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Abstract

Pixel-based language models process text ren-
dered as images, which allows them to han-
dle any script, making them a promising ap-
proach to open vocabulary language modelling.
However, recent approaches use text renderers
that produce a large set of almost-equivalent
input patches, which may prove sub-optimal
for downstream tasks, due to redundancy in
the input representations. In this paper, we in-
vestigate four approaches to rendering text in
the PIXEL model (Rust et al., 2023), and find
that simple character bigram rendering brings
improved performance on sentence-level tasks
without compromising performance on token-
level or multilingual tasks. This new rendering
strategy also makes it possible to train a more
compact model with only 22M parameters that
performs on par with the original 86M param-
eter model. Our analyses show that character
bigram rendering leads to a consistently better
model but with an anisotropic patch embedding
space, driven by a patch frequency bias, high-
lighting the connections between image patch-
and tokenization-based language models.

1 Introduction

There is a growing movement in NLP towards
tokenization-free methods (Clark et al., 2022; Xue
et al., 2022; Yu et al., 2023) including pixel-based
representations of text (Salesky et al., 2021, 2023;
Rust et al., 2023; Tschannen et al., 2023). It has
been shown that these tokenization-free methods
can readily handle unseen languages and that they
are more robust to noise attacks than tokenization-
based models. In addition, pixel-based approaches
can effectively exploit visual similarities between
characters and scripts because they allow for com-
plete parameter sharing across all inputs, making
them a promising direction for multilingual NLP.

Previous work on pixel-based models segments
the rendered text into either consecutive patches
(Rust et al., 2023; Tschannen et al., 2023) or with

(a) Continuous rendering (CONTINUOUS):

(b) Structured rendering (BIGRAMS):

(c) Structured rendering (MONO):

(d) Structured rendering (WORDS):

Figure 1: Examples of rendering strategies for the sen-
tence “I must be growing small again.” from Carroll
(1865). Black patches mark the end of a sequence, fol-
lowing Rust et al. (2023).

a sliding window (Salesky et al., 2021, 2023) as
in speech processing. Although the proposed ap-
proaches have the appealing properties of yielding
compact and transferable representations, they also
result in a very large input space because there
is no unique way to represent lexical units. As a
consequence, pixel-based models could observe
a new set of image representations with every
new sentence, which adds redundancy in the input
space and is sub-optimal for developing contextual
language representations. We refer to these
unstructured rendering strategies as CONTINUOUS

and illustrate the point qualitatively in Figure 1
and Figure 2, and quantitatively in Figure 3. In this
work, we ask whether structuring the input, which
leads to more frequent parameter updates through
now-unique word representations, would enable
pixel-based models to develop a deeper understand-
ing of context and semantics. We then propose
rendering strategies structured around providing
the model with a compressed input space.

We demonstrate how enforcing a BIGRAMS-
structured rendering strategy leads to both a
more capable and data-efficient model: when
evaluated on semantic sentence-level tasks, we
find that a 22M parameters model performs



(a) Most frequent patches with CONTINUOUS rendering:

(b) Most frequent patches with BIGRAMS rendering:

Figure 2: A continuous rendering strategy results in
many uniquely-valued image patches for similar inputs,
while structured rendering (here, BIGRAMS) regularises
and compresses the potential input space.

competitively with the unstructured original at
86M parameters, and that scaling back up to
86M parameters narrows the performance gap to
BERT (Devlin et al., 2019) trained on the same
data. In subsequent analyses, we find that the
added input structure provokes a clear visual token
frequency bias in the learned embedding space.
While also found in BERT, frequency biases have
been shown to degrade the quality of embedding
spaces when word representations are not only
determined by semantic relations but also by the
number of model updates (Gong et al., 2018;
Gao et al., 2019; Fuster Baggetto and Fresno,
2022). We show that frequent words have more
context-specific representations than infrequent
words, especially in the upper layers. Finally,
we show that PIXEL models acquire a non-trivial
semantic understanding during pretraining, but that
their sentence representations are easily influenced
by this frequency bias. We release all models1 and
code2 for pretraining and finetuning.

2 Background: modelling text as images

We build upon the general-purpose language en-
coder framework presented in Rust et al. (2023):
PIXEL is a text autoencoder which builds on the
Masked Autoencoding Vision Transformer (ViT-
MAE; He et al., 2021) and is similarly pretrained
with a masked reconstruction objective. However,
instead of patches from natural images of objects
(Deng et al., 2009), the patches now contain im-
ages of text. To go from text to images of text,
PIXEL relies on a rendering library (PangoCairo)3

to produce a sequence-level image which is sliced
into image patches of size 16 × 16 pixels. The
sequence-length maximum of 529 patches approxi-
mately equals the memory requirements of BERT,

1https://huggingface.co/Team-PIXEL
2https://github.com/xplip/pixel/tree/
TextRenderingStrategies

3https://docs.gtk.org/PangoCairo
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Figure 3: Number of unique image patches observed
as a function of training data sequences. Structured
rendering results in greater representational efficiency.

the closest benchmark for PIXEL. By using the
Google Noto font family which supports the major-
ity of Unicode codepoints,4 the renderer supports
all languages that can currently be typeset.

