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Abstract

The message-passing paradigm of Graph Neu-
ral Networks often struggles with exchanging in-
formation across distant nodes typically due to
structural bottlenecks in certain graph regions, a
limitation known as over-squashing. To reduce
such bottlenecks, graph rewiring, which modifies
graph topology, has been widely used. However,
existing graph rewiring techniques often overlook
the need to preserve critical properties of the orig-
inal graph, e.g., spectral properties. Moreover,
many approaches rely on increasing edge count
to improve connectivity, which introduces sig-
nificant computational overhead and exacerbates
the risk of over-smoothing. In this paper, we pro-
pose a novel graph rewiring method that leverages
spectrum-preserving graph sparsification, for mit-
igating over-squashing. Our method generates
graphs with enhanced connectivity while main-
taining sparsity and largely preserving the original
graph spectrum, effectively balancing structural
bottleneck reduction and graph property preserva-
tion. Experimental results validate the effective-
ness of our approach, demonstrating its superior-
ity over strong baseline methods in classification
accuracy and retention of the Laplacian spectrum.

1. Introduction and Related Works
Graphs are a fundamental data structure for representing
complex relational systems, where nodes signify entities and
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edges represent interactions (Harary, 1969; Diestel, 2012;
Shuman et al., 2013). Their capacity to capture both struc-
tural and relational information makes them valuable across
diverse fields, including social networks, biological sys-
tems, and recommendation engines (Battaglia et al., 2018;
Sanchez-Gonzalez et al., 2018; Gilmer et al., 2017; van den
Berg et al., 2017; Koh et al., 2024). Graph Neural Networks
(GNNs) are a specialized class of neural networks developed
to process graph-structured data by utilizing both node fea-
tures and edge-based structural information (Scarselli et al.,
2009; Kipf & Welling, 2017; Velickovic et al., 2018). GNNs
iteratively update each node’s representation by aggregating
information from its neighbors (Gilmer et al., 2017).

Recently, the problem of over-squashing in GNNs has
gained attention. Over-squashing occurs when informa-
tion from distant nodes is forced through graph structural
bottlenecks, causing message distortion during aggregation
(Alon & Yahav, 2021). This issue worsens in deeper net-
works as the receptive field grows, making it difficult to
encode large amounts of information into a fixed-size vector.
Consequently, over-squashing limits GNNs’ ability to cap-
ture long-range dependencies, degenerating performance on
tasks that need global context.

Many efforts to address over-squashing have focused on
graph rewiring techniques. These methods modify the edge
set of input graph (original graph)—either by adding or
reconfiguring edges—to create an output graph that en-
hances connectivity and enables more effective message
passing in sparse or bottlenecked areas. The rewired out-
put graph is then used for downstream tasks, such as node
classification and graph classification.

Despite advancements, existing graph-rewiring methods
have two notable limitations. First, they often substan-
tially modify the edge set and fail to preserve graph struc-
tural integrity, especially the Laplacian spectrum. For in-
stance, Delaunay graph-based rewiring (Attali et al., 2024)
offers benefits such as reduced graph diameter and lower
effective resistance. However, it constructs graphs solely
based on node features, completely disregarding the orig-
inal graph topology. Similarly, graph transformers (Ying
et al., 2021; Kreuzer et al., 2021) essentially rely on fully
connected graphs, while expander graph-based rewiring
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Figure 1: Overview of the proposed densification-sparsification rewiring (DSR) framework. The framework starts by densifying the
input graph through an inverse spectral sparsification process, which aims to alleviate structural bottlenecks while preserving spectral
properties. Following this, sparsification is applied to the densified graph (referred to as the latent graph) to generate an output graph. This
output graph not only exhibits improved connectivity, as measured by effective resistance, but also retains similar spectral properties and
maintains the same edge density as the original input graph.

methods (Deac et al., 2022; Christie & He, 2023) may even
introduce entirely new node sets, diverging significantly
from the structure of the input graph. It is important to pre-
serve graph spectrum during rewiring, since many learning
tasks, such as clustering and semi-supervised learning on
graphs, rely on spectral properties to ensure accurate results.

Second, these methods often introduce many additional
edges to enhance connectivity, which increases the com-
putational cost of learning on the rewired output graph.
Moreover, a denser output graph increases the risk of over-
smoothing, where information from neighboring nodes be-
comes excessively blended, undermining the ability to main-
tain distinct node features (Li et al., 2018; Chen et al., 2020a;
Liang et al., 2023b).

To address these challenges, we propose GOKU, a graph
rewiring method designed to address over-squashing in
GNNs. Specifically, given an input graph G, the objective is
to generate an output graph Go with improved connectivity
by increasing a few of the smallest eigenvalues of its Lapla-
cian, while preserving sparsity and ensuring the remaining
eigenvalues stay close to those ofG. This balance allowsGo
to improve message-passing capabilities without deviating
significantly from the spectrum of the original graph, which
reflects the graph’s essential characteristics. This is inspired
by spectral sparsification techniques that allow graphs with
different edge sets to maintain spectral similarity. GOKU
operates in two phases: (1; densification) it first densifies
the input graph G by solving an inverse graph sparsification
problem, creating a densified latent graph with improved
connectivity; (2; sparsification) it then applies a spectral
sparsification algorithm to reduce edge set size, producing a
sparse output graph Go for downstream classification tasks.
This densification-sparsification paradigm is illustrated us-
ing an example graph in Figure 1.

Contributions. Our main contributions are as follows:

• We propose a novel densification-sparsification
rewiring (DSR) paradigm for mitigating over-squashing
(Sec. 3). To our knowledge, DSR is the first rewiring
paradigm that simultaneously (1) enhances connectivity
for effective message passing, (2) maintains graph
sparsity for computational efficiency, and (3) explicitly
preserves the graph spectrum for structural fidelity.

• We present a novel method GOKU, a practical and ef-
fective instance of the proposed DSR paradigm (Sec. 4).
With efficient algorithmic designs, GOKU operates in
nearly linear time with respect to both nodes and edges.

• We conduct extensive experiments (Sec. 5). GOKU
achieves better downstream performance than existing
methods in both node and graph classification tasks on 10
datasets, while effectively balancing improving connec-
tivity and preserving graph spectrum.

Related works and their limitations. Numerous methods
have been proposed to mitigate over-squashing in GNNs.
Many approaches focus on modifying the graph struc-
ture through rewiring. For instance, First-order Spectral
Rewiring (FoSR) (Karhadkar et al., 2023) improves the first-
order approximation of the spectral gap by adding edges.
Curvature-based methods (Topping et al., 2022; Nguyen
et al., 2023) optimize connectivity by adding and removing
edges based on geometric principles. ProxyGap (Jamadandi
et al., 2024) employs both edge deletions and additions to op-
timize the spectral gap, based on the Braess paradox (Braess,
1968). Expander graph-based rewiring (Deac et al., 2022)
maintains a small diameter using Cayley graphs, which may
even have a different node set from the original graph. More
recently, methods like Probabilistically Rewired Message-
Passing Neural Networks (Qian et al., 2024) explore proba-
bilistic approaches to rewiring. Black et al. (2023) propose
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minimizing total effective resistance to reduce bottlenecks.
Attali et al. (2024) construct new graphs based on node fea-
tures, completely discarding the original topology. Other
methods address over-squashing without altering the origi-
nal graph topology. Giovanni et al. (2023) investigates the
impact of model width, depth, and topology. (Tortorella &
Micheli, 2022) and PANDA (Choi et al., 2024) propose alter-
native message-passing mechanisms, with PANDA focusing
on expanded width-aware message passing. Cooperative
Graph Neural Networks (Finkelshtein et al., 2024) also in-
troduce learned cooperative mechanisms in message passing
that can help alleviate information bottlenecks.

While these approaches improve connectivity, they often
substantially change the topology, overlooking the signif-
icance of retaining the graph structure. To address this
limitation, Locality-aware rewiring (Barbero et al., 2024)
has been recently proposed to restrict new connections to k-
hop neighbors, avoiding arbitrary long-range modifications.
However, there still remains a lack of methods that explicitly
integrate spectrum preservation—a key aspect that captures
essential graph structural properties—into mitigating over-
squashing. To bridge this gap, this paper introduces a novel
approach leveraging spectral sparsification methods, which
produce sparsified graphs that explicitly maintain spectral
similarity to the original graph. Our code is available at
https://github.com/Jinx-byebye/GOKU.

