
Secure Quantized Training for Deep Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We have implemented training of neural networks in secure multi-party computa-1

tion (MPC) using quantization commonly used in said setting. To the best of our2

knowledge, we are the first to present training of MNIST purely implemented in3

MPC that comes within one percent of accuracy of training using plaintext compu-4

tation. We found that training with MPC is possible, but it takes more epochs and5

achieves a lower accuracy than the usual CPU/GPU computation. More concretely,6

we have trained a network with two convolution and two dense layers to 98.5%7

accuracy in 150 epochs. This took a day in our MPC implementation.8

1 Introduction9

Secure multi-party computation (MPC) is a cryptographic technique that allows a set of parties to10

compute a public output on private inputs without revealing the inputs or any intermediate results.11

This makes it a potential solution to federated learning where the sample data stays private and only12

the model or even only inference results are revealed.13

Imagine a set of healthcare providers holding sensitive patient data. MPC allows them to collabo-14

ratively train a model. This model could then either be released or even kept private for inference15

using MPC again. See Figure for an illustration. A more conceptual example is the well-known16

millionaires’ problem where two people want to find out who is richer without revealing their wealth.17

There is clearly a difference between the one bit of information desired and the full figures.18

There has been a sustained interest in applying secure computation to machine learning and neural19

networks going back to at least Barni et al. [2006]. More recent advantages in practical MPC have20

led to an increased effort in implementing both inference and training.21

A number of works such as Mohassel and Zhang [2017], Mohassel and Rindal [2018], Wagh et al.22

[2019], Wagh et al. [2021] implement neural network training with MPC at least in parts. However,23

they either give accuracy figures below 95% or figures that have been obtained using plaintext training.24

For the latter case, the works do not clarify how close the computation for plaintext training matches25

the lower precision and other differences in the MPC setting. Agrawal et al. [2019] claim a higher26

accuracy in a comparable setting for a convolutional neural network with more channels than we27

use. However, they have only implemented dense layers, and we achieve comparable accuracy to28

them with only dense layers. All works use quantization in the sense that a fractional number x is29

represented as bx · 2−fe. This makes addition considerably faster in the secure computation setting30

because it reduces to integer addition. Furthermore, some of the works suggest to replace the softmax31

function that uses exponentiation with a ReLU-based replacement. Keller and Sun [2020] have found32

that this softmax replacement deteriorates accuracy in dense neural networks to the extent that it does33

not justify the performance gains.34

The concurrent work of Tan et al. [2021] gives some figures on the learning curve when run using35

secure computation. However, they stop at five epochs for MNIST training where they achieve 94%36

accuracy whereas we present the figures up to 150 epochs and 98.5% accuracy. Furthermore, their37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Figure 1: Outsourced computation: Data holders (on the left) secret-share their data to a number of
computing parties (on the right), who then return the desired the result (e.g., a model or inference
results on further queries). All communication except outputs are secret-shared and thus secure if no
two computing parties collude.

choice of fixed-point precision 20 is considerably below 32, which we found to be optimal. We also38

found that our implementation is 40% faster than theirs. Note that we use the CPU of one AWS39

c5.9xlarge instance per party whereas Tan et al. use one NVIDIA Tesla V100 GPU per party. We40

believe this somewhat counter-intuitive result comes from MPC heavily relying on communication,41

which is an aspect where GPUs do not have an advantage over CPUs.42

In this paper, we present an extensible framework for implementing deep learning training based on43

MP-SPDZ by Keller [2020], a framework for multi-party computation.1 Similar to TensorFlow and44

PyTorch, our approach allows representing deep learning models as succession of layers. We then45

use this implementation to obtain accuracy figures for MNIST training by utilizing the MP-SPDZ46

emulator, which allows to run the plaintext equivalent of secure computation, that is, the same47

algorithms with the same precision. Finally, we run one of the most promising instantiation in real48

secure computation in order to benchmark it confirm the result from the plaintext emulator.49

There are a number of projects that integrate secure computation directly into popular machine50

learning frameworks such as CrypTen by Gunning et al. [2019], PySyft by Ryffel et al. [2018], and51

TF Encrypted by Dahl et al. [2018]. Our approach differs from all of them by running the protocol as52

native CPU code (implemented using C++). This allows for much faster execution. For example,53

CrypTen provides an MNIST training example (mpc_autograd_cnn) that takes over one minute54

to run one epoch with 100 samples on one machine. In comparison, our implementation takes 1155

minutes to run one epoch with the full dataset of 60,000 samples.56

Another line of work (e.g., Quoc et al. [2021]) uses trusted execution environments that provide57

computation outside the reach of the operating system. This is a different security model to multi-party58

computation that works with distributing the information among several entities.59