Before the first layer of the PIXEL model, image
patches are linearly projected to obtain a sequence
of patch ‘embeddings’. During pretraining, 25% of
embeddings are masked in spans of up to 6 patches
and only the unmasked patches with a prepended
CLS embedding are passed through the encoder. Af-
ter replacing the masked embeddings amidst the
encoder outputs, relying on fixed sinusoidal posi-
tion embeddings for ordering information, the de-
coder predicts the pixel values of solely the masked
patches. To later finetune the encoder on a classi-
fication task, the decoder can be replaced with a
task-specific head and the masking ratio set to 0%.

3 Structured rendering

Previously proposed approaches to rendering
text as images render full sequences of text and
segment into either consecutive patches (Rust
et al., 2023; Tschannen et al., 2023) or with a
sliding window (Salesky et al., 2021, 2023). These
CONTINUOUS strategies result in a significant
number of uniquely-valued patches, many of
which may be observed only once during training.
We depict this redundancy in Figure 2 and quantify
it in Figure 3, showing how similar text inputs
result in unique visual representations.

We compare four rendering strategies: the orig-
inal unstructured (CONTINUOUS), and three struc-
tured (WORDS, MONO, BIGRAMS), as depicted
in Figure 1. To render WORDS we separate seg-
4https://fonts.google.com/noto

https://huggingface.co/Team-PIXEL
https://github.com/xplip/pixel/tree/TextRenderingStrategies
https://github.com/xplip/pixel/tree/TextRenderingStrategies
https://docs.gtk.org/PangoCairo
https://fonts.google.com/noto


ments with additional whitespace5 such that new
segments begin at the beginning of the next im-
age patch, regulating possible spatial variation. BI-
GRAMS, rendering two characters per image patch,
is chosen to be widely applicable, without knowl-
edge of word or morphemic segmentation (Mielke
et al., 2021; Keren et al., 2022). More specifically—
consider the word pairs ⟨“grow”, “growing”⟩ and
⟨“growing”, “walking”⟩—the BIGRAMS renderer
will produce an overlap of image patches (under-
lined) for both pairs while the same extent is not
guaranteed with WORDS-level rendering as it is reg-
ulated by character width. The choice of character
(n = 2)-grams is motivated by what generally fits
within a 16 × 16 pixels image patch in the setup
from Rust et al. (2023). MONO instead applies
monospaced fonts where each character is a fixed
width; depending on font size, this may result in
character bigram patches without breaks within
characters, but this is not guaranteed. The main
difference between BIGRAMS and MONO is that
MONO simply slides across the sentence, two char-
acters at the time, yielding two ways to represent a
word whereas BIGRAMS renders the words and then
pads with whitespace, ensuring unique inputs.6

As seen in Figure 3, the structured rendering
strategies result in a greatly compressed input
space as measured by the number of unique im-
age patches processed by the model, but Figure 1
reveals that it comes at the cost of longer sequence
lengths. While the rendering strategies we propose
were not specifically designed for English, they
may not equally generalise to other languages or
scripts. We further discuss the representational effi-
ciencies of these strategies in § A.1 and limitations
to generalisability under Limitations.

4 Model scale variants

Recall from Figure 3 that CONTINUOUS rendering
produces a significantly larger set of unique image
patches compared to other approaches. A conse-
quence of this is that models must learn to encode
many almost-identical visual representations,
which may be wasteful, both in terms of parameters
and training efficiency. Therefore, we hypothesise
that PIXEL models that operate over fewer unique
image patches can be scaled down without sacrific-
5We render whitespace at minimum 3 pixels wide, sometimes
resulting in a blank patch between tokens in structured inputs.

6As an example, “be” in Figure 1 is split into 2 image patches
with MONO rendering. Depending on the context, it could
also be represented in a single image patch.

Model EncL-DecL Hid MLP Att |θ|

BASE 12-8 768 3072 12 86M
SMALL 12-4 384 1536 6 22M
TINY 12-2 192 768 3 5.5M

Table 1: Details of PIXEL model scale variants.

ing performance. While “Base” models and larger
ones are widely used for their strong performance,
proven scaling laws (Touvron et al., 2021; Zhai
et al., 2021) enable greater experimentation and
model development at smaller scale (Ivgi et al.,
2022), which is both more environmentally friendly
(Strubell et al., 2019; Bender et al., 2021; Hersh-
covich et al., 2022) and facilitates contributions
with limited computational resources.

With this in mind, we propose two smaller
architectures which we will compare across down-
stream tasks in § 5. Our BASE model architecture
is directly adopted from ViT (Dosovitskiy et al.,
2021) and PIXEL, and we add two more compact
SMALL and TINY model variants, as described in
Table 1. The configurations of the smaller models
are based on the ViT variants presented in Zhai
et al. (2021). Following the scaling experiments in
He et al. (2021), indicating that shallow decoders
of as small as 2 layers can be sufficient for
ViT-MAEs, we apply a scheme of halving the
number of decoder layers at every scale reduction.

5 Experiments

We pretrain SMALL models with the proposed ren-
dering strategies. The models are then evaluated
on dependency parsing (UDP) with data from Uni-
versal Dependencies v2.10 treebanks (Zeman et al.,
2022; Nivre et al., 2020) and GLUE (Wang et al.,
2018), exploring the models’ capabilities at syn-
tactic processing on the word level and semantic
processing on the sentence level.