2. Preliminaries and Background
2.1. Preliminaries on Graphs
Graph and notation. We define basic notations used in
this paper. Let G = (V,E,w) be an undirected weighted
graph, where V is the node set with n = |V |, E is the
edge set with m = |E|, and w : E → R+ assigns positive
weights to edges. Note that unweighted graphs are treated
as special cases of weighted graphs with all weights being
one. Nodes have a feature matrix X ∈ Rn×d. The weighted
adjacency matrix A ∈ Rn×n has Aij = wij if (vi, vj) ∈ E,
otherwise Aij = 0. The degree matrix D is diagonal with
Dii =

∑n
j=1Aij , and the Laplacian matrix is L = D −A.

For node classification, the label matrix Y ∈ {0, 1}n×c
encodes node label assignments across c classes. For graph
classification, the dataset comprises {(Gi, yi)}Ni=1, where
each graph Gi = (Vi, Ei) is labeled yi.

Graph spectrum. The graph spectrum of a graph is the set
of eigenvalues λ1 = 0 ≤ λ2 ≤ · · · ≤ λn of its Laplacian
L. It is a “fingerprint” that encodes topological charac-
teristics, e.g., node centrality, community structure, and
clustering coefficient (Chung, 1997). Since spectral prop-
erties are invariant to graph isomorphisms, they provide
a robust framework for comparing and analyzing graphs.
Preserving spectral similarity is essential for tasks relying

Task Dataset Same Class Different Class

Graph

IMDB 0.59 0.21
Mutag 0.58 0.23

Proteins 0.13 0.05
Enzymes 0.05 0.03

Node
Cora 0.2817 0.0736

Citeseer 0.0013 0.0001
Pubmed 0.3383 0.1121

Table 1: Average spectral similarity between graphs and nodes
within the same class and across different classes. For the graph-
level (IMDB, Mutag, Proteins, Enzymes), similarity is computed
based on eigenvalue distributions using the fastdtw algorithm (as
they have different numbers of nodes). For the node level (Cora,
Citeseer, Pubmed), similarity is measured as the average cosine
similarity between node feature vectors derived from eigenvectors.

on these intrinsic graph and node characteristics. For graph
classification, graphs belonging to the same class tend to
exhibit more similar eigenvalue distributions than graphs
from different classes. For node classification, nodes from
the same class exhibit higher average cosine similarity in
their eigenvector-based feature representations compared to
nodes from different classes (using components from the
first 128 eigenvectors, resulting in a 128-dimensional feature
vector per node). The results supporting these observations
for both tasks are summarized in Table 1.

Spectral gap and effective resistance. The spectral gap
(or algebraic connectivity) of a graph (Chung, 1997; Fiedler,
1973) is the second-smallest (i.e., smallest non-zero) eigen-
value λ2 of its Laplacian matrix.1 A small spectral gap
implies many structural bottlenecks, i.e., poor connectivity.
The effective resistance (ER) Ru,v (Doyle & Snell, 1984)
between nodes u and v, quantifies the difficulty of flow
between the two nodes: Ru,v = (eu − ev)⊤L+(eu − ev),
where eu and ev are indicator vectors for u and v, and L+

is the Moore-Penrose pseudoinverse of the Laplacian L. A
lower Ru,v indicates more alternative short paths between
u and v, implying (u, v) is well-connected.

Graph Neural Networks (GNNs). GNNs
update node representations iteratively by ag-
gregating information from neighboring nodes:
h
(l)
v = Ul

(
h
(l−1)
v ,Ml

(
h
(l−1)
v , {h(l−1)

u | u ∈ N (v)}
))

,

where Ml and Ul are the message and update functions
at layer l, and h(l)v are the node embedding of v at layer
l. For graph classification, we use a readout function
ŷ = R

(
{h(L)v |v ∈ V }

)
to aggregate all node embeddings.

1We define spectral gap following, e.g., Karhadkar et al. (2023),
while it can be alternatively defined as the difference between the
two largest eigenvalues of the adjacency matrix.
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2.2. Graph Sparsification

Graph Sparsification (Benczúr & Karger, 1996; Spielman
& Srivastava, 2008; Spielman & Teng, 2011) is a family
of techniques aimed at approximating a graph G with a
sparse graph H , ensuring that H is an efficient computa-
tional proxy for G while minimizing approximation errors.

Spectral sparsification. Among these techniques, spectral
sparsification produces a sparsifier of the original graph
whose Laplacian quadratic form closely approximates that
of the original graph across all real vector inputs.

Definition 2.1 (Spectrally Similar Graphs). Let G =
(V,E,w) and H = (V,EH , wH) be undirected weighted
graphs. We say H is (1± ϵ)-spectrally similar to G for
an approximation error parameter ϵ ∈ (0, 1), denoted by

H
1±ϵ
≈ G, if the Laplacian matrices LH and L (of H and G

respectively) satisfy the following inequality for all x ∈ Rn:

(1− ϵ)x⊤Lx ≤ x⊤LHx ≤ (1 + ϵ)x⊤Lx. (1)

Remark 2.2. The definition of x⊤Lx =∑
(u,v)∈E wuv(xu − xv)

2 intrinsically connects to
various topological characteristics of the graph. For
instance, by choosing x to be an indicator vector for a
set of nodes S ⊆ V , i.e., xu = 1 if u ∈ S and xu = 0 if
u /∈ S, the quadratic form x⊤Lx becomes the weight of
the graph cut separating S from its complement S̄, denoted
cut(S, S̄). That is, x⊤Lx = cut(S, S̄). Similarly, other
choices of x can reveal connections to node degrees or
relationships between eigenvalues. This comprehensive
measure allows us to assess the similarity of graphs based
on their fundamental structural properties.

Definition 2.3 (Spectral Sparsifier). LetG = (V,E,w) and
H = (V,EH , wH) be undirected weighted graphs. H is
called a sparsifier of G if EH ⊆ E. If a sparsifier H is
also (1± ϵ)-spectrally similar to G, we say H is a (1± ϵ)-
spectral sparsifier of G.

A common approach to sparsification (i.e., constructing a
sparsifier) involves repeating the following process for q
rounds: (1) sampling an edge ei ∈ E with replacement
according to a probability distribution {pe}e∈E , and (2) in-
crementing its weight by wei

qpei
. This process ensures that

the expected weight of each edge e in the sparsified graph
H matches its original weight in G, since qpe · we

qpe
= we.

Consequently, the total edge weight is also preserved in ex-
pectation. Different sparsification methods primarily differ
in their choice of {pe}. Our rewiring paradigm builds upon
this sparsification framework, which we introduce in the
following section.

3. DSR: Proposed Rewiring Paradigm

— A General Framework

In this section, we introduce a novel Densification-
Sparsification Rewiring (DSR) paradigm to mitigate over-
squashing in GNNs, consisting of two sequential modules:
graph densification and graph sparsification. We denote
the input graph (original graph) as G, the intermediate
graph after densification (referred to as the latent graph) as
Gl, the final output graph after sparsification as Go, i.e.,

G
densification−−−−−−→ Gl

sparsification−−−−−−−→ Go. Below, we first explain
the motivations behind these two steps, and then discuss
their details. This section introduces the general paradigm,
while Section 4 presents a concrete instance of DSR.

3.1. Motivations

Densification. Our core idea is to view the input graph
G = (V,E) as a spectral sparsifier of an unknown latent
graph Gl = (V,El) that has good connectivity, and we aim
to reconstruct Gl. In this view, the structural bottlenecks
observed in G arise due to the omission of certain critical
edges during the sparsification process from Gl to G. By
reconstructing Gl, we aim to recover these “missing edges”,
which can help mitigate over-squashing and improve the
overall graph structure. How can we identify those “missing
edges” and reconstruct Gl from the “sparsified” graph G?

This question defines the densification (or inverse sparsi-
fication) problem: given a graph G, we aim to reconstruct
the latent graph Gl such that Gl is the most likely (as in
Maximum Likelihood Estimation) latent graph from which
a spectral sparsification algorithm produces G. Since G
is a spectral sparsifier of Gl, Gl is expected to effectively
preserve the spectrum of G while improving connectivity.