The paper is structured as follows: After introducing the basics of the protocol we use in Section 2,60

we will explain the mathematical building blocks in Section 3 and their use in the context of deep61

learning in Section 4. Finally, we will present our implementation in Section 5 and our experimental62

results for MNIST in Section 6.63

2 An Efficient Secure Multi-Party Computation Protocol64

There is a wide range of MPC protocols with a variety of security properties (see Keller [2020] for an65

overview). In this paper we focus on the setting of three-party computation with one semi-honest66

corruption. This means that out of the three parties two are expected to behave honestly, i.e., they67

follow the protocol and keep their view of the protocol secret, and one party is expected to follow the68

protocol but might try extract information from their view. The reason for choosing this setting is that69

it allows an efficient MPC protocol while still allowing secure outsourced computation. The concrete70

protocol we use goes back to Benaloh and Leichter [1990] with further aspects by Araki et al. [2016],71

Mohassel and Rindal [2018], and Eerikson et al. [2020]. We summarize the core protocol below. The72

mathematical building blocks in the next section mostly use the aspects below.73

1We are committed to publishing our code as open source.

2



Secret sharing All intermediate values in our protocol are stored using replicated secret sharing. A74

secret value x is a represented as a random sum x = x0 + x1 + x2, and party Pi holds (xi−1, xi+1)75

where the indices are computed modulo three. Clearly, each party is missing one value to compute76

the sum. On the other hand, each pair of parties hold all necessary to reconstruct the secret. For a77

uniformly random generation of shares, the computation domain has to be finite. Most commonly,78

this domain is defined by integer computation modulo a number. We use 2k for k being a multiple 6479

and 2 as the moduli. The first case corresponds to an extension of 64-bit arithmetic found on most80

processors. We will refer to the two settings as arithmetic and binary secret sharing throughout the81

paper.82

Input sharing The secret sharing scheme implies a protocol to share inputs where the inputting83

party samples the shares and distributes them accordingly. Eerikson et al. [2020] have proposed a84

more efficient protocol where the inputting party only needs to send one value instead of two pairs of85

values. If Pi would like to input x, xi is set to zero, and xi−1 is generated with a pseudo-random86

generator using a key previously shared between Pi and Pi+1. Pi can compute xi+1 = x− xi−1 and87

send it to Pi−1. While the resulting secret sharing is not entirely random, the fact that Pi already88

knows x makes randomizing xi obsolete.89

Addition The commutative nature of addition allows to add secret sharings without communication.90

More concretely, secret sharings x = x0 + x1 + x2 and y = y0 + y1 + y2 imply the secret sharing91

x+ y = (x0 + y0) + (x1 + y1) + (x2 + y2).92

Multiplication The product of x = x0 + x1 + x2 and y = y0 + y1 + y2 is93

x · y = (x0 + x1 + x2) · (y0 + y1 + y2)

= (x0y0 + x0y1 + x1y0) + (x1y1 + x1y2 + x1y1) + (x2y2 + x2y0 + x0y2).

Each of the brackets only contains shares known by one of the parties. They can thus compute an94

additive secret sharing (one summand per party) of the product. However, every party only holding95

one share does not satisfy the replication requirement for further multiplications. It is not secure96

for every party to pass their value on to another party because the summands are not distributed97

randomly. This can be fixed by rerandomization: Let xy = z0 + z1 + z2 where zi is know to Pi.98

Every party Pi computes z′i = zi + ri,i+1 − ri−1,i where ri,i+1 is generated with a pseudo-random99

generator using a key pre-shared between Pi and Pi+1. The resulting sum xy = z′0 + z′1 + z′2 is100

pseudo-random, and it is thus secure for Pi to send z′i to Pi+1 in order to create a replicated secret101

sharing ((xy)i−1, (xy)i+1) = (z′i, z
′
i−1).102

3 Secure Computation Building Blocks103

In this section, we will discuss how to implement computation with MPC with a focus on how104

it differs from computation on CPUs or GPUs. Most of the techniques below are already known105

individually. To the best of our knowledge however, we are the first to put them together in an efficient106

and extensible framework for secure computation of deep learning training.107

Domain conversion Recall we that we use computation modulo 2k for k being a multiple of 64108

as well as 1. Given that the main operations are just addition and multiplication in the respective109

domain, it is desirable to compute integer arithmetic in the large domain but operations with a110

straight-forward binary circuit modulo two. There has been a long-running interest in this going111

back to least Kolesnikov et al. [2013]. We mainly rely on the approach proposed by Mohassel and112

Rindal [2018] and Araki et al. [2018]. Recall that x ∈ 2k is shared as x = x0 + x1 + x2. Now let113