5.1 Pretraining
We pretrain all models on the English Wikipedia
and Bookcorpus (Zhu et al., 2015) data used by
Rust et al. (2023) for direct comparison with PIXEL

and BERT, which results in ∼16.8M training ex-
amples. We follow the suggested hyperparameters
used for PIXEL with the exception of batch size.
The smaller architectures of SMALL and TINY al-
low for larger batch sizes, which we double from
256 examples to 512 and 1024, respectively. We
then halve the number of pretraining steps accord-



Structure Scale
UDP GLUE UDP GLUE TyDiQA-GoldP

Renderer Avg. Avg. Variant |θ| Avg. ∆µ Avg. ∆µ Avg. ∆µ

CONTINUOUS 76.2 71.0 TINY 5.5M 72.0 −0.3 66.5 +12.7 41.6 +4.9
BIGRAMS 76.1 75.4 SMALL 22M 76.1 −0.1 75.4 +4.4 50.8 +2.0
MONO 75.9 74.4 BASE 86M 75.5 −0.6 78.0 +3.9 52.8 +0.5
WORDS 76.6 74.7 BERT 110M 50.5 — 80.0 — 51.5 —

Table 2: Structure (left): averaged results for SMALL-models comparing downstream performance on UDP and
GLUE following the different rendering strategies. Scale (right): averaged results across model scales using the
BIGRAMS rendering structure. ∆µ is the difference in average performance between BIGRAMS and CONTINUOUS
rendering for a given model scale. BERT results are marked in grey to visually distinguish from pixel-based models.

ingly from 1M to 500k and 250k in order to train
for the same number of epochs as PIXEL (∼16
epochs, but varying slightly due to differing se-
quence lengths per rendering strategy).

Pretraining BASE takes 8 days on 8 × 40GB
Nvidia A100 GPUs, while in comparison, pretrain-
ing SMALL takes less than 48 hours on 8× 40GB
Nvidia A100 GPUs, and TINY less than 24
hours. Loss trajectories for the different rendering
strategies are in line with their representational
efficiency (Figure 3), indicating that structured
rendering may make the masked reconstruction
task more data-efficient, achieving a low loss in
fewer steps (see § A.2: Figure 10).

5.2 Finetuning

To finetune our models for classification tasks we
replace the decoder used for pretraining with a
task-specific classification head. We do not search
for more optimal hyperparameters than those used
for PIXEL with the exception of the learning rate;
we find that the more compact architectures often
benefit from a slightly higher learning rate.7

We follow the same protocol during finetuning
as done for PIXEL: for word-level tasks we obtain
the rendered image patch indices for every word
and as a consequence, the CONTINUOUS strategy
becomes identical to the WORDS structure when
finetuning on UDP. § 6.1 further investigates the
consequence of a mismatch between how the data
is structured during pretraining and finetuning.
When finetuning on GLUE the structure follows
what was seen during pretraining for all rendering
strategies. Reported performances for BERT and
PIXEL are taken from Rust et al. (2023).

7We search the space {1e−5, 3e−5, 5e−5, 7e−5, 9e−5}
and report the average over 3 seeds.

5.3 Rendering strategies

We present averaged results comparing the render-
ing strategies in the left part of Table 2. Detailed
results for each downstream task are presented in
Table 4 and Table 5 in the appendix. For UDP

we find that the WORDS structure slightly outper-
forms BIGRAMS and MONO on this word-level task.
When comparing the WORDS and CONTINUOUS

strategies we get a first hint as to the importance of
including structure during pretraining as well, keep-
ing in mind that the rendering structure is the same
for both strategies when finetuning on UDP. For
GLUE we see a large increase in performance when
rendering with any structure and especially BI-
GRAMS. We attribute the difference in performance
between BIGRAMS and MONO to the unique word
representations with BIGRAMS, as discussed in § 3.

We find that BIGRAMS is the best performing
structure on average, even slightly outperforming
the 86M parameters PIXEL (average UDP: 76.1;
average GLUE: 74.1) with only ¼ its model
parameters. We provide an investigation into the
mechanisms that enable this improved performance
on GLUE in § 6.4. Next we pretrain TINY and
BASE model variants with BIGRAMS rendering to
evaluate performance at different model scales.

5.4 Model scaling

The right part of Table 2 compares the different
model scales all following a BIGRAMS rendering
strategy. Detailed results are likewise presented
in Table 4, Table 5, and Table 6 in the appendix.
We find that the TINY configuration performs
competitively on the word-level tasks considering
its only 5.5M parameters, but has a larger gap
up to SMALL and BASE on the sentence-level
GLUE tasks. SMALL proves to be a good trade-off
between scale and performance where it is not
far behind BASE on GLUE and even slightly



outperforms on UDP.8 BASE comes a step closer
to closing the gap in performance up to BERT on
GLUE. Comparing to the performance following
a CONTINUOUS rendering strategy, summarised
as the difference in average performance (∆µ), it
is clear that the more compact the model size, the
greater the benefit from structured rendering.

