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Abstract001

This position paper introduces and motivates002
Computational Comprehension as an alter-003
native, non-anthropocentric approach to assess-004
ing how Large Language Models (LLMs) han-005
dle knowledge. Unlike standard benchmarks,006
which often reward models for surface-level007
accuracy but shed little light on deeper concep-008
tual understanding, Computational Comprehen-009
sion directs attention to the model’s internal010
processes. Specifically, we focus on whether011
certain neurons or sub-networks remain consis-012
tently activated across reformulations and con-013
textual shifts of the same underlying concept.014
We outline a framework that tests a model’s015
ability to preserve conceptual invariance under016
various input transformations, then observes017
how targeted ablations of relevant sub-networks018
affect performance. By gauging these internal,019
concept-related responses rather than relying020
solely on external metrics, we obtain more fine-021
grained insights into a model’s capacity to in-022
ternalize, manipulate, and robustly apply con-023
ceptual knowledge. We also propose integrat-024
ing such analysis into systematic experiments,025
showing how subtle tweaks to task prompts or026
data can reveal whether a model is genuinely027
concept-driven or merely parroting surface cor-028
relations. Through Computational Comprehen-029
sion, we encourage researchers, engineers, and030
theorists to adopt a deeper, more transparent031
mode of evaluation—one that foregrounds in-032
ternal conceptual grounding over score-centric033
arms races in pursuit of ever-higher benchmark034
numbers.035

1 Introduction036

Designing and evaluating Large Language Mod-037

els (LLMs) has long relied on human-centric no-038

tions of understanding, shaped by both philo-039

sophical definitions and our intuitive experience040

as humans. Traditionally, the term understand-041

ing invokes a cognitive process in which a per-042

son internalizes and applies concepts to model an043

event, context, or a piece of information (Bere- 044

iter, 2002). However, this anthropocentric frame- 045

work creates immediate challenges for modern 046

AI systems: ascribing human-style mental states 047

or semantic understanding to models poses pos- 048

sibility of conflating symbol manipulation with 049

genuine comprehension (Bennett, 2023). Recent 050

arguments—including the Chinese Room thought 051

experiment (Searle, 1980), the Mary’s Room sce- 052

nario (Jackson, 1986), and the Stochastic Parrot 053

critique (Bender et al., 2021)—have raised doubts 054

as to whether text-based LLMs can possess any 055

more than surface-level patterns. Indeed, such argu- 056

ments underscore a deeper question: in what sense 057

can an artificial system be said to understand at 058

all? 059

We propose a new term, Computational Com- 060

prehension, to distinguish the kind of understand- 061

ing that may be attained by LLMs and other ad- 062

vanced neural architectures. Unlike human cogni- 063

tion, which is heavily shaped by embodiment, sen- 064

sory modalities, and evolution (Foglia and Wilson, 065

2013), Computational Comprehension emphasizes 066

the unique capacity of a model to form, store, and 067

manipulate its own internal representations (or fea- 068

tures) in a manner that enables consistent general- 069

ization and coherent behavior. 070

In doing so, we acknowledge both the findings of 071

mechanistic interpretability research—which high- 072

lights emergent circuits that correlate with concept- 073

like features (Olah et al., 2020)—and the doubt 074

that arises when we observe these models halluci- 075

nating, making errors, or merely pattern-matching 076

pre-trained data. By framing an alternative, non- 077

anthropocentric construct, our notion of Computa- 078

tional Comprehension aims to capture both the po- 079

tential and the limitations of such systems without 080

presupposing human-like consciousness or qualia. 081

A critical motivation for introducing and clarify- 082

ing this term is the evolving crisis in LLM bench- 083

marks. Many of today’s LLMs not only surpass the 084
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average human in certain standardized tests but are085

