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Abstract

This position paper introduces and motivates
Computational Comprehension as an alter-
native, non-anthropocentric approach to assess-
ing how Large Language Models (LLMs) han-
dle knowledge. Unlike standard benchmarks,
which often reward models for surface-level
accuracy but shed little light on deeper concep-
tual understanding, Computational Comprehen-
sion directs attention to the model’s internal
processes. Specifically, we focus on whether
certain neurons or sub-networks remain consis-
tently activated across reformulations and con-
textual shifts of the same underlying concept.
We outline a framework that tests a model’s
ability to preserve conceptual invariance under
various input transformations, then observes
how targeted ablations of relevant sub-networks
affect performance. By gauging these internal,
concept-related responses rather than relying
solely on external metrics, we obtain more fine-
grained insights into a model’s capacity to in-
ternalize, manipulate, and robustly apply con-
ceptual knowledge. We also propose integrat-
ing such analysis into systematic experiments,
showing how subtle tweaks to task prompts or
data can reveal whether a model is genuinely
concept-driven or merely parroting surface cor-
relations. Through Computational Comprehen-
sion, we encourage researchers, engineers, and
theorists to adopt a deeper, more transparent
mode of evaluation—one that foregrounds in-
ternal conceptual grounding over score-centric
arms races in pursuit of ever-higher benchmark
numbers.

1 Introduction

Designing and evaluating Large Language Mod-
els (LLMs) has long relied on human-centric no-
tions of understanding, shaped by both philo-
sophical definitions and our intuitive experience
as humans. Traditionally, the term understand-
ing invokes a cognitive process in which a per-
son internalizes and applies concepts to model an

event, context, or a piece of information (Bere-
iter, 2002). However, this anthropocentric frame-
work creates immediate challenges for modern
Al systems: ascribing human-style mental states
or semantic understanding to models poses pos-
sibility of conflating symbol manipulation with
genuine comprehension (Bennett, 2023). Recent
arguments—including the Chinese Room thought
experiment (Searle, 1980), the Mary’s Room sce-
nario (Jackson, 1986), and the Stochastic Parrot
critique (Bender et al., 2021)—have raised doubts
as to whether text-based LLMs can possess any
more than surface-level patterns. Indeed, such argu-
ments underscore a deeper question: in what sense
can an artificial system be said to understand at
all?

We propose a new term, Computational Com-
prehension, to distinguish the kind of understand-
ing that may be attained by LLMs and other ad-
vanced neural architectures. Unlike human cogni-
tion, which is heavily shaped by embodiment, sen-
sory modalities, and evolution (Foglia and Wilson,
2013), Computational Comprehension emphasizes
the unique capacity of a model to form, store, and
manipulate its own internal representations (or fea-
tures) in a manner that enables consistent general-
ization and coherent behavior.

In doing so, we acknowledge both the findings of
mechanistic interpretability research—which high-
lights emergent circuits that correlate with concept-
like features (Olah et al., 2020)—and the doubt
that arises when we observe these models halluci-
nating, making errors, or merely pattern-matching
pre-trained data. By framing an alternative, non-
anthropocentric construct, our notion of Computa-
tional Comprehension aims to capture both the po-
tential and the limitations of such systems without
presupposing human-like consciousness or qualia.

A critical motivation for introducing and clarify-
ing this term is the evolving crisis in LLM bench-
marks. Many of today’s LLMs not only surpass the



average human in certain standardized tests but are
rapidly approaching near-perfect performance on
tasks designed by humans (Strachan et al., 2024).
As a consequence, human score on benchmarks no
longer provides a sufficient yardstick (Hern “andez-
Orallo, 2020). If two models both exceed human
excellence (near-100% accuracy), how should one
meaningfully evaluate their capabilities? We argue
that simply escalating benchmark difficulty is not a
robust long-term solution. Instead, we must adopt
an orthogonal, conceptual axis of evaluation: a
model’s degree of Computational Comprehension.

By investigating whether models truly capture,
adapt, and integrate their internal features—as op-
posed to merely reproducing text patterns reviewed
in training, we gain a more nuanced, explanatory
picture of how they handle knowledge. Examining
Computational Comprehension thus becomes a cru-
cial research direction: it reframes the debate on
LLMs’ understanding, guides interpretability stud-
ies, and opens new vistas for building an evaluation
framework that reflect real conceptual robustness.

In this paper, we elaborate upon the philosophi-
cal underpinnings that motivate this new terminol-
ogy and propose initial pathways to measure Com-
putational Comprehension in practice. By doing
so, we seek to foster a framework that meaningfully
captures the ways in which next-generation models
process concepts, even if that process differs radi-
cally from human cognition. Our goal is not merely
to defend a novel philosophical position but to en-
gage practitioners and theorists alike in rethinking
how we might define, test, and refine model-based
comprehension without anchoring it to a solely an-
thropocentric conceptual lineage. Throughout this
paper, we speak of model understanding and Com-
putational Comprehension in the specific context
of text-based LLMs.

