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Summary
Multi-agent reinforcement learning (MARL) has witnessed a remarkable surge in interest,

fueled by the empirical success achieved in applications of single-agent reinforcement learn-
ing (RL). In this study, we consider a distributed Q-learning scenario, wherein a number of
agents cooperatively solve a sequential decision making problem without access to the central
reward function which is an average of the local rewards. In particular, we study finite-time
analysis of a distributed Q-learning algorithm, and provide a new sample complexity result
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Context: The analysis of distributed Q-learning proposed in Kar et al. (2013) is only
asymptotic.
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Abstract
Multi-agent reinforcement learning (MARL) has witnessed a remarkable surge in interest,1
fueled by the empirical success achieved in applications of single-agent reinforcement2
learning (RL). In this study, we consider a distributed Q-learning scenario, wherein a3
number of agents cooperatively solve a sequential decision making problem without4
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under tabular lookup setting for Markovian observation model.8

1 Introduction9

Multi-agent reinforcement learning (MARL) aims to solve a sequential decision making problem,10
where a number of agents sharing an environment collaborates. Accompanied by advancements in11
algorithms (Sunehag et al., 2017; Rashid et al., 2020), MARL has shown impressive success in various12
fields such as robotics (de Witt et al., 2020) and autonomous driving (Shalev-Shwartz et al., 2016).13
Beyond its empirical success, there has also been notable interest in theoretical investigations (Zhang14
et al., 2018b; Dou et al., 2022).15

MARL has been studied under various scenarios including an access to central reward function (Tan,16
1993; Claus and Boutilier, 1998; Littman, 2001). In particular, our interest lies in the the distributed17
learning paradigm where agents collaborate to solve a shared problem, constrained to communicate18
solely with their neighboring agents and does not have access to central reward function. Such setting19
has came of interest due to its wide applications (Blumenkamp et al., 2022; Prabuchandran et al.,20
2014; Zhao et al., 2021). Compared to scenarios where a centralized coordinate exists, the distributed21
paradigm has advantage in terms of privacy-preservation and scalability. One notable example is the22
distributed adaptation of temporal-difference (TD) learning, as demonstrated in studies by Doan et al.23
(2019); Wang et al. (2020); Lim and Lee (2023), to name a few.24

Meanwhile, in the literature of single-agent RL, Q-learning (Watkins and Dayan, 1992) is one25
of the most important algorithms in RL. The non-linear max-operator in Q-learning algorithm26
imposes difficulty in the analysis, and its non-asymptotic analysis has been an active research area27
recently (Even-Dar et al., 2003; Chen et al., 2021; Lee et al., 2023; Li et al., 2024). However,28
distributed learning framework for Q-learning has not been studied in detail. In particular, distributed29
Q-learning has been studied in an asymptotic sense (Kar et al., 2013), i.e., the algorithm converges30
over time as it approaches infinity, or in a non-asymptotic sense under additional assumptions on the31
problem (Heredia et al., 2020; Zeng et al., 2022b). Wang et al. (2022) studied a version of distributed32
Q-learning in tabular setting but differs from the one in Kar et al. (2013). This motivates our study to33
understand its non-asymptotic behavior under tabular setup, i.e., all the state-action values are stored34
in a table. Our contribution can be summarized as follows:35

1. For Markovian observation model, we provide the sample complexity36
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tabular setting. We derive, for the first time, the finite-time analysis of QD-learning (Kar et al.,38
2013) in its original form, which is one of the most fundamental and widely used distributed39
Q-learning methods. While several works have addressed other types of distributed Q-learning,40
the analysis of QD-learning has remained unexplored until now. Furthermore, we also provide a41
sample complexity result for the independent and identically distributed (i.i.d.) observation model.42

2. Our analysis relies on switched system modeling of Q-learning, providing new insights for43
interpretation of distributed Q-learning algorithms. We show that the distributed Q-learning44
also allows switched system interpretation as in the single-agent case.45

Related Works:46

The non-asymptotic behavior of distributed TD-learning was studied in Doan et al. (2019); Sun47
et al. (2020); Wang et al. (2020); Lim and Lee (2023), which were motivated from the distributed48
optimization and control literature (Nedic and Ozdaglar, 2009; Wang and Elia, 2010; Pu and Nedić,49
2021). Distributed versions of various TD-learning algorithms were investigated in Macua et al.50
(2014); Lee et al. (2018). As for actor-critic algorithm (Konda and Tsitsiklis, 1999), its extension51
to distributed setting was studied in Zhang et al. (2018a;b); Zhang and Zavlanos (2019); Zeng52
et al. (2022a). Meanwhile, Yang et al. (2023) considered a distributed policy gradient approach.53
Moreover, Zhang et al. (2021) investigated distributed algorithm for fitted Q-iteration, which is similar54
to solving a least squares problem. Furthermore, a line of research has focused on dealing with55
exponential scaling in the action space Lin et al. (2021); Qu et al. (2022); Zhang et al. (2023); Gu56
et al. (2024).57

The distributed Q-learning algorithm under the setting when only the local reward is observable,58
was first studied by Kar et al. (2013). They proposed the so-called QD-learning proving asymptotic59
convergence using two-time scale stochastic approximation approaches. Zeng et al. (2022b); Heredia60
et al. (2020) proved finite-time bounds of distributed Q-learning with linear function approximation.61
However, the works require additional strong assumptions, which may not hold even in the tabular62
setup. In particular, Zeng et al. (2022b) considered a strongly monotone condition to hold, and Heredia63
et al. (2020) posed a particular assumption on the state-action distribution. Wang et al. (2022) studied64
a distributed Q-learning model motivated from the adapt-then-combine scheme (Chen and Sayed,65
2012) in the distributed optimization literature and provided a sample complexity bound in terms of66
high-probability.67

Considering a single-agent case, the non-asymptotic analysis of Q-learning has made great success.68
An incomplete list is provided in the following: An early result by Even-Dar et al. (2003) studied69
the sample complexity under i.i.d. observation model. Lee et al. (2023) developed a switched70
system method to analyze the behavior of Q-learning. Qu and Wierman (2020) considered a shifted71
Martingale approach to deal with the Markovian observation model. Li et al. (2024) proved the72
sample complexity using refined analysis under the Markovian observation model.73

Meanwhile, a separate line of research focusing on multi-agent problems is the federated reinforce-74
ment learning literature (Khodadadian et al., 2022; Woo et al., 2023; Zheng et al., 2023). This75
approach differs from the distributed learning scenario in two key aspects: it employs a centralized76
controller, and all agents share a common reward function.77

The paper is organized as follows: Section 2 provides background for the MARL setting. Section 378
provides result under i.i.d. observation model and sketch of the proof. The result for Markovian79
observation model is provided in Section 4.80

2 Preliminaries81

2.1 Multi Agent MDP82

A multi-agent Markov decision process (MAMDP) consists of the tuple (S, {Ai}Ni=1,P, {ri}Ni=1, γ),83
where S := {1, 2, . . . , |S|} is the finite set of states, Ai := {1, 2, . . . , |Ai|} is the finite set of84
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actions for each agent i ∈ V , P : S ×
∏N

i=1 Ai × S → [0, 1] is the transition probability, and85
ri : S ×

∏N
i=1 Ai × S → R is the reward function of agent i ∈ V . We will use the notation86

A :=
∏N

i=1 Ai = {1, 2, . . . , |A|} where tuple of actions are mapped to unique integer. γ ∈ (0, 1) is87
the discount factor.88

At time k ∈ N, the agents share the state s ∈ S, and each agent i ∈ V selects an action ai ∈ Ai89
following its own policy πi : S → ∆|Ai|. The collection of the actions selected by each agents are90
denoted as a = (a1, a2, . . . , aN ), and transition occurs to s′ ∼ P(s,a, ·). Each agents receives local91
reward ri(s,a, s′), which is not shared with other agents.92

The main goal of MAMDP is to find a deterministic optimal policy, π∗ := (π1, π2, . . . , πN ) : S →93
A such that the average of cumulative discounted rewards of each agents is maximized: π∗ :=94

argmaxπ∈Ω E
[∑∞

k=0

∑N
i=1

γk

N ri(sk,ak, sk+1)
∣∣∣π] , where Ω is the set of possible deterministic95

policies, and {(sk,ak)}k≥0 is a state-action trajectory generated by Markov chain under policy π.96
The Q-function for a policy π : S → A, denotes the average of cumulative discounted rewards of each97

agents following the policy π, i.e., Qπ(s,a) := E
[∑∞

k=0

∑N
i=1

γk

N rik+1

∣∣∣π, (s0, a0) = (s, a)
]

for98

s ∈ S,a ∈ A, where rik+1 := ri(sk,ak, s
′
k). The optimal Q-function, Qπ∗

, which is the Q-function99
induced by the optimal policy π∗, is denoted as Q∗. The optimal policy can be recovered via a greedy100
policy over Q∗, i.e., π∗(s) = argmaxa∈A Q∗(s,a) for s ∈ S . The optimal Q-function, Q∗ satisfies101
the following so-called optimal Bellman equation (Bellman, 1966):102

Q∗(s,a) = E

[
1

N

N∑
i=1

ri(s,a, s′) + γmax
u∈A

Q∗(s′,u)

]
, ∀s ∈ S,a ∈ A. (1)

Since each agent only has an access to its local reward ri, it is impossible to learn the central optimal103
Q-function without sharing additional information among the agents. However, we assume that104
there is no central coordinator that can communicate with all the agents. Instead, we will consider105
a more restricted communication scenario where each agent can share its learning parameter only106
with a subset of the agents. This communication constraint can be caused by several reasons such as107
infrastructures, privacy, and spacial topology. The communication structure among the agents can be108
described by an undirected simple connected graph G := (V, E), where V denotes the set of vertices109
and E ⊂ V × V is the set of edges. Each agent will be described by a vertex v ∈ V := {1, 2, . . . , N},110
where N is the number of agents. Moreover, each agent i ∈ V only communicates with its neighbours,111
denoted as Ni := {j ∈ V | (i, j) ∈ E}.112

To further proceed, we will use the following matrix and vector notations: P :=113 [
P1,1 P1,2 · · · P|S|,|A|