rapidly approaching near-perfect performance on086

tasks designed by humans (Strachan et al., 2024).087

As a consequence, human score on benchmarks no088

longer provides a sufficient yardstick (Hern´andez-089

Orallo, 2020). If two models both exceed human090

excellence (near-100% accuracy), how should one091

meaningfully evaluate their capabilities? We argue092

that simply escalating benchmark difficulty is not a093

robust long-term solution. Instead, we must adopt094

an orthogonal, conceptual axis of evaluation: a095

model’s degree of Computational Comprehension.096

By investigating whether models truly capture,097

adapt, and integrate their internal features—as op-098

posed to merely reproducing text patterns reviewed099

in training, we gain a more nuanced, explanatory100

picture of how they handle knowledge. Examining101

Computational Comprehension thus becomes a cru-102

cial research direction: it reframes the debate on103

LLMs’ understanding, guides interpretability stud-104

ies, and opens new vistas for building an evaluation105

framework that reflect real conceptual robustness.106

In this paper, we elaborate upon the philosophi-107

cal underpinnings that motivate this new terminol-108

ogy and propose initial pathways to measure Com-109

putational Comprehension in practice. By doing110

so, we seek to foster a framework that meaningfully111

captures the ways in which next-generation models112

process concepts, even if that process differs radi-113

cally from human cognition. Our goal is not merely114

to defend a novel philosophical position but to en-115

gage practitioners and theorists alike in rethinking116

how we might define, test, and refine model-based117

comprehension without anchoring it to a solely an-118

thropocentric conceptual lineage. Throughout this119

paper, we speak of model understanding and Com-120

putational Comprehension in the specific context121

of text-based LLMs.122

2 Philosophical & Cognitive Foundations123

In this section, we lay out the philosophical and124

cognitive cornerstones that shape our understand-125

ing of understanding itself. By examining long-126

standing debates about human cognition, we high-127

light the anthropocentric assumptions often embed-128

ded in discussions of AI (Millière and Rathkopf,129

2024). We begin by introducing how the human130

basis of understanding informs (and potentially bi-131

ases) our interpretation of large language model ca-132

pabilities, then turn to three well-known arguments133

that each challenge whether symbolic proficiency134

can ever equate to genuine comprehension. 135

2.1 The Human Basis of Understanding 136

The concept of understanding has been explored by 137

philosophers and cognitive scientists for centuries, 138

commonly framed as a process wherein an individ- 139

ual internalizes and applies concepts to interpret or 140

predict phenomena in the world (Bereiter, 2002). 141

However, these perspectives often adopt a human- 142

centric perspective, or anthropocentrism, which po- 143

sitions human beings at the center of consideration. 144

In this viewpoint, everything from philosophical 145

inquiries to recent developments, such as LLMs, 146

are often evaluated through human standards, re- 147

flecting the belief that human knowledge, reason- 148

ing, and consciousness are the ultimate criteria by 149

which we measure understanding. 150

Yet the question remains whether this anthro- 151

pocentric concepts translates readily to artificial 152

architectures. These architectures may excel at pat- 153

tern recognition without replicating human subjec- 154

tive dimensions (consciousness, experiences, etc.), 155

which philosophers often regard essential to gen- 156

uine comprehension (Foglia and Wilson, 2013). 157

This raises the question Can LLMs’ internal pa- 158

rameters actually constitute features analogous to 159

human concepts, or are they simply finely tuned 160

statistical representations? 161

2.2 Central Challenges: Three Arguments 162

To answer this question, we begin by examin- 163

ing Searle’s Chinese Room (Searle, 1980), Mary’s 164

Room (Jackson, 1986), and the Stochastic Parrot 165

critique (Bender et al., 2021), each aiming to high- 166

light a distinct aspect of the gap between symbolic 167

prowess and what human-centric notions would 168

consider true comprehension. 169

Searle’s Chinese Room 170

John Searle’s Chinese Room thought experiment 171

argues that the manipulation of symbols according 172

to formal rules—yielding outputs indistinguishable 173

from those of a fluent speaker—does not constitute 174

genuine understanding. In this scenario, a person 175

who speaks only English follows instructions to 176

map Chinese input symbols to output symbols, ap- 177

pearing to understand Chinese, yet lacks any real 178

semantic comprehension. This mirrors concerns in 179

AI that models may generate appropriate responses 180

without internal comprehension, effectively acting 181

as sophisticated rulebooks where substantial pa- 182

rameter weights guide permissible patterns with- 183
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out innate semantic grounding. Some argue that184