To reintroduce missing edges crucial for increasing connec-
tivity, we consider the inverse process of unimportance-
based spectral sparsification (USS). In USS, crucial edges
tend to be removed, while less crucial edges tend to remain.
Therefore, if G is the result of applying USS to Gl, the
“remaining edges” in G are less crucial, while the “missing
edges” that are in Gl but not in G are supposed to be crucial
for connectivity, which we aim to recover.

Sparsification. A drawback of densification is the in-
creased computational complexity due to added edges in
Gl. To balance connectivity and efficiency, we apply
importance-based spectral sparsification (ISS) to Gl,
pruning edges that are less critical for connectivity. As
a result, the output Go almost retains Gl’s connectivity level
while preserving the sparsity and spectrum of G, making it
an ideal proxy for downstream tasks on G.

Combination. When we combine the two steps, both
G and Go are spectral sparsifiers of Gl. Therefore, the
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spectrum is explicitly preserved from G to Go:

Go
1±ϵ
≈ Gl; Gl

1±ϵ
≈ G =⇒ Go

(1±ϵ)2
≈ G.

At the same time, by (1) recovering edges that are crucial
for connectivity in densification and (2) removing edges that
are less crucial in sparsification, we maintain sparsity and
enhance the connectivity from G to Go.

3.2. Detailed Descriptions

Densification. The graph densification problem is formu-
lated as a Maximum Likelihood Estimation (MLE) problem.

Definition 3.1 (Graph Densification Problem). Given G =
(V,E,w) and a spectral sparsification algorithm ϕ(·) that
outputs a (1± ϵ)-spectral sparsifier (see Def. 2.1),2 the
densification problem aims to find a latent graph Gl =
(V,El, wl) to maximize the likelihood of G being the result
of applying ϕ(·) to Gl. Formally,

Gl = argmax
Gd=(V,E∪E′,wd)

P(ϕ(Gd) = G) (2)

subject to E ∩ E′ = ∅, Gd
1±ϵ
≈ G.

Here, E is the edge set of the observed sparsifier G, and E′

is the set of “missing edges” removed during sparsification.

Unimportance-based spectral sparsification (USS). As
mentioned in Section 3.1, in USS, edges that are crucial for
connectivity tend to be removed, while less crucial edges
tend to remain. Therefore, the distribution pe for sampling
edges (see Section 2.2) in ϕ(·) should give higher pe,ϕ val-
ues to edges that are less crucial for connectivity. A natural
approach is to set pe inversely proportional to the topolog-
ical significance of e: pe,ϕ ∝ 1

Topological significance of e , where
“topological significance” can be quantified using edge im-
portance metrics, e.g., effective resistance or edge between-
ness. We will provide detailed algorithmic choices in our
practical instance of densification in Section 4.1.

Sparsification. In graph sparsification, we use another
spectral sparsification algorithm ψ(·) that outputs a (1± ϵ)-
spectral sparsifier, to selectively retain edges with high topo-
logical significance in the latent graph Gl. By doing so, we
reduce structural complexity, preserve the graph spectrum,
and maintain the enhanced connectivity in Gl.

Importance-based spectral sparsification (ISS). As men-
tioned in Section 3.1, in ISS (which is the opposite of
USS), edges that are crucial for connectivity tend to re-
main. Therefore, the distribution pe,ψ in ψ(·) should give

2The existence of such ϕ(·) is guaranteed by existing results.
For example, Benczúr & Karger (1996) and Spielman & Srivas-
tava (2008) proposed algorithms to construct a (1± ϵ)-spectral
sparsifier with O(n logn/ϵ2) edges for any graph.

Algorithm 1 USS Algorithm

1: Input: Graph Gd = (V,Ed, wd) and sampling count q
2: Output: Graph Gs = (V,Es, ws)
3: Compute the Fielder vector f (the eigenvector corre-

sponding to the second-smallest eigenvalue λ2 of Lapla-
cian) and node degrees deg(v)’s

4: Initialize ws(e)← 0,∀e ∈ Ed
5: for i = 1 to q do
6: Sample an edge ei = (u, v) ∈ Ed with replacement,

with probability pe ∝ (deg(u)+deg(v)+1
|fu−fv| )

7: Increment the weight: ws(ei)← ws(ei) +
wd(ei)
peq

8: end for
9: Return Gs = (V,Es, ws) by collecting the sampled

edges and their weights: Es = {e ∈ Ed : ws(e) > 0}

higher pe values to edges that are more crucial. We can sim-
ilarly set pe proportional to the topological significance of e:
pe,ψ ∝ Topological significance of e, and the “topological
significance” in USS and ISS can be defined differently. We
will provide detailed algorithmic choices in our practical
instance of sparsification in Section 4.2.

Comparison to existing methods. Our method differs
from existing approaches in several ways. First, it explicitly
preserves spectrum through (inverse) spectral sparsification.
Second, it integrates both densification and sparsification.
While prior works (Topping et al., 2022; Nguyen et al., 2023;
Fesser & Weber, 2023; Jamadandi et al., 2024) also modify
edges to mitigate over-smoothing or enhance connectivity,
our approach guarantees that the final sparsified graph never
exceeds the original graph’s density. Third, rather than
deterministically selecting edges based on predefined con-
nectivity metrics, our method employs a probabilistic edge
modification strategy. Finally, leveraging graph spectral
properties, the number of added edges |E′| is derived from a
well-established theoretical result (see Theorem 4.1) rather
than being a heuristically chosen value.

4. GOKU: Proposed Method
— A Practical Instance of DSR

In this section, we present a practical instance of the
Densification-Sparsification Rewiring (DSR) paradigm,
termed GOKU (Graph rewiring to tackle Over-squashing
by Keeping graph spectra throUgh spectral sparsification).
Implementing the DSR paradigm requires designing USS
and ISS algorithms and solving the MLE problem in Eq. (2).

4.1. Graph Densification: USS and the MLE Problem

For graph densification, we design an algorithm for the USS
method, and propose an efficient procedure to construct the
latent graph for the MLE problem in Eq. (2).

USS instance. The USS method should assign low prob-
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abilities pe to edges crucial for maintaining connectivity.
We design Algorithm 1 as our USS method, which prefer-
entially retains edges with a high value of deg(u)+deg(v)+1

|fu−fv| ,
where fu and fv are components of the Fiedler vector (the
eigenvector associated with the second-smallest eigenvalue
λ2 of Laplacian; see Section 2.1).

Why does a lower value of deg(u)+deg(v)+1
|fu−fv| indicate higher

significance for connectivity? The intuition is: a large |fu−
fv| suggests weak connectivity between u and v, and small
degrees imply they are weakly connected to the remaining
part of the graph. Removing such edges creates bottlenecks,
making them critical for preserving graph connectivity.

Algorithm 1 provably produces spectral sparsifiers.

Theorem 4.1 (USS Gives Spectral Sparsifiers). Let Gd =
(V,Ed, wd) and Gs = (V,Es, ws) be the input and out-
put of Algorithm 1, with Laplacian L and L̃, respectively.
For any x ∈ Rn, define κ = κ(x) =

∥Cx∥2
∞

pmin∥Cx∥2
2

, where

pmin = mine∈Ed
pe, and C ∈ R2|Ed|×|V | denotes the

signed incidence matrix of Gd.3 For any ϵ ∈ (0, 1), if
q ≥ κ2

2ϵ2 log 8, then with probability at least 3/4,

(1− ϵ)xTLx ≤ xT L̃x ≤ (1 + ϵ)xTLx.

Proof. Proof is deferred to Appendix D.1.

Solve the MLE by inverse sparsification. We now solve
the MLE problem in Eq. (2) using Algorithm 1 as the USS
method, i.e., ϕ(·) in Section 3.2. We treat the input graph
G as the observed sparsifier, representing the output of
Algorithm 1, and aim to find the latent graph Gl as the
most likely input to Algorithm 1 that would produce G.

However, solving this MLE problem presents several chal-
lenges. First, the search space of possibleGd’s is intractable,
as it includes all supergraphs of G and all possible edge
weight assignments. Second, even for a given Gd, comput-
ing the exact probability P(ϕ(Gd) = G) is difficult.