2 Philosophical & Cognitive Foundations

In this section, we lay out the philosophical and
cognitive cornerstones that shape our understand-
ing of understanding itself. By examining long-
standing debates about human cognition, we high-
light the anthropocentric assumptions often embed-
ded in discussions of Al (Milliere and Rathkopf,
2024). We begin by introducing how the human
basis of understanding informs (and potentially bi-
ases) our interpretation of large language model ca-
pabilities, then turn to three well-known arguments
that each challenge whether symbolic proficiency

can ever equate to genuine comprehension.

2.1 The Human Basis of Understanding

The concept of understanding has been explored by
philosophers and cognitive scientists for centuries,
commonly framed as a process wherein an individ-
ual internalizes and applies concepts to interpret or
predict phenomena in the world (Bereiter, 2002).
However, these perspectives often adopt a human-
centric perspective, or anthropocentrism, which po-
sitions human beings at the center of consideration.
In this viewpoint, everything from philosophical
inquiries to recent developments, such as LLMs,
are often evaluated through human standards, re-
flecting the belief that human knowledge, reason-
ing, and consciousness are the ultimate criteria by
which we measure understanding.

Yet the question remains whether this anthro-
pocentric concepts translates readily to artificial
architectures. These architectures may excel at pat-
tern recognition without replicating human subjec-
tive dimensions (consciousness, experiences, etc.),
which philosophers often regard essential to gen-
uine comprehension (Foglia and Wilson, 2013).
This raises the question Can LLMs’ internal pa-
rameters actually constitute features analogous to
human concepts, or are they simply finely tuned
statistical representations?

2.2 Central Challenges: Three Arguments

To answer this question, we begin by examin-
ing Searle’s Chinese Room (Searle, 1980), Mary’s
Room (Jackson, 1986), and the Stochastic Parrot
critique (Bender et al., 2021), each aiming to high-
light a distinct aspect of the gap between symbolic
prowess and what human-centric notions would
consider true comprehension.

Searle’s Chinese Room

John Searle’s Chinese Room thought experiment
argues that the manipulation of symbols according
to formal rules—yielding outputs indistinguishable
from those of a fluent speaker—does not constitute
genuine understanding. In this scenario, a person
who speaks only English follows instructions to
map Chinese input symbols to output symbols, ap-
pearing to understand Chinese, yet lacks any real
semantic comprehension. This mirrors concerns in
Al that models may generate appropriate responses
without internal comprehension, effectively acting
as sophisticated rulebooks where substantial pa-
rameter weights guide permissible patterns with-



out innate semantic grounding. Some argue that
modern neural networks might develop emergent
properties transcending simple syntactic manipu-
lation (Wei et al., 2022), but whether these suffice
for true semantic understanding remains highly de-
bated, making Searle’s thought experiment crucial
to current discussions about Al cognition.

Mary’s Room

In Frank Jackson’s narrative, Mary is a color sci-
entist with complete theoretical knowledge about
color perception, yet she has only experienced a
grayscale world. Upon actually seeing red, she
gains new insights—qualitative knowledge about
color that no enumeration of facts could convey.
Initially challenging materialism in the philoso-
phy of mind, this scenario also highlights the sig-
nificance of subjective experience, beyond mere
propositional facts, in understanding. For Al, the
Mary’s Room thought experiment underscores how
purely symbolic or descriptive mastery might fail
to capture certain dimensions of understanding, par-
ticularly those reliant on firsthand, qualitative ex-
perience. Since most LLMs are trained on linguis-
tic data alone (Collier et al., 2022), critics argue
these models are inherently limited to factual or
correlational knowledge without the capacity for
perceptual immersion. For those who see a tight
bond between experience and comprehension, the
thought experiment provides a powerful rejoinder
to claims that advanced text models truly know or
understand phenomena like color.

Stochastic Parrot Critique

Bender and colleagues (Bender et al., 2021) ar-
gue that LLMs generate text similar to meaningful
human discourse but do so primarily through prob-
abilistic rearrangement of learned patterns. These
systems, as a result, assemble outputs in a manner
that exhibits impressive fluency without necessar-
ily having any underlying conceptual or intentional
structure. From this perspective, an Al’s knowledge
is a patchwork drawn from extensive training data,
appearing coherent because it overlays existing lin-
guistic tropes rather than genuinely grasping the
subject matter. This critique warns against attribut-
ing true understanding simply because a machine’s
output aligns with human expectations, especially
as LLMs excel at tasks traditionally associated with
human cognition. Proponents argue that sufficiently
complex systems might develop emergent proper-
ties beyond mere pattern manipulation (Wei et al.,

2022). Nonetheless, we face the dilemma of dis-
cerning whether we are witnessing a qualitatively
novel form of cognition or merely the expansion of
surface-level pattern recognition.