modern neural networks might develop emergent185

properties transcending simple syntactic manipu-186

lation (Wei et al., 2022), but whether these suffice187

for true semantic understanding remains highly de-188

bated, making Searle’s thought experiment crucial189

to current discussions about AI cognition.190

Mary’s Room191

In Frank Jackson’s narrative, Mary is a color sci-192

entist with complete theoretical knowledge about193

color perception, yet she has only experienced a194

grayscale world. Upon actually seeing red, she195

gains new insights—qualitative knowledge about196

color that no enumeration of facts could convey.197

Initially challenging materialism in the philoso-198

phy of mind, this scenario also highlights the sig-199

nificance of subjective experience, beyond mere200

propositional facts, in understanding. For AI, the201

Mary’s Room thought experiment underscores how202

purely symbolic or descriptive mastery might fail203

to capture certain dimensions of understanding, par-204

ticularly those reliant on firsthand, qualitative ex-205

perience. Since most LLMs are trained on linguis-206

tic data alone (Collier et al., 2022), critics argue207

these models are inherently limited to factual or208

correlational knowledge without the capacity for209

perceptual immersion. For those who see a tight210

bond between experience and comprehension, the211

thought experiment provides a powerful rejoinder212

to claims that advanced text models truly know or213

understand phenomena like color.214

Stochastic Parrot Critique215

Bender and colleagues (Bender et al., 2021) ar-216

gue that LLMs generate text similar to meaningful217

human discourse but do so primarily through prob-218

abilistic rearrangement of learned patterns. These219

systems, as a result, assemble outputs in a manner220

that exhibits impressive fluency without necessar-221

ily having any underlying conceptual or intentional222

structure. From this perspective, an AI’s knowledge223

is a patchwork drawn from extensive training data,224

appearing coherent because it overlays existing lin-225

guistic tropes rather than genuinely grasping the226

subject matter. This critique warns against attribut-227

ing true understanding simply because a machine’s228

output aligns with human expectations, especially229

as LLMs excel at tasks traditionally associated with230

human cognition. Proponents argue that sufficiently231

complex systems might develop emergent proper-232

ties beyond mere pattern manipulation (Wei et al.,233

2022). Nonetheless, we face the dilemma of dis- 234

cerning whether we are witnessing a qualitatively 235

novel form of cognition or merely the expansion of 236

surface-level pattern recognition. 237

3 Hints of Artificial Comprehension 238

Mechanistic Interpretability 239

Mechanistic interpretability aims to open the black 240

box of large-scale neural networks by uncovering 241

how internal components—layers, neurons, atten- 242

tion heads, or circuits—instantiate concept-specific 243

computations (Bereska and Gavves, 2024). Various 244

interpretability techniques reveal a model’s internal 245

“concept-like” structures, or features (Templeton 246

et al., 2024; Gao et al., 2024). Circuit tracing with 247

probing classifiers identifies neurons that consis- 248

tently fire for certain inputs (Olah et al., 2020), 249

while feature visualization and activation patching 250

highlight the tokens or activations most responsible 251

for concept processing (Heimersheim and Nanda, 252

2024; Meng et al., 2022). Ablation studies further 253

show that disabling suspect neurons degrades per- 254

formance on targeted tasks (Yu and Ananiadou, 255

2024b; Zhang et al., 2024; Yu and Ananiadou, 256

2024a). By these means, we can often pinpoint 257

how a model implicitly organizes its representa- 258

tion of knowledge. Empirical work demonstrates 259

that removing these concept-circuits collapses func- 260

tionality (Olah et al., 2020), suggesting dedicated 261

internal pathways for distinct functions. 262

Emergent Phenomena 263

Grokking (Power et al., 2022) and prompt engineer- 264

ing such as Pause Tokens (Goyal et al., 2023) both 265

exemplify intriguing emergent phenomena that hint 266

at latent conceptual capacities. In grokking, mod- 267

els may plateau for many epochs before abruptly 268

converging to near-perfect performance, suggest- 269

ing a phase transition from rote memorization to a 270

more generalizable, concept-based representation. 271

Likewise, inserting seemingly trivial instructions or 272

pause tokens can dramatically alter a model’s out- 273

put, apparently switching on previously dormant 274

internal circuits. Mechanistic analyses of these ef- 275

fects indicate that large language models can harbor 276

latent conceptual structures (Nanda et al., 2023), 277

which remain quiescent until triggered by just the 278

right input cues. 279
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Next Step: Computational Comprehension280

Mechanistic interpretability and emergent phenom-281

ena each shed light on a model’s capacity for282

true Computational Comprehension. From circuit283

tracing and ablation studies, we learn how knowl-284

edge may be internally structured: identifying sub-285

networks that directly handle abstract concepts sug-286

gests more than mere pattern memorization. Like-287

wise, phenomena like grokking and the dramatic288

effects of pause tokens highlight a network’s la-289

tent dispositions, revealing how a seemingly small290

change in prompts or training conditions can trigger291

a deeper, more coherent conceptual state. Together,292

these findings go beyond measuring whether a293

model performs well on benchmarks: they offer294

insight into how robustly and systematically the295

model organizes its knowledge, thereby hinting296

at (or refuting) the presence of enduring, concept-297

like structures that distinguish superficial pattern-298

ing from genuine comprehension.299

4 Towards Computational Comprehension300

Recent LLMs exhibit near human performance,301

while arguments from section 2 emphasize the in-302

ability of LLMs to acquire the experiential or con-303

scious dimensions typically associated with gen-304

uine comprehension. We introduce Computational305

Comprehension as a middle ground approach: an306

explicitly non-anthropocentric notion of what it307

might mean for a machine to understand while re-308

maining faithful to the underlying computational309

mechanisms and constraints.310

4.1 Defining Computational Comprehension311

We propose that Computational Comprehension312

refers to the capacity of a computational model to:313

• Internalize and represent a stable concept314

structure through its internal parameters or315

sub-networks, rather than mere memorization316

of specific input–output pairs.317

• Exhibit systematic responses across diverse318

contexts that test multiple dimensions of a319

given concept, demonstrating an ability to gen-320

eralize.321

• Manipulate these internal concept-like rep-322

resentations in a way that allows for novel323

combinations, inferences, or transformation324

that align with the concept’s formal or func-325

tional properties.326

4.2 Key Dimensions of Computational 327

Comprehension 328

Alongside the core definition, we propose several 329

dimensions that can help refine how one might 330

observe or measure Computational Comprehension 331

in practice: 332

Generality & Robustness Possessing general- 333

ity and being robust allows a model to effectively 334

apply its understanding of concepts across various 335

tasks and contexts, demonstrating that its knowl- 336

edge goes beyond memorization. For example, a 337

system trained for addition should correctly solve 338

novel sums presented in different formats, includ- 339

ing newly structured inputs or unfamiliar story- 340

based settings, and it should maintain accuracy 341

when problems are paraphrased or slightly altered, 342

rather than failing due to superficial modifications. 343

Together, these attributes emphasize the depth of 344

conceptual understanding necessary for effective 345

machine comprehension. 346

Sub-Network Localization and Interpretability 347

Identifying neurons, attention heads, or circuits that 348

consistently activate for a specific concept offers 349

deeper insight into whether the concept is truly in- 350

ternalized. Coherent sub-networks that prove indis- 351

pensable across tasks relating to the concept point 352

to a stable, localized representation. 353

Compositional Integration If the model can ma- 354

nipulate concept A and concept B, does it also reli- 355

ably handle combinations of A and B (e.g., nested 356

constructs, intersection of properties), a hallmark 357

of truly concept-based reasoning? 358

This characterization steers away from ascrib- 359

ing any notion of phenomenal consciousness or 360

qualia to the model. Instead, comprehension here 361

is pinned to the use of internally stored features 362

that enable conceptual coherence. By being explicit 363

about what these features (and their use) look like 364

in computational terms, we aim to avoid unneces- 365

sary anthropocentrism and keep the focus on how 366

the LLMs manipulate internal concepts into consis- 367

tent outputs. 368

5 Benchmarking, Limitations, and the 369

Need for a New Paradigm 370

As large language models (LLMs) have rapidly im- 371

proved, benchmark performance has been the pri- 372

mary metric for gauging progress. While advance- 373

ments in tasks like translation and question answer- 374

ing are impressive, it remains unclear whether high 375
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scores on these metrics indicate any deeper form376