{x(i)0 }
k−1
j=0 the bit decomposition of x0, that is, x(i)0 ∈ {0, 1} and x0 =

∑k−1
i=0 x

(i)
0 2i. It is self-evident114

that x(i)0 = x
(i)
0 + 0 + 0 is a valid secret sharing modulo two (albeit not a random one). Furthermore,115

every party holding x0 can generate x(i)0 . It is therefore possible for the parties to generate a secret116

sharing modulo two of a single share modulo 2k. Repeating this for all shares and the computing117

the addition as a binary circuit allows the parties to generate a secret sharing modulo two from a118

secret sharing modulo 2k. Conversion in the other direction can be achieved using a similar technique119

or using daBits as described by Rotaru and Wood [2019]. In the following we will use the term120

mixed-circuit computation for any technique that works over both computation domains.121

3



Quantization While Aliasgari et al. [2013] showed that it is possible to implement floating-point122

computation, the cost is far higher than integer computation. It is therefore common to represent123

fractional numbers using quantization (also called fixed-point representation) as suggested by Catrina124

and Saxena [2010]. A real number x is represented as x̃ = bx · 2fe where f is an integer specifying125

the precision. The linearity of the representation allows to compute addition by simply adding the126

representing integers. Multiplication however requires to adjust the result because it will have twice127

the precision: (x · 2f ) · (y · 2f ) = xy · 22f . There are two ways to rectify this:128

• An obvious correction would be to shift the result by f bits after adding 2f−1 to the integer129

representation. This ensures rounding to the nearest number possible in the representation,130

with the tie being broken by rounding up. Dalskov et al. [2021] presented an efficient131

implementation of the truncation using mixed-circuit computation.132

• However, Catrina and Saxena have found that in the context of secure computation it is more133

efficient to use probabilistic truncation. This method rounds up or down probabilistically134

depending on the input. For example, probabilistically rounding 0.75 to an integer would135

see it rounded of up with probability 0.75 and down with probability 0.25. The probabilistic136

truncation is an effect of the fact that the operation involves the truncation of a randomized137

value, that is the computation of b(x+ r)/2mc for a random m-bit value r. It is easy to see138

that139

b(x+ r)/2mc =
{
bx/2mc (x mod 2m + r) < 2m

bx/2mc+ 1 (x mod 2m + r) ≥ 2m.

Therefore, the larger (x mod 2m) is, the more likely the latter condition is true. Dalskov140

et al. [2020] present an efficient protocol in our security model.141

Our quantization scheme is related to quantized neural networks (see e.g. Hubara et al. [2016]).142

However, our consideration is not to compress the model, but to improve the computational speed143

and save communication cost.144

Dot products Dot products are an essential building block of linear computation such as matrix145

multiplication. In the light of quantization, it is possible to reduce the usage of truncation by deferring146

after the summation. In other words, the dot product in the integer representations is computed before147

truncating. This not only reduces the truncation error, it is also more efficient because the truncation148

is the most expensive part in quantized secure multiplication. Similarly, our protocol allows to defer149

the communication needed for multiplication. Let ~x and ~y be two vectors where the elements are150

secret shared, that is, {x(i)} = x
(i)
0 + x

(i)
1 + x

(i)
2 and similarly for y(i). The inner product then is151 ∑

i

x(i) · y(i) =
∑
i

(x
(i)
0 + x

(i)
1 + x

(i)
2 ) · (y(i)0 + y

(i)
1 + y

(i)
2 )

=
∑
i

(x
(i)
0 y

(i)
0 + x

(i)
0 y

(i)
1 + x

(i)
1 y

(i)
0 ) +

∑
i

(x
(i)
1 y

(i)
1 + x

(i)
1 y

(i)
2 + x

(i)
1 y

(i)
1 )

+
∑
i

(x
(i)
2 y

(i)
2 + x

(i)
2 y

(i)
0 + x

(i)
0 y

(i)
2 ).

The three sums in the last term can be compute locally by one party each before applying the same152

protocol as for a single multiplication.153

Comparisons Arithmetic secret sharing does not allow to access the individual bits directly. It154

is therefore not straightforward to compute comparisons such as “less than”. There is a long line155

of literature on how to achieve this going back to at least Damgård et al. [2006]. More recently,156

most attention has been given to combine the power of arithmetic and binary secret sharing in157

order to combine the best of worlds. One possibility to do so is to plainly convert to the binary158

domain and compute the comparison circuit there. In our concrete implementation we use the more159

efficient approach by Mohassel and Rindal [2018]. It starts by taking the difference of the two160

inputs. Computing the comparison then reduces to comparing to zero, which in turn is equivalent161

to extracting the most significant bit as it indicates the sign. The latter is achieved by converting162

the shares locally to bit-wise sharing of the arithmetic shares, which sum up to the secret value. It163

remains to compute the sum of the binary shares in order to come up with the most significant bit.164