3 Hints of Artificial Comprehension

Mechanistic Interpretability

Mechanistic interpretability aims to open the black
box of large-scale neural networks by uncovering
how internal components—layers, neurons, atten-
tion heads, or circuits—instantiate concept-specific
computations (Bereska and Gavves, 2024). Various
interpretability techniques reveal a model’s internal
“concept-like” structures, or features (Templeton
et al., 2024; Gao et al., 2024). Circuit tracing with
probing classifiers identifies neurons that consis-
tently fire for certain inputs (Olah et al., 2020),
while feature visualization and activation patching
highlight the tokens or activations most responsible
for concept processing (Heimersheim and Nanda,
2024; Meng et al., 2022). Ablation studies further
show that disabling suspect neurons degrades per-
formance on targeted tasks (Yu and Ananiadou,
2024b; Zhang et al., 2024; Yu and Ananiadou,
2024a). By these means, we can often pinpoint
how a model implicitly organizes its representa-
tion of knowledge. Empirical work demonstrates
that removing these concept-circuits collapses func-
tionality (Olah et al., 2020), suggesting dedicated
internal pathways for distinct functions.

Emergent Phenomena

Grokking (Power et al., 2022) and prompt engineer-
ing such as Pause Tokens (Goyal et al., 2023) both
exemplify intriguing emergent phenomena that hint
at latent conceptual capacities. In grokking, mod-
els may plateau for many epochs before abruptly
converging to near-perfect performance, suggest-
ing a phase transition from rote memorization to a
more generalizable, concept-based representation.
Likewise, inserting seemingly trivial instructions or
pause tokens can dramatically alter a model’s out-
put, apparently switching on previously dormant
internal circuits. Mechanistic analyses of these ef-
fects indicate that large language models can harbor
latent conceptual structures (Nanda et al., 2023),
which remain quiescent until triggered by just the
right input cues.



Next Step: Computational Comprehension

Mechanistic interpretability and emergent phenom-
ena each shed light on a model’s capacity for
true Computational Comprehension. From circuit
tracing and ablation studies, we learn how knowl-
edge may be internally structured: identifying sub-
networks that directly handle abstract concepts sug-
gests more than mere pattern memorization. Like-
wise, phenomena like grokking and the dramatic
effects of pause tokens highlight a network’s la-
tent dispositions, revealing how a seemingly small
change in prompts or training conditions can trigger
a deeper, more coherent conceptual state. Together,
these findings go beyond measuring whether a
model performs well on benchmarks: they offer
insight into how robustly and systematically the
model organizes its knowledge, thereby hinting
at (or refuting) the presence of enduring, concept-
like structures that distinguish superficial pattern-
ing from genuine comprehension.

4 Towards Computational Comprehension

Recent LLMs exhibit near human performance,
while arguments from section 2 emphasize the in-
ability of LLMs to acquire the experiential or con-
scious dimensions typically associated with gen-
uine comprehension. We introduce Computational
Comprehension as a middle ground approach: an
explicitly non-anthropocentric notion of what it
might mean for a machine to understand while re-
maining faithful to the underlying computational
mechanisms and constraints.

4.1 Defining Computational Comprehension

We propose that Computational Comprehension
refers to the capacity of a computational model to:

* Internalize and represent a stable concept
structure through its internal parameters or
sub-networks, rather than mere memorization
of specific input—output pairs.

» Exhibit systematic responses across diverse
contexts that test multiple dimensions of a
given concept, demonstrating an ability to gen-
eralize.

* Manipulate these internal concept-like rep-
resentations in a way that allows for novel
combinations, inferences, or transformation
that align with the concept’s formal or func-
tional properties.

4.2 Key Dimensions of Computational
Comprehension

Alongside the core definition, we propose several
dimensions that can help refine how one might
observe or measure Computational Comprehension
in practice:

Generality & Robustness Possessing general-
ity and being robust allows a model to effectively
apply its understanding of concepts across various
tasks and contexts, demonstrating that its knowl-
edge goes beyond memorization. For example, a
system trained for addition should correctly solve
novel sums presented in different formats, includ-
ing newly structured inputs or unfamiliar story-
based settings, and it should maintain accuracy
when problems are paraphrased or slightly altered,
rather than failing due to superficial modifications.
Together, these attributes emphasize the depth of
conceptual understanding necessary for effective
machine comprehension.

Sub-Network Localization and Interpretability
Identifying neurons, attention heads, or circuits that
consistently activate for a specific concept offers
deeper insight into whether the concept is truly in-
ternalized. Coherent sub-networks that prove indis-
pensable across tasks relating to the concept point
to a stable, localized representation.

Compositional Integration If the model can ma-
nipulate concept A and concept B, does it also reli-
ably handle combinations of A and B (e.g., nested
constructs, intersection of properties), a hallmark
of truly concept-based reasoning?

