# AutoLEX: An Automatic Framework for Linguistic Exploration 

Anonymous ACL submission


#### Abstract

Each language has its own complex systems of word, phrase, and sentence construction, the guiding principles of which are often summarized in grammatical descriptions for the consumption of linguists or language learners. However, manual creation of such descriptions across many languages is a fraught process, as creating language descriptions which describe the language in "its own terms" without bias or error requires both a deep understanding of the language at hand and linguistics as a whole. We propose an automatic framework AUToLEX that aims to ease linguists' discovery and extraction of concise descriptions of linguistic phenomena. Specifically, we apply this framework to extract descriptions for three linguistic phenomena: morphological agreement, case marking, and word order, across several languages. We evaluate the extracted descriptions with the help of language experts and propose a method for automated evaluation when human evaluation is infeasible. ${ }^{1}$


## 1 Introduction

Languages are amazingly diverse and complex, consisting of different systems such as sound structure (phonology), word formation and inflection (morphology), phrase and sentence construction (syntax), and meaning (semantics). These systems are governed by a set of guiding principles, technically described as grammar. Creating a humanreadable description that highlights salient grammar points of a language is one of the major endeavors undertaken by linguists. Such descriptions form an indispensable component of language documentation, the goal of which is to create a lasting, multipurpose record of a language (Himmelmann, 1998). Further, grammatical descriptions play a

[^0]major role in educational materials, which are also used in the preservation and revitalization of endangered languages (Himmelmann, 1998; Hale et al., 1992; Moseley, 2010). Furthermore, if descriptions can be created in a machine-readable format they can be used as a basis for developing language technologies, which aboriginal language activist Williams (2019) has contended also plays a significant role in language survival, stating "languages that miss the opportunity to adopt language technologies will be less and less used".

Linguists and researchers have undertaken initiatives to collect properties of language in a machinereadable format across a broad variety of languages. WALS (Dryer and Haspelmath, 2013) is one such database which describes linguistic properties for thousands of languages. For instance, WALS can tell us that typically English objects occur after verbs, or that Turkish pronouns have symmetrical case marking i.e. pronouns have a separate case marker for different cases (nominative, accusative). However, because WALS presents these properties across a wide range of diverse languages, these properties are necessarily defined at a coarsegrained level, and cannot capture language-specific nuances. WALS does not inform us of any exceptions to its general rules (e.g. the cases when English objects come before verbs), and there are many aspects of linguistic description that are not covered by the WALS features at all (e.g. it does not describe when a Turkish pronoun takes the accusative marker and when the nominative).

There are significant challenges to diving deeper and creating (computer-readable) detailed linguistic descriptions across many languages. For most of the world's $6,500+$ languages there are few or no formally trained linguists who are native speakers, making it necessary to rely on either non-native linguists, or community members who have less linguistics training than may be ideal. Even in the ideal case where there is a linguist who is well-

(a) (Most) Declarative sentences show subject-verbobject.

(b) (Some) Interrogative sentences show object-subject-verb.

Figure 1: Example of word order variations in English.
versed in the language, there are a plethora of linguistic phenomena to be covered in a detailed grammatical description, and it is hard to enumerate every single one through introspection. This is particularly the case when linguistic behaviors vary across different settings, such as when there are differences between spoken and written language, or when there are dialectal variations.

Thanks to the advances in NLP methods, it is now possible to automate some local aspects of linguistic analysis such as POS tagging (Toutanvoa and Manning, 2000; Petrov et al., 2012), dependency parsing (Kiperwasser and Goldberg, 2016; Kulmizev et al., 2019) or morphological analysis (Malaviya et al., 2018), to name a few. Recent advances in cross-lingual transfer learning have demonstrated that this analysis is possible, to an extent, even for under-resourced languages (Kondratyuk and Straka, 2019; Nguyen et al., 2021). There is also a small amount of prior work that has proposed methods for answering questions about specific aspects of an entire language, such as analysis of word order (Östling, 2015; Wang and Eisner, 2017) and morphological agreement (Chaudhary et al., 2020), or extraction of detailed grammars from inter-linear glossed text (Bender et al., 2002) (see Table 2 of the Appendix for a detailed comparison of different linguistic questions answered by our and related work).

In this work, we propose AUTOLEX, an automatic framework to aid linguistic exploration and description, with the goal of helping linguists develop fine-grained understanding of different linguistic phenomena. The framework allows the linguist to ask a question such as "what are the rules of object-verb order?" in English, or "when do pronouns take the accusative case in Turkish?", and automatically acquire first-pass answers to these
questions. Based on analysis of texts in the corresponding languages, it finds answers such as in English "typical declarative constructions show VO but interrogative sentences can show OV" (Figure 1 ), or in Turkish "object pronouns take the accusative case." In order to do so, we follow a three-step process. First, we define the linguistic question as a classification problem (e.g. "does the object come before the verb or not"; § 2). Second, we extract syntactic, semantic, and surface-level features that may be predictive of the answer to this question (§ 3). Third, we train an interpretable classifier such as a decision tree to identify the underlying patterns that answer this question, and extract and visualize interpretable rules (§ 4). This methodology is inspired by previous work on discovering fine-grained distinctions for individual linguistic phenomena (Chaudhary et al., 2020; Wang and Eisner, 2017), but is significantly more general - we demonstrate its ability to discover interesting features regarding word order, case marking, and morphological agreement, and the framework could be easily applied to other phenomena as well.

We experiment with 61 languages and explore questions across these three linguistic phenomena. We design an automated evaluation protocol which informs us how successful our framework is in discovering valid grammar rules and how well the rules extracted over one dataset generalize across other. We further conduct a user study with linguists to evaluate how correct, readable, and novel the rules are perceived to be. Finally, we apply this framework on an endangered language, Hmong, to evaluate how well our framework extracts rules under zero-resource conditions.

## 2 Formalizing Linguistic Questions

The first step in applying AutoLEX to answer a particular question is to determine whether we can formulate it as a classification task, with training data $\left\{\left\langle\mathbf{x}_{\mathbf{1}}, y_{1}\right\rangle,\left\langle\mathbf{x}_{\mathbf{2}}, y_{2}\right\rangle \cdots,\left\langle\mathbf{x}_{\mathbf{n}}, y_{n}\right\rangle\right\}$, where $\mathbf{x}_{\mathbf{i}} \in X$ are the input features and $y_{i} \in Y$ is the label indicating the linguistic phenomenon of interest. Below, we describe how we define the label space $Y$ for each of the three phenomena we analyze in our experiments, and discuss how to construct $X$ in the following section. We use the UD annotation schema (McDonald et al., 2013) for representing the syntactic and morphological information.

Case Marking is a system of "marking syntactic dependents for the type of grammatical relation
(subject, object, etc.) they bear to their syntactic heads" (Blake, 2009). Although there are different theories on how to formalize case marking, in this work we commit to the viewpoint that there are two types of cases: abstract and morphological, where abstract case is a universal property and morphological case is the overt realization that is triggered under certain conditions and varies cross-linguistically (Chomsky, 1993; Halle et al., 1993; Legate, 2008). Given this background, we formulate the explanation of case marking as determining when a word class (e.g. nouns) marks a particular case (e.g. accusative, nominative, etc.). Formally, for each POS tag $t$ we learn a separate model, where the input examples $x_{i}$ are the words having POS tag $t$ with the case feature marked (e.g. Case=Nominative or Case=Accusative etc.). The model is trained to predict an output label $\left(y_{i} \in Y\right)$, where $Y$ is the discrete label set of all the case values observed in the data for that language.

Word Order describes the relative position of the syntactic elements in the sentence (Dryer., 2007), and is one of the major axes of linguistic description appearing in grammatical sketches or linguistic databases such as WALS. We consider the following five WALS relations $R$ : subject-verb (82A), object-verb (83A), adjective-noun (87A), adposition-noun (85A) and numeral-noun (89A). In contrast to WALS, which only provides a single canonical order for the entire language, we pose the linguistic question as determining when does one word in such a relation appear before or after the other. Formally, the pair of words involved in the syntactic relation $\left\langle w_{i}^{a}, w_{i}^{b}\right\rangle \in r$ form the input example $x_{i}$ and the binary output label $y_{i} \in Y$ where $Y=\{$ before, after $\}$.

Agreement is the process where one word or morpheme selects a morphological form that agrees with that of another word/phrase in the sentence (Corbett, 2003). We follow a similar problem formulation as Chaudhary et al. (2020), which asks the question when is agreement required between a head $\left(w_{h}\right)$ and its dependent $\left(w_{d}\right)$ for a morphological attribute $m$. In this work, we focus on the morphological attributes $M=$ \{gender, person, number\}, which more often show agreement than other attributes (Corbett, 2009), and train a separate model for each $m$. The pair of head-dependent words which both mark the morphological property $m$ form the input example $x_{i}$


Figure 2: Features extracted for training the adjectivenoun word order model in Spanish. The sentence translates to "Four books were bought".
and the output labels $\left(y_{i}\right)$ are binary denoting if agreement is observed or not between the pair.

## 3 Feature Extraction

Now that we have provided three examples of formulating linguistic questions into classification tasks, we design different features to help predict the answer of the linguistic question based on prior literature. In Figure 2, we demonstrate an example of some of the features extracted from a Spanish sentence for training the adjective-noun word order model. Going forward, we refer to the words participating in an input example $x_{i}$ as focus words. These include the words describing the relation itself (e.g. the adjective cuatro and its noun libros) and also their respective heads and dependents.

