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Abstract. With the widespread creation of artificial intelligence (AI) models in
biosciences, researchers are reusing AI models trained for specific tasks. This
work is motivated by the need to characterize AI models for reuse and dis-
semination based on metrics derived from optimization curves captured during
model training. Such AI model characterization can aid future model accuracy
refinement, inform users about model hyper-parameter sensitivity, and assist in
model reuse according to multi-purpose objectives. The challenges lie in under-
standing relationships between AI model characteristics and optimization curves,
defining and validating quantitative AI model metrics, and disseminating metrics
with trained AI models. We approach these challenges by analyzing optimization
curves generated for image segmentation and classification tasks with respect to
AI model characteristics reused for many purposes.

Keywords: Optimization and learning methods; Efficient training and inference
methods; Medical, biological, and cell microscopy

1 Introduction

The problems of reusing artificial intelligence (AI) models range from defining a stan-
dard AI model file format to sharing the code and AI models via repositories [8]. Mul-
tiple communities come together to define a standard file format, such as Open Neu-
ral Network Exchange (ONNX)[5], and agree on sharing application code, installation
software dependencies, AI frameworks, and packaging via open framework projects
(e.g., Conda, Colaboratory, PyTorch, TensorFlow), code and model repositories (e.g.,
GitHub, BitBucket, Model Zoo, Model Depot, TensorFlow Hub), and software packag-
ing and distribution solutions (e.g., Docker, Apache Zookeeper, Apache Kafka) [8]. In
the broad range of AI model reusability problems, our focus is on specific sub-problems
related to characterizing AI models for the purpose of value added to parties reusing the
models.

The need within the scientific imaging community for AI model characterization
is driven by several factors. First, the scientific community strives for reproducible re-
search results. Second, domain-specific applications with focus on special objects of
interest acquired by unique imaging modalities struggle with insufficient training data
(in comparison to typical imaging modalities and objects in computer vision datasets,
e.g., ImageNet or Microsoft Common Objects in Context (COCO)) and privacy con-
cerns, especially in the medical imaging field. Finally, the sciences struggle with a gen-
eral lack of computational resources for AI model training compared to the resources
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available to large companies. We listed in Table 1several example tasks that are reusing
AI models, utilizing task specific inputs, and benefiting from additional metrics. The
terms “optimal configuration” and “explored configurations” in Table 1 refer to the one
desirable configuration according to some optimization criteria and to the set of con-
figurations that were evaluated during optimization. The columns labeled as “Reused”
and “Task specific” refer to reused data and information generated by other parties, and
to hardware and software artifacts that are specific to completing each task. The col-
umn “Needed metrics” highlights the key criteria that define a success of completing
each task. For instance, reusing AI models from the TrojAI challenges with 1.7TB of
AI models [10] to establish robustness of poisoned AI models to training data pertur-
bations will benefit from sharing used error metric, uniformity of training data defin-
ing predicted classes of synthetic traffic signs superimposed on real background, and a
model stability metric (e.g., percentage of AI models that did not converge when trojans
were injected). Characterizing AI models improves the input metadata about AI models
for reuse and reproducibility. Additionally, model reuse saves computational resources
and time while providing higher final model accuracy.

Table 1. Example tasks reusing AI models and benefiting from additional metrics

Task Reused Task specific Needed metrics
1. Inference

on new hardware
Trained model Hardware

GPU utilization
and exec. time

2. Reproduce
training

Training data
Model architecture

Optimal configuration

Hardware
Training env.

Error
GPU utilization
and exec. time

3. Model refinement
by param. optimization

Training data
Trained model

Explored configurations
Hyper-param.

Convergence
GPU utilization
and exec. time

4. Network architecture
search

Training datasets
AI graphs

Hyper-param.
Data-model

representation

5. Transfer learning
Trained models
Optimal sets of
hyper-param.

Other training
datasets

Gain from pretraining
Data domain

cross compatibility
6. Evaluate robustness

to data, architecture
and hyper-param.

perturbations

Training data
Model architecture

Optimal configuration

Subsets of
training datasets

AI graphs
Hyper-param.

