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ABSTRACT

Compared to RGB images, raw sensor data provides a richer representation of
information, which is crucial for accurate recognition, particularly under chal-
lenging conditions such as low-light environments. The traditional Image Signal
Processing (ISP) pipeline generates visually pleasing RGB images for human
perception through a series of steps, but some of these operations may adversely
impact the information integrity by introducing compression and loss. Further-
more, in computer vision tasks that directly utilize raw camera data, most existing
methods integrate minimal ISP processing with downstream networks, yet the
resulting images are often difficult to visualize or do not align with human aesthetic
preferences. This paper proposes UniISP, a novel ISP framework designed to
simultaneously meet the requirements of both human visual perception and com-
puter vision applications. By incorporating a carefully designed Hybrid Attention
Module (HAM) and employing supervised learning, the proposed method ensures
that the generated images are visually appealing. Additionally, a Feature Adapter
module is introduced to effectively propagate informative features from the ISP
stage to subsequent downstream networks. Extensive experiments demonstrate that
our approach achieves state-of-the-art performance across various scenarios and
multiple datasets, proving its generalizability and effectiveness.

1 INTRODUCTION

In today’s information age, digital cameras have become ubiquitous sensing devices across socio-
economic domains, serving both human perception and machine interpretation. Based on their
objectives, imaging applications divide into two categories: human vision-oriented (e.g., smartphones,
social media) and machine vision-oriented Jiao et al. (2023; 2022); Redmon (2018); Xie et al.
(2021)(e.g., robotics, medical imaging). Hybrid scenarios requiring dual optimization are emerging
but understudied, such as in-vehicle ISPs for autonomous driving that demand real-time visualization
for users while enabling environmental recognition for machine navigation. Current research didn’t
consider dedicated optimization frameworks for such dual-purpose requirements.

In contrast to RGB images, RAW images are directly captured from the sensor before any ISP pro-
cessing, retaining physically meaningful information such as scene radiance and noise characteristics
Wei et al. (2020; 2021). However, due to the substantial volume of RAW data, which entails high
storage and transmission costs, along with its suboptimal visualization quality when unprocessed,
mainstream approaches in most high-level vision tasks—such as object detection and semantic
segmentation—still rely on RGB images as input.

The manually designed Image Signal Processing (ISP) pipeline aims to produce images that offer
superior quality for human visual perception Wu et al. (2019). It typically consists of a sequence of
operations such as demosaicing, white balance adjustment, color correction, tone mapping, denoising,
sharpening, and gamma correction Ramanath et al. (2005). However, each step within the ISP may
introduce certain artifacts or degradation in image quality Guo et al. (2024), which can adversely
impact the performance of downstream high-level vision tasks. As shown in fig. 1(a), the conventional
processing of RAW data follows a two-stage pipeline: the RAW data is first converted into an RGB
image via a human-visual-oriented ISP, and then this RGB image is utilized for tasks such as object
detection. It can be observed from the detection results that, due to information loss during ISP
processing, the vehicle in the upper-left corner of the image was not detected.
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Figure 1: Methods of using RAW data for object detection. (a) Traditional two-stage approaches
employ compression operations on the RAW data, resulting in the loss of fine details. (b) Jointly
training the ISP and the downstream detection network results in generated RGB images with
suboptimal visual quality. (c) Our framework takes into account both the requirements of human
visual perception and the needs of machine vision.

To better leverage camera raw data for various computer vision tasks, existing approaches have been
proposed, as illustrated in fig. 1(b). These methods either incorporate differentiable ISP modules Yu
et al. (2021) or employ neural networks to replace conventional ISP components Yoshimura et al.
(2023). By jointly training the ISP and the downstream network, they directly optimize task-specific
performance Wang et al. (2024). Although such strategies improve the performance on downstream
tasks, the resulting RGB images produced by the jointly trained ISP often fail to meet human aesthetic
standards and may not even be properly visualizable.