of understanding(Mondorf and Plank, 2024), or377

Computational Comprehension. We examine the378

limitations of benchmark-driven evaluations and ar-379

gue for a new paradigm, focused on concept-based380

perspectives.381

5.1 Historical Context of Benchmarks and382

Accelerating Model Capabilities383

Traditional benchmarks such as GLUE (Wang,384

2018), SuperGLUE (Wang et al., 2019),385

SQuAD (Rajpurkar, 2016), MMLU (Hendrycks386

et al., 2020), and Big-Bench (Srivastava et al.,387

2022) have become standard metrics for evaluating388

progress in natural language processing (Fourrier389

et al., 2024), while modern LLMs achieve scores390

that rival or surpass average human baselines.391

While these advancements demonstrate the models’392

ability to capture complex statistical regularities,393

a concerning pattern emerges: once a benchmark394

gains recognition, models are optimized to reach395

near the theoretical ceiling (Zhou et al., 2023).396

This leads us to question what these scores truly397

signify: do they reflect a meaningful understanding398

of the underlying principles, or are they merely399

the result of memorizing patterns and exploiting400

correlations?401

5.2 Why High Benchmark Scores May Not402

Imply Real Comprehension403

A major critique of high benchmark scores is that404

models can achieve strong performances through405

superficial pattern matching and memorization406

rather than true understanding (Bender et al., 2021).407

For instance, when a dataset establishes consistent408

associations between specific words and outcomes,409

a model may learn to recognize these patterns410

akin to a lookup table, rather than forming robust,411

concept-level generalizations. This phenomenon412

can lead a model to excel on a particular dataset yet413

struggle with slight rephrasings or different con-414

texts of the same task. Consequently, this raises the415

question of whether such high scores truly reflect416

Computational Comprehension.417

5.3 Human-Centric Benchmarking Dilemma418

Beyond Human-Level Evaluation419

Many of the most widely recognized benchmarks420

were either explicitly designed to capture difficul-421

ties humans face or implicitly assumed that human422

performance provides an upper bound (Zhou et al.,423

2023). Now that models are meeting or exceeding424

human baselines, a paradox arises: if both Model A 425

and Model B surpass average human performance, 426

how do we evaluate which model is better in a con- 427

ceptual sense? Traditional metrics like accuracy or 428

F1 score, lose discriminative power once perfor- 429

mance clusters near 100%. 430

Eschewing an Endless Benchmark Arms Race 431

An intuitive reaction might be to escalate bench- 432

mark difficulty (Arora et al., 2023), creating new 433

sets of even more intricate questions that push mod- 434

els further. However, an endless cycle of difficult 435

benchmark creation risks feeding back into a purely 436

performance-driven arms race. Such an approach 437

may continue yielding impressive numeric gains 438

but could neglect how models handle concepts and 439

whether they truly internalize them or simply scale 440

up memorization. Unless we adopt new perspec- 441

tives, the gap between high test accuracy and gen- 442

uine conceptual capacity may widen. 443

5.4 Criteria for a New Paradigm 444

Orthogonal to Difficulty 445

A key realization is that we do not need to simply 446

increase the difficulty of tasks. Instead, we must de- 447

velop orthogonal criteria that evaluate how robustly 448

and systematically a model uses internal representa- 449

tions. For instance, a model simultaneously achiev- 450

ing perfect accuracy and high conceptual instability 451

under small rephrasings or domain shifts indicates a 452

shallow conceptual grounding. Conversely, a model 453

with more modest performance but stable concept 454

usage across transformations—like those described 455

in §4—might be argued to exhibit deeper Compu- 456

tational Comprehension (Nanda et al., 2023). 457

From Output Scores to Conceptual Analysis 458

Traditional accuracy-based benchmarks measure 459

what the model outputs but not how it arrives 460

at those outputs. Mechanistic interpretability (§3) 461

opens a window into where concept-like circuits re- 462

side (Olah et al., 2020), and how the model manip- 463

ulates them. By integrating such insights into a new 464

evaluation paradigm, researchers can design tasks 465

and metrics that test for invariance, compositional 466

integration, and generalizable conceptual structure 467

rather than pure output correctness (Zahraei and 468

Asgari, 2024). This reframes model assessment as 469

probing the alignment between internal computa- 470

tions and expected conceptual consistency. 471
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5.5 How Computational Comprehension472