To verify that BIGRAMS rendering does not
degrade the performance on multilingual sentence-
level tasks across different scripts and morpholo-
gies, we also include results on TyDiQA-GoldP
(Clark et al., 2020).9 Again we find that SMALL

performs competitively considering its size.

6 Ablations and supplementary analyses

In this section we investigate how BIGRAMS

rendering changes the model compared to CON-
TINUOUS. For clarity in what follows, we refer
to the BASE model with BIGRAMS rendering from
§ 5.4 as BASE-BIGRAMS and keep referring to the
original model from Rust et al. (2023) as PIXEL.

6.1 When does rendering structure matter?

Having established that a structured rendering strat-
egy leads to improved downstream performance,
we further investigate when it is needed: is it suf-
ficient to finetune with structure or does the model
develop strategy-specific features during pretrain-
ing? We analyze this by comparing rendering
strategies between pretraining and finetuning.

The results in Table 3 for GLUE show that a mis-
match leads to lower downstream performance for
both strategies, with BIGRAMS → CONTINUOUS

being the most harmful, perhaps unsurprisingly.
This result does not align with the finding for
UDP in § 5.3 where CONTINUOUS overcomes
the change to WORDS-structured rendering. It
may indicate that the lower-level UDP tasks are
easier for PIXEL-based models than the high-level
GLUE tasks (Lauscher et al., 2020). This is in
line with the relatively good performance for
TINY-BIGRAMS on UDP.

To emphasize the increase in performance
on semantic tasks with BIGRAMS rendering, we
8We expect that BASE could prevail and would benefit from a
wider search for optimal hyperparameters during finetuning.

9With the CONTINUOUS rendering strategy, answer spans are
extracted such that the answer may include leading or trailing
characters when there is no exact mapping from a word to an
image patch index. Therefore, we did not include TyDiQA-
GoldP in the comparison in § 5.3. More details can be found
in Rust et al. (2023). We discuss limitations to answer span
extraction with BIGRAMS rendering in § A.4.

RENDERER GLUE

Pretraining Finetuning Avg.

BIGRAMS BIGRAMS 75.4
CONTINUOUS CONTINUOUS 71.0
CONTINUOUS BIGRAMS 61.1
BIGRAMS CONTINUOUS 53.0

Table 3: Rendering strategy combinations between pre-
training and finetuning with SMALL models. For GLUE,
matching pretraining structure is most effective.

demonstrate that BASE-BIGRAMS outperforms
PIXEL by 3.6 points on average on MasakhaNER
(Adelani et al., 2021), a named entity recognition
benchmark for 10 African languages. This further
illustrates the potential of PIXEL-based models
for modelling low-resource languages. Detailed
results are presented in Table 7 in the appendix. We
next turn our attention to how BIGRAMS rendering
enables better performance on semantic tasks.

6.2 Contextual representations

The extent to which language models capture se-
mantic information is partly determined by their
ability to contextualise text (Peters et al., 2018).
We therefore analyse how capable BASE-BIGRAMS

is at producing contextualised word representations.
We use the Words in Context dataset (WiC; Pile-
hvar and Camacho-Collados, 2019) of sentences
that contain target words (noun or verb) in either
a similar (True) or different (False) context across
sentence pairs.10 We compute the mean hidden
state output over all tokens associated with the
target word to obtain a representation. We infer
that there is contextualisation if the model gener-
ates representations of a target word from different
contexts with a low cosine similarity compared to
target words in similar contexts. We report this
indication of contextuality for each layer of the
model, including the input layer, to better under-
stand the properties of the different layers. Similar-
ities between randomly chosen words from random
examples (Random) are included as a baseline.11

Figure 4a plots the resulting distributions of
similarities. We see that representations of target
words from similar contexts have a higher cosine
similarity than from different contexts, though with
10Target words are not necessarily identical across sentence

pairs and can vary e.g. in conjugation or number.
11It is not possible to obtain an exact mapping from words to

neat image patch indices following the CONTINUOUS ren-
dering strategy so we do not present this analysis for PIXEL.
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Figure 4: Distributions of cosine similarities for verbs and nouns from the WiC dataset across model layers 0-12,
layer 0 being the input layer. Every example presents a target word in either a similar or different context across
a sentence pair. The representation of the target word is computed as the mean hidden state output over the
corresponding tokens. We generally see that BASE-BIGRAMS encodes target words in a similar context as more
similar. The median cosine similarity between random words from random sentences are shown as a baseline.

a considerable overlap, and higher for different con-
texts than for random. When comparing to BERT in
Figure 4b, there is a clear difference in the similar-
ity compared to random words. The difference in
similarity between similar and random words grad-
ually increases throughout the BASE-BIGRAMS

model, until the final layers, whereas the difference
steadily decreases throughout the model for BERT.
Given the shared image patch embedding layer
in PIXEL-based models, random words are more
similar to each other at the input layer when
modelled as images than entries in a vocabulary.

Taken together, these plots suggest that a PIXEL-
based language model is capable of forming con-
textualised word representations and that these are
more context-specific in upper layers, though not
as fine-grained as seen for BERT.