To address these limitations, we propose UniISP, a lightweight end-to-end neural ISP framework that
simultaneously serves both human and machine vision. Based on a U-Net architecture Ronneberger
et al. (2015), it incorporates several carefully designed modules. Inspired by Restormer Zamir et al.
(2022), which applies self-attention along feature dimensions to efficiently process high-resolution
images, we introduce a Hybrid Attention Module (HAM) based on CNNs. This design preserves the
local feature extraction strengths of CNNs while capturing global dependencies via self-attention,
maintaining high computational efficiency. Drawing inspiration from feature fusion techniques Lin
et al. (2017); Chen et al. (2024), we propose a Feature Adapter to embed rich information from
the ISP stage into downstream networks, followed by joint optimization to collectively enhance the
performance of final machine vision perception tasks. As illustrated in fig. 1(c), the HAM, coupled
with supervised learning, ensures that the generated images align with human visual preferences,
while the Feature Adapter effectively leverages RAW data features for downstream networks, thereby
improving detection performance. This dual mechanism enables the framework to simultaneously
cater to the requirements of both human visual perception and machine vision. Extensive experiments
across multiple tasks, datasets, and scenarios demonstrate that the proposed method outperforms
existing methods, confirming its effectiveness and strong generalization capability.

The main contributions of this paper can be summarized as follows: (1) We propose a learnable
lightweight ISP framework that can simultaneously meet the needs of human vision and machine
vision. (2) We introduce a Hybrid Attention Module, which combines self-attention mechanisms with
classic convolutional attention modules, fully leveraging different types of attention mechanisms to
enhance the model’s feature representation and generalization capabilities. (3) We present a Feature
Adapter that integrates and adapts multi-scale features from the ISP stage with downstream networks,
enriching the model’s understanding ability and improving the performance on downstream tasks.
(4) We conduct extensive experiments on a wide range of tasks (including raw-to-RGB mapping,
object detection, and semantic segmentation). Qualitative and quantitative results demonstrate that
the proposed algorithm achieves state-of-the-art performance.

2 RELATED WORK

Deep Networks for Human-Visual-Quality ISP. Typically, a camera’s ISP pipeline is responsible
for reconstructing high-quality sRGB images from raw sensor data. Inspired by the unprecedented
success of deep learning, CycleISP Zamir et al. (2020), Invertible-ISP Xing et al. (2021) and ParamISP
Kim et al. (2023) proposed a complete forward and inverse camera imaging pipeline. Ignatov et al.
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Figure 2: (a) Overall framework of UniISP. Through supervised learning with RGB reference and
joint training with downstream networks, it simultaneously optimizes both the perceptual quality of
generated RGB images and the performance of downstream tasks. (b) Architecture of the Hybrid
Attention Module (HAM). By effectively integrating multiple attention mechanisms, it significantly
enhances the model’s representational capacity. (c) The feature adapter transfers and adapts RAW-
stage features to downstream networks.

(2020b) collected a dataset comprising paired RAW and sRGB images captured by a Huawei P20
smartphone and a Canon 5D Mark IV DSLR camera, respectively. Based on the dataset provided
by Ignatov et al. (2020b), two challenges were organized Ignatov et al. (2020a; 2019), where CNN
methods inspired by the Multi-Level Wavelet CNN (MWCNN) Liu et al. (2019) achieved the best
results. Among the methods based on MWCNN, MW-ISPNet Ignatov et al. (2020a) and AWNet
Dai et al. (2020) adopted different U-Net variants to generate visually appealing sRGB images.
LiteISPNet Zhang et al. (2021) proposed an alignment loss by explicitly computing the optical flow
between the predicted DSLR-like image and the ground truth image. Shekhar Tripathi et al. (2022)
introduced a color-conditional ISP network, utilizing a color prediction network with an efficient
global context Transformer module to achieve more accurate color prediction.