Strengthens Model Evaluation473

Focusing on Computational Comprehension of-474

fers a nuanced approach to evaluating model per-475

formance beyond traditional benchmarks. For in-476

stance, when Model A and B achieve identical477

scores, an analysis of Computational Comprehen-478

sion may show that Model A employs identifi-479

able concept circuits with robustness to synony-480

mous phrases and logical coherence in reasoning,481

while Model B falters under minor perturbations482

and lacks clear internal structures, indicating that483

Model A demonstrates superior understanding de-484

spite similar benchmark scores. This approach re-485

duces the risk of relying on superficial performance486

gains, as it requires models to demonstrate stable487

internal feature usage across a variety of tasks.488

5.6 Addressing Objections and Feasibility489

Critics of concept-centric metrics argue that imple-490

menting repeated transformations and deep abla-491

tion studies can be more resource-intensive than492

numeric benchmarks, where a single accuracy or F1493

score provides straightforward model comparison.494

However, this added complexity is essential for ex-495

posing deeper strengths and weaknesses in model496

cognition. Observational parallels can be drawn to497

neuroscience and psychology, fields that similarly498

adopt intricate testing to capture complex phenom-499

ena. Importantly, Computational Comprehension500

metrics do not displace existing evaluations; rather,501

they complement them. Conventional benchmarks502

remain invaluable for quickly gauging baseline ca-503

pability or domain-specific performance. By layer-504

ing in concept-invariance tests and interpretability505

measures, we can build a more complete picture of506

how robustly and structurally a model encodes the507

knowledge it appears to exhibit.508

6 Formal Framework for Assessing509

Computational Comprehension510

This section proposes a formal framework for as-511

sessing Computational Comprehension, uniting512

these ideas into a methodology that goes beyond513

simple output metrics. In doing so, we shift em-514

phasis from “How high is the accuracy?” to “How515

stable and interpretable are the model’s concept516

representations?”517

6.1 Concepts as Functional Mappings 518

We formalize a concept as a relation (or function) 519

that maps a set of inputs X to a corresponding set 520

of outputs or labels Y . Concretely, we write: 521

C : X → Y, 522

where C(x) ∈ Y represents the ideal conceptual 523

outcome (or property) for each input x ∈ X . Cru- 524

cially, C captures the principle or logic dictating 525

how inputs relate to outputs, rather than a mere 526

memorized pairing. For example, C(x) could des- 527

ignate whether x meets certain criteria, identifies a 528

particular feature, or even transforms x according 529

to a well-defined rule. 530

From this standpoint, a model M masters a con- 531

cept C if it satisfies M(x) ≈ C(x) for all relevant 532

inputs x ∈ X . Such mastery demands more than 533

just fitting a fixed set of training examples—it re- 534

quires that M capture and robustly apply the un- 535

derlying principle unifying all (x,C(x)) pairs. In 536

other words, M should exhibit: 537

• Consistency: The model’s predictions or out- 538

puts for new examples x′ reflect the same 539

structural or semantic rule encoded by C. 540

• Generality: The learned concept holds over 541

the entire space X (or its relevant subset), not 542

solely for the specific instances seen during 543

training. 544

• Stability: Small perturbations to x that pre- 545

serve conceptual properties should not disrupt 546

M ’s alignment with C, signaling that M la- 547

tently encodes the concept rather than memo- 548

rizing superficial patterns. 549

If the model genuinely understands a concept, 550

it will consistently and accurately reproduce C(x) 551

across transformations and contexts that preserve 552

the conceptual core. 553

6.2 Transformational Robustness 554

One hallmark of true Computational Comprehen- 555

sion is the capacity to preserve conceptual validity 556

under input transformations that leave the concept 557

unchanged. Formally, suppose we define a set T of 558

transformations t : X → X that maintain C(x) in 559

the sense that: 560

C
(
t(x)

)
= C(x), 561
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for all t ∈ T and x ∈ X . If a model M genuinely562

grasps C, it should map t(x) to the same concep-563

tual outcome as x—that is, M( t(x) ) ≈ M(x)564

whenever C( t(x) ) = C(x).565

Benchmark Extension. Instead of scoring M566

solely on the raw input–output pairs (x,C(x)),567

we propose also testing across transformations568

(t(x), C
(
t(x)

)
). The model’s robustness score569

R(C,M) measures consistency under these trans-570

formations:571

R(C,M) = E(x,t)∈ (X×T )

[
1
(
M(t(x)) = C(t(x))