Data uniformity
Error

Stability

Our problem space is illustrated in Figure 1 with a training configuration defined
by training dataset, AI architecture, and hyper-parameters. The basic research question
is: “what information can be derived from optimization and GPU utilization curves to
guide a reuse of a trained AI model?” The objective of this work is to design com-
putable metrics from optimization curves that would be included in model cards [15]
and support decisions about when and how to reuse disseminated trained AI models.
Our assumption is that data collected during training sessions are common to all model-
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ing tasks including image classification and segmentation (tasks of our specific interest)
and, therefore, the characteristics can be applied to a general set of AI models.

Fig. 1. A space of model training configuration space that is evaluated in each training session by
analyzing training, validation, and testing optimization curves, and a set of metrics designed for
configuration selection, model reuse, and software+hardware execution design.

Our approach to defining AI model characteristics from train, validation, and test
optimization curves consists of three steps:

a) simulate and analyze relationships between AI model coefficients and optimization
curves,

b) define mathematical functions used in analytical and statistical analyses that char-
acterize a trained AI model from optimization curves, and

c) design a recommendation system based on extracted and validated quantitative
characteristics of trained AI models.

The optimization curves are typically AI model accuracy or error metrics collected over
many epochs from train, validation, and test datasets.

The overarching challenges lie in (a) limited information content in optimization
curves that combine contributions from model architecture, training hyper-parameters,
and training dataset, (b) limited a priori knowledge about relationships among parts
of AI solutions that could be used for validation of quantitative AI model characteris-
tics, and (c) computational resources needed to generate a large number of optimization
curves for a variety of AI-based modeling tasks. Although the optimization curves con-
tain limited information, they represent an information resource suitable for sharing
with AI models to support legitimate reuse while protecting trade secrets (and pirated
reuse) in commercial settings. To overcome the challenges, (a) we run simulations for
a range of neural network configurations on 2D dot patterns to explore relationships
between optimization curves and model configurations, (b) we use apriori information
about datasets and modeling task complexity to validate metrics derived from optimiza-
tion curves, and (c) we leverage optimization curves from a network architecture search
database [22] and our model training sessions on five datasets and six architectures.
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Relation to prior work: The concept of describing AI models has already been dis-
cussed in the past (Datasheets for datasets [6], The Dataset Nutrition Labels [9,21],
Google AI Model Cards [15]). The published work on Datasheets for datasets and
Dataset Nutrition Labels has been focused mainly on training datasets from the per-
spective of fairness. The fairness aspect is documented via data attributes, motivation
for collection, data composition, collection process, and recommended uses in [6], as
well as via design of ranking widgets in [9]. In contrast to [9,21,6], our work is fo-
cused on documenting lessons-learned from the optimization curves collected during
training sessions. While a placeholder for model performance measures has been des-
ignated in the AI model cards [15] (i.e., under Metrics heading), the metrics have not
been defined yet, which is the gap our work is trying to address. In addition, our work
aims at utilizing the information that is not preserved with disseminated AI models for
the multi-purpose reuse of the AI models right now, although multiple platforms for
optimizing AI model configurations generate such information, such as TensorBoard
[1], Optuna [2], Vizier [7], Autotune [11], or Experiment Manager [14]. Finally, our
experiments are constrained by computational resources and therefore we leverage op-
timization values from a neural architecture search (NAS) database [22] with evaluated
5 million models and utilizing over 100 tensor processing unit (TPU) years of compu-
tation time.

Our contributions are (a) in exploring relationships between AI model coefficients
and optimization curves, (b) in defining, implementing, and validating metrics of AI
models from optimization curves for accompanying shared AI models, and (c) generat-
ing and leveraging optimization curves for image segmentation and classification tasks
in a variety of reuse scenarios. The novelty of this work lies in introducing (a) com-
putable metrics for model cards [15] that can provide cost savings for further reuse of
AI models and (b) a recommendation system that can guide scientists in reusing AI
models.