Computer Vision based on RAW data. To more effectively utilize the information in raw images for
downstream visual tasks, early methods proposed performing computer vision processing directly on
raw images Buckler et al. (2017); Zhou et al. (2020). However, these methods lacked consideration
of the physical sensor noise in the conversion process from photons to raw images, especially under
low-light conditions Li et al. (2023); Monakhova et al. (2022); Wei et al. (2020). Moreover, training
from scratch on raw data would forgo the current visual models pre-trained on large-scale sRGB data,
especially since existing raw image datasets Omid-Zohoor et al. (2014); Zhou et al. (2017) are far
fewer than RGB datasets Deng et al. (2009); Kirillov et al. (2023). Therefore, subsequent research
has mainly focused on finding methods to jointly optimize the ISP and backend computer vision
models Diamond et al. (2021); Mosleh et al. (2020); Qin et al. (2022). Qin et al. (2023) designed a
sequential CNN model that repeatedly adjusts the hyperparameters of the ISP to adapt to downstream
tasks, demonstrating the advantages of this approach. Cui et al. (2021) considered the physical
sensor noise model in the ISP and proposed a multi-task auto-encoder transformation model to learn
intrinsic visual structures, proving its effectiveness in object detection under dark environments. Guo
et al. (2024) improved the generalization ability and performance on downstream tasks by learning
degradation-independent latent representations for the ISP. Furthermore, RAW-Adapter Cui & Harada
(2025) enhances the performance on downstream tasks by introducing learnable ISP stages and
model-level adapters to adapt pre-trained sRGB models to the camera’s RAW data.

3 METHOD

fig. 2 illustrates the overall architecture of the UniISP model and its constituent modules. This paper
will first detail the key modules designed to enhance human visual quality (section 3.1). Subsequently,
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we introduce the components incorporated to improve perceptual performance for downstream
tasks (section 3.2). Finally, we elaborate on the adaptive training framework designed for the joint
optimization of these multi-task objectives.

3.1 HUMAN-VISION-ORIENTED ISP MODULE

In the context of human visual perception tasks, this paper endeavors to implement a lightweight,
deep learning-based ISP module. Given a raw image x captured by a smartphone camera, the goal is
to predict a high-quality sRGB image ŷ that approximates the color characteristics of a target DSLR
sRGB image y. we propose UniISP, a multi-level wavelet-based Liu et al. (2019) ISP network based
on the U-Net architecture with the HAM as its backbone. The overall architecture of the UniISP
model is shown in fig. 2.

Hybrid Attention Module (HAM): Our HAM is designed for efficient and feature-rich global
modeling, which is essential for high-quality image reconstruction. Inspired by Restormer Zamir et al.
(2022), we implement self-attention (SA) along the channel dimension rather than the conventional
spatial dimension. This reduces computational complexity from O

(
(H ·W )2

)
to O(C2) for feature

maps of size H ×W × C, making global interactions feasible for high-resolution images.

Channel-wise SA enables the model to capture and reinforce semantic correlations between color
channels, which are crucial for RAW-to-RGB conversion and related tasks. Unlike static channel
attention methods such as Squeeze-and-Excitation Hu et al. (2018), our approach dynamically
amplifies informative channels and suppresses noisy ones according to context.

To preserve structural information, we further integrate relative positional encoding (RPE) into the
channel-wise SA. RPE provides cues about the relative positions of channels, enhancing the modeling
of both local and long-range dependencies. As shown in fig. 2(b), the input tensor is projected into a
higher-dimensional channel space, partitioned into query, key, and value tensors, and processed with
channel-wise SA augmented by RPE. The resulting feature map is globally informed by both channel
content and relationships, and is further refined by subsequent attention mechanisms for improved
task performance.

Figure 3: Joint training with GCM. The well-
aligned supervisory target sRGB image yw is
synthesized through Global Color Mapping
(GCM) and optical flow consistency mask m to
enforce spatiotemporal alignment constraints
during training.