6.3 Token frequency and similarity

The degree of cosine similarity between random
words observed in Figure 4a encourages us to
assess the isotropic nature of the model (Etha-
yarajh, 2019; Rajaee and Pilehvar, 2021). The
high cosine similarities suggest that the word
representations are not evenly distributed with
respect to direction in the embedding space, but
instead appear to be anisotropic. When learned
vector representations populate a narrow cone in
the embedding space, this geometric alignment
leads to an overestimation of their similarity (Gao
et al., 2019), which is not an expected property of

an expressive word embedding space (Arora et al.,
2016; Mu and Viswanath, 2018).12

Recent work has shown that Transformer-based
language models can develop a representation bias
driven by token frequency, where low-frequency to-
kens are clustered together in the embedding space,
leading to anisotropy in the model (Gao et al.,
2019; Fuster Baggetto and Fresno, 2022; Jiang
et al., 2022). This bias leads to poor word contex-
tualisation because the learned vector positions of
low frequency words have not moved far from their
random initialisation. Thus, their embeddings are
not sufficiently distinct from unrelated words with
similarly low token frequency (Gong et al., 2018;
Cai et al., 2021). Tokens with a higher frequency,
and thus more parameter updates, can move further
in the embedding space from their initialisation
and become more semantically meaningful. Conse-
quently, we hypothesise that compressing the input
space in the form of structured rendering allows the
model to build more contextualised word represen-
tations through more frequent parameter updates.

We investigate this by sampling inputs that were
seen during pretraining with high and low fre-
quency. Specifically, we take the 100 most fre-

12Following Cai et al. (2021) this global estimate of ansiotropy
does not rule out the possibility of distinct and locally
isotropic clusters in the embedding space. Ding et al. (2022)
show that isotropy calibration methods (Gao et al., 2019;
Wang et al., 2020; Li et al., 2020) do not lead to consistent
improvements on downstream tasks when models already
benefit from local isotropy. We leave this direction for
PIXEL to future research.



0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

1

2

3
D

en
si

ty
Comparing

High, High
Low, Low
High, Low

(a) Words in isolation, PIXEL

0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

2

4

6

(b) Words in isolation, BASE-BIGRAMS

0.2 0.4 0.6 0.8 1.0
Cosine similarity

0

2

4

6

(c) Words in context, BASE-BIGRAMS

Figure 5: Distributions of cosine similarities within samples of high-frequency words (High), low-frequency words
(Low), or between the two samples. Rendering with BIGRAMS structure leads to less directionally aligned vector
representations of frequent words that have seen more updates during pretraining compared to infrequent words.

quently occurring words from the Wikipedia cor-
pus that was seen during pretraining and 100 words
that occur around 1000 times (rank ≈ 50k).13 We
first render each word from the two frequency sam-
ples in isolation. We then include a comparison to
words in context across 100 unique sentences per
word with BASE-BIGRAMS.14

We plot the distributions of cosine similarities
between representations from the last encoder
layer, where we expect embeddings from both
models to be contextualised. Comparing the plots
from the two rendering strategies, summarised in
Figure 5, the effect of pretraining with a smaller
set of unique tokens becomes clear: for PIXEL

the distribution appears as mixtures with a larger
distribution mass at higher values of cosine
similarity from comparing high-frequency words
to other high-frequency (excluding self-similarity
for now) than when comparing low-frequency
to other low-frequency. For BASE-BIGRAMS the
frequent words both in isolation and in-context are
less directionally aligned with each other compared
to the infrequent, which is in line with the represen-
tation degeneration problem from Gao et al. (2019)
and more frequent updates leading to better con-
textualisation. Figure 6 visualises the in-context
representations in 2 dimensions using t-SNE
(van der Maaten and Hinton, 2008) and provides
an additional indication of more frequent words
having less locally compact representations.15

We expect that in-context representations from
PIXEL also qualitatively resembles Figure 5a
but cannot easily demonstrate this due to the
13Excluding punctuation and numbers.
14Recall from § 6.2 that the CONTINUOUS rendering strategy

by design makes an exact mapping from words in a sentence
to neat image patch indices unattainable.

15Plotting the first 2 singular values from a singular value
decomposition gives the same qualitative indications.

aforementioned challenges in aligning patch
embeddings with CONTINUOUS rendering.

6.4 Frequency bias and semantic modelling

While there is less evidence of representation
degeneration with CONTINUOUS rendering, it is
likely that the poorer performance on GLUE in
§ 5.4 is caused by PIXEL seeing too many different
patches too few times. This is a direct consequence
of the multitude of ways that similar inputs can be
rendered by the CONTINUOUS approach. However,
the drop in performance when mismatching the
rendering strategies in § 6.1 for CONTINUOUS →
BIGRAMS demonstrates that the model has devel-
oped a set of strategy-specific expectations and
features that are not easily updated. In fact, the new
rendering strategy for finetuning introduces a set of
patches that likely never escape the low-frequency
domain and therefore remain poorly contextualised.
Signs of a token frequency bias has also been
found in BERT (Fuster Baggetto and Fresno, 2022).