4



Oblivious Selection Plain secure computation does not allow branching because the parties would165

need to be aware which branch is followed. Conditional assignment can be implemented as follows166

however. If b ∈ {0, 1} denotes the condition, x+ b · (y − x) is either x or y depending on b. If the167

condition is available in binary secret sharing but x and y in arithmetic secret sharing, b has to be168

converted to the latter. This can be done using a daBit as introduced by Rotaru and Wood [2019],169

which is a secret random bit shared both in arithmetic and binary. It allows to mask a bit in one world170

by XORing it. The result is then revealed and the masking is undone in the other world.171

Division Catrina and Saxena [2010] have shown how to implement quantized division using the172

algorithm by Goldschmidt [1964]. It mainly uses arithmetic and the probabilistic truncation already173

explained. In addition, the initial approximation requires a full bit decomposition as described above.174

The error of the output depends on the error in the multiplications used for Goldschmidt’s iteration,175

which compounds in particular when using probabilistic truncation. Due to the nature of secure176

computation, the result of division by zero is undefined. One could obtain a secret failure bit by177

testing the divisor to zero. However, we found that not to be necessary in our algorithm. This is178

because we only use division by secret value only for the softmax function where the it is guaranteed179

to strictly positive.180

Logarithm Computation logarithm with any public base can be reduced to logarithm to base two181

using logx y = log2 y · logx 2. Aly and Smart [2019] have proposed computing y = a · 2b where182

a ∈ [0.5, 1) and b ∈ Z. This then allows to compute log2 y = log2 a+ b. Given the restricted range183

of a, log2 a can be approximated using a division of polynomials. Numerical stability and input range184

control are less of an issue here because we only use logarithm for the loss computation, which does185

not influence the training.186

Exponentiation By using xy = 2y log2 x, any exponentiation can be reduced to exponentiation187

with base two. Aly and Smart [2019] have shown how to compute 2a = 2bac · 2a−bac by computing188

the two exponents using bit decomposition and the second factor using a polynomial approximation.189

Regarding the first factor, if b =
∑
i≥0 bi2

i is an integer with bi ∈ {0, 1},190

2b = 2
∑

i≥0 bi2
i

=
∏
i≥0

2bi2
i

=
∏
i≥0

(1 + bi · (22
i

− 1)).

As with division the numerical stability depends on the truncation used for multiplication.191

Inverse square root Aly and Smart [2019] have proposed to compute square root using Gold-192

schmidt and Raphson-Newton iterations. We could combine this with the division above. However, Lu193

et al. [2020] have proposed a more direct computation that avoids running two successive iterations.194

Uniformly random fractional number Limiting ourselves to intervals of the form [x, x+ 2e] for195

a potentially negative integer e, we can reduce the problem to generate a random (f + e)-bit number196

where f is the fixed-point precision. Recall that we represent a fractional number x as bx · 2−fe.197

Generating a random n-bit number is straight-forward using random bits, which in our protocol can198

be generated as presented by Damgård et al. [2019]. In the context of our protocol however, Dalskov199

et al. [2021] have a presented a more efficient approach that involves mixed-circuit computation.200

Communication cost Table 1 show the total communication cost of some of the building blocks201

in our protocol for f = 32. This setting mandates the modulus 2128 because the division protocol202

requires bit length 4f .203

4 Machine Learning Building Blocks204

In this section, we will use the building blocks in Section 3 to construct high-level computational205

modules for deep learning.206

Fully connected layers Both forward and back-propagation of fully connected layers can be seen207

as matrix multiplications and thus can be implemented using dot products. A particular challenge in208

secure computation is to compute a number of outputs in parallel in order to save communication209

5



Table 1: Communication cost of select computation for f = 32 and integer modulus 2128.

Bits

Integer multiplication 384
Probabilistic truncation 1,536
Nearest truncation 4,462
Comparison 1,369
Division (prob. truncation) 29,866
Division (nearest truncation) 57,798
Exponentiation (prob. truncation) 77,684
Exponentiation (nearest truncation) 171,638
Invert square root (prob. truncation) 20,073
Invert square root (nearest truncation) 27,699

rounds. We solve this by having a dedicated infrastructure in our implementation that computes all dot210

products for a matrix multiplication in a single batch, thus combining all necessary communication.211

2D convolution layers Similar to fully connected layers, 2D convolution and its corresponding212

gradient can be implemented using only dot products, and we again compute several output values in213

parallel.214

Rectified Linear Unit (ReLU) ReLU Nair and Hinton [2010] is defined as follows:215