Syntactic Features Prior research (Blake, 2009; Kittilä et al., 2011; Corbett, 2003) has discussed the role of syntactic relations and morphological properties of the syntactic heads being important for determining the case and agreement. In Figure 2, we show a subset of features extracted for some of the focus words. We derive syntactic features from the POS tag (e.g. "is-adj"), morphological properties (e.g. "is-ordinal") and the dependency relation it is involved in (e.g. "deprel-is-mod"). Similarly, we extract features from the syntactic head of the adjective, which is libros (e.g. "head-is-noun").

Lexical Features An influential family of linguistic theories - lexical functional grammar (Kaplan et al., 1981), head-driven phrase structure grammar (Pollard and Sag, 1994), combinatory categorial grammar (Steedman, 1987), and lexicalized tree adjoining grammar (Joshi and Schabes, 1991) - place most of the explanatory weight for

$$
\begin{equation*}
217 \tag{218}
\end{equation*}
$$

morphosyntax on the lexicon - the properties of the head word (and other words) drive the realization of the rest of the phrase or sentence. Therefore, we add lemma for the focus words (e.g. "dep-lemma-is-cuatro", "head-lemma-is-libros") as features.

Semantic Features There is also a strong interaction between semantics and sentence structure. Some well-known examples are that the animacy or semantic class of a word determines case marking (Dahl and Fraurud, 1996) and word order (Thuilier et al., 2021) for some languages. Continuous word vectors (Mikolov et al., 2013; Bojanowski et al., 2017) have been used to capture semantic (and syntactic) similarity across words. However, most continuous vectors are high-dimensional and not easily interpretable, i.e. what semantic/syntactic property each individual vector value represents is not obvious. Since our primary goal is to extract comprehensible descriptions of linguistic phenomena, we generate sparse non-negative representations (Subramanian et al., 2018), such that each dimension of the embedding has a higher level of interpretability. For each dimension, we then extract the top- $k$ words having a high positive value, resulting in features like dim- $1=\{$ radio,nuclear $\}$, $\operatorname{dim}-2=\{$ hotel,restaurante $\}$. This helps us interpret what property each dimension is capturing, for example, dim-1 refers to words about nuclear technology while dim- 2 refers to accommodations. Now that we can interpret what each feature (dimension) corresponds to, we directly add the continuous vector as features. In Figure 2, a semantic feature (e.g. "dep-word-is-like $=\{$ ochenta,sesenta $\}$ " ${ }^{2}$ ) extracted for cuatro informs us that the adjective denotes a numeric quantity.

## 4 Learning and Extracting Rules

Training Data To construct the training data $D_{\text {train }}^{p}$ for each task $p$, we start with the raw text $D$ of the language in question and perform syntactic analysis over the raw text, producing POS tags, lemmatization, morphological analysis and dependency parse trees for each sentence. Based on this analysis, for each sentence in $D$, we identify the focus word(s) and extract features forming the input example ( $\mathbf{x}_{\mathbf{i}}=\left\{x_{i}^{0}, x_{i}^{1}, \cdots, x_{i}^{k}\right\}$ ).
Model Training Given that the learned model must be interpretable to linguists using the system, we opt to use decision trees (Quinlan, 1986), which

[^1]split the data into leaves, where each leaf corresponds to a portion of input examples following common syntactic/semantic/lexical patterns.

Rule Extraction Each leaf in the decision tree is assigned a label based on the distribution of examples within that leaf. For instance, if a leaf for the adjective-noun word order decision tree has $60 \%$ of examples having adjectives before their nouns, the leaf is labeled as before. However, a majoritybased threshold alone is insufficient as it does not account for leaves with very few examples, which may be based on spurious correlations or nonsensical feature divisions. Instead, we use a statistical threshold for leaf-labeling, where we perform a chi-squared test to first determine which leaves correspond to statistically significant distribution (Chaudhary et al. (2020); details in Appendix B). Leaves that pass this test are then assigned the majority label and correspond to a rule that will be shown to linguists, where the "rule" is described by the syntactic/semantic/lexical features on the branch that lead to that leaf.

Rule Visualization For each rule, we extract illustrative examples and visualize them in an interface. We describe the example extraction process along with the interface in Appendix B.

## 5 Automated Evaluation Protocol

In the next two sections, we devise protocols for evaluation of the extracted rules using both automatic metrics (for rapid evaluation that can be applied widely across languages), and evaluation by human language experts (as our gold-standard evaluation). We first describe below the process of automatic evaluation per linguistic phenomenon.

Case Marking As noted earlier, we use the UD annotation scheme for deriving the training data. Under this scheme, not every word is labeled with case, therefore we can only train and evaluate our model on the words which are labeled with the case feature. For such words, we consider case to be a universal property i.e. each word marks a particular case value and, we evaluate whether our model can correctly predict that value. Thus, we measure the accuracy on a test example $\left\langle\mathbf{x}_{\mathbf{i}}, y_{i}\right\rangle \in$ $D_{\text {test }}^{t}$, comparing the models prediction $\hat{y}_{i}$ with the observed case value $y_{i}$. We compare our model against a frequency-based baseline which assigns the most frequent case value in the training data to all input examples.

# adjective is before its head noun 

| Features that make up this rule |  |
| :---: | :---: |
| Active Features | Inactive Features |
| adjective with NumType= Ord | - |

Examples that agree with label: before: The adjective is denoted by ***


Figure 3: A rule extracted for Spanish adjective-noun word order.

Word Order Similar to case marking, we can assume that every input example has a word order value, for example subjects will occur either before or after the verbs. Therefore, for an input example, we can consider the observed order to be the ground truth and compute the accuracy by comparing it with the model's prediction. We compare against a frequency-baseline where the most frequent word order value is assigned to all input examples.

Comparing the model's prediction with the observed order is reasonable for languages which have a dominant word order. There are a considerable set of languages which have a freer word order. WALS labels such relations as "no dominant order" (e.g. subject-verb order for Modern Greek). For such cases, considering accuracy alone might be insufficient as there is no ground truth. Therefore, we also report the entropy over the predicted output distribution:

$$
\begin{gathered}
H_{\mathrm{wo}}^{r}=-\sum_{k=\text { before, after }} p_{k} \log p_{k} \\
p_{k}=\frac{\sum_{\left\langle\mathrm{x}_{\mathrm{i}}^{\mathrm{r}}, y_{i}\right\rangle \in D_{\text {test }}^{r} \mathbb{1}} \begin{cases}1 & \hat{y}_{i}=k \\
0 & \text { otherwise }\end{cases} }{\left|D_{\text {test }}^{r}\right|}
\end{gathered}
$$

For languages which have no dominant word order, the model should be uncertain about the predicted word order and we expect the model's entropy to be high. The accuracy computed against the observed word order is still useful, as despite there being "no dominant order", speakers tend to prefer one word order over the other and a high accuracy would entail that the model was successful in capturing this "preferred order."

Agreement We use the automated rule metric (ARM) proposed by Chaudhary et al. (2020) which
computes accuracy by comparing the ground truth label to the predicted label. The ground truth label of an example is decided using a predefined threshold on the leaf to which the example belongs. ARM does not use the observed agreement between the head and its dependent as ground truth because an observed agreement might not necessarily mean required agreement. We compare with Chaudhary et al. (2020), which uses simple syntactic features such as POS of the head, the dependent and, the dependency relation between them.

## 6 Human Expert Evaluation Protocol

Since our primary objective is to extract rules which are human-readable and of assistance to the linguists, we enlist the help of language experts to evaluate the rules on three parameters: correctness, prior knowledge, feature correctness. Before starting with the actual evaluation, we first ask the expert to provide answers regarding the linguistic questions we are evaluating. For example, we ask questions such as "when are subjects after verbs in Greek", and they are required to provide a brief answer (e.g. "for questions or when giving emphasis to a subject"). We then direct them to our interface (Figure 3), where we show the extracted features and a few illustrative examples for the rule, then ask questions regarding each of the three parameters (as shown in Figure 9 in the Appendix).

Regarding correctness, the expert is asked to annotate whether the illustrative examples, shown for that rule, are governed by some underlying grammar rule. If so, they are then required to judge how precise it is. Consider some rules extracted for Spanish adjective-noun order in Table 1. Looking at the examples and features for the Type-1

| Type | Rule Features | Examples | Label |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Type-1 } \\ & \text { (valid) } \end{aligned}$ | Adj is a Ordinal | También se utilizaba en las primeras grabaciones y arreglos jazzísticos. It was also used in early jazz recordings and arrangements. <br> Las primeras 24 horas son cruciales. <br> The first 24 hours are crucial. | Before |
| Type-2 <br> (valid, not informative) | Adj belongs to group: con,como,no,más,lo | Matisyahu piensa editar pronto un nuevo disco grabado en estudio. Matisyahu plans to release a new studio-recorded album soon. Es una experiencia nueva estar desempleado. It's a new experience being unemployed | Before |
| Type-3 <br> (valid, too general) | Adj's is NOT Ordinal | Además de una gran variedad de aplicaciones In addition to a great variety of applications. Una unión solemnizada en un país extranjero An union solemnized in a foreign country | After |
| Type-4 <br> (valid, too specific) | Adj's lemma is numeroso | En África hay numerosas lenguas tonales In Africa there are numerous tonal languages Ellas poseen varios libros They own several books | Before |
| $\begin{gathered} \text { Type-5 } \\ \text { (invalid) } \end{gathered}$ | Adj's head noun is a conjunct | Las consecuencias de cualquier (colapso) de divisa e inflación masiva . The consequences expected from any currency collapse and massive inflation. (Realizan) trabajos de alta calidad, muy buenos profesionales They do high quality work, very good professionals | After |

Table 1: Types of rules discovered by the model for Spanish adjective-noun word order. Adjectives are highlighted and the nouns they modify are underlined. Illustrative examples under each rule are also shown with their English translation in italics. Label denotes the predicted order.
rule, it is evident that this rule precisely defines the linguistic distinction. ${ }^{3}$ Some rules, although valid, may be too general (Type-3) or too specific (Type-4). Finally, a rule may not correspond to any underlying grammar rule, like the Type-5 where the model simply discovered a spurious correlation in the data. For prior knowledge, if an extracted rule was indeed a valid grammar rule, then we ask the expert whether they were aware of such a rule. This will inform us how useful our framework is in discovering rules which a) align with the expert's prior knowledge and, b) are novel i.e. rules which the expert were not aware of apriori. Finally, for feature correctness, we ask whether the features selected by the model accurately describe said rule. For the Type- 1 rule, the answer would be yes. But for rules like Type-2, the features are not informative even though the corresponding examples do follow a common pattern.