To address these challenges, we introduce a practical proce-
dure with simplifications and approximations to efficiently
obtain the latent graph Gl = (V,El, wl). For the first chal-
lenge, to reduce search space, we assume uniform edge
weights in Gl, i.e., wl(e1) = wl(e2) for any e1, e2 ∈ El, fo-
cusing on optimizing the edge set. For the second challenge,

3Each edge (u, v) ∈ Ed is represented by two rows: one with
Ck1u = 1, Ck1v = −1, and zeros elsewhere; and another with
Ck2u = −1, Ck2v = 1, and zeros elsewhere.

to simplify calculation, we approximate P(ϕ(Gd) = G) as:

P(ϕ(Gd) = G)

≈
∏
e∈E

(P(e ∈ ϕ(Gd)))we

∏
e′∈E′

(P(e′ /∈ ϕ(Gd)))w̄

=
∏
e∈E

(1− (1− pe)q)we

∏
e′∈E′

((1− pe′)q)w̄, (3)

where w̄ =
∑
e∈E we/|E| is the average edge weight, and

recall Ed = E ∪ E′. In Eq. (3), we simplify the formula
by (1) assuming edge independence, and (2) using edge
weights directly as power exponents (or equivalently, linear
weights in the log probability). Since we assume uniform
edge weights in Gl, we omit wl in the formula.

With the above simplifications and approximations, now,
optimization over Gd is equivalent to optimization over
the “missing edges” E′, i.e., we aim to find E′ =
argmaxE∗

∏
e∈E(1− (1− pe)q)we

∏
e′∈E∗((1− pe′)q)w̄.

Below, we discuss the detailed procedure to find such E′.

First, we select an approximation error parameter ϵ ∈ (0, 1),
set x as the leading eigenvector (the eigenvector associated
with the largest eigenvalue λn) of the Laplacian of G, and
compute the corresponding condition number κ = κ(x)
(see Theorem 4.1). We use the leading eigenvector since we
aim to improve the small eigenvalues (e.g., the spectral gap
λ2; see Section 2.1) which are closely related to structural
bottlenecks, while preserving the large eigenvalues. The
choice of ϵ ensures that a sufficient number of new edges can
be added to E′, specifically requiring |E′| = |El| − |E| to
exceed a predefined threshold α. Next, we set q = κ2

2ϵ2 log 8,
and determine |El| such that when sampling q random edges
with replacement from El, the subgraph contains exactly
|E| distinct edges in expectation. Further details on this
process are provided in Appendix E.

Second, after determining |El| (and thus |E′|), the task re-
duces to maximizing the objective function in Eq. (3) by
choosing |E′| edges from the complement set Ecomp =

{(u, v) : u, v ∈ V } \ E, with
(|Ecomp|

|E′|
)

possible combina-
tions, which is still intractable. To improve efficiency, we
focus on edges between “promising nodes” through two
steps: (1) Candidate set construction: Identify the 2j
nodes with the largest absolute Fiedler values and the 2j
nodes with the smallest degrees, where j is the smallest
integer such that

(
j
2

)
≥ |E′|. This gives

(
4j
2

)
≈ 16|E′| edge

combinations. Pairs between such nodes are likely to have a
small value of deg(u)+deg(v)+1

|fu−fv| , and thus are crucial for con-
nectivity. (2) Random selection: Assign each edge e in the
candidate set a probability ce proportional to the value of the
objective function Eq. (3) assuming e is inserted into G. We
then sample |E′| edges from the candidate set at once based
on the distribution {ce} and construct Gl by including these
edges. Finally, we re-scale the edge weights in Gl so that
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each edge in El has weight |E|/|El|, ensuring that Gl and
G have the same total edge weight, as the total edge weight
is typical preserved in sparsification (see Section 2.2). See
Appendix B for more details.

4.2. Graph Sparsification: ISS

After deriving Gl, we sparsify it using importance-based
spectral sparsification (ISS) to obtain the output graph Go.
We propose to use effective resistance (ER) to measure edge
significance in ISS (see Sec. 2.1 for the definition of ER).

ISS instance. We adapt a well-known ER-based spar-
sification (Spielman & Srivastava, 2008), but further in-
corporate node features. Specifically, each edge (u, v)
is sampled with probability pe ∝ (1 + Se)Re, where
Se = (1 + cos(xu, xv))/2 ∈ [0, 1] is the normalized co-
sine similarity between original node features, and Re is
the edge’s ER. Heterophily describes a type of graph where
connections predominantly occur between dissimilar nodes.
This characteristic has been recognized as a significant chal-
lenge for effectively training GNNs across various stud-
ies(Zhu et al., 2020; Luan et al., 2022; Liang et al., 2023a;
2024). This prioritizes edges with high ER and feature sim-
ilarity, thus retaining edges crucial to connectivity while
filtering noisy edges with dissimilar node features (as in
topological denoising; see, e.g., Luo et al. (2021)). We
sample edges until β|E| distinct edges are selected, where
0.5 < β ≤ 1, to ensure sparsity (specifically, Go is not
denser than G). Due to the nature of the sparsification pro-
cess (see Section 2.2), Go has the same total edge weight
as Gl in expectation. Recall in USS, the total edge weight
of Gl matches that of G. Therefore, Go also matches the
total edge weight of G. The ISS algorithm is similar to
Alg. 1, except for the probability distribution {pe}. For
pseudocodes of our ISS instance and the GOKU method,
please refer to Appendix B. Similar to USS, our instance of
ISS also provably produces spectral sparsifiers.

Theorem 4.2 (ISS Gives Spectral Sparsifiers). Let Gd =
(V,Ed, wd) and Gs = (V,Es, ws) be the input and output
of Algorithm 2, with Laplacian L and L̃, respectively. For
any ϵ ∈ (0, 1), there exists q = O(n log n/ϵ2), such that

∀x ∈ Rn, (1− ϵ)xTLx ≤ xT L̃x ≤ (1 + ϵ)xTLx,

holds with high probability.

Proof. Proof is deferred to Appendix D.2.

4.3. Complexity Analysis

Approximating ER. Computing ER exactly is compu-
tationally intensive, but there are efficient approximation
methods in sublinear O(m poly(log n/δ2)) time (Koutis
et al., 2014; Peng et al., 2021), where 0 < δ < 1 is

the approximation error. We use the technique by Koutis
et al. (2014). The approximation error affects the bound
by a constant factor, altering the bound in Theorem 4.2 to
(1± (1 + δ)ϵ). We fix δ = 0.1 throughout our experiments.

Time complexity. The time complexity of GOKU has
two main components: graph densification and graph spar-
sification. Denote |E| = m and |V | = n. In graph
densification, generating approximately 16|E′| candidate
edges and computing their scores requires O(|E′|m). In
graph sparsification, approximating the ER for all edges
incurs O

(
m·poly(logn)

δ2

)
, and the ISS sampling step adds

O
(
n logn
ϵ2

)
. Combining these, the overall time complex-

ity is: O(|E′|m) + O
(
m·poly(logn)

δ2

)
+ O

(
n logn
ϵ2

)
=

O(|E′|m) + Õ
(
m
δ2

)
where Õ omits polylogarithmic fac-

tors. The Fiedler and leading vectors can be approximated
in linear time, dominated by the other terms.

5. Experiments
In this section, we evaluate the proposed method GOKU
across various tasks, benchmarking its performance against
state-of-the-art methods for node and graph classification.
Our analysis is guided by the following research questions:

• RQ1: Performance. How does GOKU compare to lead-
ing methods in node/graph classification tasks?

• RQ2: Spectrum preservation. How well does GOKU
preserve the graph spectrum?

• RQ3: Ablation study. What are the contributions of
densification and sparsification to GOKU’s effectiveness?

• RQ4: Structural impact and efficiency of GOKU. How
does GOKU improve the structure (homophily and con-
nectivity) of graphs and how efficient is GOKU?

Datasets. We evaluate our method on 10 widely used
datasets for node/graph classification. For node classifica-
tion, we use Cora, Citeseer (Yang et al., 2016), Texas, Cor-
nell, Wisconsin (Pei et al., 2020), and Chameleon (Rozem-
berczki et al., 2021), including both homophilic and het-
erophilic datasets. For graph classification, we use Enzymes,
Imdb, Mutag, and Proteins from TUDataset (Morris et al.,
2019). Dataset statistics are summarized in Appendix A.