]⊤
, Ri :=

[
Ri⊤

1 · · · Ri⊤
|S|

]⊤
where Ps,a ∈ R|S| and Ri

s ∈ R|A|114

are column vectors such that [Ps,a]s′ = P(s,a, s′) for s′ ∈ S, and [Ri
s]a = E

[
ri(s,a, s′) | s,a

]
,115

respectively. We assume that ||Ri||∞ ≤ Rmax for some positive real number Rmax. Throughout116
the paper, we will represent a policy in a matrix form. A greedy policy over Q ∈ R|S||A|, which is117
denoted as πQ : S → A, i.e., πQ(s) = argmaxa∈A(es ⊗ ea)

⊤Q, can be represented as a matrix118
as follows:119

ΠQ :=
[
e1 ⊗ eπ(1) e2 ⊗ eπ(2) · · · e|S| ⊗ eπ(|S|)

]⊤ ∈ R|S|×|S||A|,

where es and ea represent the canonical basis vector whose s-th and a-th element is only one and120
others are all zero in R|S| and R|A|, respectively, and ⊗ denotes the Kronecker product. We can prove121
that PΠQ for Q ∈ R|S||A| represents a transition probability of state-action pairs under policy π, i.e.,122
(es′ ⊗ ea′)⊤(PΠQ)(es ⊗ ea) = P [(sk+1,ak+1) = (s′,a′) | (sk,ak) = (s,a), πQ] for s, s′ ∈ S123
and a,a′ ∈ A. Now, we can rewrite the Bellman equation in (1) using the matrix notations as follows:124
Ravg + γPΠQ∗

Q∗ = Q∗, where Ravg = 1
N

∑N
i=1 R

i ∈ R|S||A| and Q∗ ∈ R|S||A| represents125
optimal Q-function, Q∗, i.e., (es ⊗ ea)

⊤Q∗ = Q∗(s,a) for s,a ∈ S ×A.126
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2.2 Distributed Q-learning127

In this section, we discuss a distributed Q-learning algorithm motivated from Nedic and Ozdaglar128
(2009). The non-asymptotic behavior of the algorithm was first investigated in Heredia et al. (2020);129
Zeng et al. (2022b) under linear function approximation scheme. Instead, we consider the tabular130
setup with mild assumptions, and detailed comparisons are given in Section 5. Each agent i ∈ V at131
time k ∈ N updates its estimate Qi

k ∈ R|S||A| upon observing sk,ak, s
′
k ∈ S ×A× S as follows:132

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(s
′
k,a)−Qi

k(sk,ak)

)
Qi

k+1(s,a) =
∑
j∈Ni

[W ]ijQ
j
k(s,a), s,a ∈ S ×A \ {(sk,ak)},

(2)

where Qi
k(s,a) := (es ⊗ ea)

⊤Qi
k for s,a ∈ S ×A, α ∈ (0, 1) is the steps-size, and W ∈ RN×N133

is a non-negative matrix such that agent i assigns a weight [W ]ij to its neighbour j ∈ Ni. The134
agent i ∈ V sends its estimate Qi

k to its neighbour j ∈ Ni, and receives Qj
k, which is weighted by135

[W ]ij . The update is different from that of distributed optimization over an objective function in136
sense that (2) does not use any gradient of a function. Furthermore, note that the memory space of137
each agent can be expensive due to exponential scaling in the action space, but one can choose linear138
or neural network approximation (Zhang et al., 2018b; Sunehag et al., 2017) to overcome such issue.139

To ensure the consensus among the agents, i.e., Qi
k → Q∗ for all i ∈ [N ], where [N ] :=140

{1, 2, . . . , N}, a commonly adopted condition on W is the so-called doubly stochastic matrix:141

Assumption 2.1. For all i ∈ [N ], [W ]ii > 0 and [W ]ij > 0 if (i, j) ∈ E , otherwise [W ]ij = 0.142
Furthermore,

∑N
j=1[W ]ij =

∑N
i=1[W ]ji = 1, and W⊤ = W .143

The assumption is widely adopted in the literature of distributed learning scheme (Heredia et al.,144
2020; Zeng et al., 2022b). In Appendix B, we provided a simple strategy to construct the doubly145
stochastic matrix by communicating only with its neighbour.146

2.3 Switched system147

In this paper, we consider a system, called the switched affine system (Liberzon, 2005),148

xk+1 = Aσk
xk + bσk

, x0 ∈ Rn, k ∈ N, (3)

where xk ∈ Rn is the state, M := {1, 2, . . . ,M} is called the set of modes, σk ∈ M is called149
the switching signal, {Aσ ∈ Rn×n | σ ∈ M} and {bσ ∈ Rn | σ ∈ M} are called the subsystem150
matrices, and the set of affine terms, respectively. The switching signal can be either arbitrary or151
controlled by the user under a certain switching policy. If the system in (3) evolves without the affine152
term, i.e., bσk

= 0 for k ∈ N, then it is called the switched linear system. The distributed Q-learning153
algorithm in (2) will be modeled as a switched affine system motivated from the recent connection of154
switched system and Q-learning (Lee and He, 2020), which will become clearer in Section 3.4155

3 Error Analysis : i.i.d. observation model156

In this section, we first consider i.i.d. observation model, which provides simple and clear intuitive157
results. In the subsequent section, we will extend the result to the Markovian observation model.158
By an i.i.d. observation model, we refer to a sequence of trajectory {(sk,ak, s

′
k)}k≥0 where each159

(sk,ak, s
′
k) are an i.i.d. random variables. Suppose that each state-action pair is sampled from a160

distribution d ∈ ∆|S×A|, i.e., P [(sk,ak) = (s,a)] = d(s,a) and s′k ∼ P(sk,ak, ·). The pseudo-161
code of the algorithm is given in Algorithm 1 in the Appendix J. We will adopt the following standard162
assumption in the literature:163

Assumption 3.1. For all s,a ∈ S ×A, we have d(s,a) > 0.164
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3.1 Matrix notations165

Let us introduce the following vector and matrix notations used throughout the paper to166
re-write (2) in matrix notations: Ds := diag(d(s, 1), · · · , d(s, |A|)) ∈ R|A|×|A|, D =167
diag(D1,D2, . . . ,D|S|) ∈ R|S||A|×|S||A|, where diag(·) is a diagonal matrix whose diagonal ele-168
ments correspond to the input vector or matrix, and we will denote dmax = maxs,a∈S×A d(s,a)169
and dmin := mins,a∈S×A d(s,a). Furthermore, for i ∈ [N ], o = (s,a, s′) ∈ S × A × S and170
Q ∈ R|S||A|, we define171

δi(o,Q) :=(es ⊗ ea)(r
i(s,a, s′) + e⊤s′γΠ

QQ− (es ⊗ ea)
⊤Q),

∆i(Q) :=D(Ri + γPΠQQ−Q),

which denotes the TD-error and expected TD-error in vector representation. For simplicity of the172
notation, we denote δik := δi(ok,Q

i
k), ∆

i
k := ∆i(Qi

k), and173

Q̄k :=


Q1

k

Q2
k

...
QN

k

 , Π̄Q̄k :=

Π
Q1

k

. . .
ΠQN

k

 , ϵ̄k(ok, Q̄k) :=


δ1(ok,Q

1
k)−∆1(Q1

k)
δ2(ok,Q

2
k)−∆2(Q2

k)
...

δN (ok,Q
N
k )−∆N (QN

k )

 ,

P̄ := IN ⊗ P , D̄ := IN ⊗D, W̄ := W ⊗ I|S||A|, R̄ :=
[
R1 R2 · · · RN

]⊤
,

(4)
where IN is a N ×N identity matrix, Qi

k is defined in (2). Moreover, we denote ϵ̄k := ϵ̄k(ok, Q̄k).174
With the above set of notations, we can re-write the update in (2) as follows:175

Q̄k+1 = W̄ Q̄k + αD̄
(
R̄+ γP̄ Π̄Q̄kQ̄k − Q̄k

)
+ αϵ̄k. (5)

3.2 Distributed Q-learning : Error analysis176

In this section, we provide a sketch of the proof to bound the error of distributed Q-learning. Let us177
first decompose the error Q̄k − 1N ⊗Q∗ into consensus error and optimality error:178

Q̄k − 1N ⊗Q∗ = Q̄k − 1N ⊗

(
1

N

N∑
i=1

Qi
k

)
︸ ︷︷ ︸

Consensus Error

+1N ⊗

(
1

N

N∑
i=1

Qi
k −Q∗

)
︸ ︷︷ ︸

Optimality Error

, (6)

where 1N is a N -dimensional vector whose elements are all one. The consensus error measures the179
difference of Qi

k and the overall average, 1
N

∑N
i=1 Q

i
k. As the consensus error vanishes, we will180

have Q1
k = Q2

k = · · · = QN
k . Meanwhile, the optimality error denotes the difference between the181

true solution Q∗ and the average, 1
N

∑N
k=1 Q

i
k. Together with the consensus error, as optimality182

error vanishes, we should have Qi
k −Q∗ → 0 for all i ∈ [N ].183

3.3 Analysis of Consensus Error184

Now, we provide an error bound on the consensus error in (6). We will represent the consensus error185
as ΘQ̄k = Q̄k−1N⊗Qavg

k where Qavg
k := 1

N

∑N
i=1 Q

i
k and Θ := IN |S||A|− 1

N (1N1⊤
N )⊗I|S||A|.186

Let us first provide an important lemma that characterizes the convergence of the consensus error:187

Lemma 3.2. For k ∈ N, we have
∥∥W̄ kΘ

∥∥
2
≤ σ2(W )k, where σ2(W ) is the second largest188

singular value of W , and it holds that σ2(W ) < 1.189

The proof is given in Appendix D.1. Moving on, we show that Q̄k will be remain bounded, which190
will be useful throughout the paper:191

Lemma 3.3. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have :
∥∥Q̄k

∥∥
∞ ≤ Rmax

1−γ .192
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The proof is given in Appendix D.2. The step-size depends on mini∈[N ][W ]ii, which can be consid-193
ered as a global information. However, considering the method in Example B.1 in Appendix, which194
requires only local information to construct W , we have mini∈[N ][W ]ii ≥ 1

2 . Therefore, it should be195
enough to choose α ≤ 1

2 . Furthermore, the step-size in many distributed RL algorithms (Zeng et al.,196
2022b; Wang et al., 2020; Doan et al., 2021; Sun et al., 2020) depend on σ2(W ), which also can be197
viewed as a global information. Moreover, we can use an agent-specific step-size, i.e., each agent198
keeps its own step-size, αi. Then, we only require αi < [W ]ii, which only uses local information.199

Now, we are ready to analyze the behavior of ΘQ̄k. Multiplying Θ to (5), we get200

ΘQ̄k+1 =

k∏
i=0

W̄ iΘQ̄0 + α

k∑
j=0

W̄ k−jΘ
(
D̄
(
R̄+ γP̄ Π̄Q̄jQ̄j − Q̄j

)
+ ϵ̄j

)
. (7)

The equality results from recursively expanding the terms. Now, we are ready to bound ΘQ̄k+1201
using the fact that

∥∥W̄ iΘ
∥∥
2

for i ∈ N will decay at a rate of σ2(W ) from Lemma 3.2, and the202
boundedness of Q̄k in Lemma 3.3.203

Theorem 3.4. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have the following:204 ∥∥ΘQ̄k+1

∥∥
∞ ≤ σ2(W )k+1

∥∥ΘQ̄0

∥∥
2
+ α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )
.