2 Methods

This section outlines three key components of using optimization curves for reuse of
trained AI models: (1) relationships between AI model coefficients and optimization
curves, (2) definitions of AI model metrics, and (3) design of a recommendation system.
Relationship between AI model coefficients and optimization curves: To address
the basic research question “what information can be derived from optimization and
GPU utilization curves to guide a reuse of a particular AI model?”, we simulate epoch-
dependent AI model losses (train and test) and analyze their relationship to epoch-
dependent AI model coefficients. We approach the question by simulating training
datasets, architectures, and hyper-parameters at a “playground” scale using the web-
based neural network calculator [4]. An example of a simulation is shown in Figure 2.
Figure 2 (top) illustrates a labeled set with the classification rule described by a rule:

if x2 + y2 > r2, then a point is outside of a circle else inside of a circle.
The AI model approximates this mathematical description by a rule:

if 2.5 ∗ (tanh(−0.2 ∗ x2 − 0.2 ∗ y2) + 1.7) < 0 then a point is outside of a circle
else it is inside of a circle.
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Figure 2 (bottom) shows the train-test optimization curves (left) and AI model
coefficient curves (right) as a function of epochs displayed on log scale. All coeffi-
cients go through a relatively large change of values around the epoch 7 with respect
to their ranges of values. This change of values in coefficients is not reflected in the
change of train-test loss measured via mean-squared error (MSE) since the relationship
is a complex mapping from many model coefficients to one test MSE value. How-
ever, the absolute values of correlations ρ between MSEtest and model coefficients
as a function of epochs for epochs ≥ 7 are close to 1 (ρ(w1,MSEtest) = 0.91,
ρ(w2,MSEtest) = 0.84, ρ(w3,MSEtest) = −0.95, ρ(bias,MSEtest) = −0.95).
In general, one can partition optimization curves to identify epoch intervals with and
without oscillations (or jaggedness of a curve) and with below and above threshold
error values. The epoch intervals without oscillations and below error values (e.g.,
MSEtest < MSEtest(7) = 0.1) can be modeled with curve fits, and the deviations
from the curve model as indicators of trained AI model quality.

Fig. 2. Top - Simulation of a dot pattern with two clusters of labels separated by a circular bound-
ary, (x2, y2) features, a single hidden layer with a single neuron model using tanh activation,
and a set of hyper-parameters (batch size= 10, learning rate= 0.3, train-test ratio = 50%) with
w1, w2, w3, and bias coefficients. Bottom - The optimization curves (left) and the corresponding
AI model coefficient curves (right).

In a similar vein, relationships between test and train curves have been used for
assessing data sampling. Using the same web-based neural network calculator [4], one
can analyze variable ratios of train:test random sampling for a complex spiral dot pat-
tern. In such simulations, insufficient data sampling for training and insufficient model
capacity lead to divergence of train and test curves. Such trends can be quantified, for
instance, by a sum of areas under the curves (four-fold difference of the sums in our
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simulations over the first 14 epochs when comparing sufficient and insufficient data
sampling).

These types of simulations suggest that one can derive several indicators (metrics)
about convergence, stability, speed, impact of initialization, and uniformity of training
and testing data from optimization curves.
Definitions of AI model metrics: The AI model characteristics are defined as sums,
deltas, correlations, and extreme points as well as least-squared fits of power and ex-
ponential models to optimization curves from a varying number of data points. Equa-
tions 1-9 denote the index of each epoch as ep, number of epochs as EP , the epoch for
which a model achieves the minimum error as ep∗(Mer), the window around ep∗(Mer)
as ±δ, initializations as rand (random) or pretrain or a1/a2 graphs, execution time as
T , correlation of two curves as ρ, and utilization of memory and processing power of
a graphics processing unit as GPUmem and GPUutil. In this work, we assume that
the optimized error metric Mer per AI model is the cross entropy (CE) loss since it is
widely used and supported by common AI libraries [18,1].

In Equation 5, the value of HCE,fit represents a predicted CE values from the first
few epochs given power or exponential models for the least-squared fit approximation.
In our analyses, we refer to the power model a∗xb as PW and the exponential model a∗
bx as EXP for a, b ∈ R and x = HCE(ep). The metric ∆(fit) is a difference between
predicted HCE,fit and measured HCE cross entropy loss values. ∆(fit) is designed
as an optimization cost function for finding the most accurate convergence prediction
model (min∆(fit) constrained by the maximum number of measured epochs over
two models {Model = PW,EXP} and three sets of AI model optimization curves
constrained by maximum of {10, 15, 20} measured epochs.