Since x and y are captured by different cameras,
there is inevitably a spatial misalignment. Fur-
thermore, the severe color discrepancies between
x and y make the image alignment more challeng-
ing. Therefore, this paper incorporates the global
color mapping(GCM) module, an alignment method
proposed by LiteISP Zhang et al. (2021), for joint
training and optimization. To address inaccuracies
introduced during the alignment process, a robust
mask alignment loss is proposed by enhancing op-
tical flow consistency checks.

As shown in fig. 3, the input x first undergoes a sim-
ple demosaicing method (e.g., bicubic) to produce x̂.
τ ∈ R2×H×W is the 2D coordinate map containing
the coordinate of the pixels,which is normalized to
[−1, 1]. The τ ,x̂ and y pass through the GCM mod-
ule to obtain a color-adjusted ỹ. Given ỹ and y, a
pre-trained optical flow network, PWC-NETSun et al. (2018), is employed to evaluate the optical
flow between the two images. The estimated optical flow is then used to perform a warping operation
W Sun et al. (2018) on y to form a well-aligned target sRGB image yw.

The use of optical flow estimation significantly alleviates misalignment issues; however, the method
itself has some limitations. In particular, optical flow is often inaccurate in the presence of repeating
patterns, occlusions, and homogeneous regions. To address these challenges, we propose a more
robust and flexible alignment mask that employs forward-backward consistency checks to filter out
inaccurate areas.

For the pixel position (x, y) in frame IA, (u, v) represents the displacement from (x, y) in frame IA
to the corresponding position in frame IB , where Ψ is the pre-trained optical flow network .
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(u, v) = Ψ(a, b)(x, y)

(x′, y′) = (x+ u, y + v) (1)

(u′, v′) = Ψ(b, a)(x′, y′)

m represents the optical flow consistency mask. Here, each element mx,y of m is defined as follows:

mx,y =

1,

√
(u+ u′)2 + (v + v′)2 < T,

and W(1, (u, v)) ≥ 1− ϵ

0, otherwise
(2)

Here, T is set to the 90th percentile and can be adjusted flexibly. ϵ is a threshold set to 0.001.

The loss function for human visual tasks on unaligned datasets is as follows:

LISP(ŷ,y
w) =λ1 ∥m ◦ (ŷ − yw)∥1 + λ2(1− LSSIM(ŷ,yw))

+ λ3 ∥m ◦ (ϕ(ŷ)− ϕ(yw))∥1 (3)

Here, ◦ denotes the element-wise product, and ∥ · ∥1 is the L1 loss. LSSIM represents the structural
similarity (SSIM) loss Wang et al. (2003). The function ϕ denotes the pre-trained VGG-19 network
Mao et al. (2017). We set the parameters λ1 = λ3 = 1 and λ2 = 0.15.

3.2 FEATURE ADAPTER

To fully exploit the rich information contained in RAW images and enable effective adaptation to
downstream RGB-pretrained models, our design incorporates a feature adapter based on frequency-
domain fusion and multi-stage integration.

RAW data preserves both fine-grained details (high-frequency information) and global context (low-
frequency information) that are often lost in traditional ISP pipelines. Directly mapping RAW features
to RGB without considering these frequency characteristics can lead to suboptimal representation and
poor transferability to downstream tasks. By fusing multi-scale encoder outputs (D1–D4), FreqFusion
module Chen et al. (2024) aggregates information across spatial resolutions and frequency bands,
ensuring that features relevant for both reconstruction and semantic analysis are retained.