This characterization steers away from ascrib-
ing any notion of phenomenal consciousness or
qualia to the model. Instead, comprehension here
is pinned to the use of internally stored features
that enable conceptual coherence. By being explicit
about what these features (and their use) look like
in computational terms, we aim to avoid unneces-
sary anthropocentrism and keep the focus on how
the LLMs manipulate internal concepts into consis-
tent outputs.

5 Benchmarking, Limitations, and the
Need for a New Paradigm

As large language models (LLMs) have rapidly im-
proved, benchmark performance has been the pri-
mary metric for gauging progress. While advance-
ments in tasks like translation and question answer-
ing are impressive, it remains unclear whether high



scores on these metrics indicate any deeper form
of understanding(Mondorf and Plank, 2024), or
Computational Comprehension. We examine the
limitations of benchmark-driven evaluations and ar-
gue for a new paradigm, focused on concept-based
perspectives.

5.1 Historical Context of Benchmarks and
Accelerating Model Capabilities

Traditional benchmarks such as GLUE (Wang,
2018), SuperGLUE (Wang et al.,, 2019),
SQuAD (Rajpurkar, 2016), MMLU (Hendrycks
et al., 2020), and Big-Bench (Srivastava et al.,
2022) have become standard metrics for evaluating
progress in natural language processing (Fourrier
et al., 2024), while modern LLMs achieve scores
that rival or surpass average human baselines.
While these advancements demonstrate the models’
ability to capture complex statistical regularities,
a concerning pattern emerges: once a benchmark
gains recognition, models are optimized to reach
near the theoretical ceiling (Zhou et al., 2023).
This leads us to question what these scores truly
signify: do they reflect a meaningful understanding
of the underlying principles, or are they merely
the result of memorizing patterns and exploiting
correlations?

5.2 Why High Benchmark Scores May Not
Imply Real Comprehension

A major critique of high benchmark scores is that
models can achieve strong performances through
superficial pattern matching and memorization
rather than true understanding (Bender et al., 2021).
For instance, when a dataset establishes consistent
associations between specific words and outcomes,
a model may learn to recognize these patterns
akin to a lookup table, rather than forming robust,
concept-level generalizations. This phenomenon
can lead a model to excel on a particular dataset yet
struggle with slight rephrasings or different con-
texts of the same task. Consequently, this raises the
question of whether such high scores truly reflect
Computational Comprehension.

5.3 Human-Centric Benchmarking Dilemma

Beyond Human-Level Evaluation

Many of the most widely recognized benchmarks
were either explicitly designed to capture difficul-
ties humans face or implicitly assumed that human
performance provides an upper bound (Zhou et al.,
2023). Now that models are meeting or exceeding

human baselines, a paradox arises: if both Model A
and Model B surpass average human performance,
how do we evaluate which model is better in a con-
ceptual sense? Traditional metrics like accuracy or
F1 score, lose discriminative power once perfor-
mance clusters near 100%.

Eschewing an Endless Benchmark Arms Race

An intuitive reaction might be to escalate bench-
mark difficulty (Arora et al., 2023), creating new
sets of even more intricate questions that push mod-
els further. However, an endless cycle of difficult
benchmark creation risks feeding back into a purely
performance-driven arms race. Such an approach
may continue yielding impressive numeric gains
but could neglect how models handle concepts and
whether they truly internalize them or simply scale
up memorization. Unless we adopt new perspec-
tives, the gap between high test accuracy and gen-
uine conceptual capacity may widen.

5.4 Criteria for a New Paradigm

Orthogonal to Difficulty

A key realization is that we do not need to simply
increase the difficulty of tasks. Instead, we must de-
velop orthogonal criteria that evaluate how robustly
and systematically a model uses internal representa-
tions. For instance, a model simultaneously achiev-
ing perfect accuracy and high conceptual instability
under small rephrasings or domain shifts indicates a
shallow conceptual grounding. Conversely, a model
with more modest performance but stable concept
usage across transformations—Ilike those described
in §4—might be argued to exhibit deeper Compu-
tational Comprehension (Nanda et al., 2023).

From Output Scores to Conceptual Analysis

Traditional accuracy-based benchmarks measure
what the model outputs but not how it arrives
at those outputs. Mechanistic interpretability (§3)
opens a window into where concept-like circuits re-
side (Olah et al., 2020), and how the model manip-
ulates them. By integrating such insights into a new
evaluation paradigm, researchers can design tasks
and metrics that test for invariance, compositional
integration, and generalizable conceptual structure
rather than pure output correctness (Zahraei and
Asgari, 2024). This reframes model assessment as
probing the alignment between internal computa-
tions and expected conceptual consistency.