While Equations 1 and 6 are commonly used in practice to assess model error and
GPU requirements, other metric definitions are either not well-defined (e.g., stability
[23]) or not mathematically defined at all. For instance, Equations 7,8, and 9 define
Dre, Dunif , and Dinit given the train and test curves as (a) representation power of an
AI architecture with respect to the non-linear relationship between inputs and outputs
defined by the training data Dre, (b) uniformity of training and testing data subsets
Dunif , and (c) compatibility of training data and pretraining data or AI model graphs
Dinit. In this case, Dre in Equation 7 can be interpreted as the overall representation
error of encoding training data in an AI architecture represented by a graph with a
variety of nodes (modules) and node connectivity.

Mer = min
ep

(HCE
test(ep))

ep∗(Mer) = argmin
ep

HCE
test(ep)

(1)

Mstab =

ep∗(Mer)+δ∑
ep=ep∗(Mer)−δ

(HCE
test(ep)−Mer) (2)

T (Mer) = ep∗(Mer) ∗
1

EP
∗

EP∑
i=1

Ti (3)
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Table 2. Definition of AI model metrics

Metric name Math symbol Eq.
Model error Mer, ep

∗(Mer) 1
Model stability Mstab 2

Speed T (Mer) 3
Initialization gain Ginit 4

Predictability ∆(fit) 5
GPU utilization GPUMaxM ,GPUAvgU 6

Data-model
representation

Dre 7

Train-test data
uniformity

Dunif 8

Data compatibility Dinit 9

Ginit = Mrand
er −Mpretrain

er (4)

∆(fit) =

EP∑
ep=1

(HCE
test(ep)−HCE,fit

test (ep)) (5)

GPUMaxM = max
ep

(GPUmem(ep))

GPUAvgU =
1

EP
∗

EP∑
ep=1

GPUutil(ep)
(6)

Dre =

EP∑
ep=1

(HCE
train(ep) +HCE

test(ep)) (7)

Dunif = ρ(HCE
train(ep), H

CE
test(ep)) (8)

Dinit(data) =

EP∑
ep=1

(HCE,rand
test (ep)−HCE,pretrain

test (ep))

Dinit(graph) =

EP∑
ep=1

(HCE,a1
test (ep)−HCE,a2

test (ep))

(9)

Design of a recommendation system: Given a set of example tasks shown in Table 1
and a set of derived metrics from optimization curves in Table 2, one needs to rank and
recommend AI models, training data, and hyper-parameter configurations to complete
a specific task. The optimization curves for deriving characteristics of AI models can
be generated by in-house scripts or tools that automate sweeping a range of AI model
parameters [2], [7], [11], [14], while following random, grid, simulated annealing, ge-
netic algorithm, or Bayesian search strategies. In our study, we generated pairs of train
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and test optimization curves using in-house scripts (see Tables 3, 4, and 5) and lever-
aged NAS-Bench-101 database [22] that contains information about 5 million trained
AI model architectures.

Figure 3 (right) shows an example of two pairs of optimization curves with fluc-
tuations due to the complexity of a high-dimensional loss surface traversed during
optimization using the training images illustrated in Figure 3 (left). The optimization
curves illustrate the complexity of the cross entropy (CE) loss surface with respect to
all contributing variables (i.e., the space is discontinuous and/or frequently flat without
expected extrema, evaluations fail due to sparse discrete objective space formed by inte-
ger and categorical variables and/or numerical difficulties and hardware failures [19]).
Thus, metrics characterizing optimization curves must be presented as a vector and
ranked by each vector element interactively. In our recommender design, we chose a
parallel coordinate graph to convey ranking and support decisions. We also focus on
validating the metrics based on additional information about training datasets.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

CE
 L
os
s

Epoch  index

Optimization Curves (train, test)
for DeepLab50 Architecture Applied to A10 and cryoEM 

Datasets

train loss cryoEM test loss cryoEM train loss A10 test loss A10

Fig. 3. Left - Examples of training image pairs (intensity, segmentation mask) for A10 dataset (top
row), and cryoEM dataset (bottom row). Right - Optimization curves (train, test) for DeepLab50
AI architecture trained on A10 and cryoEM datasets.