)]
572

High R(C,M) suggests the model’s internal rep-573

resentation is more than superficially memorizing574

(x,C(x)) pairs; it is capturing the general rule that575

remains invariant under t.576

6.3 Linking Internal Representations via577

Mechanistic Interpretability578

Even high robustness could, in principle, arise from579

sophisticated but purely opaque pattern-fitting. To580

address this risk, we invoke mechanistic inter-581

pretability (§3). Concretely, we hypothesize that for582

each concept C, there should exist a sub-network583

in M—some ensemble of neurons, attention heads,584

or circuits—that is critical to consistently map-585

ping x to C(x). By identifying and testing that586

sub-network, we can verify whether:587

1. Localization. Activations intensify in the sub-588

network specifically when the model pro-589

cesses inputs related to C, compared to un-590

related tasks.591

2. Ablation Degrades C. Disabling or corrupt-592

ing the targeted sub-network (e.g., zero/mean593

ablation) yields a sizable drop in R(C,M).594

3. Consistency under Transformations. The595

same sub-network remains activated (or simi-596

larly structured) even for transformed inputs597

t(x), reinforcing that M is implementing C598

in a stable, generalizable manner.599

These conditions connect conceptual invariance600

to an observable internal mechanism, offering601

a more holistic demonstration of Computational602

Comprehension.603

6.4 Proposed Metrics and Procedures604

We outline a possible experimental procedure, syn-605

thesizing ideas from previous sections:606

I. Identify a Target Concept C. Formally de- 607

fine the function or relation you want to test 608

(e.g., logical equivalence, color categorization, 609

basic arithmetic). 610

II. Generate Transformation Family T . Con- 611

struct transformations t ∈ T that preserve C, 612

such as paraphrases, format changes, or do- 613

main shifts. 614

III. Compute Baseline Accuracy. First assess 615

M on pairs (x,C(x)) to ensure M handles 616

straightforward versions of C acceptably. 617

IV. Evaluate Robustness R(C,M). Arrange 618

t(x) for t ∈ T on test inputs, verifying if 619

M(t(x)) ≈ C
(
t(x)

)
= C(x). 620

V. Mechanistic Analysis. 621

Find Relevant Circuits/Neurons. Use 622

probing, circuit tracing, and feature visual- 623

ization (see §3) to locate internal structures 624

maintaining C. 625

Perform Ablation. Temporarily ablate (e.g. 626

zero ablation) the identified sub-network. 627

Does R(C,M) degrade substantially? 628

Test Activation Patterns. Confirm that 629

these same sub-network activations system- 630

atically appear for transformed inputs t(x). 631

VI. Compare Models. If Models A and B both 632

excel on raw benchmark scores, but Model A 633

shows a more stable, localized concept sub- 634

network and robust R(C,M) under transfor- 635

mations, it can be argued to exhibit stronger 636

Computational Comprehension of C. 637

6.5 Illustrative Example 638

Consider a concept Carithmetic = compute the sum 639

of two numbers. Suppose our domain X is textual 640

inputs like What is 123 + 456? We define T as 641

transformations that (a) restate the query in differ- 642

ent wording (Sum of 123 with 456), (b) embed the 643

numbers in a story, or (c) add noise tokens that 644

should not affect the sum. A model that really in- 645

ternalizes Carithmetic would consistently produce 646

579 even if the query is rephrased or placed in a 647

distracting context. 648

Applying mechanistic interpretability, we might 649

discover specific neurons or attention heads that re- 650

liably activate for arithmetic queries. Ablating them 651
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should degrade addition performance across trans-652