## 7 Gold-standard Analysis Experiments

In this section, we present results to demonstrate that our framework can discover the conditions, to some extent, which govern the different linguistic phenomena. Specifically, we experiment with goldstandard syntactic analysis derived from the SUD treebanks, and run experiments to answer questions about word order, agreement, and case marking (§ 7.1). Next, we manually verify a subset of these extracted rules (§ 7.2).

[^2]Data and Model We use the Syntactic Universal Dependencies v2.5 (SUD) (Gerdes et al., 2019) treebanks which are based on the Universal Dependencies (UD) (Nivre et al., 2016, 2018) project, the difference being that SUD treebanks allow function words to be syntactic heads (as opposed to UD's preference for content words), which is more conducive to our goal of learning grammar rules. We experiment with treebanks for 61 languages, which are publicly available with annotations for POS tags, lemmas, dependency parses and morphological analysis. We use the same train, validation and test split as provided in the treebanks to create the training data to answer each linguistic question. We use the XGBoost (Chen and Guestrin, 2016) library to learn the decision tree. Details on the setup are discussed in Appendix D.

### 7.1 Automated Evaluation Results

We train models using syntactic features for all languages covered by SUD, wherever the linguistic question is applicable. We find that our models outperform the respective baselines by an (avg.) accuracy of +7.3 for word order, +28.1 for case marking, and +4.0 ARM for agreement. We present the breakdown by individual relations in Appendix (Table 3).

As motivated in § 3, the conditions which govern a linguistic phenomena vary considerably across languages, which is also reflected through our model performance. For example, the model trained on syntactic features alone is sufficient to

reach a high accuracy (avg. 94.2\%) for predicting the adjective-noun order in Germanic languages. But for Romance languages, using only syntactic features leads to much lower performance (avg. $74.6 \%$ ). We experiment with different features and report results for a subset of languages in Figure 4. Observe that for Spanish adjective-noun order adding lexical features improves the performance significantly $(+11.57)$ over syntactic features, and semantic features provide an additional gain of +4.48 . Studying the languages marked as having "no dominant order" in WALS, we find our model does show a higher entropy. SUD contains 8 such languages for subject-verb order, and our model produces an (avg.) entropy of 1.09 , as opposed to (avg.) 0.75 entropy for all other languages. For noun case marking in Greek, syntactic features already bring the model performance to $94 \%$. For Turkish, the addition of semantic features raises the model performance by +9.38 . The model now precisely captures that nouns for locations like ev,oda,kapı,dünya ${ }^{4}$ typically take the locative case.

To confirm that these discovered conditions generalize to the language as a whole and not the specific dataset on which it was trained on, we train a model on one treebank of a language and apply the trained model directly on the test portions of other treebanks of the same language. There are 30 languages in the SUD which fit this requirement. Figure 7 in the Appendix demonstrates one such setting for understanding the word order patterns across different French corpora, where the models have been trained on the largest treebank

[^3](fr-gsd). For subject-verb order, all treebanks except the fr - fqb show similar high test performance ( $>90 \%$ acc.). Interestingly, the model severely underperforms ( $28 \% \mathrm{acc}$.) on $\mathrm{fr}-\mathrm{fqb}$ which is a question-bank corpus comprising of only questions, and questions in French can have varying word order patterns. ${ }^{5}$ The model fails to correctly predict the word order because in the training treebank only $1.7 \%$ of examples are questions making it challenging for the model to learn word order rules for different question types.

Through this tool, a linguist can potentially inspect and derive insights on how the patterns discovered for a linguistic question vary across different settings, both within a language and across different languages as well.

### 7.2 Human Evaluation Results

Through the above experiments, we automatically evaluated that the extracted rules are predictive (to some extent) and applicable to the language in general. Before applying this framework on an endangered language we first perform a manual evaluation ourselves for English and Greek. We select these languages based on the availability of human annotators, using one expert each for English and Greek. First, we note that the total number of rules for English (29) are much less than that for Greek (161), the latter being more morphologically rich. We find that $80 \%$ of the rules (across all phenomena) are valid grammar rules for both languages. A significant portion (40\%) of the valid rules are either too specific or too general, which highlights that there is scope of improvement in the feature and/or model design. Interestingly, even for English, there were 7 rules which the expert was not aware of. For example, the following rule for adjective-noun order - "when the nominal is a word like something,nothing,anything, the adjective can come after the noun.". For Greek, almost all valid rules were known to the expert, except for one Gender agreement rule ${ }^{6}$. Regarding feature correctness, the Greek expert found $69 \%$ of the valid rules to be readable and informative, while the English expert found $58 \%$ of such rules. We show the individual results in Appendix (Figure 8).

[^4]

Figure 5: Test accuracy for word order in Hmong.

## 8 Endangered Language Study

Finally, to test the applicability of the proposed method in a language documentation situation, we apply our framework on Hmong, an endangered language, spoken across US, China, Laos, Vietnam, Thailand. We had access to 445 k Hmong sentences, which were collected from the soc.culture.hmong Usenet group and subjected to rudimentary filtering. The number of people who speak a variety mutually intelligible with this one is closer to 1 M . The study on Hmong presents a realistic setting of language analysis wherein there is no expert-annotated syntactic analysis available.

To obtain syntactic analyses, we train Udify (Kondratyuk and Straka, 2019), a multilingual automatic parser that jointly predicts POS tags, lemmas, morphological analysis and dependency parses, on Vietnamese, Chinese and English treebanks and apply it to the Hmong text. We randomly split the parsed data into a train and test set $(80: 20)$ and apply our general framework to extract rules (details in Appendix F).

Results Hmong has no inflectional morphology so we only train the model to answer word order questions. In Figure 5, we present the accuracy of the model trained using syntactic features on the test split. We find that the model outperforms the baseline slightly, except for the object-verb model where it is on par. An on-par performance could indicate that either there were not many examples whose word order deviated from the dominant order or the model needs improvement. ${ }^{7}$ We conduct the expert evaluation for four relations (Subj-V, Adj-N, Num-N, Adp-N), where our model does outperform the baseline. First, we ask the expert, a linguist who studies Hmong, to describe the rules (if any) for each relation.

[^5]Comparing with the expert's provided rules, we find that the model is successful in discovering the dominant pattern for all relations. However, of the 30 rules (across all relations) presented to the expert for annotation, only 5 rules ( 1 rule for subject-verb, 4 rules for numeral-noun) were found to precisely describe the linguistic distinction. For instance, according to the expert, numerals cannot occur immediately before nouns, rather they always occur before classifiers which always occur before nouns. Our model was able to discover this rule, although the features used to describe that rule were only partially correct. Interestingly, one of rules captured some examples where the numerals were occurring immediately before nouns without the classifiers. The expert was not aware of such a construction ${ }^{8}$. On one hand, this is promising as the model, despite being trained on noisy sentences and syntactic analyses, was able to discover instances of interesting linguistic behavior. However, the expert noted that a large portion of the rules were difficult to annotate as most of these referred to examples which were incorrectly parsed, some of which even described the English portion of code-mixed data. This poses a new challenge for zero-shot dependency parsers, even the relatively strong model of Kondratyuk and Straka (2019) resulted in a high enough error rate that it impacted the effectiveness of our method, and methods with higher zero-shot accuracy may further improve the results of end-to-end generation of grammatical descriptions.

## 9 Next Steps

While we have demonstrated that our automatic framework can answer linguistic questions across different languages, the rules we discover are limited by the SUD annotation decisions. For example, several nouns in German are not annotated for the default case, which means these nouns get ignored by our model in the current setting. Possibly, using language-specific annotations or heuristics could help alleviate this problem. As noted in the Hmong study, the quality of rules depends on the quality of underlying parses. We plan to devise an iterative process where a linguist, assisted by an automatic parser, can improve syntactic parsing. The model extracts rules using the improved analyses, which the linguist can inspect and provide more inputs to further improve.

[^6]
## References

Emily M. Bender, Dan Flickinger, and Stephan Oepen. 2002. The grammar matrix: An open-source starterkit for the rapid development of cross-linguistically consistent broad-coverage precision grammars. In COLING-02: Grammar Engineering and Evaluation.

Emily M. Bender, Michael Wayne Goodman, Joshua Crowgey, and Fei Xia. 2013. Towards creating precision grammars from interlinear glossed text: Inferring large-scale typological properties. In Proceedings of the 7th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pages 74-83, Sofia, Bulgaria. Association for Computational Linguistics.