3 Experimental Results

We divided the experimental work into (1) generating optimization curves over a range
of AI model configurations, (2) validating the designed metrics based on a couple of
datasets and their prior characterization of segmentation difficulties, and (3) describing
recommendations for a reuse of trained AI models driven by use cases listed in Table 1
and applied to image segmentation and classification tasks.
Generation of optimization curves: In order to generate optimization curves for vary-
ing training datasets, AI model architectures, and hyper-parameters, we gathered five
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segmentation training images acquired by multiple imaging modalities (see Table 4),
implemented six AI segmentation architectures by leveraging the PyTorch library [18]
(see Table 5), and varied a couple of hyper-parameters (see Table 3). The model initial-
ization using pre-trained coefficients was based on the COCO dataset [13] for object
segmentation (1.5 million object instances).

The training image datasets represent optical florescent, optical bright-field, elec-
tron, cryogenic electron, and neutron imaging modalities, and are characterized in terms
of the number of predicted classes (#Classes), the number of pixels (#Pixels), and the
average coefficient of variation (CV ) over all training images as defined in Equation 10.

CV =
1

N

N∑
i=1

σi

µi
(10)

where µi and σi are the mean and standard deviation of each intensity image in the
training collection of size N images. The A10 dataset denotes fluorescently labeled
optical microscopy images of A10 cells [17]. The concrete dataset came from electron
microscopy of concrete samples [3]. The cryoEM dataset was prepared by the authors
using cryogenic electron microscopy of lipid nanoparticles. The infer14 dataset was
prepared by the authors using data-driven simulations of porous concrete samples from
measured neutron images [16]. The rpe2d dataset denotes time-lapse bright-field optical
microscopy images of retinal pigment epithelial (RPE) cells published in [20].

For the training runs, we chose to train each model configuration for EP = 100
epochs. In general, this value will vary during hyper-parameter optimization runs de-
pending on available computational resources, the definition of model convergence er-
ror, or the use of early stopping criterion (an increment observed in CE loss values over
consecutive epochs is smaller than ϵ). We also set the value δ = 5 epochs in Equation 2.
All computations were performed on a compute node with a Quadro Ray Tracing Texel
eXtreme (RTX) 4000 GPU card and Compute Unified Device Architecture (CUDA)
11.6.
Validation of AI characteristics: We selected two training image datasets labeled as
A10 and cryoEM in Table 4 for validation. Examples of training image pairs are shown
in Figure 3. The A10 dataset has a high contrast (CV = 1.34) while the cryoEM dataset
has a low contrast (CV = 0.06) and a large heterogeneity in sizes and textures. The
datasets were chosen based on the assumption that segmenting images with low contrast
is a much harder task than segmenting images with high contrast.

Given the assumption about segmentation difficulty, the complexity of an input-
output function for cryoEM dataset is larger than the complexity of such a function for
A10 dataset and hence the model utilization or the error must be higher for cryoEM.
We observe the worst error over all AI models for A10 (Mer = 0.0568) to be at least
twice smaller than the best error over all AI models for cryoEM (Mer = 0.127). This
implies that any of the explored model capacities could not increase model utilization
to accommodate the cryoEM input-output function and hence optimization errors are
much higher for cryoEM. Furthermore, the heterogeneity of segments in sizes and tex-
tures in cryoEM versus A10 poses challenges on sampling for train-test subsets. Since
the sampling is completely random, it is very unlikely that segments with varying sizes
and textures from cryoEM will be equally represented in train-test subsets. This im-
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plies that Dunif ∈ [0.226, 0.836] for cryoEM is expected to be smaller on average than
Dunif ∈ [−0.359, 0.310] for A10 due to the train-test gap. Ideally, the correlation of
train and test CE loss curves Dunif should be close to one.

One can now validate AI model characteristics against expected inequalities to be
satisfied by the values derived from these two datasets. The expected inequalities in-
clude model error Mer, uniformity of training and testing data Dunif , and convergence
predictability ∆(fit) as shown in Equation 11. These inequalities are validated by com-
paring the values of Mer and Dunif in Table 5. Figure 5 shows the values in parallel
coordinate plots including the values of ∆(fit,A10) and ∆(fit,CryoEM) on the right
most vertical line denoted as minP (PW 20). The values of minP (PW 20) were
calculated using the power model fit from the first 20 epochs. The sum of train and
test optimization curves Dre, as well as the convergence predictability P (PW 20),
quantify the sensitivity of model training to hyper-parameters (i.e., learning rate and
initialization). In both A10 and cryoEM datasets, Dre and P (PW 20) values for 2-3
architecture types indicate epoch-specific optimization divergence (as illustrated by the
scattered black points in Figure 4(right) for the A10 dataset).