Experimental details. We compare the proposed method
GOKU with no graph rewiring (i.e., NONE) and six state-
of-the-art rewiring methods: SDRF (Topping et al., 2022),
FoSR (Karhadkar et al., 2023), BORF (Nguyen et al., 2023),
GTR (Black et al., 2023), Delaunay Rewiring (DR) (At-
tali et al., 2024), and LASER (Barbero et al., 2024).
Each method preprocesses graphs before evaluation with
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Method Cora Citeseer Texas Cornell Wisconsin Chameleon Enzymes Imdb Mutag Proteins AR
NONE 86.7 ± 0.3 72.3 ± 0.3 44.2 ± 1.5 41.5 ± 1.8 44.6 ± 1.4 59.2 ± 0.6 25.5 ± 1.3 49.3 ± 1.0 68.8 ± 2.1 70.6 ± 1.0 6.60
SDRF 86.3 ± 0.3 72.6 ± 0.3 43.9 ± 1.6 42.2 ± 1.5 46.2 ± 1.2 59.4 ± 0.5 26.1 ± 1.1 49.1 ± 0.9 70.5 ± 2.1 71.4 ± 0.8 5.70
FOSR 85.9 ± 0.3 72.3 ± 0.3 46.0 ± 1.6 40.2 ± 1.6 48.3 ± 1.3 59.3 ± 0.6 27.4 ± 1.1 49.6 ± 0.8 75.6 ± 1.7 72.3 ± 0.9 4.80
BORF 87.5 ± 0.2 73.8 ± 0.2 49.4 ± 1.2 50.8 ± 1.1 50.3 ± 0.9 61.5 ± 0.4 24.7 ± 1.0 50.1 ± 0.9 75.8 ± 1.9 71.0 ± 0.8 3.40
DR 78.4 ± 1.2 69.5 ± 1.6 67.8 ± 2.5 57.8 ± 1.9 62.8 ± 2.1 58.6 ± 0.8 - 47.0 ± 0.7 80.1 ± 1.8 72.2 ± 0.8 4.55
GTR 87.3 ± 0.4 72.4 ± 0.3 45.9 ± 1.9 50.8 ± 1.6 46.7 ± 1.5 57.6 ± 0.8 27.4 ± 1.1 49.5 ± 1.0 78.9 ± 1.8 72.4 ± 1.2 3.90
LASER 86.9 ± 1.1 72.6 ± 0.6 45.9 ± 2.6 42.7 ± 2.6 46.0 ± 2.6 43.5 ± 1.0 27.6 ± 1.3 50.3 ± 1.3 78.8 ± 1.6 71.8 ± 1.6 4.20
GOKU 86.8 ± 0.3 73.6 ± 0.2 72.4 ± 2.2 69.4 ± 2.1 68.8 ± 1.4 63.2 ± 0.4 27.6 ± 1.2 49.8 ± 0.7 81.0 ± 2.0 71.9 ± 0.8 1.90

Table 2: Performance of different methods for both node and graph classification datasets using GCN as the model. The best and runner-up
results are highlighted in yellow and green, respectively. The average ranking (AR) reflects the mean position of each method across all
datasets. -: DR requires graphs to have at least 3 nodes, but some graphs from Enzymes have only 2 nodes.

Method Cora Citeseer Texas Cornell Wisconsin Chameleon Enzymes Imdb Mutag Proteins AR
NONE 77.5 ± 1.2 59.3 ± 1.3 46.4 ± 4.5 40.2 ± 4.8 42.1 ± 3.6 56.6 ± 0.8 33.5 ± 1.3 67.7 ± 1.4 76.1 ± 3.1 69.5 ± 1.4 6.20
SDRF 77.2 ± 0.8 59.9 ± 1.2 44.5 ± 3.9 38.2 ± 4.1 43.1 ± 1.6 58.1 ± 1.4 32.4 ± 1.3 69.4 ± 1.4 79.5 ± 2.6 71.4 ± 0.8 5.80
FOSR 78.2 ± 0.8 61.4 ± 1.5 43.7 ± 4.1 39.4 ± 3.8 43.7 ± 2.8 59.3 ± 0.6 28.8 ± 1.0 70.6 ± 1.3 74.8 ± 1.5 73.7 ± 0.8 5.00
BORF 77.6 ± 0.9 60.8 ± 0.2 49.9 ± 3.4 39.9 ± 3.9 46.7 ± 2.2 59.2 ± 0.4 31.4 ± 1.5 70.5 ± 1.3 78.2 ± 1.6 71.9 ± 1.3 4.40
DR 64.6 ± 1.6 50.8 ± 2.0 57.3 ± 2.8 50.1 ± 2.7 50.1 ± 3.0 60.2 ± 0.8 - 64.8 ± 0.8 74.5 ± 2.8 74.3 ± 0.8 4.44
GTR 78.6 ± 1.3 62.6 ± 1.9 49.5 ± 2.9 39.4 ± 2.3 44.2 ± 2.4 57.1 ± 1.2 28.4 ± 1.8 70.1 ± 1.2 78.5 ± 3.5 73.3 ± 0.9 4.40
LASER 79.1 ± 1.0 66.5 ± 1.3 46.5 ± 4.5 44.5 ± 3.8 46.1 ± 4.6 59.8 ± 2.2 35.3 ± 1.3 68.6 ± 1.2 76.1 ± 2.4 72.1 ± 0.7 3.40
GOKU 78.4 ± 0.5 63.6 ± 1.3 60.2 ± 2.6 49.5 ± 3.5 57.6 ± 3.1 62.1 ± 0.6 33.8 ± 1.2 71.3 ± 0.9 78.4 ± 2.5 73.9 ± 1.0 1.80

Table 3: Performance of different methods for both node and graph classification datasets using GIN as the model.

Method Mutag Imdb Proteins Chameleon Cora

GOKU-D 78.0 ± 1.8 48.2 ± 1.1 72.0 ± 0.9 62.7 ± 0.7 86.4 ± 0.7

GOKU-S 76.8 ± 1.9 48.8 ± 1.1 70.1 ± 1.9 62.9 ± 1.5 86.4 ± 0.6

GOKU 81.0 ± 2.0 49.8 ± 0.7 71.9 ± 0.8 63.2 ± 0.4 86.8 ± 0.3

Table 4: Ablation study. GOKU-D and GOKU-S correspond to
densification and sparsification only.

a GCN4 (Kipf & Welling, 2017), GIN5 (Xu et al., 2019),
and GCNII (Chen et al., 2020b) (refer to Appendix C). Fol-
lowing Nguyen et al. (2023), we prioritize fairness and
comprehensiveness over maximizing performance on indi-
vidual datasets, applying fixed GNN hyperparameters (e.g.,
learning rate 1e− 3, hidden dimension 64, 4 layers) across
all methods. Hyperparameters for rewiring methods are
tuned individually. The configuration that yields the best
validation performance is selected and tested. Results are
averaged over 100 random trials with both the mean test
accuracy and the 95% confidence interval reported.

Hyperparameters of GOKU. We fix the spectrum approx-
imation error ϵ = 0.1, which determines the value of q as
q = κ2

2ϵ2 log 8 (see Theorem 4.1). For the ER approximation
algorithm (Koutis et al., 2014), we set δ = 0.1. Two hyper-
parameters are fine-tuned based on the validation set: (1;
densification) α ∈ {5, 10, 15, 20, 25, 30}: If the number of
edges added during densification computed with the initial
ϵ = 0.1, is less than α, we iteratively increase ϵ until this
threshold is exceeded. (2; sparsification) β ∈ [0.5, 1.0]:
This parameter scales the size of the output graph Go rela-
tive to the input graphG, such that |Eo| = β|E|. During the
sparsification phase, we keep sampling until β|E| distinct

4h
(l+1)
v = σ

(∑
u∈N(v)

wuv√
du·dv

h
(l)
u W (l)

)
5h

(l+1)
v = MLP(l)

(
(1 + ϵ) · h(l)

v +
∑

u∈N(v) wuv · h(l)
u

)

edges are sampled.

Performance results. Table 2 and Table 3 summarize the
results for GOKU and baselines using GCN and GIN as
backbone models, respectively (see Appendix C for the re-
sults using GCNII). GOKU achieves superior performance
across both node and graph classification tasks when using
GCN as the backbone model, especially in the node clas-
sification task for heterophilic graphs (such as Texas, Cor-
nell, and Wisconsin). Similarly, with GIN as the backbone,
GOKU maintains its strong performance, outperforming
baselines in most datasets. Overall, GOKU consistently
outperforms other methods, demonstrating its effectiveness
across diverse tasks and graph types.