5.5 How Computational Comprehension
Strengthens Model Evaluation

Focusing on Computational Comprehension of-
fers a nuanced approach to evaluating model per-
formance beyond traditional benchmarks. For in-
stance, when Model A and B achieve identical
scores, an analysis of Computational Comprehen-
sion may show that Model A employs identifi-
able concept circuits with robustness to synony-
mous phrases and logical coherence in reasoning,
while Model B falters under minor perturbations
and lacks clear internal structures, indicating that
Model A demonstrates superior understanding de-
spite similar benchmark scores. This approach re-
duces the risk of relying on superficial performance
gains, as it requires models to demonstrate stable
internal feature usage across a variety of tasks.

5.6 Addressing Objections and Feasibility

Critics of concept-centric metrics argue that imple-
menting repeated transformations and deep abla-
tion studies can be more resource-intensive than
numeric benchmarks, where a single accuracy or F1
score provides straightforward model comparison.
However, this added complexity is essential for ex-
posing deeper strengths and weaknesses in model
cognition. Observational parallels can be drawn to
neuroscience and psychology, fields that similarly
adopt intricate testing to capture complex phenom-
ena. Importantly, Computational Comprehension
metrics do not displace existing evaluations; rather,
they complement them. Conventional benchmarks
remain invaluable for quickly gauging baseline ca-
pability or domain-specific performance. By layer-
ing in concept-invariance tests and interpretability
measures, we can build a more complete picture of
how robustly and structurally a model encodes the
knowledge it appears to exhibit.

6 Formal Framework for Assessing
Computational Comprehension

This section proposes a formal framework for as-
sessing Computational Comprehension, uniting
these ideas into a methodology that goes beyond
simple output metrics. In doing so, we shift em-
phasis from “How high is the accuracy?” to “How
stable and interpretable are the model’s concept
representations?”’

6.1 Concepts as Functional Mappings

We formalize a concept as a relation (or function)
that maps a set of inputs X to a corresponding set
of outputs or labels ). Concretely, we write:

C: X =Y,

where C'(x) € ) represents the ideal conceptual
outcome (or property) for each input x € X. Cru-
cially, C' captures the principle or logic dictating
how inputs relate to outputs, rather than a mere
memorized pairing. For example, C'(z) could des-
ignate whether x meets certain criteria, identifies a
particular feature, or even transforms x according
to a well-defined rule.

From this standpoint, a model M masters a con-
cept C if it satisfies M (z) ~ C(z) for all relevant
inputs z € X'. Such mastery demands more than
just fitting a fixed set of training examples—it re-
quires that M capture and robustly apply the un-
derlying principle unifying all (z, C(z)) pairs. In
other words, M should exhibit:

* Consistency: The model’s predictions or out-
puts for new examples 2’ reflect the same
structural or semantic rule encoded by C'.

* Generality: The learned concept holds over
the entire space X" (or its relevant subset), not
solely for the specific instances seen during
training.

* Stability: Small perturbations to z that pre-
serve conceptual properties should not disrupt
M’s alignment with C, signaling that M la-
tently encodes the concept rather than memo-
rizing superficial patterns.

If the model genuinely understands a concept,
it will consistently and accurately reproduce C(x)
across transformations and contexts that preserve
the conceptual core.

6.2 Transformational Robustness

One hallmark of true Computational Comprehen-
sion is the capacity to preserve conceptual validity
under input transformations that leave the concept
unchanged. Formally, suppose we define a set T" of
transformations ¢ : X — X that maintain C'(x) in
the sense that:



forallt € T'and x € X. If a model M genuinely
grasps C, it should map ¢(z) to the same concep-
tual outcome as x—that is, M (t(z)) ~ M(z)
whenever C(t(z)) = C(x).

Benchmark Extension. Instead of scoring M
solely on the raw input—output pairs (z,C(z)),
we propose also testing across transformations
(t(x),C(t(z))). The model’s robustness score
R(C, M) measures consistency under these trans-
formations:

R(C.M) = E e o [L(M(Ha)) = C(t(a))]

High R(C, M) suggests the model’s internal rep-
resentation is more than superficially memorizing
(z,C(x)) pairs; it is capturing the general rule that
remains invariant under ¢.

6.3 Linking Internal Representations via
Mechanistic Interpretability

Even high robustness could, in principle, arise from
sophisticated but purely opaque pattern-fitting. To
address this risk, we invoke mechanistic inter-
pretability (§3). Concretely, we hypothesize that for
each concept C, there should exist a sub-network
in M—some ensemble of neurons, attention heads,
or circuits—that is critical to consistently map-
ping z to C(z). By identifying and testing that
sub-network, we can verify whether:

1. Localization. Activations intensify in the sub-
network specifically when the model pro-
cesses inputs related to C, compared to un-
related tasks.

2. Ablation Degrades C. Disabling or corrupt-
ing the targeted sub-network (e.g., zero/mean
ablation) yields a sizable drop in R(C, M).