ReLU(x) :=

{
x, if x > 0

0. otherwise

It can thus be implemented as a comparison followed by an oblivious selection. For back-propagation,216

it is advantageous to reuse the comparison results from forward propagation due to the relatively high217

cost in secure computation. Note that the comparison results are stored in secret-shared form and218

thus there is no reduction in security.219

Max pooling Similar to ReLU, max pooling can be reduced to comparison and oblivious selection.220

In secure computation, it saves communication rounds if the process uses a balanced tree rather than221

iterating over all input values of one maximum computation. For back-propagation it again pays off222

to the store intermediate results from forward propagation, again in secret-shared form.223

Softmax and cross entropy loss This combination requires computing the following gradient for224

back-propagation:225

5i :=
∂`

∂xi
=

∂

∂xi

(
−
∑
k

yk · xk + log
∑
j

exj

)
= −yi +

exi∑
j e
xj
, (1)

where yi denotes an element of the ground truth as a one-hot vector, and xi denotes the output of the226

last layer.227

On the right hand side of eq. (1), the values in the denominator are potentially large due to the use228

of the exponential. This is prone to numerical overflow in our quantized representation because the229

latter puts relatively strict limits on the values. We therefore optimize the computation by computing230

the maximum of the input values:231

m = max
j

({xj}).

Then we compute232

exi−m∑
j e
xj−m

=
exie−m

(
∑
j e
xj )e−m

=
exi∑
j e
xj
.

All the exponents on the left-most term are at most zero, and thus the dividend is at most one and the233

divisor is at most the number of labels (which is 10 in MNIST). The same technique can be used to234

compute the sigmoid activation function, as sigmoid(x) = 1
1+exp(−x) = exp(0)

exp(0)+exp(x) is a special235

case of softmax.236

6



Stochastic gradient descent The model parameter update in SGD only involves basic arithmetic:237

θj ← θj − γ
B

∑B
i=15ij where θj is the parameter indexed by j, B is the mini-batch size, γ > 0 is238

the learning rate, and5ij is the gradient of the loss with respect to the i’th sample in the mini-batch239

and the parameter θj . In order to tackle the limited precision with quantization, we defer dividing by240

the batch size to the model update. This means that we do not divide the gradient value by the batch241

size when computing them as described in the previous paragraph. Instead, we divide the model242

update by the batch size. Since we use a batch size that is a power of two (128), it is sufficient to use243

probabilistic truncation instead of full-blown division. This saves both time and decreases the error.244

Adam The main difference to SGD in terms of basic computational operations is the additional245

use of an inverse square root. We again defer the division by the batch size to just before the model246

update.247

Parameter initialization We use the Glorot initialization by Glorot and Bengio [2010]. Besides248

basic operations, it mainly involves generating a uniformly random fractional value in a given interval.249

5 Implementation250

We built our implementation on MP-SPDZ by Keller [2020]. MP-SPDZ not only implements a251

range of MPC protocols, it also comes with a high-level library containing the building blocks in252

Section 3. MP-SPDZ already featured capabilities to train dense neural networks as well as inference253

for convolutional neural networks. We have added backward propagation for a number of layer types,254

including 2D convolution. Furthermore, we have corrected a bug in the backward propagation for255

dense layers.256

MP-SPDZ allows implementing the computation in Python code, which is then compiled a specific257

bytecode. This code can be execute by a virtual machine executing the actual secure computation.258

The process allows to optimize the computation in the context of MPC.259

The framework also features an emulator that executes the exact computation that could be done260

securely in the clear. This allowed us to collect the accuracy figures in the next section at a lower cost.261

It is licensed under a BSD-style license, which allows to extend the code.262

6 MNIST263

For a concrete measurement of accuracy and running times, we have implemented training for the264

well-known MNIST dataset by LeCun et al. [2010]. We work mainly with the models that have been265

used by Wagh et al. [2019] with secure computation, and we will reuse their numbering (A–D). The266

models contain up to four linear layers. Network C is a convolutional neural network going back267

to the seminal work by LeCun et al. [1998] whereas the others are simpler networks that have been268

proposed by works on secure computation such as Mohassel and Zhang [2017], Liu et al. [2017], and269

Riazi et al. [2018]. We present the networks as Keras code in the supplemental material.270

Figure 2 shows the results for various quantization precisions and and the two rounding options.271

We have used SGD with learning rate 0.01, batch size 128, and the usual MNIST training/test split.272

f = 64 is the best option with probabilistic rounding, improving on both f = 16 and f = 32.273

Furthermore, nearest rounding performs worse that probabilistic for f = 16 and f = 32. Due to the274

high cost, we only ran f = 32 with probabilistic rounding several times. The range is indicate by the275

shaded area. We focus on f = 32 because it offers the faster convergence.276

Figure 3 then shows the result with a variety of optimizers. While increasing the learning rate for277