See fig. 2, the FreqFusion module aggregates multi-scale encoder outputs and uses spectral processing
to separate low and high-frequency components. The fused feature is computed as:

Ffused =

3∑
i=1

(
αiF

i
low + βiF

i
high

)
(4)

where αi and βi are learnable weights. This approach preserves both boundary details and global
structure. The fused features are transformed and progressively merged into the backbone of the
downstream network at multiple stages. This merging is realized via concatenation and residual
connections:

fl+1 = ResBlock (Concat(fl, Ffused)) + fl (5)

where fl is the backbone feature at stage l. This mechanism enables the network to flexibly incorporate
both RAW-domain and RGB-domain information, reducing domain shift and facilitating effective
transfer of pre-trained weights.

To balance human visual quality and machine perception performance, we propose an adaptive total
loss Ltotal that dynamically combines human vision loss Lhuman and machine vision loss Lmachine:

Ltotal = λ · Lhuman + (1− λ) · Lmachine (6)

The weighting factor λ ∈ [0, 1] is adaptively computed at each step t based on exponential moving
averages of the losses:

λ(t) =
L̃(t)

machine

L̃(t)
human + L̃(t)

machine

(7)

5
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where the exponentially moving average (EMA) losses are updated as:

L̃(t)
human = γ · L̃(t−1)

human + (1− γ) · L(t)
human (8)

L̃(t)
machine = γ · L̃(t−1)

machine + (1− γ) · L(t)
machine (9)

with γ = 0.9. This design automatically adjusts focus: when L̃human is relatively high, λ decreases to
emphasize machine performance, and vice versa.

Lmachine is defined by the downstream task objective, e.g., cross-entropy loss for segmentation or
focal loss for detection. For human vision, Lhuman is defined as LISP(ŷ,y

w) if the training dataset is
unaligned, or a combination of L1 and LSSIM losses if aligned.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATION DETAILS

Datasets. We conducted experiments on raw-to-RGB mapping, object detection, and semantic
segmentation tasks. An overview of the datasets is shown in table 1.

Table 1: Datasets used in the comparison experiments. Here, we synthesize dark and over-exposed
images from the original real-captured PASCAL RAW to enrich data diversity. ADE20K RAW is
synthesized from ADE20K sRGB via InvISP with dark/over-exposed variants.

Dataset # Images Task Type Sensor
ZRR 48,043 Raw-to-RGB Mapping Real Huawei P20, Canon 5D Mark IV
PASCAL RAW 4259 Object Detection Real & Synthesis Nikon D3200
LOD 2230 Object Detection Real Cannon EOS 5D Mark IV
ADE20K RAW 27,574 Semantic Segmentation Synthesis —-

In the raw-to-RGB mapping task, we used the ZRR dataset Ignatov et al. (2020b). The ZRR dataset
contains 46.8k RAWsRGB image pairs for training and 1.2k pairs for evaluation, where the RAW
images are captured by Huawei P20 and the sRGB images are captured by Canon camera.

For the object detection task, we used two open-source real-world datasets: PASCAL RAW Omid-
Zohoor et al. (2014) and LOD Hong et al. (2021). PASCAL RAW is a dataset collected during
daytime scenes in Palo Alto and San Francisco, containing 4,259 raw images captured by a Nikon
D3200 DSLR camera, featuring three object detection classes. For PASCAL RAW (dark) and
PASCAL RAW (over-exp), the scene brightness data was generated using the synthesis method
provided by Cui & Harada (2025). LOD is a real-world dataset with 2230 low-light condition RAW
images, taken by a Canon EOS 5D Mark IV camera with 8 object classes. We take 1800 images as
training set and the other 430 images as test set.

For the semantic segmentation task, we employed ADE20K RAW Cui & Harada (2025), which was
synthetically derived from the ADE20K dataset Zhou et al. (2017). The training and testing splits are
the same as those of ADE20K.

Implementation Details. For the human visual raw-to-RGB mapping task, all ISP models use the
GCM module to align GT with raw before proceeding with training and testing. We employed the
Adam optimizer Kingma (2014) for optimization, with β1 = 0.9 and β2 = 0.999, and trained for
100 epochs. The batch size was set to 16, the initial learning rate was set to 1× 10−4, and we used
cosine annealing as the learning rate adjustment strategy.