Barry J Blake. 2009. History of the research on case. In The Oxford handbook of case.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5:135-146.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian Rohrer. 2002. The parallel grammar project. In COLING-02: Grammar Engineering and Evaluation.

Aditi Chaudhary, Antonios Anastasopoulos, Adithya Pratapa, David R. Mortensen, Zaid Sheikh, Yulia Tsvetkov, and Graham Neubig. 2020. Automatic extraction of rules governing morphological agreement. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5212-5236, Online. Association for Computational Linguistics.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the $22 n d$ acm sigkdd international conference on knowledge discovery and data mining, pages 785-794.

Noam Chomsky. 1993. Lectures on government and binding: The Pisa lectures. Walter de Gruyter.

Greville G Corbett. 2003. Agreement: Terms and Boundaries. In Texas Linguistic Society Conference.

Greville G Corbett. 2009. Agreement. In Die slavischen Sprachen/The Slavic Languages.

Osten Dahl and Kari Fraurud. 1996. Animacy in grammar and discourse. Pragmatics and Beyond New Series.

Matthew S. Dryer. 2007. Word order. In Language Typology and Syntactic Description.

Matthew S. Dryer and Martin Haspelmath, editors. 2013. WALS Online. Max Planck Institute for Evolutionary Anthropology, Leipzig.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and Guy Perrier. 2019. Improving surface-syntactic universal dependencies (SUD): MWEs and deep syntactic features. In Proceedings of the 18th International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2019), pages 126-132, Paris, France. Association for Computational Linguistics.

Ken Hale, Michael Krauss, Lucille J Watahomigie, Akira Y Yamamoto, Colette Craig, LaVerne Masayesva Jeanne, and Nora C England. 1992. Endangered Languages. Language.

Morris Halle, Alec Marantz, Kenneth Hale, and Samuel Jay Keyser. 1993. Distributed morphology and the pieces of inflection. The view from Building 20.

Lars Hellan. 2010. From descriptive annotation to grammar specification. In Proceedings of the Fourth Linguistic Annotation Workshop, pages 172-176, Uppsala, Sweden. Association for Computational Linguistics.

Nikolaus P Himmelmann. 1998. Documentary and descriptive linguistics. Linguistics.

Kristen Howell, Emily M. Bender, Michel Lockwood, Fei Xia, and Olga Zamaraeva. 2017. Inferring case systems from IGT: Enriching the enrichment. In Proceedings of the 2nd Workshop on the Use of Computational Methods in the Study of Endangered Languages, pages 67-75, Honolulu. Association for Computational Linguistics.

Aravind K Joshi and Yves Schabes. 1991. Treeadjoining grammars and lexicalized grammars. Technical Reports (CIS), page 445.

Ronald M Kaplan, Joan Bresnan, et al. 1981. Lexicalfunctional grammar: A formal system for grammatical representation. Citeseer.

Tracy Holloway King, Martin Forst, Jonas Kuhn, and Miriam Butt. 2005. The feature space in parallel grammar writing. Research on Language and Computation, 3(2-3):139-163.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional LSTM feature representations. Transactions of the Association for Computational Linguistics, 4:313-327.

Seppo Kittilä, Katja Västi, and Jussi Ylikoski. 2011. Introduction to case, animacy and semantic roles. John Benjamins Publishing.

Dan Kondratyuk and Milan Straka. 2019. 75 languages, 1 model: Parsing universal dependencies universally. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP$I J C N L P$ ), pages 2779-2795, Hong Kong, China. Association for Computational Linguistics.

Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano, and Joakim Nivre. 2019. Deep contextualized word embeddings in transitionbased and graph-based dependency parsing - a tale of two parsers revisited. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2755-2768, Hong Kong, China. Association for Computational Linguistics.

Julie Anne Legate. 2008. Morphological and abstract case. Linguistic inquiry.

Haley Lepp, Olga Zamaraeva, and Emily M. Bender. 2019. Visualizing inferred morphotactic systems. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 127-131, Minneapolis, Minnesota. Association for Computational Linguistics.

William D. Lewis and Fei Xia. 2008. Automatically identifying computationally relevant typological features. In Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II.

Chaitanya Malaviya, Matthew R. Gormley, and Graham Neubig. 2018. Neural factor graph models for cross-lingual morphological tagging. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2653-2663, Melbourne, Australia. Association for Computational Linguistics.

Ryan McDonald, Joakim Nivre, Yvonne QuirmbachBrundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee. 2013. Universal Dependency annotation for multilingual parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 92-97, Sofia, Bulgaria. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111-3119.

Christopher Moseley. 2010. Atlas of the World's Languages in Danger. UNESCO.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben Veyseh, and Thien Huu Nguyen. 2021. Trankit: A light-weight transformer-based toolkit for multilingual natural language processing. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 80-90, Online. Association for Computational Linguistics.

Joakim Nivre, Rogier Blokland, Niko Partanen, Michael Rießler, and Jack Rueter. 2018. Universal Dependencies 2.3.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, et al. 2016. Universal dependencies v1: A multilingual treebank collection. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 1659-1666.

Robert Östling. 2015. Word Order Typology through Multilingual Word Alignment. In $A C L$.
Vilfredo Pareto. 1964. Cours d'économie politique, volume 1. Librairie Droz.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012. A universal part-of-speech tagset. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 20892096, Istanbul, Turkey. European Language Resources Association (ELRA).

Carl Pollard and Ivan A Sag. 1994. Head-driven phrase structure grammar. University of Chicago Press.
J. Ross Quinlan. 1986. Induction of decision trees. Machine learning, 1(1):81-106.

Mark Steedman. 1987. Combinatory grammars and parasitic gaps. Natural Language \& Linguistic Theory, 5(3):403-439.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018. Spine: Sparse interpretable neural embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence.

Juliette Thuilier, Margaret Grant, Benoît Crabbé, and Anne Abeillé. 2021. Word order in french: the role of animacy. Glossa: a journal of general linguistics, 6(1).

Kristina Toutanvoa and Christopher D. Manning. 2000. Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pages 63-70, Hong Kong, China. Association for Computational Linguistics.

Dingquan Wang and Jason Eisner. 2017. Fine-grained prediction of syntactic typology: Discovering latent structure with supervised learning. Transactions of the Association for Computational Linguistics, 5:147-161.

Lorna Williams. 2019. Wa7 szum'in'stum' ti nqwelutenlhkalha: Technology and Indigenous language revitalization, recovery and normalization. Keynote LT4All.

## A Related Work

Prior work (Lewis and Xia, 2008; Hellan, 2010; Bender et al., 2013; Howell et al., 2017) have proposed methods to map descriptive grammars, present in the form of inter-linear glossed text (IGT), to existing head-phrase structure grammar (HPSG) based grammar system which is machinereadable. Lewis and Xia (2008) enrich IGT data with syntactic structures to determine canonical word order and case marking observed in the language. They do note that, while a linguist carefully chooses the examples to create the IGT corpus such that they are representative of the linguistic phenomena of interest, insights derived from IGT may suffer from this bias as the data doesn't encompass many of the naturally-occurring examples. Hellan (2010) present a sentence-level annotation code which maps the properties of the sentence to discrete labels. These discrete labels form a template which are then mapped to in a mixed to HPSG or LFG format (Pollard and Sag, 1994; Kaplan et al., 1981). Bender et al. (2013) extract majorconstituent word order and case marking properties from the IGT for a diverse set of languages. Potentially, grammar rules can also be derived from existing projects such as the LinGO Grammar Matrix (Bender et al., 2002), ParGram (Butt et al., 2002; King et al., 2005). These are grammar development tools designed to write and create grammar specifications that support a wide range of languages, in a unified format. They focus on mapping simple description of languages, obtained from existing IGT-annotated data or input from a linguist, to precision grammar fragments, grounded in a grammar formalism such as HPSG, LFG. Our work differs in that, 1) we attempt to discover and explain the local linguistic behaviors for the language in general, 2) we do not extract rules for an individual sentence in isolation, as some of the HPSG/LFG-based approaches do, 3 ) we discover these behaviors from naturally occurring sentences. We do note that the rules we present in this work are based on the SUD annotation scheme, but the current framework can be easily extended to any other such scheme. In Table 2, we outline the different linguistic questions answered by our work and the related work.

There has also been work on developing toolkits to visualize some aspects of language structure Lepp et al. (2019) present a web-based system to explore different morphological analyses. They also allow a user to improve the analyses thereby
also improving the grammar specification which relies on those analyses.

## B Learning and Extracting Rules

Statistical Threshold for Rule Extraction Sim-
ilar to Chaudhary et al. (2020), we apply statistical testing to label leaves. They define a null hypothesis $H_{0}$ for morphological agreement which states that each leaf denotes chance-agreement. This means that there is no required agreement between a head and its dependent on the morphological attribute $m$. The hypothesis to be tested for is $H_{1}$ which states that the leaf denotes requiredagreement. If the observed example distribution under a leaf is deemed to be statistically significant when compared to an expected empirical distribution (computed over the training data), we can reject $H_{0}$ and accept $H_{1}$. We follow a similar approach for case marking and word order.