The proof is given in Appendix D.3. As we can expect, the convergence rate of the consensus error205
depends on the σ2(W ) with a constant error bound proportional to α. Furthermore, we note that the206
above result also holds for the Markovian observation model in Section 4.207

3.4 Analysis of Optimality Error208

Throughout this section, we analyze the error bound on the optimality error, Qavg
k −Q∗. Multiplying209

1
N (1N1⊤

N )⊗ I|S||A| on (5), we can see that Qavg
k evolves via the following update:210

Qavg
k+1 =Qavg

k + αD

(
Ravg +

γ

N

N∑
i=1

PΠQi
kQi

k −Qavg
k

)
+ αϵavg(ok, Q̄k), (8)

where ϵavg(o, Q̄) := 1
N (1N1⊤

N ) ⊗ I|S||A|ϵ̄(o, Q̄) for o ∈ S × A × S, Q̄ ∈ RN |S||A|, and ϵ̄(·)211
is defined in (4). We will denote ϵavgk := ϵavg(ok, Q̄k). The update of (8) resembles that of Q-212
learning update in the single agent case, i.e., N = 1, whose Q-function is Qavg

k . However, the213
difference with the update of single-agent case lies in the fact that we take average of the maximum214
of Q-function of each agent, i.e., the term 1

N

∑N
i=1 Π

Qi
kQi

k in (8), rather than the maximum of215
average of Q-function of each agents, .i.e., ΠQavg

k Qavg
k . This poses difficulty in the analysis since216

1
N

∑N
i=1 Π

Qi
kQi

k cannot be represented in terms of Qavg
k . Consequently, it makes difficult to interpret217

it as switched affine system whose state-variable is Qavg
k , which is introduced in Section 2.3. To218

handle this issue, motivated from the approach in Kar et al. (2013), we introduce an additional error219
term 1

N

∑N
i=1 ΠQi

kQi
k −ΠQavg

k Qavg
k , which can be bounded by the consensus error discussed in220

Section 3.3. Therefore, we re-write (8) as:221

Qavg
k+1 =Qavg

k + αD
(
Ravg + γPΠQavg

k Qavg
k −Qavg

k

)
+ αϵavgk

+ α

(
γ

N

N∑
i=1

D
(
PΠQi

kQi
k − γPΠQavg

k Qavg
k

))
︸ ︷︷ ︸

:=Ek

. (9)

Now, we can see that Qavg
k evolves via a single-agent Q-learning update whose estimator is Qavg

k ,222
including an additional stochastic noise term, ϵavgk , and an error term, Ek that can be bounded by223
the consensus error. In the following lemma, we use the contraction property of the max-operator to224
bound Ek by the consensus error:225
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Lemma 3.5. For k ∈ N, we have ∥Ek∥∞ ≤ γdmax

∥∥ΘQ̄k

∥∥
∞.226

The proof is given in Appendix D.4. We note that similar argument in Lemma 3.5 has been also227
considered in Kar et al. (2013). However, Kar et al. (2013) considered a different distributed algorithm228
using two-time scale approach and focused on asymptotic convergence whereas we consider a single229
step-size and finite-time bounds.230

Now, we follow the switched system approach (Lee and He, 2020) to bound the optimality error. In231
contrast to Lee and He (2020), we have an additional error term caused by Ek, which will be bounded232
using Theorem 3.4. Using a coordinate transformation, Q̃avg

k = Qavg
k −Q∗, we can re-write (9) as233

Q̃avg
k+1 =AQavg

k
Q̃avg

k + αbQavg
k

+ αϵavgk + αEk,

where, for Q ∈ R|S||A|, we let234

AQ := I + αD(γPΠQ − I) ∈ R|S||A|×|S||A|, bQ := γDP (ΠQ −ΠQ∗
)Q∗. (10)

We can see that ϵavgk is a stochastic term, and we will bound the error caused by this term using235
concentration inequalities. The consensus error, Ek, can be bounded from Theorem 3.4. However,236
the affine term, bQavg

k
, does not admit simple bounds. The approach in Lee and He (2020) provides237

a method to construct a system without an affine term, making the analysis simpler. In details, we238
introduce a lower and upper comparison system, denoted as Qavg,l

k and Qavg,u
k , respectively such239

that the following element-wise inequaltiy holds:240

Qavg,l
k ≤ Qavg

k ≤ Qavg,u
k , ∀k ∈ N, (11)

Letting Q̃avg,l
k := Qavg,l

k −Q∗ and Q̃avg.u
k := Qavg,u

k −Q∗, a candidate of update that satisfies (11),241
which is without the affine term bQk

, is:242

Q̃avg,l
k+1 =AQ∗Q̃avg,l

k + αϵavgk + αEk, Q̃avg,u
k+1 = AQavg,u

k
Q̃avg,u

k + αϵavgk + αEk, (12)

where Qavg,l
0 ≤ Qavg

0 ≤ Qavg,u
0 . The detailed construction of each systems are given in Appendix E.243

Note that the lower comparison system, Q̃avg,l
k follows a linear system governed by the matrix AQ∗244

where as the upper comparison system ,Q̃avg,u
k , can be viewed as a switched linear system without245

an affine term. To prove the finite-time bound of Q̃avg
k , we will instead derive the finite-time bound246

of Q̃avg,l
k and Q̃avg,u

k , and using the relation in (11), we can obtain the desired result. Nonetheless,247
still the switching in the upper comparison system imposes difficulty in the analysis. Therefore,248
we consider the difference of upper and lower comparison system Q̃avg,l

k − Q̃avg,u
k , which gives249

the following bound:
∥∥∥Q̃avg

k

∥∥∥
∞

≤
∥∥∥Q̃avg,l

k

∥∥∥
∞

+
∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

. The sketch of the proof for250

deriving the finite-time bound of each systems are as follows:251

1. Bounding Q̃avg,l
k (Proposition F.1 in the Appendix): We recursively expand the equation in (12).252

We have ∥AQ∥∞ ≤ 1 − (1 − γ)αdmin for any Q ∈ R|S||A|, which is in Lemma C.1 in the253
Appendix, and the error induced by ϵavgk can be bounded using Azuma-Hoeffding inequality in254
Lemma C.4 in the Appendix. Meanwhile, the error term Ek can be bounded by the consensus255
error from Lemma 3.5, which is again bounded by using Theorem 3.4.256

2. Bounding Q̃avg,u
k − Q̃avg,l

k (Proposition F.3 in the Appendix): Thanks to the fact that both the257
upper an lower comparison systems share ϵavgk and Ek, if we subtract Q̃avg,l

k from Q̃avg,u
k in (12),258

both terms are eliminated. Therefore, the iterate can be bounded with an additional error by Q̃avg,l
k .259

Now, we are ready to present the optimality error bound, ∥Qavg
k −Q∗∥∞, as follows:260

Theorem 3.6. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have the following result :261

E
[
∥Qavg

k −Q∗∥∞
]
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2

dmaxRmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
|S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
,
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where the notation Õ(·) is used to hide the logarithmic factors.262

The proof is given in Appendix F.1. Note that even the logarithmic terms are hidden, due to263
exponential scaling of the action space, ln(|S||A|) could contribute O(N) factor to the error bound.264

However, noting that dmin ≤ 1
|S||A| , O

(
1

dmin

)
already dominates the O(N) if |Ai| ≥ 2 for all265

i ∈ [N ], hence we omit the logarithmic terms. Likewise O (|A|) dominates O (N), which is hided266
when both terms are multiplied.267

3.5 Final error268

In this section, we present the error bound of the total error term Q̄k − 1N ⊗ Q∗. From (6), the269
bound follows from the decomposition into the consensus error and optimality error. In particular,270
collecting the results in Theorem 3.4 and Theorem 3.6 yields the following:271

Theorem 3.7. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have272

E
[∥∥Q̄k − 1N ⊗Q∗∥∥

∞

]
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2 dmax

Rmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
|S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
.

The proof is given in Appendix F.2. One can see that the convergence rate has exponentially decaying273
terms, (1 − (1 − γ)dminα)

k
2 and σ2(W )

k
4 , with a bias term caused by using a constant step-size.274

Furthermore, we note that the bias term depends on 1
1−σ2(W ) . If we construct W as in Example B.1275

in the Appendix, then it will contribute O(N2) factor in the error bound (Olshevsky, 2014).276

Corollary 3.8. Suppose α = Õ
(
min

{
(1−γ)5d3

min

R2
maxd

2
max

ϵ2,
(1−γ)3d2

min(1−σ2(W ))

Rmaxd2
max

√
|S||A|

ϵ

})
. Then, the follow-277

ing number of samples are required for E
[∥∥Q̄k − 1N ⊗Q∗

∥∥
∞

]
≤ ϵ:278

Õ

(
max

{
1

ϵ2
d2max

(1− γ)6d4min

,
1

ϵ

d2max

√
|S||A|

(1− γ)4d3min(1− σ2(W ))

})
.