We lastly assess the connection between
visual token frequency and downstream semantic
performance. With BERT, high-frequency words
have the most context-specific representations
(Ethayarajh, 2019), and upper-layer representations
of low-frequency words are influenced more by
their context than frequent words (Voita et al.,
2019). Following Ethayarajh (2019), we see that
this applies to BASE-BIGRAMS as well (illustrated
in Figure 7 and discussed in greater detail in
§ A.5). We expect that sentences that only vary in
being cased or uncased would result in different
representations when lowercase appears more
frequently (for most words). This demonstrates the
impact of observed token frequency on semantic
modelling and is in line with observed biases in
BERT’s embedding space (Jiang et al., 2022).



200 0 200
200

0

200
High freq.
Low freq.

Figure 6: t-SNE plot of the output
embeddings of high- and low-
frequency words in context from
BASE-BIGRAMS. Low-frequency
words cluster tightly in this space.

0 5 10
Layer depth

0.0

0.5

1.0

C
os

in
e 

si
m

ila
ri

ty

Similarity
Self

High freq.
Low freq.

Intra-sentence
High freq.
Low freq.

Figure 7: Self- and intra-sentence
similarity from BASE-BIGRAMS.
High-frequency words are the most
context-specific; low-frequency
words are influenced by their context.

0 5 10
Layer depth

0.0

0.5

1.0

Sp
ea

rm
an

's
 c

or
re

la
tio

n

Continuous
Bigrams
Bigrams, uncased

Figure 8: Evaluation performance
on STS-B. Uncased sentences yield
better performance than the original
with BASE-BIGRAMS; the effect is
less clear for PIXEL (not shown).

We rely on the Semantic Textual Similarity
Benchmark (STS-B; Cer et al., 2017) also found in
GLUE for this assessment. We measure the cosine
similarity between sentence representations16 and
plot its correlation with the gold standard similarity
scores as the measure of performance. Figure 8
proves that both CONTINUOUS and BIGRAMS ren-
dering during pretraining lead to non-trivial seman-
tic modelling capabilties. At peak performance,
around the middle layers, the increase from sim-
ply ensuring that all words are uncased is roughly
the same as the increase from PIXEL to BASE-
BIGRAMS. This resembles how frequent and in-
frequent tokens have unequal influence on their
context in BERT (Voita et al., 2019).

Seeing that BASE-BIGRAMS exhibits similar
representational traits to that of BERT, future work
could aim for more semantically capable PIXEL-
based models by generalising advances found for
tokenizer-based models (Gao et al., 2021).

7 Related work

Recent work on pixel-based language modelling
has demonstrated how visual language under-
standing can be achieved through pixels only (Lee
et al., 2022), observed that the visual similarity of
languages plays an important role in cross-lingual
transfer (Rahman et al., 2023), and shown how
unifying the modalities for text and images allow
a single encoder to perform multimodal tasks
(Tschannen et al., 2023). By relying on bytes
directly, the unification of modalities can be taken
even further (Jaegle et al., 2021; Horton et al.,
2023; Yu et al., 2023). The work most closely

16Mean hidden state output across all tokens in a sentence,
excluding the CLS token and black end-of-sequence token.

related to ours, after Rust et al. (2023), is the work
on machine translation with pixel representations
(Salesky et al., 2021, 2023). A detailed discussion
of previous pixel-based approaches can be found in
Rust et al. (2023, § 5). Where PIXEL laid the foun-
dation for general-purpose language encoding with
pixel-based representations, this work takes the
first step towards hypothesis-driven improvements
without adding additional data (Yang et al., 2019)
or scaling up the model (Conneau and Lample,
2019). Though it is possible that competitive
performance could be achieved by a model with
CONTINUOUS rendering by pretraining on more
data for more steps (Liu et al., 2019).

Our addition of BIGRAMS structure resembles
the addition of optional but hugely beneficial
(n = 4)-grams in the character-based CANINE

model (Clark et al., 2022). While character-level
n-gram models (Wieting et al., 2016; Bojanowski
et al., 2017) have been succeeded by Transformer-
based language models, character-level features
remain valuable as they are less sparse and more
robust to misspellings than word n-grams, and
remain useful for especially morphologically rich
languages (Garrette and Baldridge, 2013; Kulmizev
et al., 2017). Previous work have hypothesised that
character-level models would be more suitable than
subword-based for modelling morphologically-rich
languages (Tsarfaty et al., 2020; Keren et al.,
2022), but a semantically capable design has
proven non-obvious (Ma et al., 2020; Keren et al.,
2022; Nzeyimana and Niyongabo Rubungo, 2022;
Sun et al., 2023). We see potential for future
work with pixel-based language models exploring
appropriate strategies for learning morphological
patterns (Klein and Tsarfaty, 2020; Seker and
Tsarfaty, 2020; Soulos et al., 2021).



8 Conclusion

We evaluate four text rendering strategies to ad-
dress the problem of redundancy in the input space
of PIXEL-based language models. Consequently,
more frequent parameter updates lead to better
contextualised language representations. We find
that rendering two characters per image patch
(BIGRAMS) is a good trade-off between efficiency
and generalisability, resulting in substantial im-
provements on downstream semantic and sentence-
level tasks; contributing to open-vocabulary NLP
with limited computational resources.