For case marking and word order, we define the hypotheses as:
$H_{0}$ : Each leaf can take any label.
$H_{1}$ : The leaf takes the label dominant under that leaf
For case marking, we can design $H_{0}$ as above because under the abstract case viewpoint (§ 3), case is a universal property for each word. Similarly for word order relation, the words participating in the relation can either be before or after the other. Therefore, to apply the chi-squared goodness of fit test, we compute the expected probability distribution for $H_{0}$ considering a uniform distribution. For example, if a noun can take four possible case values (nominative, accusative, locative, dative) then $p=0.25$ and, for word order $p=0.5$ (binary labels before, after). We then compute the test statistic and p-value as explained in detail in Chaudhary et al. (2020). The leaves which are not statistically significant are given the label of cannot decide, which informs a user that the model was uncertain about the label.

Rule Visualization Under each rule, we present a subset of examples from the training portion of the treebank to illustrate the rule. To not overwhelm the user, we only present 10 positive and 10 negative examples. Positive examples refer to the examples which have the features (from that rule) and follow the label as predicted by that leaf. However, there could be examples in the training data which have the same features as defined under

| Linguistic Phenomena | Work | Rule-Type | Corpus Type |
| :---: | :--- | :---: | :---: |
| WordOrder | Ours | C+FG | Raw text |
|  | Grammar Matrix (Bender et al., 2002) | C+FG | IGT text* |
|  | Lewis and Xia (2008) | C | IGT text |
|  | Bender et al. (2013) | C | IGT text |
|  | Östling (2015) | C | Raw text |
|  | Wang and Eisner (2017) | C | Raw text |
|  | WALS Dryer and Haspelmath (2013) | C | Reference grammar* |
| Case Marking | Ours | C+FG | Raw text |
|  | Grammar Matrix (Bender et al., 2002) | C+FG | IGT text* |
|  | WALS Dryer and Haspelmath (2013) | C | Reference grammar* |
|  | Howell et al. (2017) | C | IGT text |
| Agreement | Ours | C+FG | Raw text |
|  | Grammar Matrix (Bender et al., 2002) | C+FG | IGT text* |
|  | Chaudhary et al. (2020) | C+FG | Raw text |
| Sentence construction | Hellan (2010) | FG | IGT text* |

Table 2: An overview of linguistic questions automatically answered by our current work and existing related work. Some of them combine semi-automatic approaches with manually annotated resources, there are marked with *. Rule-Type denotes the type of rule extracted for a language, C refers to coarse-grained such as rules for canonical word order, FG refers to fine-grained i.e. rules extracted at a local level.
that rule, but these example do not follow the predicted label. We refer to these examples as negative examples. In Figure 3, we demonstrate one such rule with the examples.

Since we only show a small set of examples, we select these examples to be concise and representative. We first group the examples under the rule by the lemmatized forms of the focus words. For example, under the Type-1 rule (Table 1) extracted for Spanish adjective-noun word order, the focus words are the adjective ( $w_{a}$ ) and the noun ( $w_{b}$ ). We group these examples by the lemmatized forms of the adjective and noun $\left\langle l_{a}, l_{b}\right\rangle$. The examples grouped under a lemmatized pair $\left\langle l_{a}, l_{b}\right\rangle$ are then sorted by their lengths. For each lemmatized pair $\left\langle l_{a}, l_{b}\right\rangle$, we select the top shortest examples. Finally, all selected examples are shuffled and we randomly select 10 examples.

## C Human Evaluation Setup

For a given linguistic question, ideally, we would like to present the rules extracted from best performing decision tree. However, it is highly likely that a tree with a large depth is the best-performing, which could then result in a large set of rules. In order to not overwhelm the linguist who is reviewing the rules, we select the tree, from which we extract the rules, based on two metrics: accuracy and conciseness. We use Pareto analysis (Pareto, 1964) which is a creative way to visualize the best
options, in our case the best model to extract rules. In Figure 6, we show the Pareto analysis for Spanish adjective-noun word order models. The x-axis denotes the number of leaves which acts as a proxy for conciseness and the $y$-axis is the model accuracy. Each point on the plot denotes a model trained with a different hyperparameter. The models on the blue line denote the best choices to select from. For example, a model on the far upper right on the line although has the best accuracy, but it has 80+ leaves, which can be overwhelming to review. For our annotation setup, we select a model on the line which is as high performing as possible but with an upper limit of number of leaves being $<30$. We then extract rules from that model and each rule is then presented with an annotation form, as shown in Figure 9.

## D Experimental Setup

Training Data Syntactic and lexical features are directly extracted from the syntactic analyses, which we obtain either from a expert annotated treebank or an automatic model trained on similar data. The treebanks have been annotated with POS tags, lemmas, morphological analyses and dependency parse information, per the SUD annotation scheme (Gerdes et al., 2019). Semantic features are derived from continuous word representations, on which we apply the transformation proposed by Subramanian et al. (2018). We use 300-dimentional


Figure 6: Visualizing different models for Spanish adjective-noun word order on two parameters, accuracy and conciseness.
pretrained word embeddings released by fastext ${ }^{9}$. These are pretrained on Wikipedia and are available for 157 languages. We use the same hyperparameters as described in the code ${ }^{10}$ from Subramanian et al. (2018) to transform these pretrained embeddings into sparse vectors. We experiment with hdim $=\{1000,2000\}$ and scale the reconstruction loss by $\{5,10\}$. We select those embeddings which have a sparsity level between $85-90 \%$.

Model As described in the main text, we use the XGBOOST to learn a decision tree. We perform a grid search over a set of hyperparameters and select the best performing model based on the validation set performance. Here the hyperparameters we use:

- criterion: \{gini, entropy\}
- max-depth: $\{3,4,5,6,7,8,9,10,15,20\}$
- n-estimators: 1
- learning-rate: 0.1
- objective: multi:softprob


## E Gold-standard Experiments

## E. 1 Automated Evaluation Results

In the main text we reported the average improvement for the word order, agreement and case marking models. In Table 3 we present the breakdown per each question. The word order results are reported over 56 languages, agreement over 38 and

[^7]| Linguistic Phenomena | Model | Gain |
| :---: | :--- | :---: |
| Word Order | adjective-noun | 2.61 |
|  | subject-verb | 6.95 |
|  | object-verb | 10.78 |
|  | numeral-noun | 9.88 |
|  | noun-adposition | 2.31 |
| Agreement | Gender | 4.02 |
|  | Person | 1.08 |
|  | Number | 4.95 |
| Case Marking | NOUN | 30.03 |
|  | PRON | 32.66 |
|  | DET | 47.33 |
|  | PROPN | 29.77 |
|  | ADJ | 35.59 |
|  | VERB | 18.76 |
|  | ADP | 15.4 |
|  | NUM | 25.81 |

Table 3: Breakdown of the performance gain (over the baseline) for each linguistic question. The performance of the agreement models is compared with the models trained over simple syntactic features in Chaudhary et al. (2020).
$\square$ fr-gsd $\square$ fr-partut $\square$ fr-pud $\square$ fr-ftb $\square$ fr-fqb $\square$ fr-spoken


Figure 7: Comparing the accuracy of the model across different treebanks. Each model is trained on the frgsd treebank and directly applied on the other treebanks. Shaded bars denote the best model performance trained using all features while solid bars denote the most-frequent baseline for that treebank.
case marking over 35 languages. ${ }^{11}$ We also show individual results per each language for word order (Table 5, Table 6), agreement (Table 7), case marking (Table 8, Table 9).

## E. 2 Human Evaluation Results

We conduct expert evaluation for English and Greek. For English, a total of 15 rules were evaluated for agreement, 11 for word order and 3 for case marking. For Greek, a total of 35 rules were evaluated for agreement, 11 for word order and

[^8]

Figure 8: Evaluating rule correctness (left), prior knowledge (middle) and feature correctness (right). Top plot shows the results for English while the bottom plot shows for Greek.

115 for case marking. We discussed the results in the main text, here we present the figures for English and Greek (Figure 8). For English, there were some rules which the expert was not aware of. We discussed one example for word order in the main text, we show an example for agreement and case marking in Table 4.

## F Endangered Language Study

Data We experimented with Hmong in this setting, specifically the data includes different varieties ( hnj and mww ). Since the data was scraped from the web, this data was noisy and intermixed with English data. Therefore, we automatically cleaned the corpus. We trained a character-level language model on English data and automatically filtered sentences which had a low-perplexity. This removed 61 k English-only sentences, although this did not remove the English code-mixed sentences. That is one reason why some of the rules identified were on the English portion of the data. We chose Vietnamese, Chinese and English to train udify model as they share syntactic and lexical similarity with Hmong.

Results In the main text, we discussed the example of rules extracted for numeral-noun. The expert was aware of constructions such as " 1 clf-1 noun1 " where clf- 1 is the classifier which comes after the numeral but before the noun. They were aware of one construction where numerals occurred before the nouns without the classifier - " 1 noun- 1 1 noun- 2 " (where noun- 1 and noun- 2 are seman-
tically related) but they were not aware of other constructions which also didn't have the classifiers such as: " 1 noun- 1 , 2 noun- 2 . 3 noun- $3, \ldots$, n noun-n"

| Linguistic Phenomena | Rule | Examples | Label |
| :---: | :---: | :--- | :---: |
| Number <br> Agreement | dependent's head is a NOUN | Kids fun games are added to the building. <br> Nationalist groups are coming to the conference. | Not-required-agreement |
| Object <br> Case Marking | Pronoun is a oblique | Because Large Fries give you FOUR PIECES ! <br> Give him a call tommorow | Accusative |

Table 4: Some example of rules for agreement and case marking, which the expert annotator was not aware of. The focus word is highlighted, for agreement we also underline the head with which the dependent's agreement is checked. The examples under number agreement demonstrate that when dependent's head is a noun the dependent need not agree with its head. We show one example where the first example shows the dependent matches the number of the head, and the second example shows that it didn't not match.

```
Q1. Looking at the examples below, is the rule
    O precisely defining a linguistic distinction
        too specific
        too general
        not corresponding to a real linguistic distinction in the language
        cannnot decide as the examples are incorrectly parsed
```

Q2. If you selected any of the first three options in Q1, does it match the rules you provided earlier? If you selected the fourth option in Q1, leave blank.