For downstream computer vision tasks, we built our framework based on the open-source computer
vision toolkits MMDetection Chen et al. (2019) and MMSegmentation Contributors (2020). Both
the object detection and semantic segmentation tasks were initialized with ImageNet pre-trained
weights. For object detection tasks, we employed two mainstream detectors: RetinaNet Lin (2017)
and Sparse-RCNN Sun et al. (2021), both using ResNet He et al. (2016) as the backbone. For
semantic segmentation tasks, we opted for the mainstream segmentation framework Segformer Xie
et al. (2021) with MIT Xie et al. (2021) as the backbone. All training image data underwent data
augmentation, primarily consisting of random cropping and random flipping, with all experiments
conducted on 8 NVIDIA A100 GPUs.
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4.2 RAW-TO-RGB MAPPING

To validate the effectiveness of the proposed method, comparisons were made against three state-of-
the-art methods AWNet Dai et al. (2020), MWISPNet Ignatov et al. (2019), and LiteISP Zhang et al.
(2021) on the ZRR dataset. For quantitative performance evaluation, three metrics were computed
on the RGB channels: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018). Additionally, the number
of model parameters and computational complexity were measured to evaluate the efficiency of the
models.

Table 2: Raw-to-RGB mapping results on the ZRR (Align
GT with RAW) dataset. UniISP (w/o F) denotes the variant
without the feature adapter module.

Method Params (M) GFLOPs PSNR↑ SSIM↑ LPIPS↓
PyNet 47.53 342.42 22.93 0.8509 0.153
MW-ISPNet 29.22 88.39 23.28 0.8524 0.148
AWNet 49.07 75.08 23.46 0.8537 0.141
LiteISP 9.01 71.94 23.88 0.8573 0.134
UniISP (w/o F) 5.04 31.68 24.14 0.8614 0.122

As shown in table 2, UniISP outper-
forms competing methods across all
metrics. Since UniISP primarily com-
prises the lightweight HAM module, it
maintains significantly lower Params
and GFLOPs compared to other com-
peting methods. For better visualization,
we provide the error maps beneath each
corresponding image that indicate the
content discrepancies between the generated sRGB images and GT images. Moreover, we present
qualitative results in fig. 4. From the figure, it is evident that the proposed method yields sharper
images with richer details and more accurate colors, compared to competing methods.

(a) Ground Truth (b) MWISPNet (c) AWNet (d) LiteISPNet (e) UniISP

Figure 4: Visual results comparison of a typical scene in the ZRR dataset. The error maps represent
the content difference between the generated sRGB images and the GT images, the darker the better.
Best viewed by zooming in.
4.3 OBJECT DETECTION

For the object detection task on the PASCAL RAW Omid-Zohoor et al. (2014) dataset, we adopt
RetinaNet Lin (2017) with ResNet He et al. (2016) backbones of varying sizes (ResNet-18, ResNet-
50). All models were trained using the SGD optimizer Ruder (2016) with a batch size of 4. The
training images were cropped to a size of (400, 600), and the training was conducted for 50 epochs.
table 3 presents the detection results with ResNet-18 and ResNet-50 backbones, The comparison
includes demosaiced RAW data (“Demosaicing”), the default camera ISP, various state-of-the-art
ISP solutions Chen et al. (2018); Jin et al. (2023); Karaimer & Brown (2016); Zhang et al. (2021);
Xing et al. (2021), and jointly optimized methods including Dirty-Pixel Diamond et al. (2021) and
RAW-Adapter Cui & Harada (2025). Among these, UniISP (w/o J) denotes the model without the
feature adapter and without joint optimization with downstream tasks, using the weights trained
on the ZRR dataset. UniISP (w/o F) represents the model jointly trained and optimized with the
downstream network but without the feature adapter.