The proof is given in Appendix Section F.3. As the known sample complexity of (single-agent)279
Q-learning, our bound depends on the factors, dmin and 1

1−γ . The result is improvable in sense that280

the known tight dependency for single-agent case is 1
(1−γ)4dmin

by Li et al. (2020). Furthermore, we281

note that the dependency on the spectral property of the graph, 1
ϵ

1
1−σ2(W ) is common in the literature282

of distributed learning as can be seen in Table 1.283

4 Error Analysis : Markovian observation model284

Now, we consider a Markovian observation model instead of the i.i.d. model. Starting from an initial285
distribution µ0 ∈ ∆|S||A|, the samples are observed from a behavior policy β : S → ∆|A|, i.e., from286
(sk,ak), transition occurs to sk+1 ∼ P(sk,ak, ·) and the action is selected by ak+1 ∼ β(· | sk+1).287
This setting is closer to practical scenarios, but poses significant challenges in the analysis due to288
the dependence between the past observations and current estimates. To overcome this difficulty,289
we consider the so-called uniformly ergodic Markov chain (Paulin, 2015), which ensures that the290
Markov chain converges to its unique stationary distribution, µ∞ ∈ ∆|S||A|, exponentially fast in291
sense of total variation distance, which is defined as dTV(p, q) :=

1
2

∑
x∈S×A |[p]x − [q]x| where292

p, q ∈ ∆|S||A|. That is, there exist positive real numbers m ∈ R and ρ ∈ (0, 1) such that we293
have maxs,a∈S×A dTV(µ

s,a
k ,µ∞) ≤ mρk, where µs,a

k := ((es ⊗ ea)
⊤P k

β )
⊤ is the probability294

distribution of state-action pair after k number of transition occurs starting from s,a ∈ S ×A, and295
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Pβ ∈ R|S||A|×|S||A| is the transition matrix induced by behavior policy β, i.e., (es ⊗ ea)
⊤Pβ(es′ ⊗296

ea′)⊤ = (es ⊗ ea)
⊤Pes′ · β(a′ | s′). Moreover, we will denote297

τmix(ϵ) := min{t ∈ N : mρt ≤ ϵ}, τ := τmix(α), tmix := τmix(1/4), (13)

for ϵ > 0, and τ is the so-called mixing time. The concept of mixing time is widely used in the298
literature (Zeng et al., 2022b; Bhandari et al., 2018). Note that τ is approximately proportional to299
log
(
1
α

)
, which is provided in Lemma C.7 in the Appendix. This contributes only logarithmic factor300

to the final error bound. Furthermore, we will denote301

D∞ =diag(µ∞), Ds,a
k = diag(µs,a

k ), (14)

where Ds,a
k denotes the probability distribution of the state-action pair after k number of transitions302

from s,a ∈ S × A. ϵ̄k in (5) will be defined in terms of D∞ instead of D, and the overall303
details are provided in Appendix G. To proceed, with slight abuse of notation, we will denote304
dmax = maxs,a∈S×A[µ∞]s,a and dmin = mins,a∈S×A[µ∞]s,a.305

Now, we provide the technical difference with the proof of i.i.d. case in Section 3. The chal-306
lenge in the analysis lies in the fact that E

[
ϵavgk

∣∣{(st,at)}kt=0, Q̄0

]
̸= 0 due to Markovian obser-307

vation scheme. Therefore, we cannot use Azuma-Hoeffding inequality as in the proof of i.i.d.308
case in the Appendix F.1. Instead, we consider the shifted sequence as in Qu and Wierman309
(2020). By shifted sequence, it means to consider the error by the stochastic observation at k310
with Q̄k−τ instead of Q̄k, i.e., wk,1 := δavg(ok, Q̄k−τ )−∆avg

k−τ,k(Q̄k−τ ) where ∆avg
k−τ,k(Q̄k) :=311

D
sk−τ ,ak−τ
τ

1
N

∑N
i=1

(
Ri + γPΠQi

kQi
k −Qi

k

)
. Then, we have E

[
wk,1

∣∣{(st,at)}k−τ
t=0 , Q̄0

]
= 0.312

Now, we separately calculate the errors induced by {wτj+l,1}j∈{t∈N|τt+l≤k} for each 0 ≤ l ≤ τ − 1,313
and invoke the Azuma-Hoeffding inequality. Overall details are given in Appendix G, and we have314
the following result:315

Theorem 4.1. For k ≥ τ , and α ≤ min
{
mini∈[N ][W ]ii,

1
2τ

}
, we have316

E [∥Qk+1 −Q∗∥∞] =Õ
(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α

1
2
dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
Rmaxdmax

√
|S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

The proof is given in Appendix Section G.2.317

Corollary 4.2. Suppose α = Õ
(

ϵ2

ln( 1
ϵ2
)
(1−γ)5d3

min

tmixd2
max

)
. Then, the following number of samples are318

required for E
[∥∥Q̄k − 1N ⊗Q∗

∥∥
∞

]
≤ ϵ:319

Õ

(
max

{
ln2
(

1
ϵ2

)
ϵ2

tmixd
2
max

(1− γ)6d4min

,
ln
(
1
ϵ

)
ϵ

dmax

√
|S||A|

(1− γ)4d3min(1− σ2(W ))

})
.

The proof is given in Appendix Section G.3. As in the result of i.i.d. case in Corollary 3.8, we320
have the dependency on 1

1−γ ,
1

dmin
, and 1

1−σ2(W ) with additional factor on mixing time. The known321

tight sample complexity result in the single-agent case is Õ
(

1
(1−γ)4dminϵ2

+ tmix

(1−γ)dmin

)
by Li et al.322

(2024), and our result leaves room for improvement. Assuming a uniform sampling scheme, i.e.,323
dmin = dmax = 1

|S||A| , and |Ai| = A for all i ∈ [N ] and A ≥ 2, the sample complexity becomes324

Õ
(
max

{
tmix
ϵ2

|S|2A2N

(1−γ)6 , 1
ϵ

|S|
5
2 A

5N
2

(1−γ)4(1−σ2(W ))

})
. We note that the exponential scaling in the action325

space is inevitable in the tabular setting unless we consider a near-optimal solution (Qu et al., 2022).326
Lastly, to verify the convergence of our algorithm, experiments are provided in Appendix Section I.327
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5 Discussion328

Q-function Assumption Sample complexity Bound type Remarks

Ours Tabular ✗ max

{
tmix
ϵ2

1
(1−γ)6d3

min
, 1
ϵ

√
|S||A|

(1−σ2(W ))(1−γ)4d3
min

}
Expectation -

Wang et al. (2022) Tabular ✗ 1
(1−γ)5dminϵ2

+ tmix

1−γ High probability ϵ ∈
[
0, 1

1−γ

)
Heredia et al. (2020) LFA (15) R2

(dmin−γ2d∗
max)

2(1−σ2(W ))

Expectation
Averaged squared error

Continuous state space
R is projection radius

Zeng et al. (2022b) LFA (16) 1
κ2(1−γ)2(1−σ2(W )) Expectation -

Table 1: LFA stands for linear function approximation.

In this section, we provide comparison with recent works analyzing non-asymptotic behavior of329
distributed Q-learning algorithm. Our analysis relies on the minimal assumption in sense that we do330
not require any assumption further than standard assumptions in the literature, e.g., the state-action331
distribution induced by the behavior policy, is positive for all state-action pairs in Assumption 3.1.332

Heredia et al. (2020) considered linear function approximation scheme to represent the Q-function333
with continuous state-space and finite-action space scenario. However, to prove the convergence, it334
requires the following condition:335

dmin > γ2d∗max := max
s

d(s, π∗(s)), (15)

which is difficult to be met even in the tabular case, and an example is given in Appendix H.336

Furthermore, Zeng et al. (2022b) considered a Q-learning model under linear function approximation337
with continuous-state space and finite action space. The work also covered the case when the features338
for linear function approximation is differently selected for each agents. However, it requires the339
following condition to hold for all Q ∈ R|S||A|:340

(γDP (ΠQQ−ΠQ∗
Q∗)−D(Q−Q∗))⊤(Q−Q∗) ≤ −κ ∥Q−Q∗∥22 , (16)

for some κ > 0. We have provided examples where the above conditions in (15) and (16) are not met341
even in the tabular case in Appendix Section H.342

Overall, the assumptions used in Heredia et al. (2020); Zeng et al. (2022b) allows the analysis to343
follow similar lines to that of convex optimization literature. To the best of our knowledge, there is344
no existing literature that demonstrates how to extend convex optimization analysis, or an analogous345
approach, to the analysis of Q-learning under the tabular setup. This gap in the literature makes the346
analysis challenging and is the primary reason we rely on switched system analysis. Due to different347
settings, their sample complexity is not directly comparable with ours.348

Wang et al. (2022) proposed a distributed Q-learning algorithm in the tabular setting, which is349
motivated from the adapt-then-combine algorithm, whereas our algorithm considers combine-and-350
adapt scheme (Chen and Sayed, 2012) in the distributed optimization literature. The work presents351
a sharper bound on the sample complexity 1

(1−γ)5dminϵ2
compared to ours 1

(1−γ)6d4
minϵ

2 but it only352

holds for restricted range of ϵ, i.e., ϵ ∈
[
0, 1

1−γ

)
while our results do not have such restriction. More353

importantly, the algorithm proposed by Wang et al. (2022) requires two steps for a single update,354
whereas in our paper, we focus on a one-step algorithm that is algorithmically simpler and more355
efficient. Specifically, we analyze the traditional and widely adopted QD-learning algorithm proposed356
in Kar et al. (2013), for which a finite-time error analysis for the original form has been lacking357
in the literature. Additionally, we enhance the efficiency of QD-learning by employing a constant358
step-size, as opposed to the two-time-scale decaying step-size used in traditional QD-learning. This359
modification can significantly improve the convergence speed empirically.360
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6 Conclusion361

In this paper, we have studied distributed version of Q-learning algorithm. We provided a sample362

complexity result of Õ
(
max

{
1
ϵ2

1
(1−γ)6d4

min
, 1
ϵ

√
|S||A|

(1−σ2(W ))(1−γ)4d3
min

})
, which appears to be the363

first non-asymptotic result for tabular Q-learning. Future work would include improving the de-364
pendency on 1

1−γ and dmin to match the known tightest sample complexity bound of single-agent365
Q-learning (Li et al., 2020). Furthermore, to resolve the scalability issue, two promising approaches366
would be adopting a mean-field approach or exploring convergence to sub-optimal point.367
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A Appendix : Notations503

Rn: set of real-valued n-dimensional vectors; Rn×m : set of real-valued n×m-dimensional matrices;504
∆n for n ∈ N : a probability simplex in Rn; [n] for n ∈ N : {1, 2, . . . , n}; 1n : n-dimensional vector505
whose elements are all one; 0 : a vector whose elements are all zero with appropriate dimension;506
[A]ij : i-th row and j-th column for any matrix A; ej : basis vector (with appropriate dimension)507
whose j-th element is one and others are all zero; |S| : cardinality of any finite set S; ⊗ : Kronecker508
product between two matrices; a ≥ b for a, b ∈ Rn : [a]i ≥ [b]i for all i ∈ [n].509

B Appendix : Constructing Doubly Stochastic Matrix510

Example B.1 (Lazy Metropolis matrix in Olshevsky (2014)). To construct the doubly stochastic511
matrix W with only local information, we can set [W ]ij =

1
2max{|Ni|,|Nj |} for i ̸= j and i, j ∈ [N ],512

letting [Wii] = 1−
∑

j∈Ni
[W ]ij . This uses only local information, and does not require any global513

information sharing.514

One can formulate a semi-definite program to construct a doubly stochastic matrix (Xiao and Boyd,515
2004). It finds the doubly stochastic matrix with minimum possible σ2(W ) but it requires a centralized516
controller to solve such system, and distributed the computed the result of each agents. Another517
choice is to use Sinkhorn-Knopp algorithm (Knight, 2008). However, it also requires a centralized518
computation scheme. Moreover, to our best knowledge, we are not aware of bound on the σ2(W ) of519
the output of Sinkhorn-Knopp algorithm.520

C Appendix : Technical details521

Lemma C.1. We have for Q ∈ R|S||A|,522

∥AQ∥∞ ≤ 1− (1− γ)dminα.