SGD leads to a lower stability, Adam exposes a smoother learning learning curve albeit not a faster278

process.279

Finally, Figures 4 shows our results for all networks used by Wagh et al. [2019]. As one would expect,280

the most sophisticated network performs best. Somewhat surprisingly, however, Network A (without281

convolutional layers) performs better than the simpler networks containing convolutional layers.282

7



0 50 100 150

10−3

10−2

10−1

100

#epochs

lo
ss

f = 16, prob.
f = 32, prob.
f = 64, prob.
f = 16, nearest
f = 32, nearest

0 50 100 150

0.02

0.04

0.06

0.08

0.1

er
ro

r

Figure 2: Loss and accuracy for network C and precision options when running SGD with rate 0.01.

0 20 40 60 80 100

10−3

10−2

10−1

100

#epochs

lo
ss

SGD, rate 0.01
SGD, rate 0.05
Adam, rate 0.001
Adam, rate 0.01
Adam, rate 0.1

0 20 40 60 80 100

0

0.1

0.2

0.3

er
ro

r

Figure 3: Loss and accuracy for network C with various optimizer options, f = 32, and probabilistic
truncation.

Resources We ran the emulator on AWS c5.9xlarge instances. One epoch takes a few second to283

several minutes depending on the model. Overall, we estimate that we have used a few weeks worth284

of computing time including experiments not included here because of bugs in the code.285

6.1 Secure computation286

In order to verify our emulation results, we have run Network C with precision f = 32 and287

probabilistic rounding in our actual multi-party computation protocol. We could verify that it288

converges on 98.5% accuracy at 150 epochs, taking 20 hours. Table 2 compares our result to previous289

works in a LAN setting. Note that Wagh et al. [2019] and Wagh et al. [2021] give accuracy figures.290

From personal communication with the authors and the fact that the source repository for the latter291

work2 says that their “code has not run end-to-end training”, we derive our assessment that their292

figures do not reflect the secure computation.293

2https://github.com/snwagh/falcon-public

8

https://github.com/snwagh/falcon-public


0 50 100 150

10−3

10−2

10−1

100

#epochs

lo
ss

Network A
Network B
Network C
Network D

0 50 100 150

0.02

0.04

0.06

0.08

0.1

0.12

er
ro

r

Figure 4: Loss and accuracy for various networks, f = 32, and probabilistic truncation.

Table 2: Comparison to previous work in the LAN setting. (∗) Mohassel and Zhang [2017] and
Agrawal et al. [2019] use a different security model and are thus incomparable. We include them for
completeness. Two numbers refer to online and offline time. Accuracy N/A means that the accuracy
figures were not given or computed in a way that does not reflect the secure computation.

Network Epoch time (s) Acc. (# epochs) Precision (f )

A

Mohassel and Zhang [2017] 283/19333∗ 93.4% (15) 13
Mohassel and Rindal [2018] 180 94.0% (15) N/A
Agrawal et al. [2019] 31392∗ 95.0% (10) N/A
Wagh et al. [2019] 247 N/A 13
Wagh et al. [2021] 41 N/A 13
Ours 31 97.9% (15) 16
Ours 50 97.7% (15) 32

B
Wagh et al. [2019] 4176 N/A 13
Wagh et al. [2021] 101 N/A 13
Ours 144 93.6% (15) 16
Ours 249 94.7% (15) 32

C
Wagh et al. [2019] 7188 N/A 13
Wagh et al. [2021] 891 N/A 13
Tan et al. [2021] 1036 94.0% (5) 20
Ours 344 94.9% (5) 16
Ours 643 93.8% (5) 32

D Mohassel and Rindal [2018] 234 N/A N/A
Ours 41 96.8% (15) 16
Ours 68 96.8% (15) 32

7 Conclusions294

We have presented an implementation of deep learning training purely in multi-party computation295

with extensive results on the accuracy. We have found that the lower precision of MPC computation296

increases the error considerably. We only have considered one particular implementation of more297

complex computation such as division and exponentiation, which are crucial to the learning process298

as part of softmax. Future work might consider different approximations of these building blocks.299

9



References300

N. Agrawal, A. S. Shamsabadi, M. J. Kusner, and A. Gascón. QUOTIENT: Two-party secure neural301

network training and prediction. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM302

CCS 2019, pages 1231–1247. ACM Press, Nov. 2019. doi: 10.1145/3319535.3339819.303

M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation on floating point numbers.304