The advantage of raw data compared to RGB data lies in its ability to provide a richer representation
under challenging conditions such as low-light environments. From the table 3, it is evident that the
proposed method significantly improves performance in dark scenes compared to the RAW-Adapter
Cui & Harada (2025). This indicates that by using the feature adapter module, our approach better
leverages the ISP-stage feature adaptation for downstream networks. By evaluating the performance
of UniISP (w/o F) in low-light scenarios through ablation experiments, we further demonstrate
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Table 3: Object detection results (VOC-style mAP) on the PASCAL RAW and LOD datasets using
ResNet-18 (R-18) and ResNet-50 (R-50) backbones. Best scores are highlighted in bold.

Dataset PASCAL RAW LOD
Normal Over-exposed Dark Normal Over-exposed Dark

Detecter RetinaNet (R-18) RetinaNet (R-50) RetinaNet (R-50) Sp-RCNN (R-50)

Default ISP 88.3 - - 89.6 - - 58.4 53.9
Demosaicing 87.7 87.7 80.3 89.2 88.8 82.6 58.5 57.7
Karaimer et al. 88.1 85.6 78.8 89.4 86.8 79.6 54.4 52.2
LiteISP 85.2 84.2 71.9 88.5 85.1 73.5 55.3 49.3
InvISP 85.4 86.6 70.9 87.6 87.3 74.7 56.9 49.4
SID - - 78.2 - - 81.5 49.1 43.1
DNF - - 81.1 - - 82.8 - -
Dirty-Pixel 88.6 88.0 80.8 89.7 89.0 83.6 61.6 58.8
RAW-Adapter 88.7 88.7 82.5 89.7 89.5 86.6 62.1 59.2
UniISP(w/o J) 88.7 86.2 79.2 89.7 87.6 82.5 55.8 50.8
UniISP(w/o F) 89.0 88.4 83.7 89.8 89.5 86.8 62.4 60.2
UniISP 89.1 89.0 85.2 89.8 89.7 88.0 63.9 62.3

the effectiveness of the feature model. Overall, the proposed method surpasses other competing
methods under various lighting conditions. To further validate the performance of the proposed
method in low-light environments, experiments were conducted on the LOD dataset. We employed
two detectors, RetinaNet and Sparse-RCNN , both utilizing a ResNet-50 backbone. As shown in the
table 3, the method proposed in this paper significantly enhances performance in low-light scenarios.

(a) Demosaicing (b) InvISP (c) Karaimer (d) RAW-Adapter (e) UniISP(w/o J) (f) UniISP

Figure 5: Visualization of object detection results on PASCAL RAW. Three rows represent dark,
normal and over-exposed scenarios respectively (from top to bottom). Our UniISP obtains higher
detection accuracy while maintaining good visual quality.

As illustrated in fig. 5, the visualization results of object detection under various illumination
conditions in the PASCAL RAW dataset are presented. Notably, UniISP (w/o J) generates images
with superior visual quality compared to other methods, further demonstrating its strong generalization
capability across diverse raw inputs in the raw-to-RGB conversion task. The figure indicates that
UniISP achieves robust detection performance across varying lighting environments, while other
methods exhibit varying degrees of missed or false detections. Furthermore, since UniISP incorporates
a human vision-oriented loss during training and utilizes images generated by UniISP (w/o J) as
ground truth, the resulting images not only align with human visual perception but also bridge the
domain gap between raw sensor data and the RGB domain preferred by pre-trained backbones.
Moreover, the feature adapter effectively propagates feature information from the raw domain to
downstream networks, thereby further enhancing perceptual performance. The experimental results
validate the feasibility of joint optimization for both human vision and machine vision through a
multi-task learning framework.