Proof. For i ∈ [|S||A|], we have523

|S||A|∑
j=1

|[AQ]ij | ≤1− [D]iiα+ α[D]iiγ

|S||A|∑
j=1

[PΠQ]ij

=1− [D]ii(1− γ)α.

The last equality follows from the fact that PΠQ is a stochastic matrix, i.e., the row sum equals to524
one, and represents a probability distribution. Taking maximum over i ∈ [|S||A|], we complete the525
proof.526

Lemma C.2. For k ∈ N, we have527

∥ϵavgk ∥∞ ≤ 4Rmax

1− γ
.

Proof. From the definition of ϵavgk = 1
N

∑N
i=1 δ

i
k −∆i

k in (4), we have528

∥ϵavgk ∥∞ ≤2

(
Rmax + γ

Rmax

1− γ
+

Rmax

1− γ

)
=
4Rmax

1− γ
,

where the first inequality comes from the bonundedness of Q̄k in Lemma 3.3. This completes the529
proof.530
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Lemma C.3. For a, b ∈ (0, 1), and for k ∈ N, we have531

k∑
i=0

ak−ibi ≤ a
k
2

1

1− b
+ b

k
2

1

1− a
.

Furthermore, we have532

k∑
i=τ

ak−ibi−τ ≤ a
k−τ
2

1

1− b
+ b

k−τ
2

1

1− a
.

Proof. We have533

k∑
i=0

ak−ibi ≤
⌈ k

2 ⌉∑
i=0

ak−ibi +

k∑
i=⌊ k

2 ⌋

ak−ibi

≤a
k
2

1

1− b
+ b

k
2

1

1− a
.

The last inequality follows from the summation of geometric series. As for the second item, we have534

k∑
i=τ

ak−ibi−τ ≤
⌈ k+τ

2 ⌉∑
i=τ

ak−ibi−τ +

k∑
i=⌊ k+τ

2 ⌋

ak−ibi−τ

≤a
k−τ
2

1

1− b
+ b

k−τ
2

1

1− a
.

This completes the proof.535

Lemma C.4 (Azuma-Hoeffding Inequality, Theorem 2.19 in Chung and Lu (2006)). Let {Sn}n∈N be536
a Martingale sequence with S0 = 0. Suppose |Sk − Sk−1| ≤ ck for k ∈ N. Then, for ϵ ≥ 0, we have537

P [|Sk| ≥ ϵ] ≤ 2 exp

(
− ϵ2

2
∑k

j=1 c
2
j

)
.

Lemma C.5. Suppose X ≥ 0, P [X ≥ ϵ] ≤ min
{
a exp

(
−bϵ2

)
, 1
}

, and a ≥ 2. Then, we have538

E [X] ≤ 2

√
ln a

b
.

Proof. We have539

E [X] =

∫ ∞

0

P [X ≥ s] ds

≤
∫ ∞

0

min
{
a exp

(
−bs2

)
, 1
}
ds

≤
∫ √

ln a
b

0

1ds+

∫ ∞

√
ln a
b

a exp(−bs2)ds

≤
√

ln a

b
+

1

2
√
b ln a

≤2

√
ln a

b
.
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The last inequality follows from the fact that 4 ln a > 1/ ln a. The third inequality follows from the540
following relation:541 ∫ ∞

√
ln a
b

a exp(−bs2)ds =a

∫ ∞

ln a
b

1

2
√
u
exp(−bu)du

≤a

2

√
b

ln a

∫ ∞

ln a
b

exp(−bu)du

=
a

2

√
b

ln a

1

b
[− exp(−bu)]

∞
ln a
b

=
1

2
√
b ln a

.

where we used the change of variables s2 = u in the first equality.542

Definition C.6 (Martingale sequence, Section 4.2 in Durrett (2019)). Consider a sequence of random543
variables {Xn}n∈N and an increasing σ-field, Fn, such that544

1) E [|Xn|] < ∞;545

2) Xn is Fn-measurable;546

3) E [Xn+1|Fn] = Xn, ∀n ∈ N.547

Then, Xn is said to be a Martingale sequence.548

Lemma C.7 (Proposition 3.4 in Paulin (2015)). For uniformly ergodic Markov chain in Section 4,549
we have, for ϵ > 0,550

τ(ϵ) ≤ tmix

(
1 + 2 log

(
1

ϵ

)
+ log

(
1

dmin

))
,

where τ and tmix are defined in (13).551

D Appendix : Omitted Proofs552

D.1 Proof of Lemma 3.2553

Proof. From the definition of W̄ in (4), we have554

(W̄ kΘ)⊤W̄ kΘ =W̄ 2k − 2W̄ k⊤ 1

N

(
(1N1⊤

N )⊗ I|S||A|
)
+

1

N
(1N1⊤

N )⊗ I|S||A|

=

(
W 2k − 1

N
1N1⊤

N

)
⊗ I|S||A|,

where the second equality follows from the fact that W̄ (1N1N )⊤ ⊗ I|S||A| = (1N1N )⊤ ⊗ I|S||A|.555
From the result, we can derive556

∥∥W̄ kΘ
∥∥
2
=
√
λmax

(
(W̄ kΘ)⊤W̄ kΘ

)
=

√
λmax

(
W 2k − 1

N
1N1⊤

N

)
= σ2(W )k < 1. (17)

To prove the inequality in (17), we first prove that 1 is the unique largest eigenvalue of W . Noting557
that 1N is an eigenvector of W with eigenvalue of 1, and ρ(W ) ≤ ||W ||∞ = 1 where ρ(·) is the558
spectral radius of a matrix, the largest eigenvalue of W should be one. This implies that σ2(W ) < 1.559
The multiplicity of the eigenvalue 1 is one, which follows from the fact that W k is a non-negative560
and irreducible matrix and that the largest eigenvalue of a non-negative and irreducible matrix is561
unique Pillai et al. (2005) from Perron-Frobenius theorem. Note that W k is a non-negative and562
irreducible matrix due to the fact that the graph G is connected.563
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Next, we use the eigenvalue decomposition of a symmetric matrix to investigate the spectrum of564
W 2k − 1

N 1N1⊤
N . By eigendecomposition of a symmetric matrix, we have565

W = λ1v1v
⊤
1 +

N∑
j=2

λjvjv
⊤
j = TΛT−1,

where vj and λj are j-th eigenvector and eigenvalue of W , λ1 = 1, v1 = 1√
N
1N , Λ is a diagonal566

matrix whose diagonal elements are the eigenvalues of W , and T and T−1 are formed from the567
eigenvectors of W . From the uniqueness of the maximum eigenvalue of W , we have λ1 = 1 >568
λj , j ∈ {2, 3, . . . , N}. Therefore, we have569

W 2k = TΛ2kT−1 =

(
1√
N

1N

)(
1√
N

1⊤
N

)
+

N∑
j=2

λk
jvjv

⊤
j .

Therefore, we have λmax

(
W 2k − 1

N 1N1⊤
N

)
= σ2(W

2k). This completes the proof.570

D.2 Proof of Lemma 3.3571

Proof. Let us first assume that for some k ∈ N,
∥∥Qi

k

∥∥
∞ ≤ Rmax

1−γ for all i ∈ [N ]. Then, consider-572
ing (2), for all i ∈ [N ], we have573

|Qi
k+1(sk,ak)| ≤([W ]ii − α)

∥∥Qi
k

∥∥
∞ +

∑
j∈[N ]\{i}

[W ]ij

∥∥∥Qj
k

∥∥∥
∞

+ α
(
Rmax + γ

∥∥Qi
k

∥∥
∞

)
≤(1− α)

Rmax

1− γ
+ α

Rmax

1− γ

=
Rmax

1− γ
.

The first inequality follows from the fact that α ≤ mini∈[N ][W ]ii. The second inequality follows574
from the induction hypothesis. For, s,a ∈ S ×A \ {sk,ak}, we have575 ∣∣Qi

k+1(s,a)
∣∣ ≤ ∑

j∈Ni

[W ]ij

∣∣∣Qj
k(s,a)

∣∣∣ ≤ Rmax

1− γ
.