3. Consistency under Transformations. The
same sub-network remains activated (or simi-
larly structured) even for transformed inputs
t(x), reinforcing that M is implementing C
in a stable, generalizable manner.

These conditions connect conceptual invariance
to an observable internal mechanism, offering
a more holistic demonstration of Computational
Comprehension.

6.4 Proposed Metrics and Procedures

We outline a possible experimental procedure, syn-
thesizing ideas from previous sections:

I. Identify a Target Concept C. Formally de-
fine the function or relation you want to test
(e.g., logical equivalence, color categorization,
basic arithmetic).

II. Generate Transformation Family 7'. Con-
struct transformations ¢ € 7' that preserve C,
such as paraphrases, format changes, or do-
main shifts.

III. Compute Baseline Accuracy. First assess
M on pairs (z,C(x)) to ensure M handles
straightforward versions of C' acceptably.

IV. Evaluate Robustness R(C,M). Arrange
t(x) for t € T on test inputs, verifying if
M(t(z)) = C(t(z)) = C(z).

V. Mechanistic Analysis.

Find Relevant Circuits/Neurons. Use
probing, circuit tracing, and feature visual-
ization (see §3) to locate internal structures
maintaining C'.

Perform Ablation. Temporarily ablate (e.g.
zero ablation) the identified sub-network.
Does R(C, M) degrade substantially?

Test Activation Patterns. Confirm that
these same sub-network activations system-
atically appear for transformed inputs ¢(x).

VI. Compare Models. If Models A and B both
excel on raw benchmark scores, but Model A
shows a more stable, localized concept sub-
network and robust R(C, M) under transfor-
mations, it can be argued to exhibit stronger
Computational Comprehension of C'.

6.5 Illustrative Example

Consider a concept Ciyithmetic = compute the sum
of two numbers. Suppose our domain X is textual
inputs like What is 123 + 4567 We define T' as
transformations that (a) restate the query in differ-
ent wording (Sum of 123 with 456), (b) embed the
numbers in a story, or (c) add noise tokens that
should not affect the sum. A model that really in-
ternalizes Clyrithmetic Would consistently produce
579 even if the query is rephrased or placed in a
distracting context.

Applying mechanistic interpretability, we might
discover specific neurons or attention heads that re-
liably activate for arithmetic queries. Ablating them



should degrade addition performance across trans-
formations. By empirically verifying such a sub-
network, we strengthen the claim that the model
holds a stable, concept-like mechanism for addi-
tion. Detailed comprehensive illustrations are in
Appendix C.

7 Conclusion

Have we truly advanced toward machine under-
standing, or merely built increasingly clever par-
rots? Can high scores on human-curated tasks ever
capture the depth of a concept-driven architecture?
And how do we know if a model’s seeming mas-
tery reflects stable conceptual knowledge rather
than ephemeral statistical tricks? These questions
anchor our reimagined path for Al research and
practice, informed by a shift from anthropocentric
definitions of understanding to more computation-
ally grounded notions.

From Philosophical Inquiry to Applied
Methodology

Throughout our exploration, we showed how philo-
sophical debates regarding sensory modalities and
subjective experience caution us against overly gen-
erous attributions of understanding. At the same
time, a strictly anthropocentric frame is unhelpful
for analyzing computational systems unlike our-
selves. By introducing Computational Comprehen-
sion, we direct focus to the operational consistency
of concepts represented in neural architectures—a
definition testable in practice. Mechanistic inter-
pretability then transforms what once seemed like
philosophical abstraction into tangible questions
about how models store, manipulate, and apply
concepts.

Mechanistic Interpretability as Our Empirical
Lens

Mechanistic interpretability serves as the bridge
between theoretical claims and observable model
behavior, exposing sub-networks or circuits most
relevant to a given concept. This approach lets us
analyze whether robust conceptual processing is
taking place, or whether we are witnessing super-
ficial memorization patterns. When merged with
transformation tests, interpretability offers a more
holistic assessment of how well a model stabilizes
conceptual knowledge across contexts—an empiri-
cal window into deeper Al cognition.

Reframing Benchmarks: Strengthening Our
Evaluations

The community’s current benchmark-focused en-
vironment, often driven by an arms race of diffi-
culty , risks conflating performance with legitimate
understanding once models surpass human scores.
Instead, we propose measuring how well a model
preserves conceptual invariants under transforma-
tions that should not alter conceptual meaning. This
approach valuably shifts emphasis to how models
achieve their results, rewarding internal coherence
over rote data absorption.