Visualization of graph spectra. We visualize the spec-
tra of randomly selected graphs from the Mutag and Pro-
teins datasets before and after rewiring using GTR, DR, and
GOKU. For a fair comparison, 10 edges are added to Mutag
and 50 to the other datasets (α = 10 or α = 50 for GOKU).
For LASER, we set p = 0.15 and maximum hop k = 3
to add a similar number of edges. As shown in Figure 2,
GTR and DR cause significant eigenvalue deviations, while
GOKU best preserves the spectra of the original graphs,
even outperforming LASER. This highlights GOKU’s abil-
ity to maintain spectral fidelity.

Ablation study. We provide ablation study in Table 4.
The results demonstrate that both densification and spar-
sification contribute to the effectiveness of GOKU. While
GOKU-D (densification only) enhances connectivity more
significantly than GOKU, this does not always translate to
better performance for downstream tasks. Excessive connec-
tivity can lead to issues such as over-smoothing or disrupting
the underlying community structures. On the other hand,
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Dataset # Edges Homo. (bef.) Homo. (aft.) Time (sec)
S-High 20 0.8333 0.9167 0.086
S-Low 20 0.4000 0.4123 0.072

M-High 245 0.7459 0.7764 0.42
M-Low 245 0.3452 0.3822 0.36
L-High 80352 0.7558 0.7822 65.26
L-Low 80352 0.3854 0.4325 72.24

Table 5: (1) Homophily levels before and after applying the GOKU
rewiring method, and (2) the average running time (10 runs) for
GOKU rewiring across graphs of varying scales.

Figure 2: Graph spectra of Mutag and Proteins before and after
rewiring. See more examples in Appendix F.2.

GOKU-S (sparsification only) alone fails to achieve sig-
nificant improvements in connectivity. This underscores
the importance of combining both components to strike a
balance between connectivity and density.

Homophily level, effective resistance, and running time.
We generate graphs at varying scales (20, 200, and 2000
nodes) with different homophily levels (high and low) using
the Stochastic Block Model (SBM) to investigate the impact
of GOKU. Specifically, we compare homophily levels and
effective resistance distributions before and after the GOKU
rewiring technique is applied to each graph. In addition, we
measure the running time of GOKU across different graph
sizes to evaluate its computational efficiency as the graph
scale increases. For the experiment, we fix α = 0.1|E| and
β = 1.0, meaning that during densification, we add 0.1|E|
edges, and the density of the rewired graphs remains the
same as that of the original graphs.

• Homophily: The homophily values of the original and
rewired graphs are given in Table 5. Note that GOKU
consistently improves homophily levels6 across differ-
ent graph scales and homophily levels. This improve-
ment is due to the consideration of node features during
sparsification, which helps preserve intra-community
edges.

• Effective resistance: After applying GOKU, the ef-
fective resistances between node pairs significantly
decrease, as shown in the distributions in Figure 3.
This reduction indicates improvements in both local
and global connectivity in the rewired graphs.

• Running time: The running time of GOKU scales
near-linearly with the graph size, as shown in Table 5,

6Homophily level is defined as |{(u,v)∈E:yu=yv}|
|E| .
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Figure 3: Effective resistance (ER) distribution of all node pairs in
graphs with varying scales and homophily levels before and after
rewiring. Smaller ER values suggest better connectivity.

which aligns with the theoretical time complexity in
Section 4.3.

6. Conclusions and Limitations
In this paper, we propose GOKU, a novel graph rewiring
method for addressing over-squashing in GNNs through the
densification-sparsification paradigm. Building on spectral
sparsification, we formulate and solve an inverse sparsifi-
cation problem to enhance graph connectivity while pre-
serving spectral properties, followed by a sparsification step
for maintaining sparsity. Extensive experiments show that
GOKU outperforms existing methods in node and graph
classification tasks, while effectively balancing connectivity
improvement and spectral retention. Our code is available
at https://github.com/Jinx-byebye/GOKU.
Limitations. Spectrum preservation for unweighted
graphs with different edge sizes is inherently challenging, so
spectral sparsification typically relies on weighted graphs,
where edge weights may cause additional complexities for
GNNs. This is not a major concern in practice for most GNN
models, where edge weights can be naturally incorporated.
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Algorithm 2 ISS Algorithm

1: Input: Graph Gl = (V,E) and sampling count q
2: Output: Output graph Go = (V,Ec)

3: Approximate ER Re and compute original node feature cosine similarity Se = 1+cos(xu,xv)
2 ∈ [0, 1] for each edge

e ∈ E.
4: for i = 1 to q do
5: Randomly select edge e with probability pe ∝ (1 + Se)Re with replacement
6: Increment the edge weight by 1

peq
for each sampling

7: end for
8: Construct the output graph Go = (V,Eo) by including the sampled edges with their accumulated weights

A. Dataset
A summary of the statistics for all datasets used is presented in Table 6 and Table7.

Cornell Texas Wisconsin Cora Citeseer Chameleon

#Nodes 140 135 184 2485 2120 832
#Edges 219 251 362 5069 3679 12355
#Features 1703 1703 1703 1433 3703 2323
#Classes 5 5 5 7 6 5

Directed Graph? YES YES YES NO NO YES

Table 6: Summary statistics of node classification datasets.

ENZYMES IMDB MUTAG PROTEINS

Basic Info. of Graphs
Nodes (Min–Max) 2–126 12–136 10–28 4–620
Edges (Min–Max) 2–298 52–2498 20–66 10–2098
Avg # of Nodes 32.63 19.77 17.93 39.06
Avg # of Edges 124.27 193.06 39.58 145.63

Classification Info.
# of Graphs 600 1000 188 1113
# of Classes 6 2 2 2
Directed Graphs? NO NO NO NO

Table 7: Summary statistics of graph classification datasets.

B. The GOKU Algorithm Pseudocode
We provide the pseudocodes for the ISS sparsification and GOKU in Algorithm 2 and Algorithm 3, respectively.

C. Results with GCNII
We conduct additional experiments using several of the strongest baselines from Table 2 and Table 3, alongside four
benchmark datasets: Mutag, Proteins, Cora, and Cornell. In these experiments, we use the powerful GNN model,
GCNII (Chen et al., 2020b), as the backbone. The results from these experiments provide valuable insights into the relative
strengths of the baseline models and the GCNII backbone. The results in the Table 8 demonstrate the performance of four
methods (DR, GTR, LASER, GOKU) on five datasets (Mutag, Proteins, Cora, Cornell, Wisconsin) using GCNII. GOKU
consistently achieves the best or near-best performance across most datasets.
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Algorithm 3 GOKU, Graph Densification and Sparsification Algorithm

1: Input: Input graph G = (V,E)
2: Output: Output graph Go = (V,Eo)
3: {Densification: Add k Edges to G}
4: Compute q = κ2

2ϵ2 log 8 using the leading eigenvector and ϵ; estimate |El| as in Appendix E and set k = |El| − |E|.
5: Identify 2j nodes with the largest absolute Fiedler values and 2j nodes with the smallest degrees.
6: Form candidate edges between these nodes, size

(
4j
2

)
.

7: Initialize S = ∅ (set of selected edges)
8: Initialize r = 0 (sampling counter)
9: while size of S < k do

10: Randomly select an edge e from the candidate set based on probability pe proportional to its contribution to the
objective function (3).

11: if e /∈ S then
12: Add e to S.
13: end if
14: Increment edge weight of e by 1

pe
15: Increment r by 1.
16: end while
17: Construct latent graph Gl = (V,El) = E ∪ S by including edges in S with their accumulated weights; scale edge

weights in E by |E|/|El|; scale edge weights in S by 1/r.
18: {Sparsification: Reduce El to Eo}
19: for each edge e ∈ El do
20: Approximate effective resistance Re with approximation error δ = 0.1 using the technique proposed by Koutis et al.

(2014).
21: end for
22: for i = 1 to q do
23: Randomly sample edges with probability pe ∝ (1 + Se)Re, where Se and Re denote feature similarity and effective

resistance of edge e, respectively.
24: Increment edge weights by 1

peq
for each sample.

25: end for
26: Construct sparsified graph Go = (V,Eo) by including the sampled edges with their accumulated weights.