The last line follows from the fact that W is a doubly stochastic matrix, and the induction hypothesis.576
The proof is completed by applying the induction argument.577

578

D.3 Proof of Theorem 3.4579

Proof. Taking infinity norm on (7), we get580

∥∥ΘQ̄k+1

∥∥
∞ ≤

∥∥W̄ k+1ΘQ̄0

∥∥
2
+ α

√
N |S||A|

k∑
j=0

∥∥W̄ k−jΘ
∥∥
2

∥∥∥(D̄ (
R̄+ γP̄ Π̄Q̄jQ̄j − Q̄j

)
+ ϵ̄j

)∥∥∥
∞

≤
∥∥W̄ k+1ΘQ̄0

∥∥
2
+ α

√
N |S||A|

k∑
j=0

∥∥W̄ k−jΘ
∥∥
2

8Rmax

1− γ

≤σ2(W )k+1
∥∥ΘQ̄0

∥∥
2
+ α

√
N |S||A|

k∑
j=0

σ2(W )k−j 8Rmax

1− γ

≤σ2(W )k+1
∥∥ΘQ̄0

∥∥
2
+ α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )
.
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The first inequality follows from the inequality ||A||∞ ≤
√
N |S||A|||A||2 for A ∈581

RN |S||A|×N |S||A|. The second inequality follows from the bound on Q̄k in Lemma 3.3. The582
third inequality follows from Lemma 3.2. The last inequality follows from summation of geometric583
series. This completes the proof.584

585

D.4 Proof of Lemma 3.5586

Proof. From the definition of Ek in (9), we get587

∥Ek∥∞ ≤ γ

N

N∑
i=1

∥∥∥DP (ΠQi
kQi

k −ΠQavg
k Qavg

k )
∥∥∥
∞

≤γdmax

N

N∑
i=1

∥∥∥∥∥∥∥∥∥


maxa∈A Qi

k(1,a)−maxa∈A Qavg
k (1,a)

maxa∈A Qi
k(2,a)−maxa∈A Qavg

k (2,a)
...

maxa∈A Qi
k(|S|,a)−maxa∈A Qavg

k (|S|,a)


∥∥∥∥∥∥∥∥∥
∞

≤γdmax

N

N∑
i=1

∥∥Qi
k −Qavg

k

∥∥
∞

≤γdmax

∥∥ΘQ̄k

∥∥
∞ .

The third inequality follows from the fact that |maxi∈[n][x]i −maxi[y]i| ≤ maxi∈[n] |xi − yi| for588
x,y ∈ Rn and n ∈ N. The last inequality follows from the fact that589 ∥∥Qi

k −Qavg
k

∥∥
∞ ≤

∥∥ΘQ̄k

∥∥
∞ , ∀i ∈ [N ].

This completes the proof.590

E Appendix : Construction of upper and lower comparison system591

E.1 Construction of lower comparison system592

Lemma E.1. For k ∈ N, if Qavg,l
0 ≤ Qavg

0 , we have593

Qavg,l
k ≤ Qavg

k .

Proof. The proof follows from the induction argument. Suppose the statement holds for some k ∈ N.594
Then, we have595

Qavg,l
k+1 =Qavg,l

k + αD
(
Ravg + γPΠQ∗

Qavg,l
k −Qavg,l

k

)
+ αϵavgk + αEk

≤Qavg
k + αD

(
Ravg + γPΠQavg

k Qavg
k −Qavg

k

)
+ αϵavgk + αEk

=Qavg
k+1.

The first inequality follows from the fact that Qavg,l
k ≤ Qavg

k and ΠQ∗
Qavg,l

k ≤ ΠQ∗
Qavg

k ≤596
ΠQavg

k Qavg
k . The proof is completed by the induction argument.597

E.2 Construction of upper comparison system598

Lemma E.2. For k ∈ N, if Q̃avg,u
0 ≥ Q̃avg

0 , we have599

Q̃avg,u
k ≥ Q̃avg

k .
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Proof. As in the construction of the lower comparison system in Lemma E.1 in Appendix, the proof600
follows from an induction argument. Suppose that the statement holds for some k ∈ N. Then, we601
have602

Q̃avg
k+1 =Q̃avg

k + αD
(
γPΠQavg

k Q̃avg
k − Q̃avg

k

)
+ αγDP (ΠQavg

k Q∗ −ΠQ∗
Q∗)

+ αϵavgk + αDEk

≤(I + αD(γPΠQavg
k − I)Q̃avg,u

k + αϵavgk + αDEk

=Q̃avg,u
k+1 .

The inequality follows from the fact that the elements of I+αD(γPΠQavg
k −I) are all non-negative,603

and ΠQavg
k Q∗ ≤ ΠQ∗

Q∗. The proof is completed by the induction argument.604

F Appendix : i.i.d. observation model605

Proposition F.1. Assume i.i.d. observation model, and α ≤ mini∈[N ][W ]ii. Then, we have, for606
k ∈ N,607

E
[∥∥∥Q̃avg,l

k+1

∥∥∥
∞

]
=Õ

(
(1− (1− γ)dminα)

k
2 + σ2(W )

k
2

)
+ Õ

(
α

1
2

Rmax

(1− γ)
3
2 d

1
2

min

+ αdmax
Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))

)
.

Let us first introduce a key lemma to prove Proposition F.1:608

Lemma F.2. For k ∈ N, we have609

E

[∥∥∥∥∥
k∑

i=0

Ak−i
Q∗ ϵavgi

∥∥∥∥∥
∞

]
≤ 8

√
2Rmax

(1− γ)
3
2 d

1
2

minα
1
2

√
ln(2|S||A|).

Proof. For the proof, we will apply Azuma-Hoeffding inequality in Lemma C.4. For simplicity,610
let St =

∑t
i=0 A

k−i
Q∗ ϵavgi , for 0 ≤ t ≤ k. Let Ft := σ({(si,ai, s

′
i)}ti=0 ∪ {Q̄0}), which is the611

σ-algebra generated by {(si,ai, s
′
i)}ti=0 and Q̄0. Letting [St]s,a = (es⊗ea)

⊤St, for s,a ∈ S ×A,612
let us check that {[St]s,a}kt=0 is a Martingale sequence defined in Definition C.6. We can see that613

E [St|Ft−1] =E
[
Ak−t

Q∗ ϵavgt + St−1

∣∣∣Ft−1

]
=Ak−t

Q∗ E [ϵavgt |Ft−1] + St−1

=St−1,

where the second line is due to the fact that St−1 is Ft−1-measurable, and the last line follows from614
E [ϵavgt |Ft−1] = 0 thanks to the i.i.d. observation model. Therefore, we have E [[St]s,a|Ft−1] =615
[St−1]s,a.616

Moreover, we have617

E [S0] =E

[
1

N

N∑
i=1

(es0 ⊗ ea0
)(ri1 + e⊤s′0γΠ

Qi
0Qi

0 − (es0 ⊗ ea0
)⊤Qi

0)

]

− E

[
1

N

N∑
i=1

D(Ri + γPΠQi
0Qi

k −Qi
0)

]
=0.
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The last line follows from that E [es0 ⊗ ea0 ] = D and E
[
(es0 ⊗ ea0)e

⊤
s′0

]
= DP .618

Therefore, {[St]s,a}kt=0 is a Martingale sequence for any s,a ∈ S ×A. Furthermore, we have619

|[St]s,a − [St−1]s,a| ≤ ∥St − St−1∥∞ =
∥∥∥Ak−t

Q∗ ϵavgt

∥∥∥
∞

≤ (1− (1− γ)dminα)
k−t 4Rmax

1− γ
,

where the last inequality comes from Lemma C.1 and Lemma C.2. Furthermore, note that we have620

k∑
t=1

|[St]s,a − [St−1]s,a|2 ≤
k∑

t=0

(1− (1− γ)dminα)
2k−2t 16R

2
max

(1− γ)2

≤ 16R2
max

(1− γ)3dminα
.

Therefore, applying the Azuma-Hoeffding inequality in Lemma C.4 in the Appendix, we have621

P [|[Sk]s,a| ≥ ϵ] ≤ 2 exp

(
−ϵ2(1− γ)3dminα

32R2
max

)
.

Noting that {∥Sk∥∞ ≥ ϵ} ⊆ ∪s,a∈S×A{|[Sk]s,a| ≥ ϵ}, using the union bound of the events, we622
get:623

P [∥Sk∥∞ ≥ ϵ] ≤
∑

s,a∈S×A
P [|[Sk]s,a| ≥ ϵ] ≤ 2|S||A| exp

(
−ϵ2(1− γ)3dminα

32R2
max

)
.

Moreover, since a probability of an event is always smaller than one, we have624

P [∥Sk∥∞ ≥ ϵ] ≤ min

{
2|S||A| exp

(
−ϵ2(1− γ)3dminα

32R2
max

)
, 1

}
.

Now, we are ready to bound Sk from Lemma C.5 in the Appendix:625

E [∥Sk∥∞] =

∫ ∞

0

P [∥Sk∥∞ ≥ x] dx ≤ 8
√
2Rmax

(1− γ)
3
2 d

1
2

minα
1
2

√
ln(2|S||A|).

This completes the proof.626

627

Now, we are ready prove Proposition F.1:628

Proof of Proposition F.1. Recursively expanding the equation in (12), we get629

Q̃avg,l
k+1 =AQ∗Q̃avg,l

k + αϵavgk + αEk

=A2
Q∗Q̃

avg,l
k−1 + αAQ∗ϵavgk−1 + αAQ∗Ek−1 + αϵavgk + αEk

=Ak+1
Q∗ Q̃avg,l

0 + α

k∑
i=0

Ak−i
Q∗ ϵavgi + α

k∑
i=0

Ak−i
Q∗ Ei.
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Taking infinity norm and expectation on both sides of the above equation, we get630

E
[∥∥∥Q̃avg,l

k+1

∥∥∥
∞

]
≤E

[∥∥∥Ak+1
Q∗

∥∥∥
∞
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0

∥∥∥
∞
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∥∥∥∥∥
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∥∥∥∥∥
∞

+ α
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∥∥∥
∞
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]
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∞
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∞
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3
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1
2

min

√
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+ αE

[
k∑
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∞
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3
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√
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2
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k
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)
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.

The second inequality follows from Lemma C.1. The third inequality follows from Lemma F.2. The631

last line follows from bounding
∑k

i=0

∥∥∥Ak−i
Q∗

∥∥∥
∞

∥Ei∥∞ as follows:632

s
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∞
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1
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1
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.