Expanded Future Work in Multi-Modality

Our analysis focuses on large language models
that primarily process text. However, multimodal
systems integrating vision, audio, or other in-
put streams introduce new challenges and op-
portunities for Computational Comprehension.
Concepts rooted in visual or sensor-based data
(e.g., object permanence, event segmentation) may
be tested with transformations that alter view-
points, backgrounds, or partial occlusions. At the
same time, mechanistic interpretability becomes
more complex, potentially demanding domain-
specific circuit-mapping techniques. Leveraging
these modalities could enrich how we define trans-
formations and invariants, but the methodological
burden of discovering and ablating relevant circuits
also increases.

Taken together, these advances unveil a clearer
vista for Al: a future where systems are judged
not only by impressive performance metrics but
by their demonstrated capacity to encode, trans-
form, and reason with concepts in a sustained man-
ner. By anchoring our evaluations in Computa-
tional Comprehension, complemented by mech-
anistic interpretability and transformation-based
testing, we move beyond superficial achievements
toward a deeper, more transparent, and ultimately
more meaningful form of machine intelligence.

Limitations

Though this paper advocates for a more robust no-
tion of Computational Comprehension and outlines
an interpretability-based methodology for uncov-
ering concept-centric representations, a number of
limiting factors remain:

Scalability of Interpretability. Modern large
language models often feature hundreds of billions



of parameters, making mechanistic analyses at neu-
ron or circuit level extremely challenging. While
smaller models or targeted subsets of parameters
can be examined, interpreting a full-scale LLM re-
mains computationally intensive and technically
difficult, potentially restricting such analyses to
well-resourced labs.

Concept Definition Dilemma. Despite the for-
mal approach of modeling a concept as a function
or relation, actually specifying certain high-level or
context-dependent concepts (e.g., irony, advanced
logical reasoning, figurative language) is notori-
ously difficult. Oversimplified definitions risk over-
looking emergent behaviors and interdependencies
that cannot be neatly captured by functional map-
pings alone.

Resource Constraints and Practical Feasibility.
Applying repeated transformations, running abla-
tion experiments, and mapping concept circuits
can all be computationally expensive. This require-
ment may slow or hinder widespread adoption of
concept-based evaluations, particularly in industry
or smaller academic groups where hardware and
time are limited. While automated interpretability
pipelines are an active area of research, truly large-
scale application remains a formidable challenge.

Philosophical Caveats. Finally, even the most
thorough demonstration of stable concept circuits
does not prove the presence of conscious or sub-
jective states. Our notion of Computational Com-
prehension is deliberately non-anthropocentric; it
makes no claims about qualia or mental experi-
ences. This helps avoid overattribution of human-
like cognition to machines, yet it may leave some
philosophical critiques unresolved, especially those
that posit experience as central to genuine under-
standing (e.g., Mary’s Room).

These limitations do not diminish the value of
Computational Comprehension as a powerful con-
ceptual and evaluative tool; rather, they highlight
the need for further research, methodological re-
finement, and interdisciplinary collaboration in con-
tinuing to push the boundaries of machine under-
standing.

Ethics Statement

This work proposes a framework for examining and
measuring Computational Comprehension in large
language models using mechanistic interpretability
and transformation-based evaluations. While our

aim is to foster deeper insights into a model’s con-
ceptual capacities, we acknowledge several ethical
considerations:

* Misuse of Interpretability. Enhanced meth-
ods for dissecting internal model mechanisms,
though beneficial for transparency, may be
misapplied to extract proprietary information
or target sensitive aspects of model behavior.
Researchers and developers should exercise
care in deciding which details are publicly
disclosed, balancing transparency with the po-
tential for malicious exploitation.

* Bias and Fairness. As we refine tools to iden-
tify conceptual circuits, it is equally important
to ensure they detect and mitigate biases. Mod-
els can unintentionally encapsulate harmful
stereotypes that escape surface-level bench-
marking. Mechanistic interpretability thus has
an ethical imperative to uncover and address
such issues more systematically.

* Data Privacy. Many interpretability proto-
cols rely on intensive probing or ablation ex-
periments with curated datasets. Researchers
should remain cognizant of privacy considera-
tions and legal constraints—particularly when
dealing with personal or sensitive data—and
follow best practices to anonymize or redact
identifying information.

* Anthropomorphizing and Responsibility.
While Computational Comprehension pro-
vides a non-anthropocentric lens, there re-
mains a risk of over-attributing agency or ac-
countability to models. We clarify that these
evaluations do not confer moral or legal re-
sponsibility on the system and should not be
used to justify autonomy or moral standing
for LLMs.

Potential for Unequal Access. Robust inter-
pretability frameworks can be computation-
ally and logistically expensive, raising con-
cerns that only a small segment of the Al com-
munity will have sufficient resources to con-
duct these studies. The field should encourage
shared resources, open-source tools, and col-
laboration to ensure that concept-based evalu-
ations do not reinforce inequitable access or
hinder responsible innovation.