Mer(A10) < Mer(CryoEM)

Dunif (A10) > Dunif (CryoEM)

∆(fit,A10) < ∆(fit,CryoEM)

(11)

Table 3. Explored hyper-parameters in AI model configurations

Hyper-parameters Values

Initialization
Random

COCO pre-trained
Learning Rate 10−5, 10−4, 10−3, 10−2

Optimizer Adam
Optimization criterion Cross entropy loss

Epochs 100
Batch size 2

Class balance method Weighting by class proportion
Augmentation None
Train-Test split 80 : 20

Reuse of trained AI models for image segmentation: When the task focus is on con-
vergence predictability ∆(fit), an AI model configuration in Figure 4 (left) shows bet-
ter convergence for power model with 20 epochs than any configuration in Figure 4
(right). A large divergence from the predicted optimization curves typically indicates
that (a) it is not sufficient to predict the model training convergence using a few ini-
tial epochs (10, 15, or 20 epochs), (b) training and testing subsets might not have been
drawn from the same distribution, and (c) the COCO dataset used for pretraining the AI
model might not be compatible with the domain training dataset, and, hence, the test
CE loss values vary a lot during the first few epochs. This is undesirable for researchers
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Table 4. Training datasets. OF - optical fluorescent, EM - electron microscopy, OB - optical
bright field, NI - neutron imaging

Dataset Modality #Classes #Pixels [MPix] CV

A10 OF 2 5.79 1.34
concrete EM 4 71.7 0.31
cryoEM EM 2 117.44 0.06
infer14 NI 9 125.9 0.24
rpe2d OB 2 53.22 0.84

Table 5. Summary of AI model characteristics per model architecture and per dataset where the
models were optimized over the learning rates and pretraining options listed in Table 3.

Architecture A10 Mer A10 Dunif cryoEM Mer CryoEM Dunif

DeepLab101 0.0528 0.3513 0.1271 -0.0093
DeepLab50 0.0451 0.8356 0.1284 -0.2515
LR-ASPP 0.04 0.7978 0.1435 -0.3585

MobileNetV3 0.0568 0.5794 0.1602 0.3092
ResNet101 0.042 0.2256 0.1379 -0.0867
ResNet50 0.045 0.391 0.1369 -0.2269

who would like to predict how many more epochs to run on the existing model while
targeting a low test CE loss value. On the other hand, the configuration in Figure 4(right)
achieves lower CE error Mer (vertically lowest black point) than the configuration in
Figure 4(left) for the same dataset A10 and the same DeepLab50 AI architecture.

When the task focus is on gain from pretraining Ginit, the values are less than zero
for all datasets except the concrete dataset listed in Table 4. These values indicate that
the objects in the COCO dataset are significantly different from the objects annotated
in the five scientific microscopy datasets, and the pre-training on COCO does not yield
better model accuracy.

When the task focus is on model stability Mstab, Figure 6 illustrates how stable
each optimized AI model is over the configurations listed in Tables 3, 4, and 5. If the
test CE loss curve is close to constant within the neighborhood of δ = 5 epochs, then
the value of Mstab, as defined in Equation 2, is small indicating model stability. Based
on Figure 6, all model architectures for the rpe2d dataset yielded highly stable, trained
models, while the stability of trained models for the infer14 dataset was low and varied
depending on a model architecture.
Reuse of trained AI models for image classification: We analyzed train, validation,
and test accuracies obtained using CIFAR-10 training dataset [12] and a network ar-
chitecture search (NAS) published in NAS-Bench-101 database [22]. NAS-Bench 101
contains information about final and halfway accuracies obtained by searching over
ResNet and Inception like architectures for 5 million graphs. Accuracies over three
repeated training runs were averaged and plotted for the Inception-like and ResNet-
like architectures in Figure 7 at halfway and final epochs and for four epoch budgets
{4, 12, 36, 108}. The standard deviation of average values over all accuracies was 0.038
and 0.042. Since two points in each optimization curve were not very informative, we
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Fig. 4. Predictions of training model convergence from A10 dataset for two configurations. Left
configuration: (DeepLab50, COCO pre-trained initialization, learning rate: 1e-5). Right configu-
ration: (DeepLab50, random initialization, learning rate: 1e-3). Black dots are the measured test
CE loss values. Color-coded curves are predictions for a set of fitted model parameters.