The first inequality follows from Lemma 3.5 and Theorem 3.4. The second inequality follows from633
Lemma C.3 in the Appendix. This completes the proof.634

Now, we bound Q̃avg,u
k in (12). It is difficult to directly prove the convergence of upper comparison635

system. Therefore, we bound the difference of upper and lower comparison system, Qavg,u
k −Qavg,l

k .636
The good news is that since Qavg,u

k and Qavg,l
k shares the same error term ϵavgk and Ek, such terms637

will be removed if we subtract each others.638

Proposition F.3. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have639

E
[∥∥∥Qavg,u
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=Õ
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k
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α

1
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5
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3
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+ α
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)
.
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Proof. Subtracting Qavg,l
k+1 from Qavg,u

k+1 in (12), we have640

Qavg,u
k+1 −Qavg,l

k+1 =AQavg
k

Q̃avg,u
k −AQ∗Q̃avg,l

k

=AQavg
k

(Qavg,u
k −Qavg,l

k ) + (AQavg
k

−AQ∗)Q̃avg,l
k

=AQavg
k

(Qavg,u
k −Qavg,l

k ) + αγDP (ΠQavg
k −ΠQ∗

)Q̃avg,l
k . (18)

The last equality follows from the definition of AQavg
k

and AQ∗ in (10).641

Recursively expanding the terms, we get642

Qavg,u
k+1 −Qavg,l
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AQavg
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(Qavg,u
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0 )
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DP (ΠQavg
i −ΠQ∗

)Q̃avg,l
i + αγDP (ΠQavg
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k .

Taking infinity norm on both sides of the above equation, and using triangle inequality yields643
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The first inequality follows from Lemma C.1.644

Now, we will use Proposition F.1 to bound (⋆) in the above inequality. We have645
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The last inequality follows from Lemma C.3. Applying this result to (19), we get646
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(
α

1
2 dmax

Rmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
N |S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
.

This completes the proof.647
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F.1 Proof of Theorem 3.6648

Proof.
∥∥∥Q̃avg

k

∥∥∥
∞

can be bounded using the fact that Q̃avg,l
k ≤ Q̃avg

k ≤ Q̃avg,u
k :649
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The second inequality follows from triangle inequality. Taking expectation, from Proposition F.1 and650
Proposition F.3, we have the desired result.651

F.2 Proof of Theorem 3.7652

Proof. Using triangle inequality, we have653
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The first inequality comes from (6). The second inequality comes from Theorem 3.4 and 3.6. This654
completes the proof.655

656

F.3 Proof of Corollary 3.8657

Proof. Let us first bound the terms α
1
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5
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in Theorem 3.7658

with ϵ. We require659
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Next, we bound the terms (1− α(1− γ)dmin)
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4 . Noting that660
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we require661
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This completes the proof.662

G Appendix : Markovian observation model663

In this section, we provide the analysis tools for the Markovian observation model in Section 4.664

Considering a sequence of state-action trajectory {(sk,ak)}k∈N induced by the behavior policy β,665
the update of Q-function at time k becomes666

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(sk+1,a)−Qi
k(sk,ak)

)
Qi

k+1(s,a) =
∑
j∈Ni

[W ]ijQ
j
k(s,a), s,a ∈ S ×A \ {(sk,ak)},

(20)

where we have replaced s′k in (2) with sk+1. The overall algorithm is given in Algorithm 2 in the667
Appendix Section J.668

We follow the same definitions in Section 3 by letting D to be D∞. That is, we have669

AQ =I + αD∞(γPΠQ − I), bQ = γD∞P (ΠQ −ΠQ∗
)Q∗,

which are defined in (10).670

Furthermore, let us define for Q ∈ R|S||A|, Q̄ ∈ RN |S||A|, and Q̄i ∈ R|S||A| such that [Qi]j =671
[Q̄]|S||A|(i−1)+j for j ∈ [|S||A|]:672

∆avg(Q̄) =D∞
1

N

N∑
i=1

(
Ri + γPΠQi

Qi −Qi
)
,

∆avg
k−τ,τ (Q̄) :=Dsk−τ ,ak−τ

τ

1

N

N∑
i=1

(
Ri + γPΠQi

Qi −Qi
)
,

where D
sk−τ ,ak−τ
τ is defined in (14).673

Note that we did not use any property of the i.i.d. distribution in proving the consensus error.674
Therefore, we can directly use the result in Theorem 3.4 for the consensus error for Markovian675
observation model. Hence, in this section, we focus on bounding the optimality error, Qavg

k −Q∗.676
As in the case of i.i.d. observation model in Section 3, we will analyze the error bound of lower and677
upper comparison system in the subsequent sections.678

G.1 Analysis of optimality error under Markovian observation model679

As in Section 3.3, we will analyze the error bound for Q̃avg,u
k and Q̃avg,l

k to bound the optimality error,680
Q̃avg

k . We will present an error bound on the lower comparison system, Q̃avg,l
k , in Proposition G.5,681

and the error bound on Q̃avg,u
k − Q̃avg,l

k in Proposition G.6. Collecting the results, the result on the682
optimality error, Q̃avg

k , will be presented in Theorem G.7.683

Let us first investigate the lower comparison system. Q̃avg,l
k evolves via (12) where we replace ϵavgk684

with ϵavg(ok, Q̄k) where ok = (sk,ak, sk+1). To analyze the error under Markovian observation685
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model, we decompose the terms, for k ≥ τ as follows:686

Q̃avg,l
k+1 =AQ∗Q̃avg,l

k + αϵavgk (ok, Q̄k) + αEk

=AQ∗Q̃avg,l
k + αϵavg(ok, Q̄k−τ ) + α(ϵavg(ok, Q̄k)− ϵavg(ok, Q̄k−τ )) + αEk

=AQ∗Q̃avg,l
k + α (δavg(ok, Q̄k−τ )−∆avg

k−τ,τ (Q̄k−τ ))︸ ︷︷ ︸
:=wk,1

+α (∆avg
k−τ,τ (Q̄k−τ )−∆avg(Q̄k−τ ))︸ ︷︷ ︸

:=wk,2

+ α (ϵavg(ok, Q̄k)− ϵavg(ok, Q̄k−τ ))︸ ︷︷ ︸
:=wk,3

+αEk.

(21)

The decomposition is motivated to invoke Azuma-Hoeffding inequality as explained in Section 4.687
Recursively expanding the terms in (21), we get688

Q̃avg,l
k+1 = Ak−τ+1

Q∗ Q̃avg,l
τ + α

k∑
j=τ

Ak−j
Q∗ wj,1 + α

k∑
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Ak−j
Q∗ wj,2 + α

k∑
j=τ

Ak−j
Q∗ wj,3 + α

k∑
j=τ

Ak−j
Q∗ Ej .

(22)

Now, let us provide an analysis on the lower comparison system.689

We will provide the bounds of
∑k

j=τ A
k−j
Q∗ wj,1,

∑k
j=τ A

k−j
Q∗ wj,2, and

∑k
j=τ A

k−j
Q∗ wj,3 in690

Lemma G.2, Lemma G.3, and Lemma G.4, respectively. We first provide an important property to691
bound

∑k
j=τ A

k−j
Q∗ wj,1.692

Lemma G.1. For t ≥ τ , let Ft := σ({Q̄0, s0,a0, s1,a1, . . . , st,at}). Then,693

E [wt,1|Ft−τ ] = 0.

Proof. We have694

E [wt,1|Ft−τ ] =E
[
δavg(ok, Q̄k−τ )−∆avg

k−τ,τ (Q̄k−τ )
∣∣∣Ft−τ

]
=

1

N
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E
[
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γΠQi

t−τQi
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)⊤Qi
t−τ )
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]
− 1

N
Dst−τ ,at−τ

τ

N∑
i=1

(
Ri + γPΠQi

t−τ −Qi
t−τ

)
=0.

The second equality follows from the fact that Qi
t−τ is Ft−τ -measurable. This completes the695

proof.696

Lemma G.2. For k ∈ N, and α ≤ min
{
mini∈[N ][W ]ii,

1
2τ

}
, we have697

E
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Q∗ wj,1

∥∥∥∥∥∥
∞

 ≤2
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ln(2τ |S||A|) 15
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3
2 d

1
2

minα
1
2

.

Proof. For 0 ≤ q ≤ τ − 1, let for t ∈ N such that q ≤ τt+ q ≤ k:698

Fq
k,t := Fτt+q.

Then, let us consider the sequence {Sq
k,t}t∈{t∈N:q≤τt+q≤k} as follows:699

Sq
k,t :=

t∑
j=1

Ak−τj−q
Q∗ wτj+q,1.
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Next, we will apply Azuma-Hoeffding inequality in Lemma C.4. Let us first check that700
{Sq

k,t}t∈{t∈N:τt+q≤k} is a Martingale sequence. We can see that701

E
[
Sq
k,t

∣∣∣Fq
k,t−1

]
=E

[
Ak−τt−q

Q∗ wτt+q,1

∣∣∣Fq
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Q∗ wτj+q,1

∣∣∣∣∣∣Fq
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
=Sq

k,t−1.

The second equality follows from Lemma G.1, and the fact that Sq
k,t−1 is Fq

k,t−1-measurable.702

Moreover, we have E
[
Sq
k,1

∣∣∣Fq

]
= 0, and703
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,

where the last inequality follows from Lemma C.1. Now, we have, for s,a ∈ S ×A,704

∑
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|[Sq
k,j ]s,a − [Sq
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16R2
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Therefore, we can now apply Azuman-Hoeffding inequality in Lemma C.4, which yields705

P
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,

where t∗(q) = max{t ∈ N : τt+ q ≤ k}. Considering that706
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q=0
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taking the union bound of the events,707
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Therefore, from Lemma C.5, we have708
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The second inequality follows from 1−x2τ = (1−x)(1+x+x2+ · · ·+x2τ−1) for x ∈ R. The third709
inequality follows from the fact that

∑2τ−1
j=0 (1− (1− γ)dminα)

j ≥
∑2τ−1

j=0 (1− (1− γ)dminα)
2τ−1.710

The second last inequality follows from the relation such that exp(−2x) ≤ 1− x for x ∈ [0, 0.75].711
The condition α ≤ 1

2τ leads to exp((1−γ)dminα(2τ−1)) ≤ 3, yielding the last line. This completes712
the proof.713

Now, we bound
∥∥∥∑k

j=τ A
k−j
Q∗ wj,2

∥∥∥
∞

.714

Lemma G.3. For k ≥ τ , we have715
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Proof. Recalling the definition of D∞ and D
sj−τ ,aj−τ
τ in (14), we have716

∥D∞ −Dsj−τ ,aj−τ
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)⊤P τ )⊤]s,a − [µ∞]s,a|

≤2dTV(((esj−τ
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)⊤P τ )⊤,µ∞)

≤2mρτ

≤2α.