By presenting Computational Comprehension
as an additional source of insight, our goal is to



complement, rather than displace, existing ethical
and regulatory frameworks. We advocate for open,
interdisciplinary dialogue on how best to leverage
detailed model understanding to enhance both per-
formance and societal benefit, mindful of the risks
of misuse, bias, or inequity.
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Appendix

A Preliminary Exploration of
Transformations for Logic

For logical inference tasks, we define a relation
C(¢,1) as a function returning true if ¢ is logi-
cally entailed by ¢ in propositional logic. To test
transformational robustness, one can apply rewrit-
ings or reorder terms without altering the underly-
ing logical dependencies. Examples include vari-
able renaming, distribution of negations, or rewrit-
ing implications (e.g., p — g as —p V q). If M
displays high consistency under such transforma-
tions, it suggests the model holds a more general-
izable representation of logical entailment, instead
of merely memorizing surface patterns.

11

B Further Discussion of Mechanistic
Ablation Techniques

Main text discussions of ablation (Section 3) can be
expanded by referencing specialized protocols such
as Neuron-Level Knowledge Attribution in Large
Language Models. These involve:

1. Identifying neuron groups strongly correlated
with a target concept based on their activation
patterns.

. Zeroing out or injecting noise into those neu-
ron activations while the remaining network
remains intact.

. Measuring the consequent drop in perfor-
mance on tasks or test suites that rely on the
targeted concept.

Marked degradation suggests that knowledge of the
concept is at least partially localized in those neu-
rons. However, the possibility of distributed or re-
dundant representations must be carefully weighed,
potentially requiring multiple ablation variants or
iterative neuron-discovery steps.

C Illustrative Example: Arithmetic
Comprehension

Consider a concept Ciarithmetic = compute the sum
of two numbers. This concept provides an ideal test
case for Computational Comprehension due to its
well-defined structure and clear expected outputs.

Concept Definition and Input Domain

Our domain X consists of textual inputs request-
ing arithmetic operations, such as "What is 123
+ 456?". The concept function Cjithmetic Maps
these inputs to their numerical solutions (in this
case, 579).

Transformation Family

We define transformation family 7' to include oper-
ations that preserve the underlying arithmetic con-
cept while varying surface presentation:

1. Paraphrasing: Restate the query using differ-
ent wording ("Calculate the sum of 123 and
456", "What do you get when you add 123 to
4567")

Contextual Embedding: Place the arithmetic
operation within a narrative context ("John
had 123 apples and received 456 more. How
many apples does John have now?")



3. Noise Addition: Insert irrelevant tokens that
should not affect the computation ("What is,
um, let me think, 123 plus, you know, 456?")

Format Variation: Present numbers in dif-
ferent formats ("What is one hundred twenty-
three plus four hundred fifty-six?")

Evaluating Computational Comprehension

A model that truly comprehends the concept of ad-
dition would consistently produce the correct sum
(579) across all these transformations. This consis-
tency indicates that the model has internalized the
abstract operation of addition rather than merely
memorizing specific input-output patterns.

Mechanistic Analysis Protocol

Recent work in mechanistic interpretability has
demonstrated methods for identifying arithmetic
circuits in language models. We propose the fol-
lowing protocol to verify computational compre-
hension of arithmetic:

1. Circuit Identification: Using causal media-
tion analysis or activation patching, identify
the specific neurons, attention heads, or MLP
modules that activate when processing arith-
metic queries. Research suggests these com-
ponents often reside in mid-sequence early
layers and the final token’s later layers.

2. Activation Pattern Analysis: Record activa-
tion patterns across the transformation family
T'. A model with true computational compre-
hension should show consistent activation in
the same sub-networks regardless of how the
arithmetic query is presented.

Targeted Ablation: Temporarily disable
the identified arithmetic circuit components
through zero ablation or mean ablation. If
these components are truly responsible for
arithmetic processing, performance should de-
grade specifically on arithmetic tasks while
leaving other capabilities intact.

Cross-Task Comparison: Compare activa-
tion patterns during arithmetic tasks with pat-
terns during number retrieval tasks and factual
knowledge questions. True arithmetic compre-
hension should exhibit distinct circuit activa-
tion compared to mere number recognition or
general knowledge retrieval.
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Expected Observations

If a model possesses computational comprehension
of arithmetic, we would expect to observe:

~
~

1. Consistent performance (M (t(z)) ~ C(x)
579) across all transformations ¢t € T’

. Identifiable sub-networks that activate specifi-
cally for arithmetic operations

. Significant performance degradation on arith-
metic tasks (but not other tasks) when these
sub-networks are ablated

. Similar activation patterns across different pre-
sentations of the same arithmetic problem

This arithmetic example demonstrates how Com-
putational Comprehension goes beyond surface-
level accuracy to examine the internal mechanisms
supporting concept representation and manipula-
tion. By verifying both transformational robustness
and the presence of dedicated conceptual circuits,
we can distinguish models that truly comprehend
arithmetic from those that merely pattern-match on
specific input formats.
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