- Yes, precisely

Yes, not exactly but somewhat
No, but I was aware of such a construction
No, I was not aware of this before

Q3. Do the features accurately describe the group of positive samples below? If this is a "default" rule, leave blank.Yes
No
Partially correct
If there's an alternative set of features that more accurately or concisely describe them, please briefly describe them in the comment box.

Other comments:

Figure 9: Rule evaluation form presented to the language expert.

| Type | Lang | Train - Test - Baseline | Type | Lang | Train - Test - Baseline |
| :---: | :---: | :---: | :---: | :---: | :---: |
| adjective-noun | it-v | 70.71-69.51-66.02 | object-verb | cu-proiel | 80.37-82.72-76.03 |
| adjective-noun | no-nynorsk | 97.68-97.92-97.76 | object-verb | be-hse | 87.79-95.38-95.38 |
| adjective-noun | ro-nonstandard | 87.46-95.19-92.95 | object-verb | sv-lines | 96.75-96.79-95.31 |
| adjective-noun | bg-btb | 97.27-98.49-97.23 | object-verb | uk-iu | 82.77-87.16-83.16 |
| adjective-noun | gl-ctg | 79.02-79.2-79.2 | object-verb | ga-idt | 94.89-91.55-82.8 |
| adjective-noun | cs-pdt | 94.69-94.36-93.69 | object-verb | sk-snk | 81.84-86.17-80.91 |
| adjective-noun | fi-tdt | 98.56-99.09-99.09 | object-verb | hu-szeged | 73.23-68.26-53.73 |
| adjective-noun | pl-pdb | 65.61-68.0-61.84 | object-verb | got-proiel | 74.58-80.15-72.44 |
| adjective-noun | la-ittb | 63.64-59.65-40.2 | object-verb | hr-set | 89.27-92.2-83.32 |
| adjective-noun | nl-alpin | 98.38-98.65-98.65 | object-verb | lzh-kyoto | 97.86-98.01-95.7 |
| adjective-noun | mt-mud | 78.91-82.84-82.84 | object-verb | lv-lvtb | 85.03-82.95-75.24 |
| adjective-noun | ja-bccwj | 99.4-98.69-98.69 | object-verb | et-edt | 76.03-79.51-69.67 |
| adjective-noun | orv-torot | 71.39-65.76-53.48 | object-verb | fro-srcmf | 79.62-81.82-48.25 |
| adjective-noun | pt-gs | 70.31-74.54-71.63 | object-verb | af-afribooms | 82.72-96.19-86.03 |
| adjective-nou | cu-proi | 84.96-84.98-84.98 | object-verb | hy-armtdp | 71.47-74.58-44.92 |
| adjective-nou | -line | 98.3-98.29-95.67 | object-verb | en-ewt | 98.33-98.94-97.26 |
| adjective-nou | uk- | 94.68-95.19-95.19 | object-verb | fr- | 98.89-97.18-86.33 |
| adjective-nou | k- | 96.11-95.17-95.17 | object-verb | el-gdt | 97.18-96.2-86.0 |
| adjective-n | got-p | 79.51-79.51-72.48 | object-verb | es-gsd | 97.47-95.99-90.4 |
| adjective-n | , | 96.24-96.78-96.36 | object-verb | tr-1mst | 95.38-96.64-96.64 |
| adjective-noun | lv- | 98.93-98.84-98.84 | object-verb | ru-syntagrus | 87.47-88.33-85.63 |
| adjective-nou | et-ed | 99.57-99.36-99.01 | object-verb | sl-ssj | 84.16-88.24-72.92 |
| adje | fro- | 73.84-74.42-73.26 | object-verb | id-gsd | 99.33-98.99-95.97 |
| adjective- | en-ew | 97.84-98.25-96.77 | object-verb | lt-alksnis | 80.76-79.02-69.73 |
| adjective | fr-g | 71.04-73.8-73.6 | object-verb | ar-nyuad | 96.27-95.91-95.63 |
| adjective-nou | el-g | 97.34-99.29-99.29 | object-verb | grc-proiel | 72.98-75.87-67.05 |
| adjective-noun | es-gs | 76.27-71.46-68.1 | subject-verb | it-vit | 82.95-82.53-71.76 |
| adjective-noun | ru-syntagr | 97.84-98.0-96.54 | subject-verb | no-nynorsk | 83.42-85.33-70.34 |
| adjective-noun | Sl- | 98.22-98.27-97.78 | subject-verb | ug-udt | 95.32-95.13-95.13 |
| adjective-noun | id-gsd | 93.41-92.79-92.79 | subject-verb | ro-nonstandard | 69.06-74.27-54.36 |
| adjective-noun | lt-alksn | 98.61-98.3-98.3 | subject-verb | bg-btb | 78.86-79.65-72.73 |
| adjective-nou | ar-nyua | 99.65-99.64-99.64 | subject-verb | gl-ctg | 84.54-85.5-82.14 |
| adjective-noun | grc-proie | 65.23-72.33-64.82 | subject-verb | cs-pdt | 67.13-73.18-63.33 |
| adjective-noun | de-hdt | 99.47-99.66-99.26 | subject-verb | fi-tdt | 88.11-90.57-88.19 |
| object-verb | it-v | 96.28-94.88-84.92 | subject-verb | pl-pdb | 78.19-80.6-72.1 |
| object-verb | no-nynorsk | 97.73-98.68-95.86 | subject-verb | la-ittb | 80.29-82.69-72.54 |
| object-verb | ro-nonstandard | 86.05-87.79-65.06 | subject-verb | zh-gsd | 99.78-99.44-97.39 |
| object-verb | bg-btb | 92.18-92.43-80.66 | subject-verb | nl-alpino | 70.62-72.11-67.12 |
| object-verb | gl-ctg | 92.71-94.17-82.2 | subject-verb | mt-mudt | 83.91-84.96-72.03 |
| object-verb | cs-pdt | 82.35-83.91-73.97 | subject-verb | orv-torot | 72.38-66.07-60.46 |
| object-verb | fi-td | 84.21-86.62-77.98 | subject-verb | he-htb | 73.43-70.7-63.44 |
| object-verb | pl-pdb | 88.89-90.28-81.07 | subject-verb | pt-gsd | 89.4-93.15-87.47 |
| object-verb | la-ittb | 65.96-65.36-52.63 | subject-verb | cu-proiel | 73.88-76.31-62.48 |
| object-verb | zh-gsd | 93.4-94.12-87.75 | subject-verb | be-hse | 82.86-83.33-81.11 |
| object-verb | nl-alpino | 90.32-94.69-47.48 | subject-verb | sv-lines | 80.17-80.72-73.06 |
| object-verb | mt-mudt | 95.66-94.96-94.96 | subject-verb | uk-iu | 76.89-77.14-74.56 |
| object-verb | wo-wtb | 91.6-91.81-75.11 | subject-verb | ga-idt | 99.33-99.28-85.25 |
| object-verb | orv-torot | 76.71-72.56-65.51 | subject-verb | sk-snk | 63.43-73.69-73.69 |
| object-verb | he-htb | 97.87-98.03-98.03 | subject-verb | hu-szeged | 75.91-74.59-72.43 |
| object-verb | pt-gsd | 95.17-95.02-88.45 | subject-verb | got-proiel | 67.56-73.2-66.17 |

Table 5: Accuracy results for all relations across different languages. Baseline is the most frequent order in the training data.