The first inequality follows from the definition of the total variation distance, and the second and717
third inequalities follow from the definition of the mixing time in (13).718

Now, we can see that719

∥wj,2∥∞ =

∥∥∥∥∥(D −Dsj−τ ,aj−τ
τ )

1

N

N∑
i=1

(
Ri + γPΠQi

jQi
j −Qi

j

)∥∥∥∥∥
∞

≤ 1

N
∥D −Dsj−τ ,aj−τ

τ ∥∞

∥∥∥∥∥
N∑
i=1

Ri + γPΠQi
jQi

j −Qi
j

∥∥∥∥∥
∞

≤α
8Rmax

1− γ
,

where the last inequality follows from Lemma 3.3.720

Therefore, we have721 ∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,2

∥∥∥∥∥∥
∞

≤ α
8Rmax

1− γ

k∑
j=τ

(1− α(1− γ)dmin)
k−j ≤ 8Rmax

(1− γ)2dmin
,

where the first inequality follows from Lemma C.1. This completes the proof.722

Lemma G.4. For k ≥ τ , we have723 ∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,3

∥∥∥∥∥∥
∞

≤8
∥∥Q̄0

∥∥
2

(
σ2(W )

k−τ
2

1

(1− γ)dminα
+ (1− (1− γ)dminα)

k−τ
2

1

1− σ2(W )

)

+
64Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))
+ 4τ

2Rmax

(1− γ)2dmin
.
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Proof. Recalling the definition of wj,3 in (21), we get724

wj,3 =δavg(oj , Q̄j)− δavg(oj , Q̄j−τ )−∆avg(Q̄j) +∆avg(Q̄j−τ )

=
1

N

N∑
i=1

(
(esj ⊗ eaj

)e⊤sj+1
γ
(
ΠQi

jQi
j −ΠQi

j−τQi
j−τ

)
− (esj ⊗ eaj

)(esj ⊗ eaj
)⊤(Qi

j −Qi
j−τ )

)
+D∞

1

N

N∑
i=1

(
γPΠQi

jQi
j − γPΠQi

j−τQi
j−τ +Qi

j −Qi
j−τ

)
.

Taking infinity norm, we get725

∥wj,3∥∞ ≤ 1

N

N∑
i=1

2
∥∥Qi

j −Qi
j−τ

∥∥
∞ +

dmax

N

N∑
i=1

2
∥∥Qi

j −Qi
j−τ

∥∥
∞

≤ 4

N

N∑
i=1

(∥∥Qi
j −Qavg

j

∥∥
∞ +

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ +

∥∥Qavg
j−τ −Qi

j−τ

∥∥
∞

)
≤4
∥∥ΘQ̄j

∥∥
∞ + 4

∥∥ΘQ̄j−τ

∥∥
∞ + 4

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ . (23)

The first inequality follows from the non-expansive property of max-operator. The second inequality726
follows from the triangle inequality. The term

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ can be bounded as follows:727

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ ≤

j−1∑
t=j−τ

∥∥Qavg
t+1 −Qavg

t

∥∥
∞

≤α

j−1∑
t=j−τ

1

N

N∑
i=1

∥∥∥∥est,at

(
rit + γmax

a∈A
Qi

t(st+1,a)−Qi
t(st,at)

)∥∥∥∥
∞

≤ατ
2Rmax

1− γ
. (24)

The second inequality follows from (2). The last inequality follows from Lemma 3.3.728

Applying the result in Theorem 3.4 together with (24) to (23), we get729

∥wj,3∥∞ ≤ 8σ2(W )j−τ
∥∥Q̄0

∥∥
2
+ 8α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )
+ 4ατ

2Rmax

1− γ
. (25)

Now, we are ready to derive our desired statement:730 ∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,3

∥∥∥∥∥∥
∞

≤
k∑

j=τ

(1− (1− γ)dminα)
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2
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σ2(W )
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1
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1
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)
+

64Rmax

√
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(1− γ)2dmin(1− σ2(W ))
+ 4τ

2Rmax

(1− γ)2dmin
.

The first inequality follows from Lemma C.1 and (25). The last inequality follows from Lemma C.3.731
This completes the proof.732

Now, collecting the results we have the following bound for the lower comparison system:733
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Proposition G.5. For k ∈ N, and α ≤ min
{
mini∈[N ][W ]ii,

1
2τ

}
, we have734

E
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∥∥∥
∞

]
=Õ
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3
2 d
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+ α
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√
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(1− γ)2dmin(1− σ2(W ))

)
.

Proof. Collecting the results in Lemma G.2, Lemma G.3, Lemma G.4, and Lemma 3.5, we can735
bound (22) as follows:736

E
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.

That is,737

E
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)
.

This completes the proof.738

The rest of the proof follows the same logic in Section 3. We consider the upper comparison system,739
and derive the convergence rate of Qavg,u

k −Qavg,l
k . As can be seen in (18), if we subtract Qavg,l

k+1740
from Qavg,u

k+1 , ϵavgk and Ek are eliminated. Therefore, we can follow the same lines of the proof in741
Proposition F.3:742

Proposition G.6. For k ∈ N, and α ≤ min
{
mini∈[N ][W ]ii,

1
2τ

}
, we have743
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Proof. As from the proof of Proposition F.3, we have744

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
≤(1− α(1− γ)dmin)

k−τ+1E
[∥∥Qavg,u

τ −Qavg,l
τ

∥∥
∞

]
+ 2αγdmax

k∑
i=τ

(1− α(1− γ)dmin)
k−iE

[∥∥∥Q̃avg,l
i

∥∥∥
∞

]
︸ ︷︷ ︸

(⋆)

. (26)
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We will use Proposition G.5 to bound (⋆) in the above inequality. We have745
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The last inequality follows from Lemma C.3. Applying this result to (26), we get746

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
=Õ
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(
α

1
2 dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
dmaxRmax

√
N |S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

This completes the proof.747

Now, we are ready to provide the optimality error under Markovian observation model:748

Theorem G.7. For k ≥ τ , and α ≤ min
{
mini∈[N ][W ]ii,

1
2τ

}
, we have749
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Proof. The proof follows the same logic as in Theorem 3.6 using the fact that Q̃avg,l
k ≤ Q̃avg

k ≤750
Q̃avg,u

k . Therefore, we omit the proof.751

G.2 Proof of Theorem 4.1752

Proof. The proof follows the same line as in Theorem 3.7. From Theorem 3.4 and Theorem G.7, we753
get754
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This completes the proof.755
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G.3 Proof of Corollary 4.2756

Proof. For E
[∥∥Q̄k − 1N ⊗Q∗

∥∥
∞

]
≤ ϵ, we bound the each terms in Theorem 4.1 with ϵ

4 . We757
require758
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which is satisfied if759
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where τ is bounded by tmix by Lemma C.7 in the Appendix. Likewise, bounding760
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Furthermore bounding the terms (1 − α(1 − γ)dmin)
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4 in Theorem 4.1 with ϵ

4 ,762
respectively, we require,763
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This completes the proof.764

H Appendix : Examples mentioned in Section 5765

Let us provide an example where the condition (15) used in Heredia et al. (2020) is not met in tabular766
MDP. Since the condition only depends on the state-action distribution,consider an MDP that consists767
of two states and single action, where S := {1, 2} and A := {1} with d(1, 1) = 0.1, d(2, 1) = 0.9,768
and γ = 0.5 Then, dmin = 0.1 and dmax = 0.9, then dmin < γ2dmax which contradicts the condition769
in (15).770

Next, we provide an MDP where the condition (16) required in Zeng et al. (2022b) is not met:771

P =


1 0
0 1
1 0
0 1

 , R =


0
0.1
0
0.1

 , [D]s,a =
1

4
, ∀s, a ∈ S ×A.

Letting γ = 0.99, we can check that Q∗ =


9.9
10
9.9
10

 and ΠQ∗
=

[
0 1 0 0
0 0 0 1

]
. Consider Q =


12
10
11
10

.772

Then, we have773

(γDP (ΠQQ−ΠQ∗
Q∗)−D(Q−Q∗))⊤(Q−Q∗) = 0.179,

which is contradiction to the condition in (16).774
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(a) Experiment under ring graph (b) Experiment under star graph

Figure 1: α = 0.1. The result was averaged over five runs.

I Experiments775

The experiment used the MDP where and |Ai| = 2 for each agent i ∈ [N ] where N denotes the776
number of agents. For each run, we have randomly generated the transition and reward matrix.777
Each elements were chosen uniformly random between zero and one, and for the transition matrix,778
each row is normalized to be a probability distribution. We can see that the distributed Q-learning779
algorithm converges to close to Q∗, where the constant bias is induced by using the constant step-size.780
As number of agents increase, the convergence rate becomes slower.781

(a) Ring graph, |S| = 2 (b) Ring graph, |S| = 5

(c) Star graph, |S| = 2 (d) Star graph, |S| = 5

Figure 2: α = 0.1. The result was averaged over five runs and N = 7
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The Figure 2 shows comparison with QD-learning developed in Kar et al. (2013). QD-learning782
uses a two-time scale approach, and therefore we have set the two-step-sizes as 0.1 and 0.0.1,783
where the faster time-scale matches the single-step-size of distributed Q-learning. As in the figure,784
distributed Q-learning shows faster convergence rate compared to QD-learning. ATC-Q refers to the785
adapt-then-combine scheme in Wang et al. (2022).786

J Appendix : Pseudo code787

Algorithm 1 Distributed Q-learning : i.i.d. observation model

Require: Initialize Qi
0 ∈ R|S||A| such that ||Qi

0|| ≤ Rmax

1−γ for all i ∈ [N ], and 0 ≤ α ≤
mini∈[N ][W ]ii.
for k = 0, 1, . . . , do

Observe sk,ak ∼ d(·, ·), s′k ∼ P(sk,ak, ·).
for i = 1, 2, . . . , N do

Update as follows:

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(s
′
k,a)−Qi

k(sk,ak)

)
.

end for
end for

Algorithm 2 Distributed Q-learning : Markovian observation model

Require: Initialize Qi
0 ∈ R|S||A| such that ||Qi

0|| ≤ Rmax

1−γ for all i ∈ [N ], and 0 ≤ α ≤
min

{
mini∈[N ][W ]ii,

1
2τ

}
.

Observe s0,a0 ∼ µ0.
for k = 0, 1, . . . , do

Observe sk+1 ∼ P(sk,ak, ·) and ak+1 ∼ β(· | sk).
for i = 1, 2, . . . , N do

Update as follows:

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(sk+1,a)−Qi
k(sk,ak)

)
.

end for
end for

34