Further analyses reveal how the added ren-
dering structure provokes clear representational
similarities to what has been found in BERT.
We see potential in future work generalising
improvements found for tokenization-based
masked language models to PIXEL-based masked
language models. Furthermore, considering that
the Vision Transformer has also been applied
to speech modelling (Huang et al., 2022), and
that patch representation has been suggested to
be a critical component for the success of ViTs
(Trockman and Kolter, 2023), we see potential for
image patches as the basis for unifying modalities.

Limitations

While the rendering strategies we propose here are
well-suited to English, not all equally generalise to
other languages or scripts. WORDS rendering relies
on word boundaries which may not be readily avail-
able or well-defined for many languages which do
not mark word or sentence boundaries with whites-
pace such as Thai or polysynthetic languages such
as Inuktitut. MONO and BIGRAMS are more gen-
eral approaches, but may affect the rendering of
positional characters such as diacritics or correct
contextual forms based on where boundaries are
created. For both approaches, it may be necessary
to modulate font size across languages to ensure
character pairs fit into a single patch, especially
when rendering with diacritics. MONO provides
further representational efficiency compared to BI-
GRAMS by fixing character width, but comes at
the cost of more limited language coverage; many
scripts cannot be made fixed-width and fewer than
10 have mono fonts available. CONTINUOUS ren-
dering provides a more general approach which
must be balanced with learning efficiency.
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Ateyah, Furkan Atmaca, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Keerthana Balasubramani, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, Verginica Barbu Mititelu,
Starkaður Barkarson, Rodolfo Basile, Victoria Bas-
mov, Colin Batchelor, John Bauer, Seyyit Talha Bedir,
Kepa Bengoetxea, Yifat Ben Moshe, Gözde Berk,
Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ah-
mad Bhat, Erica Biagetti, Eckhard Bick, Agnė
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A Appendix

A.1 Representational efficiency
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Figure 9: Distributions of sequence lengths (in patches) resulting from different rendering strategies.

As seen in Figure 1, structured rendering compresses the input space by reducing the positions characters
may be observed in. This dramatically affects the number of unique inputs observed in a fixed number of
sequences, as quantified in Figure 3. Concretely, the 10 most frequently observed image patches after
processing 100,000 sequences from English Wikipedia are shown in Figure 2; with continuous rendering
all are positional variants of the same subword, while with structured rendering each represents different
words or morphemes. However, instituting word- or subword-level structure with whitespace padding
increases sequence lengths compared to unstructured rendering as quantified in Figure 9.

A.2 Pretraining loss curves
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Figure 10: Pretraining loss for SMALL models with different rendering strategies, indicating that structured rendering
may make the masked reconstruction task more data efficient, reaching a low loss in fewer steps.



A.3 Detailed experimental results

ENG ARA COP HIN JPN KOR TAM VIE ZHO AVG

BERT 90.6 77.7 13.0 75.9 73.8 30.2 15.2 49.4 28.8 50.5
PIXEL 88.7 77.3 83.5 89.2 90.7 78.5 52.6 50.5 73.7 76.1

TINY-CONTINUOUS 78.9 74.6 80.0 87.9 89.9 75.1 48.3 46.2 69.5 72.3

Structure
SMALL-CONTINUOUS 87.2 77.2 83.4 88.9 91.0 78.8 53.8 51.9 73.5 76.2
SMALL-BIGRAMS 87.9 75.4 84.1 88.9 90.8 79.4 53.9 50.9 73.9 76.1
SMALL-MONO 88.3 76.8 83.4 88.9 91.0 79.0 50.5 51.3 73.8 75.9
SMALL-WORDS 88.0 77.2 83.9 89.3 91.2 78.7 53.7 53.3 74.2 76.6

Scale
TINY-BIGRAMS 82.9 70.6 79.1 86.2 90.0 76.2 44.9 47.6 69.8 72.0
SMALL-BIGRAMS 87.9 75.4 84.1 88.9 90.8 79.4 53.9 50.9 73.9 76.1
BASE-BIGRAMS 89.6 77.7 81.4 88.6 90.8 78.1 49.8 49.4 73.9 75.5

Table 4: Test set LAS results for dependency parsing on a selection of Universal Dependencies treebanks (UDP).

MNLI-M/MM QQP QNLI SST-2 COLA STS-B MRPC RTE WNLI AVG

BERT 84.0 / 84.2 87.6 91.0 92.6 60.3 88.8 90.2 69.5 51.8 80.0
PIXEL 78.1 / 78.9 84.5 87.8 89.6 38.4 81.1 88.2 60.5 53.8 74.1

TINY-CONTINUOUS 36.7 / 37.0 76.6 72.9 87.2 2.1 25.1 82.4 58.5 59.2 53.8

Structure
SMALL-CONTINUOUS 72.2 / 73.6 84.8 86.2 88.3 19.1 81.7 84.6 61.4 57.7 71.0
SMALL-BIGRAMS 77.3 / 78.1 85.7 87.8 90.4 42.3 84.3 87.8 63.5 56.3 75.4
SMALL-MONO 77.4 / 77.6 84.7 86.8 89.4 42.3 82.4 86.9 57.5 58.9 74.4
SMALL-WORDS 76.7 / 77.3 84.5 86.6 89.9 44.6 80.5 87.4 62.8 56.3 74.7

Scale
TINY-BIGRAMS 60.8 / 61.9 79.6 81.7 87.2 15.6 77.9 83.0 59.4 57.7 66.5
SMALL-BIGRAMS 77.3 / 78.1 85.7 87.8 90.4 42.3 84.3 87.8 63.5 56.3 75.4
BASE-BIGRAMS 81.1 / 81.4 87.6 89.7 90.4 53.3 86.6 90.2 63.5 56.3 78.0

Table 5: Validation set performance on GLUE. The reported metrics are F1 score for QQP and MRPC, Matthew’s
correlation for COLA, Spearman’s ρ for STS-B, and accuracy for the rest.