Method Mutag Proteins Cora Cornell Wisconsin AR

DR 81.6 ± 1.7 72.1 ± 1.2 78.8 ± 1.4 67.9 ± 4.7 70.5 ± 3.9 2.6

GTR 79.0 ± 1.4 72.5 ± 1.1 86.8 ± 1.3 59.2 ± 4.8 62.7 ± 3.7 3.4

LASER 80.3 ± 1.6 73.0 ± 1.0 88.1 ± 1.3 60.8 ± 3.6 60.1 ± 3.5 2.6

GOKU 81.8 ± 1.4 73.9 ± 0.9 87.2 ± 1.1 69.4 ± 4.4 68.8 ± 3.6 1.4

Table 8: Results on five datasets with GCNII. The best and runner-up results are highlighted in yellow and green, respectively. The
average ranking (AR) reflects the mean position of each method across all datasets.

D. Proof
D.1. Proof of Theorem 4.1

Proof. We aim to show that the Laplacian L̃ of the sparsified graph Gs approximates the Laplacian L of the original graph
G in the spectral norm, i.e.,

(1− ϵ)L ⪯ L̃ ⪯ (1 + ϵ)L

with high probability. Our approach is based on Chernoff bounds and variance control in the sampling process.

Setup. Consider a graph G = (V,E) with n nodes and m edges. For each edge e = (u, v) ∈ E, the weight we = 1. The
Laplacian matrix L ∈ Rn×n is defined as

L = D −A
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where D is the degree matrix and A is the adjacency matrix. We sample q edges from E with replacement, where the
probability of sampling an edge e = (u, v) is denoted by pe, without specifying a particular distribution for pe values.
For each sampled edge, its contribution to the Laplacian is scaled by the inverse of its sampling probability. Let L̃ be the
Laplacian of the sparsified graph. Then,

E[L̃] = L.

We aim to control the spectral deviation between L̃ and L using a concentration bound.

Quadratic Form Decomposition. Let x ∈ Rn be an arbitrary vector. We analyze the quadratic form xT L̃x, which is a sum
of independent random variables:

xT L̃x =

q∑
i=1

Xi,

where Xi is the contribution of the i-th sampled edge to the quadratic form. More precisely, for each sampled edge
e = (u, v), we define:

Xi =
1

qpe
(xu − xv)2.

The random variables Xi are independent and identically distributed, and the expectation of each Xi is:

E[Xi] =
1

q
xTLx =

1

q
µ,

where µ = xTLx is the quadratic form of the original Laplacian.

Bounding the Range of Xi. To apply concentration inequalities, we need to bound the range of the random variables Xi.
The maximum possible value of Xi occurs when the difference (xu − xv)2 is maximal, i.e.,

max
e=(u,v)∈E

(xu − xv)2 = ∥Cx∥2∞,

where C ∈ Rm×n is the signed incidence matrix of the graph. Therefore, each Xi is bounded as:

0 ≤ Xi ≤
1

qpmin
∥Cx∥2∞,

where pmin = mine∈E pe represents the minimum sampling probability.

Variance Bound. The variance of each Xi is bounded as:

Var(Xi) ≤ E[X2
i ] ≤

1

q2p2min
∥Cx∥4∞.

Summing over all sampled edges, the total variance is:

Var

(
q∑
i=1

Xi

)
= q · Var(X1) ≤

q · ∥Cx∥4∞
q2p2min

.

Therefore, the standard deviation is:

σ ≤ ∥Cx∥
2
∞

q1/2pmin
.

Application of Hoeffding’s Inequality. We now apply Hoeffding’s inequality to bound the probability that the sum deviates
from its expectation:

P

(∣∣∣∣∣
q∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

)
≤ 2 exp

(
−2t2∑q

i=1(bi − ai)2

)
.

Substituting the bounds on Xi, we get:

P

(∣∣∣∣∣
q∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

)
≤ 2 exp

(
−2t2qp2min

∥Cx∥4∞

)
.
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Conclusion. Let t = ϵµ and κ =
∥Cx∥2

∞
pmin∥Cx∥2

2
. Then the probability becomes:

P
(
|xT L̃x− xTLx| > ϵµ

)
≤ 2 exp

(
−2ϵ2q
κ2

)
.

Thus, by choosing q ≥ κ2

2ϵ2 log 8, we ensure that

|xT L̃x− xTLx| ≤ ϵxTLx

with probability at least 3/4, which completes the proof.

D.2. Proof of Theorem 4.2

Proof. This proof builds upon the techniques introduced by Spielman & Srivastava (2008).

Let C ∈ Rm×n be a signed incidence matrix defined such that Ce,v = 1 if v is the head of edge e, Ce,v = −1 if v is the tail
of edge e, and Ce,v = 0 otherwise. Consequently, the Laplacian can be expressed as L = CTC. This allows us to denote
the Laplacian of the sparsifier as L̃ = CTSC, where S is a diagonal matrix with Se,e = se

qpe
, and se represents the number

of times edge e is sampled.

Since G is a connected graph, the multiplicity of the eigenvalue 0 is 1, and we express the pseudoinverse of L as

L+ =

n∑
i=2

1

λi
uiu

T
i .

Using the pseudoinverse, the effective resistance between nodes u and v can be calculated as follows:

Ruv = (1u − 1v)
TL+(1u − 1v),

where the vector 1u is an indicator vector, with the u-th element equal to 1 and all other elements equal to 0. Based on this
definition, we can represent the effective resistance matrix as

Φ = CL+CT ,

where the diagonal entries are given by Φe,e = Re. Next, we introduce the following lemma:

Lemma D.1. Let p be a probability distribution over Γ ⊆ Rd such that for all y ∈ Ω, y ≤ τ , and ∥Ep[yyT ]∥ ≤ 1. Let
y1, y2, . . . , yq be independent and identically distributed samples drawn from p. Then

E

∥∥∥∥∥1q
q∑
i=1

yiy
T
i − EyyT

∥∥∥∥∥ ≤ min

(
cτ

√
log q

q
, 1

)
,

where c is a constant.

We will apply the above lemma to E∥ΦSΦ− ΦΦ∥. Note that ΦSΦ can be expressed as

ΦSΦ =
∑
e

Se,eΦ:,eΦ
T
:,e =

1

q

∑
e

te
Φ:,e√
pe

ΦT:,e√
pe

=
1

q

q∑
i=1

yiy
T
i , (4)

for yi drawn independently from the distribution y =
Φ:,e√
pe

with probability pe. We compute the expectation of yyT as
follows:

EyyT =
∑
e

pe
1

pe
Φ:,eΦ

T
:,e = Φ2 = Φ. (5)
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The last step follows from the fact that Φ is a projection matrix, which can be derived as follows:

Φ2 = CL+CTCL+CT = CL+LL+CT = CL+CT = Φ. (6)

The first equation uses the definition of L = CTC, while the second equation follows from the fact that L+L =
∑n
i=2 uiu

T
i ,

which indicates that L+L is an identity on the image of L+, i.e., L+LL+ = L+.

Next, to apply Lemma D.1, we calculate ∥EyyT ∥2 and the upper bound of ∥y∥2. Since Φ is a projection matrix, its
eigenvalues are either 1 or 0. To determine the multiplicity of 1, consider ∀y ∈ im(C), there exists a vector x ⊥ ker(C)
such that Cx = y. We have

Φy = CL+CTCx = CL+Lx = Cx = y, (7)

which suggests that im(C) ⊆ im(Φ). It is easy to see that im(Φ) = im(CL+CT ) ⊆ im(C). We can conclude that
im(C) = im(Φ).

Since L is a positive semidefinite matrix, we derive

xTLx = xTCTCx = ∥Cx∥22, (8)

which implies that ker(L) = ker(C) and im(C) = im(L). Given that G is connected, dim(L) = dim(C) = n − 1.
Combining this with im(C) = im(Φ), we have dim(Φ) = dim(L) = n− 1, so the multiplicity of 1 is n− 1. Hence, we
know the norm ∥EyyT ∥2 = ∥Φ∥2 = 1, tr(Φ) = n− 1, and

∑
eRe = tr(Φ) = n− 1, which gives

pe =
(1 + Se)Re∑
e′(1 + Se′)Re′

≤ Re∑
e′ 2Re′

=
Re

2(n− 1)
. (9)

We also have a bound on the norm of y: ∥ 1√
pe
Φ:,e∥2 ≤ 1√

pe

√
Φe,e =

√
2(n− 1). Now we are ready to apply Lemma D.1.