formations. By empirically verifying such a sub-653

network, we strengthen the claim that the model654

holds a stable, concept-like mechanism for addi-655

tion. Detailed comprehensive illustrations are in656

Appendix C.657

7 Conclusion658

Have we truly advanced toward machine under-659

standing, or merely built increasingly clever par-660

rots? Can high scores on human-curated tasks ever661

capture the depth of a concept-driven architecture?662

And how do we know if a model’s seeming mas-663

tery reflects stable conceptual knowledge rather664

than ephemeral statistical tricks? These questions665

anchor our reimagined path for AI research and666

practice, informed by a shift from anthropocentric667

definitions of understanding to more computation-668

ally grounded notions.669

From Philosophical Inquiry to Applied670

Methodology671

Throughout our exploration, we showed how philo-672

sophical debates regarding sensory modalities and673

subjective experience caution us against overly gen-674

erous attributions of understanding. At the same675

time, a strictly anthropocentric frame is unhelpful676

for analyzing computational systems unlike our-677

selves. By introducing Computational Comprehen-678

sion, we direct focus to the operational consistency679

of concepts represented in neural architectures—a680

definition testable in practice. Mechanistic inter-681

pretability then transforms what once seemed like682

philosophical abstraction into tangible questions683

about how models store, manipulate, and apply684

concepts.685

Mechanistic Interpretability as Our Empirical686

Lens687

Mechanistic interpretability serves as the bridge688

between theoretical claims and observable model689

behavior, exposing sub-networks or circuits most690

relevant to a given concept. This approach lets us691

analyze whether robust conceptual processing is692

taking place, or whether we are witnessing super-693

ficial memorization patterns. When merged with694

transformation tests, interpretability offers a more695

holistic assessment of how well a model stabilizes696

conceptual knowledge across contexts—an empiri-697

cal window into deeper AI cognition.698

Reframing Benchmarks: Strengthening Our 699

Evaluations 700

The community’s current benchmark-focused en- 701

vironment, often driven by an arms race of diffi- 702

culty , risks conflating performance with legitimate 703

understanding once models surpass human scores. 704

Instead, we propose measuring how well a model 705

preserves conceptual invariants under transforma- 706

tions that should not alter conceptual meaning. This 707

approach valuably shifts emphasis to how models 708

achieve their results, rewarding internal coherence 709

over rote data absorption. 710

Expanded Future Work in Multi-Modality 711

Our analysis focuses on large language models 712

that primarily process text. However, multimodal 713

systems integrating vision, audio, or other in- 714

put streams introduce new challenges and op- 715

portunities for Computational Comprehension. 716

Concepts rooted in visual or sensor-based data 717

(e.g., object permanence, event segmentation) may 718

be tested with transformations that alter view- 719

points, backgrounds, or partial occlusions. At the 720

same time, mechanistic interpretability becomes 721

more complex, potentially demanding domain- 722

specific circuit-mapping techniques. Leveraging 723

these modalities could enrich how we define trans- 724

formations and invariants, but the methodological 725

burden of discovering and ablating relevant circuits 726

also increases. 727

Taken together, these advances unveil a clearer 728

vista for AI: a future where systems are judged 729

not only by impressive performance metrics but 730

by their demonstrated capacity to encode, trans- 731

form, and reason with concepts in a sustained man- 732

ner. By anchoring our evaluations in Computa- 733

tional Comprehension, complemented by mech- 734

anistic interpretability and transformation-based 735

testing, we move beyond superficial achievements 736

toward a deeper, more transparent, and ultimately 737

more meaningful form of machine intelligence. 738

Limitations 739

Though this paper advocates for a more robust no- 740

tion of Computational Comprehension and outlines 741

an interpretability-based methodology for uncov- 742

ering concept-centric representations, a number of 743

limiting factors remain: 744

Scalability of Interpretability. Modern large 745

language models often feature hundreds of billions 746
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of parameters, making mechanistic analyses at neu-747

ron or circuit level extremely challenging. While748

smaller models or targeted subsets of parameters749

can be examined, interpreting a full-scale LLM re-750

mains computationally intensive and technically751

difficult, potentially restricting such analyses to752

well-resourced labs.753

Concept Definition Dilemma. Despite the for-754

mal approach of modeling a concept as a function755

or relation, actually specifying certain high-level or756

context-dependent concepts (e.g., irony, advanced757

logical reasoning, figurative language) is notori-758

ously difficult. Oversimplified definitions risk over-759

looking emergent behaviors and interdependencies760

that cannot be neatly captured by functional map-761

pings alone.762

Resource Constraints and Practical Feasibility.763

Applying repeated transformations, running abla-764

tion experiments, and mapping concept circuits765

can all be computationally expensive. This require-766

ment may slow or hinder widespread adoption of767

concept-based evaluations, particularly in industry768

or smaller academic groups where hardware and769

time are limited. While automated interpretability770

pipelines are an active area of research, truly large-771

scale application remains a formidable challenge.772

Philosophical Caveats. Finally, even the most773

thorough demonstration of stable concept circuits774

does not prove the presence of conscious or sub-775

jective states. Our notion of Computational Com-776

prehension is deliberately non-anthropocentric; it777

makes no claims about qualia or mental experi-778

ences. This helps avoid overattribution of human-779

like cognition to machines, yet it may leave some780

philosophical critiques unresolved, especially those781

that posit experience as central to genuine under-782

standing (e.g., Mary’s Room).783

These limitations do not diminish the value of784

Computational Comprehension as a powerful con-785

ceptual and evaluative tool; rather, they highlight786

the need for further research, methodological re-787

finement, and interdisciplinary collaboration in con-788

tinuing to push the boundaries of machine under-789

standing.790

Ethics Statement791

This work proposes a framework for examining and792

measuring Computational Comprehension in large793

language models using mechanistic interpretability794

and transformation-based evaluations. While our795

aim is to foster deeper insights into a model’s con- 796

ceptual capacities, we acknowledge several ethical 797

considerations: 798

• Misuse of Interpretability. Enhanced meth- 799

ods for dissecting internal model mechanisms, 800

though beneficial for transparency, may be 801

misapplied to extract proprietary information 802

or target sensitive aspects of model behavior. 803

Researchers and developers should exercise 804

care in deciding which details are publicly 805

disclosed, balancing transparency with the po- 806

tential for malicious exploitation. 807

• Bias and Fairness. As we refine tools to iden- 808

tify conceptual circuits, it is equally important 809

to ensure they detect and mitigate biases. Mod- 810

els can unintentionally encapsulate harmful 811

stereotypes that escape surface-level bench- 812

marking. Mechanistic interpretability thus has 813

an ethical imperative to uncover and address 814

such issues more systematically. 815

• Data Privacy. Many interpretability proto- 816

cols rely on intensive probing or ablation ex- 817

periments with curated datasets. Researchers 818

should remain cognizant of privacy considera- 819

tions and legal constraints—particularly when 820

dealing with personal or sensitive data—and 821

follow best practices to anonymize or redact 822

identifying information. 823

• Anthropomorphizing and Responsibility. 824

While Computational Comprehension pro- 825

vides a non-anthropocentric lens, there re- 826

mains a risk of over-attributing agency or ac- 827

countability to models. We clarify that these 828

evaluations do not confer moral or legal re- 829

sponsibility on the system and should not be 830

used to justify autonomy or moral standing 831

for LLMs. 832

• Potential for Unequal Access. Robust inter- 833

pretability frameworks can be computation- 834

ally and logistically expensive, raising con- 835

cerns that only a small segment of the AI com- 836

munity will have sufficient resources to con- 837

duct these studies. The field should encourage 838

shared resources, open-source tools, and col- 839

laboration to ensure that concept-based evalu- 840

ations do not reinforce inequitable access or 841

hinder responsible innovation. 842

By presenting Computational Comprehension 843

as an additional source of insight, our goal is to 844
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complement, rather than displace, existing ethical845

and regulatory frameworks. We advocate for open,846

interdisciplinary dialogue on how best to leverage847

detailed model understanding to enhance both per-848

formance and societal benefit, mindful of the risks849

of misuse, bias, or inequity.850
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Appendix987

