vector produced by TOPF in a separate plot.
In the experiment with Cys123, we wanted to show that TOPF can detect so-called protein pockets.
Because pockets do not form holes detectable by TDA straightforward, the literature suggests adding
(and later removing) these points on the convex hull, which turns the pockets into holes, see for
example Oda et al. (2024).

Performance with decreasing sampling density In Figure 15, we analyse the robustness of TOPF
with respect to a decrease in sampling density. We have selected 2Spheres2Circles as the
dataset with the highest original sampling density for this experiment. It shows that TOPF can still
produce meaningful results even for significantly downsampled point clouds. We note that the
considered point clouds are in particular very sparse when compared to the point clouds usually
considered by neural 3D point cloud architectures. We interpret the results as basically repeating
the good performance of TOPF, except for the datasets EllipsesinEllipses and spaceship,
where the performance drops rapidly (at least in a logarithmic plot). Our interpretation of this is that
both datasets consist of submanifolds with different sampling density, which intersect/are contained
in one another. Thus, the point density is a key to distinguishing the classes, and a random change in
these densities due to downsampling can make the encoded structure hard to detect or even causes
them to vanish in a sense of topology.

In Figure 16, we analyse the robustness of TOPF with respect to heterogeneous sampling. The results
show that TOPF performs well even in the presence of inhomogeneous sampling, and the degrading
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Figure 13: Using TOPF to explore the topological structure in latent/embedding spaces of
Variational Auto Encoders (VAE) 1. Given a picture (of a cow), we sample 578 square patches
around the centre points marked in red in the image. The centre points are taken from the sides
of two squares and a line connecting the two squares. The assumption is that this topological
structure (with two holes) is present in the sample space as well. 2. We train a VAE on the set of
578 square patches with latent space dimension of 3 (down from 33 · 33 · 3.) 3. We run TOPF with
fixed_num_features set to [0, 2] on the latent space to extract the two most significant point-
wise topological features. 4. We overlay the topological features from the latent space over the centre
points of the corresponding image patches. We see that TOPF has roughly recovered the topological
structure inherent in the sample space as described in step 1. We note that the image patches with
centre on the middle horizontal line are almost identical, making it virtually impossible to distinguish
them. Note that although TOPF thinks they contribute to the left loop, their corresponding feature
entries are a lot smaller than those of the image patches (shown by lighter colours and smaller dots in
the plot.)

of performance can largely be attributed to a decrease in minimum sampling rate, rather than the
inhomogeneous nature.

From a theoretical point of view, this should not be surprising: The birth of the topological feature
will now depend on the minimum sampling density, while the death time still depends on the size of
the feature. The heuristic employed by TOPF will then choose a maximal triangulation radius which
lies between these two radii. In the dense part, the triangulation will be denser then in the sparse parts.
However, due to the the character of the alpha filtration, the weighting of the simplices discussed in
Appendix H and the thresholding this does not cause an issue in the features generated by TOPF.

Details on experiments with WSDesc WSDesc (Weakly Supervised 3D Local Descriptor Learning
for Point Cloud Registration), Li et al. (2022), uses voxel-based representations of point clouds to
extract robust 3D local descriptors for point cloud registration. As showcased in the original paper,
WSDesc showcases a good generalisation for point clouds outside of the training set. We used
WSDesc pretrained on the 3DMatch data. WSDesc was used with 512 keypoints, and tested with a
varying of keypoints up to ∼ 5000. We thus tested WSDesc with the maximum number of keypoints
possible per input point cloud.
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Figure 14: TOPF heatmaps for three proteins. Top left: NALCN channelosome (Kschonsak et al.,
2022) Top right: Mutated Cys123 of E. coli (Hidber et al., 2007), with convex hull added during
computation, only 2-dimensional homology features Bottom: GroEL of E. coli (Chaudhry et al.,
2004) (Selected features).

G HOW TO PICK THE MOST RELEVANT TOPOLOGICAL FEATURES

Simplified heuristic The persistent homology Pk module in dimension k is given to us as a list of
pairs of birth and death times (bki , d

k
i ). We can assume these pairs are ordered in non-increasing order

of the durations lki = dki − bki . This list is typically very long and consists to a large part of noisy
homological features which vanish right after they appear. In contrast, we are interested in connected
components, loops, cavities, etc. that persist over a long time, indicating that they are important for
the shape of the point cloud. Distinguishing between the relevant and the irrelevant features is in
general difficult and may depend on additional insights on the domain of application. In order to
provide a heuristic which does not depend on any a-priori assumptions on the number of relevant
features we pick the smallest quotient qki := lki+1/l

k
i > 0 as the point of cut-off Nk := argmini q

k
i .

The only underlying assumption of this approach is that the band of “relevant” features is separated
from the “noisy” homological features by a drop in persistence.