By setting q = 16c2n log n/ϵ2, we arrive at

E∥ΦSΦ− Φ2∥ = E∥1
q

q∑
i=1

yiy
T
i − EyyT ∥ ≤ cϵ

√
log(16c2n log n/ϵ2)2(n− 1)

16c2n log n
≤
√
2ϵ

4
. (10)

Using Markov’s inequality, we get
∥ΦSΦ− Φ2∥ ≤ ϵ (11)

with high probability. Hence, with high probability, we have ∥ΦSΦ− Φ2∥ ≤ ϵ. This leads to the following equivalence:

Since ∥ΦSΦ− Φ2∥ ≤ ϵ, that is to say

sup
y∈Rm,y ̸=0

|yTΦ(S − I)Φy|
yTy

≤ ϵ.

Now, consider the case ∀x ∈ Rn \ ker(C), so Cx ∈ Rm and Cx ̸= 0. We have

sup
x∈Rn,x/∈ker(C)

|xTCTΦ(S − I)ΦCx|
xTCTCx

≤ ϵ.

Recall that ∀y ∈ im(C), Φy = y (Eq. (7)), thus we can substitute ΦCx with Cx, leading to

sup
x∈Rn,x/∈ker(C)

|xTCT (S − I)Cx|
xTCTCx

= sup
x∈Rn,x/∈ker(C)

|xT L̃x− xTLx|
xTLx

≤ ϵ.

Rearranging this inequality yields the desired result for x /∈ ker(C). For x ∈ ker(C), it is trivial, since xTLx = xT L̃x = 0.

By the equivalence between ∥ΦSΦ− Φ2∥ ≤ ϵ and |xT L̃x−xTLx|
xTLx

≤ ϵ, and using the inequality

P
(
(1− ϵ)xTLx ≤ xT L̃x ≤ (1 + ϵ)xTLx

)
≥ 1−

√
2

4
,

for q = 16c2n log n/ϵ2, we conclude the proof.
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Figure 4: Hyperparameter sensitivity analysis on real-world datasets.

E. Determining |El|

Note that κ =
∥Cx∥2

∞
pmin∥Cx∥2

2
, where ∥Cx∥22 = xTLx depends on the choice of x. Here, we select the leading eigenvector of G

to calculate κ, as our goal is to improve connectivity in the latent graph Gl, which requires significantly boosting the small
eigenvalues. Using an eigenvector associated with the small eigenvalues of G might make the small eigenvalues of G and
Gl too similar, resulting in limited improvement in connectivity.

After calculating κ and q = κ2

2ϵ2 log 8, we estimate |El| by solving the following problem. Suppose we apply sparsification
on latent graph Gl by sampling q random edges with replacement, and observe |E| distinct edges in the sparsified graph.
The question is: what is the expected value of |El|, the number of edges in the latent graph? To simplify this computation,
we assume a uniform edge probability distribution. Specifically, let x denote the expected value of |El|. Then, we have

|E| = x

(
1−

(
1− 1

x

)q)
. (12)

Solving this equation yields k = x− |E|.

F. Additional Experimental Results
F.1. Hyperparameter Sensitivity Analysis

Table 9 presents the results of a node classification task for a sensitivity analysis of the hyperparameters α and β. For each
node count (20, 200, and 2000 nodes) and homophily level (high and low), classification accuracy is evaluated across various
combinations of α and β. The analysis shows that the classification accuracy is relatively stable and not highly sensitive
to variations in these hyperparameters:

• Alpha (α):

– For smaller graphs (e.g., 20 nodes), larger values of α (0.15|E|) are generally preferred, as more aggressive
densification appears to improve classification performance in smaller networks.

– For larger graphs (e.g., 200 and 2000 nodes), the classification accuracy remains consistent across α values, with
a slight tendency for smaller α (0.05|E|) to perform better. This suggests that less aggressive densification is
sufficient for improving the connectivity of larger networks.

• Beta (β):

– For high homophily, larger values of β (e.g., 1.0) are generally preferred, as they help preserve the community
structure by retaining more edges during sparsification.

– For low homophily, smaller values of β (e.g., 0.5) tend to perform better, as sparser graphs better reduce noise
introduced by inter-community edges.
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Figure 5: Trade-off between preserving spectrum and reducing ER.

We also present hyperparameter sensitivity analysis results on real-world datasets in Figure 4. Overall, the results demonstrate
that classification accuracy is not very sensitive to changes in α and β values within reasonable ranges. This suggests that
GOKU’s performance remains stable across a wide variety of hyperparameter settings, and the method is robust to changes
in densification and sparsification levels.

F.2. More Visualization Results

In Figure 6, we present additional visualizations of the spectral distributions for randomly selected graphs from the Mutag,
IMDB, and Proteins datasets. Across all datasets, a consistent pattern emerges: GOKU demonstrates the highest fidelity
in preserving the original graph spectra. This result underscores its effectiveness in striking a balance between enhancing
connectivity and maintaining the structural integrity of the graph. By preserving spectral properties more effectively than
alternative methods, GOKU ensures that key graph characteristics remain intact while improving overall connectivity.

Additionally, we provide Figure 5 for the trade-off between preserving spectrum and reducing ER.
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Nodes - Homophily Hyperparameters (α, β) Classification Accuracy

20 - High

(0.15|E|, 1.0) 0.8765
(0.15|E|, 0.7) 0.8617
(0.15|E|, 0.5) 0.8541
(0.1|E|, 1.0) 0.8541
(0.1|E|, 0.7) 0.8392
(0.1|E|, 0.5) 0.8112

(0.05|E|, 1.0) 0.8321
(0.05|E|, 0.7) 0.8295
(0.05|E|, 0.5) 0.8189

20 - Low

(0.15|E|, 1.0) 0.5734
(0.15|E|, 0.7) 0.5630
(0.15|E|, 0.5) 0.6334
(0.1|E|, 1.0) 0.5134
(0.1|E|, 0.7) 0.5231
(0.1|E|, 0.5) 0.5975

(0.05|E|, 1.0) 0.4901
(0.05|E|, 0.7) 0.5156
(0.05|E|, 0.5) 0.5967

200 - High

(0.15|E|, 1.0) 0.9173
(0.15|E|, 0.7) 0.8851
(0.15|E|, 0.5) 0.9540
(0.1|E|, 1.0) 0.9540
(0.1|E|, 0.7) 0.9545
(0.1|E|, 0.5) 0.9632

(0.05|E|, 1.0) 0.8625
(0.05|E|, 0.7) 0.8321
(0.05|E|, 0.5) 0.7947

200 - Low

(0.15|E|, 1.0) 0.5850
(0.15|E|, 0.7) 0.5661
(0.15|E|, 0.5) 0.6153
(0.1|E|, 1.0) 0.5534
(0.1|E|, 0.7) 0.5513
(0.1|E|, 0.5) 0.6012

(0.05|E|, 1.0) 0.4715
(0.05|E|, 0.7) 0.4898
(0.05|E|, 0.5) 0.5973

2000 - High

(0.15|E|, 1.0) 0.9207
(0.15|E|, 0.7) 0.8918
(0.15|E|, 0.5) 0.8781
(0.1|E|, 1.0) 0.9127
(0.1|E|, 0.7) 0.8936
(0.1|E|, 0.5) 0.8625

(0.05|E|, 1.0) 0.9202
(0.05|E|, 0.7) 0.9282
(0.05|E|, 0.5) 0.8987

2000 - Low

(0.15|E|, 1.0) 0.5335
(0.15|E|, 0.7) 0.5701
(0.15|E|, 0.5) 0.5934
(0.1|E|, 1.0) 0.5543
(0.1|E|, 0.7) 0.5921
(0.1|E|, 0.5) 0.5792

(0.05|E|, 1.0) 0.5213
(0.05|E|, 0.7) 0.5462
(0.05|E|, 0.5) 0.5814

Table 9: Node classification results for sensitivity analysis on hyperparameters (α = 0.05|E|, 0.1|E|, 0.15|E| and β = 0.5, 0.7, 1.0).
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Figure 6: More randomly selected graph spectra visualization results from Mutag, Imdb, and Proteins datasets.
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