A Preliminary Exploration of988

Transformations for Logic989

For logical inference tasks, we define a relation990

C(ϕ, ψ) as a function returning true if ψ is logi-991

cally entailed by ϕ in propositional logic. To test992

transformational robustness, one can apply rewrit-993

ings or reorder terms without altering the underly-994

ing logical dependencies. Examples include vari-995

able renaming, distribution of negations, or rewrit-996

ing implications (e.g., p → q as ¬p ∨ q). If M997

displays high consistency under such transforma-998

tions, it suggests the model holds a more general-999

izable representation of logical entailment, instead1000

of merely memorizing surface patterns.1001

B Further Discussion of Mechanistic 1002

Ablation Techniques 1003

Main text discussions of ablation (Section 3) can be 1004

expanded by referencing specialized protocols such 1005

as Neuron-Level Knowledge Attribution in Large 1006

Language Models. These involve: 1007

1. Identifying neuron groups strongly correlated 1008

with a target concept based on their activation 1009

patterns. 1010

2. Zeroing out or injecting noise into those neu- 1011

ron activations while the remaining network 1012

remains intact. 1013

3. Measuring the consequent drop in perfor- 1014

mance on tasks or test suites that rely on the 1015

targeted concept. 1016

Marked degradation suggests that knowledge of the 1017

concept is at least partially localized in those neu- 1018

rons. However, the possibility of distributed or re- 1019

dundant representations must be carefully weighed, 1020

potentially requiring multiple ablation variants or 1021

iterative neuron-discovery steps. 1022

C Illustrative Example: Arithmetic 1023

Comprehension 1024

Consider a concept Carithmetic = compute the sum 1025

of two numbers. This concept provides an ideal test 1026

case for Computational Comprehension due to its 1027

well-defined structure and clear expected outputs. 1028

Concept Definition and Input Domain 1029

Our domain X consists of textual inputs request- 1030

ing arithmetic operations, such as "What is 123 1031

+ 456?". The concept function Carithmetic maps 1032

these inputs to their numerical solutions (in this 1033

case, 579). 1034

Transformation Family 1035

We define transformation family T to include oper- 1036

ations that preserve the underlying arithmetic con- 1037

cept while varying surface presentation: 1038

1. Paraphrasing: Restate the query using differ- 1039

ent wording ("Calculate the sum of 123 and 1040

456", "What do you get when you add 123 to 1041

456?") 1042

2. Contextual Embedding: Place the arithmetic 1043

operation within a narrative context ("John 1044

had 123 apples and received 456 more. How 1045

many apples does John have now?") 1046
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3. Noise Addition: Insert irrelevant tokens that1047

should not affect the computation ("What is,1048

um, let me think, 123 plus, you know, 456?")1049

4. Format Variation: Present numbers in dif-1050

ferent formats ("What is one hundred twenty-1051

three plus four hundred fifty-six?")1052

Evaluating Computational Comprehension1053

A model that truly comprehends the concept of ad-1054

dition would consistently produce the correct sum1055

(579) across all these transformations. This consis-1056

tency indicates that the model has internalized the1057

abstract operation of addition rather than merely1058

memorizing specific input-output patterns.1059

Mechanistic Analysis Protocol1060

Recent work in mechanistic interpretability has1061

demonstrated methods for identifying arithmetic1062

circuits in language models. We propose the fol-1063

lowing protocol to verify computational compre-1064

hension of arithmetic:1065

1. Circuit Identification: Using causal media-1066

tion analysis or activation patching, identify1067

the specific neurons, attention heads, or MLP1068

modules that activate when processing arith-1069

metic queries. Research suggests these com-1070

ponents often reside in mid-sequence early1071

layers and the final token’s later layers.1072

2. Activation Pattern Analysis: Record activa-1073

tion patterns across the transformation family1074

T . A model with true computational compre-1075

hension should show consistent activation in1076

the same sub-networks regardless of how the1077

arithmetic query is presented.1078

3. Targeted Ablation: Temporarily disable1079

the identified arithmetic circuit components1080

through zero ablation or mean ablation. If1081

these components are truly responsible for1082

arithmetic processing, performance should de-1083

grade specifically on arithmetic tasks while1084

leaving other capabilities intact.1085

4. Cross-Task Comparison: Compare activa-1086

tion patterns during arithmetic tasks with pat-1087

terns during number retrieval tasks and factual1088

knowledge questions. True arithmetic compre-1089

hension should exhibit distinct circuit activa-1090

tion compared to mere number recognition or1091

general knowledge retrieval.1092

Expected Observations 1093

If a model possesses computational comprehension 1094

of arithmetic, we would expect to observe: 1095

1. Consistent performance (M(t(x)) ≈ C(x) = 1096

579) across all transformations t ∈ T 1097

2. Identifiable sub-networks that activate specifi- 1098

cally for arithmetic operations 1099

3. Significant performance degradation on arith- 1100

metic tasks (but not other tasks) when these 1101

sub-networks are ablated 1102

4. Similar activation patterns across different pre- 1103

sentations of the same arithmetic problem 1104

This arithmetic example demonstrates how Com- 1105

putational Comprehension goes beyond surface- 1106

level accuracy to examine the internal mechanisms 1107

supporting concept representation and manipula- 1108

tion. By verifying both transformational robustness 1109

and the presence of dedicated conceptual circuits, 1110

we can distinguish models that truly comprehend 1111

arithmetic from those that merely pattern-match on 1112

specific input formats. 1113
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