ENG ARA BEN FIN IND KOR RUS SWA TEL AVG

BERT 68.5 58.0 43.2 58.3 67.1 12.4 53.2 71.3 48.2 51.5
PIXEL 59.6 57.3 36.3 57.1 63.6 26.1 50.5 65.9 61.7 52.3

TINY-CONTINUOUS 42.6 45.0 12.4 45.3 48.1 13.2 36.7 46.8 45.7 36.6
SMALL-CONTINUOUS 57.1 53.3 20.3 57.5 62.9 22.3 51.1 65.3 58.1 48.8

Scale
TINY-BIGRAMS 43.3 45.5 19.0 50.3 48.2 14.9 45.4 52.7 56.4 41.6
SMALL-BIGRAMS 50.8 53.2 37.1 59.1 57.5 20.1 52.8 62.4 64.2 50.8
BASE-BIGRAMS 53.8 53.1 46.5 59.6 60.3 18.8 54.1 64.1 65.7 52.8

Table 6: Validation set F1 scores for TyDiQA-GoldP. Average (AVG) scores exclude ENG (Clark et al., 2020). With
some rendering structures, answer span extraction adversely affects results (see discussion at § A.4).

AMH HAU IBO KIN LUG LUO PCM SWA WOL YOR AVG

BERT 0 86.6 83.5 72.0 78.4 73.2 87.0 83.3 62.2 73.8 62.7
PIXEL 47.7 82.4 79.9 64.2 76.5 66.6 78.7 79.8 59.7 70.7 70.6

BASE-BIGRAMS 50.1 85.6 82.2 68.4 78.4 72.5 82.8 82.4 64.4 74.8 74.2

Table 7: Test set F1 scores on MasakhaNER (Adelani et al., 2021). We follow the implementation of Rust et al.
(2023) and render each word at the start of a new image patch.

A.4 TyDiQa-GoldP
The CONTINUOUS rendering strategy used for PIXEL, in which words often overlap in an image patch,
leads to extracted answer spans that potentially include leading or trailing characters that should not be
part of the answer. BIGRAMS rendering adressess this issue by yielding clear word boundaries in the
input representations.

However, the BIGRAMS rendering strategy poses new challenges to extracting answer spans for TyDiQA-
GoldP. While the task is simplified compared to the primary task by removing language tracks that lack
whitespace,17 we find that a surprisingly high number of “words” are a string of comma-separated words
or concatenations of characters and letters that should be delimited by whitespace. By design we consider
and render these as one unit when we only split by whitespace. An example of a single “unit” from the
training split highlights this issue more clearly: “oikeudet[1]Lääni[1]1Vilna523,0501387Vilnan”18 where
the expected answer is “Vilna” and highlighted in bold. In such an instance, a PIXEL BIGRAMS model
will predict the whole unit, resulting in a lower performance. Furthermore, some of these “words” in
the training data are more than a thousand characters long and therefore do not fit within the maximum
sequence length of 529 patches.

17https://github.com/google-research-datasets/tydiqa/blob/master/gold_passage_baseline/README.md
18id = finnish-1438027099681899178-6

https://github.com/google-research-datasets/tydiqa/blob/master/gold_passage_baseline/README.md


A.5 Measuring self-similarity and intra-sentence similarity
We follow Ethayarajh (2019) and measure the degree of self-similarity and intra-sentence similarity for
the words in the two frequency samples from § 6.3. Self-similarity is computed as the cosine similarity
between the same word in different sentences and a high degree therefore indicates that representations
vary little across contexts. For intra-sentence similarity we compute the cosine similarity between a word
representation and the sentence representation (mean hidden state output across all tokens excluding the
CLS token and black end-of-sequence token).19 This captures how aligned the representation of a word
is with the sentence as a whole. If a word has both a low degree of self-similarity and intra-sentence
similarity, we infer that the word has a context-specific representation that is still distinct from the other
words in that sentence. If self-similarity is low but intra-sentence similarity is high, this alludes to the
word simply being contextualised by aligning its representation with the other words in that sentence. We
summarise these two measures in Figure 7 and find that, just like in Figure 4a, the upper layers produce
more context-specific representations as seen by the lower self-similarity, and that high-frequency words
are the most context-specific. This is in line with Ethayarajh (2019) who finds that stopwords, being some
of the most frequently observed words in the pretraining data, have some of the most context-specific
representations. The measure of intra-sentence similarity reveals that the contextualised representation
of low-frequency words is more similar to that of its context, with high-frequency words having more
nuance where words do not necessarily mean the same just because they appear in the same sentence.

19Ethayarajh (2019) average over every word-sentence combination for a given sentence, not just a single word.