In NDSS 2013. The Internet Society, Feb. 2013.305

A. Aly and N. P. Smart. Benchmarking privacy preserving scientific operations. In R. H. Deng,306

V. Gauthier-Umaña, M. Ochoa, and M. Yung, editors, ACNS 19, volume 11464 of LNCS, pages307

509–529. Springer, Heidelberg, June 2019. doi: 10.1007/978-3-030-21568-2_25.308

T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure309

three-party computation with an honest majority. In E. R. Weippl, S. Katzenbeisser, C. Kruegel,310

A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 805–817. ACM Press, Oct. 2016. doi:311

10.1145/2976749.2978331.312

T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell, K. Ohara, and H. Tsuchida. Generalizing313

the SPDZ compiler for other protocols. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors,314

ACM CCS 2018, pages 880–895. ACM Press, Oct. 2018. doi: 10.1145/3243734.3243854.315

M. Barni, C. Orlandi, and A. Piva. A privacy-preserving protocol for neural-network-based computa-316

tion. In Proceedings of the 8th workshop on Multimedia and security, pages 146–151, 2006.317

J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Goldwasser,318

editor, CRYPTO’88, volume 403 of LNCS, pages 27–35. Springer, Heidelberg, Aug. 1990. doi:319

10.1007/0-387-34799-2_3.320

O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In R. Sion, editor, FC321

2010, volume 6052 of LNCS, pages 35–50. Springer, Heidelberg, Jan. 2010.322

M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud, I. Livingstone, J. Patriquin, and G. Uhma.323

Private machine learning in tensorflow using secure computation. CoRR, abs/1810.08130, 2018.324

URL http://arxiv.org/abs/1810.08130.325

A. Dalskov, D. Escudero, and M. Keller. Fantastic four: Honest-majority four-party secure com-326

putation with malicious security. In 30th USENIX Security Symposium (USENIX Security 21),327

2021.328

A. P. K. Dalskov, D. Escudero, and M. Keller. Secure evaluation of quantized neural networks.329

PoPETs, 2020(4):355–375, Oct. 2020. doi: 10.2478/popets-2020-0077.330

I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-rounds331

multi-party computation for equality, comparison, bits and exponentiation. In S. Halevi and332

T. Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 285–304. Springer, Heidelberg, Mar.333

2006. doi: 10.1007/11681878_15.334

I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. New primitives335

for actively-secure MPC over rings with applications to private machine learning. In 2019 IEEE336

Symposium on Security and Privacy, pages 1102–1120. IEEE Computer Society Press, May 2019.337

doi: 10.1109/SP.2019.00078.338

H. Eerikson, M. Keller, C. Orlandi, P. Pullonen, J. Puura, and M. Simkin. Use your brain! Arithmetic339

3PC for any modulus with active security. In Y. T. Kalai, A. D. Smith, and D. Wichs, editors, ITC340

2020, pages 5:1–5:24. Schloss Dagstuhl, June 2020. doi: 10.4230/LIPIcs.ITC.2020.5.341

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.342

In Proceedings of the thirteenth international conference on artificial intelligence and statistics,343

pages 249–256. JMLR Workshop and Conference Proceedings, 2010.344

R. E. Goldschmidt. Applications of division by convergence. Master’s thesis, MIT, 1964.345

10

http://arxiv.org/abs/1810.08130


D. Gunning, A. Hannun, M. Ibrahim, B. Knott, L. van der Maaten, V. Reis, S. Sengupta, S. Venkatara-346

man, and X. Zhou. Crypten: A new research tool for secure machine learning with pytorch,347

2019.348

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In349

Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.350

M. Keller. MP-SPDZ: A versatile framework for multi-party computation. In J. Ligatti, X. Ou,351

J. Katz, and G. Vigna, editors, ACM CCS 20, pages 1575–1590. ACM Press, Nov. 2020. doi:352

10.1145/3372297.3417872.353

M. Keller and K. Sun. Effectiveness of MPC-friendly softmax replacement, 2020.354

V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. A systematic approach to practically efficient general355

two-party secure function evaluation protocols and their modular design. Journal of Computer356

Security, 21(2):283–315, 2013.357

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document358

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.359

Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online]. Avail-360

able: http: // yann. lecun. com/ exdb/ mnist , 2, 2010. Creative Commons Attribution-Share361

Alike 3.0 license, https://creativecommons.org/licenses/by-sa/3.0/.362

J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via MiniONN363

transformations. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS364

2017, pages 619–631. ACM Press, Oct. / Nov. 2017. doi: 10.1145/3133956.3134056.365

W.-j. Lu, Y. Fang, Z. Huang, C. Hong, C. Chen, H. Qu, Y. Zhou, and K. Ren. Faster secure multiparty366

computation of adaptive gradient descent. In Proceedings of the 2020 Workshop on Privacy-367

Preserving Machine Learning in Practice, PPMLP’20, page 47–49, New York, NY, USA, 2020.368