Advanced Heuristic However, certain applications have a single very prominent feature, followed
by a range of still relevant features with significantly smaller life times, that are then followed by
the noisy features after another drop-off. This then could potentially lead the heuristic to find the
wrong drop-off. We propose to mitigate this issue by introducing a hyperparameter β ∈ R>0. We
then define the i-th importance-drop-off quotient qki by

qki := lki+1/lki (1 + β/i) .

The basic idea is now to consider the most significant Nk homology classes in dimension k when
setting Nk to be

Nk := argmin
i

qki .

Increasing β leads the heuristic to prefer selections with more features than with fewer features.
Empirically, we still found β = 0 to work well in a broad range of application scenarios and used
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Figure 15: Performance of TOPF while decreasing sampling density. The x-axis is scaled logarith-
mically and TOPF achieves an adjsuted rand index (ARI, random algorithms achieve an ARI of over
0.9 for ∼ 700 samples, down from 4600 original points on the 2Spheres2CirclesDataset.
The smallest considered sample size was 16 points. The points were sampled at random. We ran each
experiment 100 times and report the standard deviation.

it throughout all experiments. There are only a few cases where domain-specific knowledge could
suggest picking a larger β.

To catch edge cases with multiple steep drops or a continuous transition between real features and
noise, we introduce two more checks: We allow a minimal qki of min_rel_quot = 0.1 and a
maximal quotient qh1/qki of max_total_quot = 10 between any homology dimensions. Because
features in 0-dimensional homology are often more noisy than features in higher dimensions, we add
a minimum zero-dimensional homology ratio of min_0_ratio = 5, i.e. every chosen 0-dimensional
feature needs to be at least min_0_ratio more persistent then the minimum persistence of the
higher-dimensional features. Because these hyperparameters only deal with the edge cases of
feature selection, TOPF is not very sensitive to them. For all our experiments, we used the above
hyperparameters. We advise to change them only in cases where one has in-depth domain knowledge
about the nature of relevant topological features.

Fixed number of topological features Alternatively, it is possible to specify a fixed desired number
Nd of topological features per dimension d. TOPF then automatically returns the Nd most relevant
features in dimension d. For practical purposes, we can then weigh these features by a function w(−)
in the life time di − bi or the life quotient di/bi of the features. Possible picks for w include an
exponential function w(x) = ex, a quadratic function w(x) = x2, a linear function w(x) = x or a
scaled sigmoid function. Our intuition suggests that when picking functions like a linear function,
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Figure 16: Performance of TOPF under heterogeneous sampling. TopWe divide four of the point
clouds with a symmetry into two halves. We downsample only one of the halves, creating sampling
irregularities within the individual topological features. We repeat the experiment 100 times and
report the achieved ARI. Note that the lowest value on the x-axis means downsampling by a factor of
100, meaning that the smaller point clouds will then almost only consist of one half. WE compare the
performance of TOPF with the other baselines, noting that TOPF outperforms them for reasonable
heterogeneities. Bottom Left: 4spheres with downsampling factor 0.2 with true labels. Bottom
Right: 2spheres2circles with downsampling factor 0.1 with true labels.

the many short-lived features will be given too much weight in comparison to the few more relevant
features. Selection the best weight function is an interesting open problem for future work.

H SIMPLICIAL WEIGHTS

In an ideal world, the harmonic eigenvectors in dimension k would be vectors assigning ±1 to all
k-simplices contributing to k-dimensional homological feature, a 0 to all k-simplices not contributing
or orthogonal to the feature, and a value in (−1, 1) for all simplices based on the alignment of the
simplex with the boundary of the void. However, this is not the case: In dimension 1, we can for
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Figure 17: Effect of weighing a simplicial complex on harmonic representatives. Top: VR complex.
Bottom: α-complex Left: The base point cloud with different densities. 2nd Left: Unweighted
harmonic homology representative of the large loop. 3rd Right: Effective resistance of the 1-simplices.
3rd Right: Harmonic homology representative of the complex weighted by effective resistance.
2nd Right: Inverse of number of incident triangles (Definition H.1). Right: Harmonic homology
representative of the complex weighted by number of incident triangles. Up to a small threshold,
the standard harmonic representative in the VR complex is almost exclusively supported in the
low-density regions of the simplicial complex. This leads to poor and unpredictable classification
performance in downstream tasks. In contrast, the harmonic homology representative of the weighted
VR complex has a more homogenous support along the loop, while still being able to discriminate the
edges not contributing to the loop. The α-complex suffers less from this phenomenon (at least in
dimension 2), and hence reweighing is not necessarily required.

example imagine a total flow of 1 circling around the hole. This flow is then split up between all
parallel edges which means two things: I Edges where the loop has a larger diameter have smaller
harmonic values than edges in thin areas and II in VR complexes, which are the most frequently
used simplicial complexes in TDA, edges in areas with a high point density have smaller harmonic
values than edges in low-density areas. Point II is another advantage of α-complexes: The expected
number of simplices per point does not scale with the point density in the same way as it does in the
VR complex, because only the simplices of the Delaunay triangulation can appear in the complex.