| Type | Lang | Train - Test - Baseline | Type | Lang | Train - Test - Baseline |
| :---: | :---: | :---: | :---: | :---: | :---: |
| subject-verb | hr-set | 81.87-86.62-77.44 | noun-adposition | fi-tdt | 97.88-98.12-89.47 |
| subject-verb | cop-scriptorium | 85.92-83.84-76.71 | noun-adposition | pl-pdb | 99.97-99.97-99.83 |
| subject-verb | lv-lvtb | 76.96-77.98-73.99 | noun-adposition | nl-alpino | 99.28-99.57-99.23 |
| subject-verb | et-edt | 68.13-71.93-61.02 | noun-adposition | orv-torot | 97.92-97.54-96.83 |
| subject-verb | fro-srcmf | 79.21-80.69-78.1 | noun-adposition | he-htb | 99.71-99.77-99.55 |
| subject-verb | hy-armtdp | 81.25-80.25-80.25 | noun-adposition | cu-proiel | 98.06-98.4-98.4 |
| subject-verb | en-ewt | 98.92-98.81-94.15 | noun-adposition | sv-lines | 98.6-98.11-98.11 |
| subject-verb | fr-gsd | 96.7-94.21-94.21 | noun-adposition | uk-iu | 99.74-99.8-99.54 |
| subject-verb | el-gdt | 77.04-77.93-73.56 | noun-adposition | lzh-kyoto | 95.58-96.61-96.61 |
| subject-verb | es-gsd | 79.15-84.14-71.52 | noun-adposition | cop-scriptorium | 99.92-99.78-99.18 |
| subject-verb | tr-imst | 91.12-92.96-92.96 | noun-adposition | lv-lvtb | 98.56-97.78-97.78 |
| subject-verb | ru-syntagrus | 72.33-80.49-72.94 | noun-adposition | et-edt | 98.92-98.77-81.84 |
| subject-verb | sl-ssj | 70.95-74.66-63.01 | noun-adposition | fro-srcmf | 99.75-99.42-99.42 |
| subject-verb | id-gsd | 99.09-99.34-99.34 | noun-adposition | hy-armtdp | 97.22-96.83-85.71 |
| subject-verb | lt-alksnis | 74.44-78.39-75.33 | noun-adposition | en-ewt | 99.67-99.42-99.42 |
| subject-verb | ar-nyuad | 91.01-91.32-87.82 | noun-adposition | es-gsd | 99.81-100.0-98.83 |
| subject-verb | grc-proiel | 69.46-72.23-65.71 | noun-adposition | ru-syntagrus | 99.24-99.41-99.13 |
| subject-verb | de-hdt | 68.1-76.23-61.84 | noun-adposition | id-gsd | 97.67-97.81-96.81 |
| numeral-noun | it-vit | 73.17-79.32-79.32 | noun-adposition | ar-nyuad | 99.84-99.87-99.48 |
| numeral-noun | no-nynorsk | 88.49-88.44-88.44 | noun-adposition | grc-proiel | 99.03-98.92-98.92 |
| numeral-noun | ro-nonstandard | 87.27-84.83-62.07 | noun-adposition | de-hdt | 99.98-99.98-99.37 |
| numeral-noun | bg-btb | 92.22-88.24-88.24 |  |  |  |
| numeral-noun | cs-pdt | 84.4-88.65-69.59 |  |  |  |
| numeral-noun | fi-tdt | 82.35-87.25-68.3 |  |  |  |
| numeral-noun | pl-pdb | 97.27-97.27-97.27 |  |  |  |
| numeral-noun | la-ittb | 88.0-87.16-53.21 |  |  |  |
| numeral-noun | nl-alpino | 95.03-98.7-89.61 |  |  |  |
| numeral-noun | mt-mudt | 69.77-70.77-70.77 |  |  |  |
| numeral-noun | wo-wtb | 74.63-82.5-73.75 |  |  |  |
| numeral-noun | ja-bccwj | 99.05-98.71-98.71 |  |  |  |
| numeral-noun | orv-torot | 86.64-79.8-72.73 |  |  |  |
| numeral-noun | he-htb | 85.21-80.0-64.0 |  |  |  |
| numeral-noun | pt-gsd | 92.18-89.42-73.56 |  |  |  |
| numeral-noun | sv-lines | 81.3-85.48-85.48 |  |  |  |
| numeral-noun | ga-idt | 73.2-62.86-57.14 |  |  |  |
| numeral-noun | sk-snk | 88.01-75.36-43.12 |  |  |  |
| numeral-noun | hr-set | 95.39-97.28-96.94 |  |  |  |
| numeral-noun | et-edt | 91.63-91.54-83.65 |  |  |  |
| numeral-noun | en-ewt | 85.33-89.05-82.09 |  |  |  |
| numeral-noun | fr-gsd | 79.7-81.88-60.87 |  |  |  |
| numeral-noun | el-gdt | 88.2-80.6-80.6 |  |  |  |
| numeral-noun | es-gsd | 87.17-89.43-75.61 |  |  |  |
| numeral-noun | ru-syntagrus | 93.48-95.01-85.15 |  |  |  |
| numeral-noun | sl-ssj | 84.08-78.45-78.45 |  |  |  |
| numeral-noun | id-gsd | 61.04-68.12-53.44 |  |  |  |
| numeral-noun | ar-nyuad | 88.96-91.79-47.9 |  |  |  |
| numeral-noun | gre-proiel | 68.76-62.9-62.9 |  |  |  |
| noun-adposition | no-nynorsk | 99.31-99.26-99.14 |  |  |  |
| noun-adposition | gl-ctg | 99.33-99.32-99.18 |  |  |  |
| noun-adposition | cs-pdt | 99.98-99.98-99.94 |  |  |  |

Table 6: Accuracy results for all relations across different languages. Baseline is the most frequent order in the training data.

| Type | Lang | Test - Baseline | Type | Lang | Test - Baseline |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | it-vit | 71.01-67.19 | Gender | hr-set | 71.32-72.5 |
| Person | it-vit | 70.83-62.5 | Person | hr -set | 63.33-76.92 |
| Number | it-vit | 59.56-71.2 | Number | hr-set | 64.25-67.53 |
| Gender | no-nynorsk | 70.0-46.43 | Gender | lv-lvtb | 74.48-72.66 |
| Number | no-nynorsk | 70.0-70.21 | Person | lv-lvtb | 60.98-50.0 |
| Gender | ro-nonstandard | 61.05-63.95 | Number | lv-lvtb | 72.78-68.83 |
| Person | ro-nonstandard | 55.22-63.64 | Gender | hsb-ufal | 60.87-85.71 |
| Number | ro-nonstandard | 62.86-62.63 | Number | hsb-ufal | 46.72-69.23 |
| Gender | bg-btb | 66.0-63.83 | Gender | ru-syntagrus | 64.96-69.68 |
| Person | bg-btb | 64.0-62.5 | Person | ru-syntagrus | 64.0-62.5 |
| Number | bg-btb | 73.17-63.93 | Number | ru-syntagrus | 60.24-59.09 |
| Gender | cs-pdt | 75.09-56.44 | Gender | el-gdt | 73.58-63.83 |
| Person | cs-pdt | 57.78-59.09 | Person | el-gdt | 65.0-66.67 |
| Number | cs-pdt | 63.35-47.66 | Number | el-gdt | 76.54-62.73 |
| Gender | pl-pdb | 71.11-64.53 | Gender | hi-hdtb | 69.11-58.59 |
| Person | pl-pdb | 60.71-55.56 | Number | hi-hdtb | 71.77-41.61 |
| Number | pl-pdb | 66.06-63.68 | Gender | es-gsd | 84.31-71.83 |
| Gender | la-ittb | 77.78-73.53 | Person | es-gsd | 91.67-59.09 |
| Person | la-ittb | 19.05-19.05 | Number | es-gsd | 88.89-64.39 |
| Number | la-ittb | 65.14-57.89 | Gender | ta-ttb | 100.0-68.18 |
| Gender | nl-alpino | 56.25-66.67 | Number | ta-ttb | 77.78-52.27 |
| Number | nl-alpino | 60.94-54.84 | Person | ug-udt | 37.93-52.63 |
| Gender | orv-torot | 64.52-65.54 | Number | ug-udt | 47.73-76.67 |
| Person | orv-torot | 66.67-60.0 | Person | fi-tdt | 58.06-38.71 |
| Number | orv-torot | 64.04-62.12 | Number | fi-tdt | 60.0-50.23 |
| Gender | he-htb | 78.16-74.7 | Person | wo-wtb | 52.17-55.0 |
| Person | he-htb | 78.95-73.68 | Number | wo-wtb | 57.14-48.57 |
| Number | he-htb | 58.14-58.54 | Person | hu-szeged | 39.39-44.44 |
| Gender | cu-proiel | 58.26-61.0 | Number | hu-szeged | 38.34-39.63 |
| Person | cu-proiel | 61.54-66.67 | Person | et-edt | 68.75-61.29 |
| Number | cu-proiel | 60.4-67.21 | Number | et-edt | 61.21-64.84 |
| Gender | mr-ufal | 53.57-60.87 | Person | hy-armtdp | 57.14-44.44 |
| Person | mr-ufal | 28.57-72.73 | Number | hy-armtdp | 58.49-59.18 |
| Number | mr-ufal | 66.67-39.39 | Person | en-ewt | 100.0-81.25 |
| Gender | be-hse | 61.29-59.57 | Number | en-ewt | 69.0-35.71 |
| Number | be-hse | 65.82-64.62 | Person | tr-imst | 32.69-35.91 |
| Gender | sv-lines | 65.52-53.85 | Number | tr-imst | 84.62-46.96 |
| Number | sv-lines | 60.0-64.29 | Number | kmr-mg | 55.56-78.26 |
| Gender | uk-iu | 68.92-70.08 | Number | af-afribooms | 68.75-60.0 |
| Person | uk-iu | 72.73-70.0 | Number | fr-gsd | 75.0-62.37 |
| Number | uk-iu | 65.78-64.67 |  |  |  |
| Gender | ga-idt | 73.77-64.0 |  |  |  |
| Person | ga-idt | 42.86-62.5 |  |  |  |
| Number | ga-idt | 43.16-46.75 |  |  |  |
| Gender | sk-snk | 71.9-69.16 |  |  |  |
| Person | sk-snk | 88.89-77.78 |  |  |  |
| Number | sk-snk | 63.36-55.83 |  |  |  |
| Gender | got-proiel | 62.02-55.86 |  |  |  |
| Person | got-proiel | 62.16-57.14 |  |  |  |
| Number | got-proiel | 67.51-64.0 |  |  |  |