Association for Computing Machinery. ISBN 9781450380881. doi: 10.1145/3411501.3419427.369

URL https://doi.org/10.1145/3411501.3419427.370

P. Mohassel and P. Rindal. ABY3: A mixed protocol framework for machine learning. In D. Lie,371

M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages 35–52. ACM Press, Oct.372

2018. doi: 10.1145/3243734.3243760.373

P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving machine learning.374

In 2017 IEEE Symposium on Security and Privacy, pages 19–38. IEEE Computer Society Press,375

May 2017. doi: 10.1109/SP.2017.12.376

V. Nair and G. E. Hinton. Rectified linear units improve Restricted Boltzmann machines. In Pro-377

ceedings of the 27th International Conference on International Conference on Machine Learning,378

ICML’10, pages 807–814, 2010.379

D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel, P. Bhatotia, and C. Fetzer. securetf: A secure380

tensorflow framework. CoRR, abs/2101.08204, 2021. URL https://arxiv.org/abs/2101.381

08204.382

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar. Chameleon:383

A hybrid secure computation framework for machine learning applications. In J. Kim, G.-J. Ahn,384

S. Kim, Y. Kim, J. López, and T. Kim, editors, ASIACCS 18, pages 707–721. ACM Press, Apr.385

2018.386

D. Rotaru and T. Wood. MArBled circuits: Mixing arithmetic and Boolean circuits with active387

security. In F. Hao, S. Ruj, and S. Sen Gupta, editors, INDOCRYPT 2019, volume 11898 of LNCS,388

pages 227–249. Springer, Heidelberg, Dec. 2019. doi: 10.1007/978-3-030-35423-7_12.389

T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-Palmbach. A390

generic framework for privacy preserving deep learning. CoRR, abs/1811.04017, 2018. URL391

http://arxiv.org/abs/1811.04017.392

11

http://yann.lecun.com/exdb/mnist
https://creativecommons.org/licenses/by-sa/3.0/
https://doi.org/10.1145/3411501.3419427
https://arxiv.org/abs/2101.08204
https://arxiv.org/abs/2101.08204
https://arxiv.org/abs/2101.08204
http://arxiv.org/abs/1811.04017


S. Tan, B. Knott, Y. Tian, and D. J. Wu. CryptGPU: Fast privacy-preserving machine learning on the393

GPU, 2021.394

S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-party secure computation for neural network395

training. PoPETs, 2019(3):26–49, July 2019. doi: 10.2478/popets-2019-0035.396

S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin. Falcon: Honest-majority397

maliciously secure framework for private deep learning. PoPETs, 2021(1):188–208, Jan. 2021.398

doi: 10.2478/popets-2021-0011.399

Checklist400

1. For all authors...401

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s402

contributions and scope? [Yes]403

(b) Did you describe the limitations of your work? [Yes] See Section 7.404

(c) Did you discuss any potential negative societal impacts of your work? [No] We only405

work with MNIST, and we believe that the potential negative impacts associated to it406

are very low.407

(d) Have you read the ethics review guidelines and ensured that your paper conforms to408

them? [Yes]409

2. If you are including theoretical results...410

(a) Did you state the full set of assumptions of all theoretical results? [N/A]411

(b) Did you include complete proofs of all theoretical results? [N/A]412

3. If you ran experiments...413

(a) Did you include the code, data, and instructions needed to reproduce the main experi-414

mental results (either in the supplemental material or as a URL)? [Yes] We include all415

code in the supplemental material, and the references include the URL for MNIST.416

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they417

were chosen)? [Yes] See Section 6.418

(c) Did you report error bars (e.g., with respect to the random seed after running experi-419

ments multiple times)? [Yes] Only in Figure 2.420

(d) Did you include the total amount of compute and the type of resources used (e.g., type421

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 6.422

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...423

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.424

(b) Did you mention the license of the assets? [Yes] See the references and and Section 5.425

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]426

Our code is included the supplemental material.427

(d) Did you discuss whether and how consent was obtained from people whose data you’re428

using/curating? [N/A]429

(e) Did you discuss whether the data you are using/curating contains personally identifiable430

information or offensive content? [N/A]431

5. If you used crowdsourcing or conducted research with human subjects...432

(a) Did you include the full text of instructions given to participants and screenshots, if433

applicable? [N/A]434

(b) Did you describe any potential participant risks, with links to Institutional Review435

Board (IRB) approvals, if applicable? [N/A]436

(c) Did you include the estimated hourly wage paid to participants and the total amount437

spent on participant compensation? [N/A]438

12


	Introduction
	An Efficient Secure Multi-Party Computation Protocol
	Secure Computation Building Blocks
	Machine Learning Building Blocks
	Implementation
	MNIST
	Secure computation

	Conclusions