analyzed all points combined from the epoch budgets per Inception-like and ResNet-
like architecture graphs. The correlations of train, validation, and test contours Dunif

were larger than 0.999 indicating uniformity of train-test splits of CIFAR-10 dataset.
Regarding convergence ∆(fit), a power model is more accurate than an exponential
model. We observed the following inequality ∆(fit, ResNet) < ∆(fit, Inception)
suggesting that one could predict convergence of ResNet-like architecture more accu-
rately than convergence of Inception-like architecture. On the other hand, the Inception-
like architecture reaches higher accuracy values faster with epoch numbers than the
ResNet-like architecture as it can be documented with a positive sum of deltas Dinit(graph) =
1.45, where a1 =Inception and a2 =ResNet in Equation 9.

4 Discussion

The practical value of each metric is task dependent for the use cases listed in Ta-
ble 1. For instance, if the task is model portability to a new hardware or model-training
reproducibility, then knowing maximum required GPU memory and GPU utilization
would be very valuable. It is frequent in biology to apply transfer learning and reuse
trained AI models due to a limited size of annotated image datasets in scientific ex-
periments. Knowing what architectures, datasets, and hyper-parameters were explored
can save computational time when cell type, tissue preparation, or imaging modalities
differ between trained AI models and a reuse application. We recommend minimiz-
ing the number of variables between original trained model and reuse configurations if
possible because (a) AI-based modeling entangles all variables in non-linear way and
(b) optimization curves provide a limited information content about the changes inside
of a model (as stated in the list of challenges in Section 1). Nevertheless, the metrics
are useful if one has some apriori knowledge about the training datasets, architecture
types, and the complexity of predicting image segmentation and the reuse of trained AI
models is applied in the configuration proximity of shared AI models.
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(a)

(b)

Fig. 5. Parallel coordinate plots for A10 (top) and cryoEM (bottom) datasets. The plots are in-
tended to support decisions about which AI model architecture is the most accurate for the image
segmentation tasks.

From the perspective of defining metrics, our goal is not to invent them from scratch
but rather to define them in consistent mathematical and computational ways as opposed
to the current variations of subsets of presented metrics in practice. Consistent metric
definitions enable their use in model cards and improved reuse of shared AI models.
Nonetheless, more metrics will need to be designed and defined to address a broad
range of AI model reuses.

5 Summary

This work presented the problem of learning from a set of optimization curves, defining
metrics derived from the curves for model cards [15], and reusing trained AI models
by leveraging accompanying metrics. The output quantitative AI model metrics serve
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Fig. 6. Model stability of the most accurate AI model per architecture and per dataset

Fig. 7. Accuracies extracted from NAS-Bench101 database for Inception like (left) and ResNet
like (right) architectures

multiple purposes: as entries under Metrics in the AI model card definition [15] and as
inputs to ranking of AI models according to a variety of objectives (e.g., model accuracy
refinement, model architecture recommendation).

The designed metrics were evaluated on image segmentation tasks applied to im-
age datasets selected based on their estimated segmentation level of difficulty. Our
main results demonstrated use cases of scientists reusing pre-trained AI models for the
purposes of (1) improving model accuracy by further training/optimization of model
hyper-parameters constrained by computational resources (convergence predictability),
(2) selecting from pretrained models (data initialization gain), (3) finding stable models
(model stability), and (4) choosing optimal graphs for training data (graph initialization
gain).

The impact of sharing AI models with presented metrics is significant for principal
investigators limited by their grant budgets and small research labs limited by their own
computational resources or the cost of cloud resources. A higher reuse of shared AI
models can save not only cost and time to researchers but also advance their scientific
goals more efficiently. The cost of achieving a higher reuse of AI models is the extra
summarization of optimization sessions using transparent metrics and sharing them in
AI model cards. In the future, we plan to explore how to replace relative with absolute
comparisons of AI model metrics when recommending trained AI models.
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