We address this problem by weighing the k-simplices of the simplicial complex. The idea behind this
is to weigh the simplicial complex in such a way that it increases and decreases the harmonic values
of some simplices in an effort to make the harmonic eigenvectors more homogeneous. For weights
w ∈ RSk , W = diag(w), the symmetric weighted Hodge Laplacian (Schaub et al., 2020) takes the
form of

Lw
k = W 1/2Bk−1B⊤

k−1W
1/2 +W−1/2BkB⊤

k W
−1/2.

Because we want the homology representative to lie in the weighted gradient space, we have to scale
its entries with the weight and set eik,w := W−1/2eik. With this, we have that

B⊤
k−1W

1/2eik,w = B⊤
k−1W

1/2W−1/2eik = B⊤
k−1e

i
k = 0

We propose two options to weigh the simplicial complex. The first option is to weigh a k-simplex by
the square of the number of k + 1-simplices the simplex is contained in:

w∆(σk) = 1/(|{σk+1 ∈ St
k+1 : σk ⊂ σk+1}|+ 1)2
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where the +1 is to enforce good behaviour at simplices that are not contained in any higher-order
simplices. One of the advantages of the α-complex is that we don’t have large concentrations of
simplices in well-connected areas. The proposed weighting w∆ is computationally straightforward,
as it can be obtained as the column sums of the absolute value of the boundary matrix |Bk|. The
weights also deal with the previously mentioned problem II: As the homology representative is scaled
inversely to the weight vector w, the simplices in high-density regions will be assigned a low weight
and thus their weighted homology representative will have a larger entry. By the projection to the
orthogonal complement of the curl space, this large entry is then diffused among the high-density
region of the SC with many simplices, whereas the lower entries of the simplices in low-density
regions are only diffused among fewer adjacent simplices.

However, the first weight is not able to incorporate the number of parallel simplices into the weighting.
This is why we propose a second simplicial weight function based on generalised effective resistance.
Definition H.1 (Effective Hodge resistance weights). For a simplicial complex S with boundary
matrices (Bk), we define the effective Hodge resistance weights wR on k-simplices to be:

wR := diag
(
B+
k−1Bk−1

)2
where diag(−) denotes the vector of diagonal entries and (−)+ denotes taking the Moore–Penrose
inverse.

Intuitively for k = 1, we can assume that every edge has a resistance of 1 and then the effective
resistance coincides with the notion from Physics. Thus simplices with many parallel simplices are
assigned a small effective resistance, whereas simplices with few parallel simplices are assigned an
effective resistance close to 1. However, computing the Moore–Penrose inverse is computationally
expensive and only feasible for small simplicial complexes.

In Figure 17, we show that the weights w∆ are a good approximation of the effective resistance in
terms of the resulting harmonic representative. The standard form of TOPF used in all experiments
uses w∆-weights.

I LIMITATIONS

Topological features are not everywhere The proposed topological point features take relevant
persistent homology generators and turn these into point-level features. As such, applying TOPF
only produces meaningful results on point clouds that have a topological structure. On these point
clouds, TOPF can extract structural information unobtainable by non-topological methods. Although
TDA has been successful in a wide range of applications, a large number of data sets does not
possess a meaningful topological structure. Applying TOPF in these cases will produce no additional
information. Other data sets require pre-processing before containing topological features. In Figure 4
left, the 2d topological features characterising protein pockets of Cys123 only appear after artificially
adding points sampled on the convex hull of the point cloud (Cf. Oda et al. (2024)).

Computing persistent homology can be computationally expensive As TOPF relies on the
computation of persistent homology including homology generators, its runtime increases on very
large point clouds. This is especially true when using VR instead of α-filtrations, which become
computationally infeasible for higher-dimensional point clouds. Persistent homology computations
for dimensions above 2 are only feasible for very small point clouds. Because virtually all discovered
relevant homological features in applications appear in dimension 0, 1, or 2, this does not present
a large problem. Despite these computational challenges, subsampling, either randomly or using
landmarks, usually preserves relevant topological features and thus extends the applicability of TDA
in general and TOPF even to very large point clouds.

Automatic feature selection is difficult without domain knowledge While the proposed heuristics
works well across a variety of domains and application scenarios, only domain- and problem-specific
knowledge makes truthful feature selection feasible.

Experimental Evaluation There are no benchmark sets for topological point features in the
literature, which makes benchmarking TOPF not straightforward. On the level of clustering, we
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introduced the topological clustering benchmark suite to make quantitative comparisons of TOPF
possible, and benchmarked TOPF on some of the point clouds of Grande & Schaub (2023a). On both
the level of point features and real-world data sets, it is however hard to establish what a ground truth
of topological features would mean. Instead we chose to qualitatively report the results of TOPF on
proteins and real-world data, see Figure 4.
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