4.4 SEMANTIC SEGMENTATION

For semantic segmentation on ADE20K RAW dataset, we choose Segformer as the segmentation
framework with the different size MIT backbones (MITB5, MIT-B3, MIT-B0), all the models are
trained on 4 NVIDIA Tesla A100 GPUs with Adam optimizer, the batch size is set to 4, training
images are cropped into 512 × 512 and training iteration number is set to 80000. Comparison
results are shown in table 4, where we compare both efficiency (parameters, inference time) and
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performance (mIOU). Inference time is calculated on a single Tesla A100 GPU. From the table, it
can be observed that the proposed method in this paper outperforms other competing methods across
multiple illumination scenarios with different backbone sizes. In low-light conditions, thanks to the
feature adapter module, UniISP with a less parameterized backbone (MIT-B3) even surpasses other
methods that use a more-parameter backbone (MIT-B5). Since the feature adapter fuses features from
the ISP stages through multiple FreqFusion operations, it does not have an advantage in inference
time.
Table 4: Semantic segmentation results on the ADE20K RAW dataset. Results of three brightness
levels are listed in separate columns. We also show parameter number and inference time of each
method. Best scores are highlighted in bold.

Method Backbone Params(M) ↓ Inference time(s) ↓ mIOU ↑
Normal Over-exposed Dark

Demosaicing 0.085 47.47 45.69 37.55
Karaimer et al. 0.291 45.48 42.85 37.32
InvISP 0.145 47.82 44.30 4.03
LiteISP MIT-B5 82.01 0.187 43.22 42.01 5.52
DNF 0.138 - - 35.88
SID 0.208 - - 37.06
UniISP(w/o J) 0.152 46.38 44.37 37.42

Dirty-Pixel
MIT-B5 86.29 0.119 47.86 46.50 38.02
MIT-B3 48.92 0.048 46.19 44.13 36.93
MIT-B0 8.00 0.031 34.43 31.10 24.89

RAW-Adapter
MIT-B5 82.31 0.121 47.95 46.62 38.75
MIT-B3 45.16 0.052 46.57 44.19 37.62
MIT-B0 3.87 0.038 34.72 31.91 25.06

UniISP(w/o F)
MIT-B5 88.04 0.185 47.94 46.60 38.13
MIT-B3 50.49 0.161 46.65 44.26 37.53
MIT-B0 9.37 0.151 34.83 32.04 25.23

UniISP
MIT-B5 89.47 0.238 48.04 46.65 38.84
MIT-B3 51.92 0.217 46.70 44.71 38.37
MIT-B0 10.84 0.192 35.02 32.18 26.08

fig. 6 visualizes the semantic segmentation results, where UniISP demonstrates superior boundary
precision and contour clarity compared to baseline methods.This improvement is attributed to the
feature adapter, which explicitly decomposes raw sensor data into multi-scale frequency components
via learnable bandpass filters, followed by cross-frequency feature fusion that selectively enhances
high-frequency structural cues (e.g., edges, textures) while suppressing noise. Due to space con-
straints, we have included additional experimental results, visualizations, and ablation analysis in the
supplementary material.

(a) Input (b) SID / InvISP (c) Karaimer (d) RAW-Adapter (e) UniISP (f) GT

Figure 6: Visualization of semantic segmentation results on ADE20K RAW. Three rows represent
dark, normal and over-exposed scenarios respectively (from top to bottom).

5 CONCLUSION

This work presents the first exploration of simultaneously optimizing Image Signal Processing
(ISP) for both human visual perception and machine vision tasks, proposing a novel framework
named UniISP. Firstly, we introduce a lightweight module called HAM (Hybrid Attention Module),
which integrates multiple attention mechanisms to enhance feature representation and improve
model generalization during the ISP stage. Secondly, to better adapt the features of raw data
to pre-trained sRGB models in downstream computer vision tasks, we propose a feature adapter.
Extensive experiments on multiple datasets across different tasks demonstrate that UniISP achieves
state-of-the-art results. This work suggests potential directions for optimizing future ISP systems.
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