[^9]| Type | Lang | Train - Test - Baseline | Type | Lang | Train - Test - Baseline |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PRON | no-nynorsk | 98.55-99.55-78.28 | VERB | ug-udt | 76.0-75.64-71.37 |
| PRON | ug-udt | 92.22-94.87-73.68 | VERB | got-proiel | 85.51-86.15-81.15 |
| PRON | ro-nonstandard | 89.77-91.2-38.33 | VERB | lv-lvtb | 96.43-95.61-75.58 |
| PRON | sk-snk | 83.19-83.9-34.75 | VERB | tr-imst | 67.53-66.58-46.13 |
| PRON | hu-szeged | 73.94-79.15-59.46 | VERB | et-edt | 86.95-86.08-82.91 |
| PRON | got-proiel | 87.97-91.05-36.79 | VERB | hy-armtdp | 86.63-94.34-39.62 |
| PRON | hr-set | 88.6-89.54-68.79 | VERB | ur-udtb | 96.01-98.95-98.95 |
| PRON | lv-lvtb | 90.64-90.85-54.03 | VERB | lt-alksnis | 94.86-95.0-52.5 |
| PRON | en-ewt | 97.74-96.76-81.48 | ADP | ro-nonstandard | 98.5-98.85-98.85 |
| PRON | el-gdt | 93.5-93.35-36.8 | ADP | sk-snk | 41.74-44.46-40.74 |
| PRON | tr-imst | 71.0-73.33-42.5 | ADP | hr-set | 45.85-48.42-37.96 |
| PRON | sme-giella | 85.31-76.82-47.05 | ADP | hi-hdtb | 85.57-86.99-52.34 |
| PRON | es-gsd | 95.89-96.14-53.71 | ADP | ur-udtb | 82.06-96.59-63.54 |
| PRON | da-ddt | 84.38-82.53-54.7 | ADP | uk-iu | 45.85-43.39-32.85 |
| PRON | et-edt | 79.75-81.58-45.26 | ADJ | ro-nonstandard | 98.14-96.9-96.42 |
| PRON | af-afribooms | 58.86-53.07-31.2 | ADJ | ga-idt | 95.47-93.25-90.18 |
| PRON | hy-armtdp | 78.1-79.05-63.81 | ADJ | sk-snk | 99.03-98.71-35.01 |
| PRON | mr-ufal | 71.58-78.95-78.95 | ADJ | hu-szeged | 98.73-98.25-92.58 |
| PRON | be-hse | 81.3-76.12-65.67 | ADJ | got-proiel | 88.48-92.33-38.36 |
| PRON | ur-udtb | 87.78-90.53-54.73 | ADJ | hr-set | 97.75-98.3-37.5 |
| PRON | lt-alksnis | 82.8-80.28-30.28 | ADJ | lv-lvtb | 93.85-94.37-39.59 |
| PRON | bg-btb | 95.73-95.78-46.78 | ADJ | et-edt | 94.13-95.16-41.07 |
| PRON | sv-lines | 99.32-99.41-58.02 | ADJ | el-gdt | 85.61-89.49-48.6 |
| PRON | uk-iu | 88.52-90.98-48.82 | ADJ | hi-hdtb | 84.36-84.34-70.48 |
| NOUN | ug-udt | 78.31-77.13-63.46 | ADJ | tr-imst | 56.45-60.22-51.88 |
| NOUN | ro-nonstandard | 96.68-97.53-87.8 | ADJ | sme-giella | 86.09-90.55-90.55 |
| NOUN | kmr-mg | 53.09-47.21-47.21 | ADJ | ar-nyuad | 94.15-96.94-62.54 |
| NOUN | ga-idt | 93.26-95.62-80.28 | ADJ | be-hse | 89.59-95.06-43.83 |
| NOUN | sk-snk | 91.27-92.27-20.61 | ADJ | ur-udtb | 99.04-98.81-62.02 |
| NOUN | hu-szeged | 72.25-72.1-47.6 | ADJ | lt-alksnis | 96.89-96.72-25.5 |
| NOUN | got-proiel | 84.89-87.12-27.72 | ADJ | uk-iu | 97.38-98.15-46.39 |
| NOUN | hr-set | 88.35-92.21-34.41 | DET | ro-nonstandard | 97.01-95.87-75.58 |
| NOUN | lzh-kyoto | 89.86-93.72-76.61 | DET | sk-snk | 95.7-93.24-43.74 |
| NOUN | lv-lvtb | 81.94-83.87-31.62 | DET | got-proiel | 94.78-96.25-32.29 |
| NOUN | kk-ktb | 49.24-53.32-53.32 | DET | hr-set | 94.87-95.64-42.81 |
| NOUN | et-edt | 62.6-66.51-27.65 | DET | lv-lvtb | 96.59-97.12-30.15 |
| NOUN | el-gdt | 91.02-94.69-49.72 | DET | et-edt | 96.73-96.19-34.25 |
| NOUN | hi-hdtb | 96.1-97.35-54.72 | DET | el-gdt | 91.42-93.64-47.48 |
| NOUN | tr-imst | 59.03-64.52-54.65 | DET | hi-hdtb | 88.89-92.87-76.1 |
| NOUN | ta-ttb | 77.24-76.49-68.02 | DET | ur-udtb | 95.79-95.91-64.33 |
| NOUN | sme-giella | 76.51-78.78-30.32 | DET | lt-alksnis | 79.46-83.65-39.92 |
| NOUN | ar-nyuad | 87.66-94.66-67.49 | DET | uk-iu | 94.31-94.86-27.93 |
| NOUN | hsb-ufal | 24.07-19.53-19.53 | PROPN | ro-nonstandard | 97.35-96.77-92.98 |
| NOUN | hy-armtdp | 78.17-80.2-46.08 | PROPN | ga-idt | 79.87-85.78-73.28 |
| NOUN | mr-ufal | 81.38-75.0-42.65 | PROPN | sk-snk | 90.24-88.9-46.39 |
| NOUN | be-hse | 69.27-75.95-46.1 | PROPN | hu-szeged | 91.47-89.36-89.36 |
| NOUN | ur-udtb | 92.1-96.81-51.25 | PROPN | got-proiel | 85.91-86.89-50.91 |
| NOUN | lt-alksnis | 85.08-82.93-39.07 | PROPN | hr-set | 92.42-94.67-48.27 |
| NOUN | sv-lines | 99.6-99.86-97.47 | PROPN | lv-lvtb | 88.64-90.13-39.91 |
| NOUN | uk-iu | 94.1-94.73-43.79 | PROPN | el-gdt | 91.44-90.32-32.58 |

Table 8: Accuracy results for all relations across different languages. Baseline is the most frequent case value in the training data.

| Type | Lang | Train - Test - Baseline | Type | Lang | Train - Test - Baseline |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VERB | ug-udt | 76.0-75.64-71.37 | PROPN | hi-hdtb | 94.91-96.49-48.51 |
| VERB | got-proiel | 85.51-86.15-81.15 | PROPN | tr-imst | 73.55-71.73-68.0 |
| VERB | lv-lvtb | 96.43-95.61-75.58 | PROPN | ta-ttb | 97.99-94.84-93.55 |
| VERB | tr-imst | 67.53-66.58-46.13 | PROPN | sme-giella | 84.23-82.9-35.81 |
| VERB | et-edt | 86.95-86.08-82.91 | PROPN | ar-nyuad | 78.68-84.27-59.85 |
| VERB | hy-armtdp | 86.63-94.34-39.62 | PROPN | et-edt | 75.05-83.18-51.24 |
| VERB | ur-udtb | 96.01-98.95-98.95 | PROPN | hy-armtdp | 82.28-89.13-54.89 |
| VERB | lt-alksnis | 94.86-95.0-52.5 | PROPN | be-hse | 86.43-72.68-72.68 |
| ADP | ro-nonstandard | 98.5-98.85-98.85 | PROPN | ur-udtb | 92.7-97.65-59.77 |
| ADP | sk-snk | 41.74-44.46-40.74 | PROPN | sv-lines | 97.21-96.6-91.23 |
| ADP | hr-set | 45.85-48.42-37.96 | PROPN | uk-iu | 93.76-95.14-36.14 |
| ADP | hi-hdtb | 85.57-86.99-52.34 | NUM | sk-snk | 81.47-77.38-39.29 |
| ADP | ur-udtb | 82.06-96.59-63.54 | NUM | got-proiel | 44.0-45.83-33.33 |
| ADP | uk-iu | 45.85-43.39-32.85 | NUM | hr-set | 90.27-94.26-41.8 |
| ADJ | ro-nonstandard | 98.14-96.9-96.42 | NUM | lv-lvtb | 88.07-85.44-38.61 |
| ADJ | ga-idt | 95.47-93.25-90.18 | NUM | el-gdt | 75.75-73.17-58.54 |
| ADJ | sk-snk | 99.03-98.71-35.01 | NUM | tr-imst | 76.55-82.22-77.78 |
| ADJ | hu-szeged | 98.73-98.25-92.58 | NUM | sme-giella | 47.8-41.84-41.84 |
| ADJ | got-proiel | 88.48-92.33-38.36 | NUM | et-edt | 88.9-93.51-70.3 |
| ADJ | hr-set | 97.75-98.3-37.5 | NUM | uk-iu | 90.46-92.48-52.29 |
| ADJ | lv-lvtb | 93.85-94.37-39.59 | ADV | fa-seraji | 85.35-81.36-81.36 |
| ADJ | et-edt | 94.13-95.16-41.07 |  |  |  |
| ADJ | el-gdt | 85.61-89.49-48.6 |  |  |  |
| ADJ | hi-hdtb | 84.36-84.34-70.48 |  |  |  |
| ADJ | tr-imst | 56.45-60.22-51.88 |  |  |  |
| ADJ | sme-giella | 86.09-90.55-90.55 |  |  |  |
| ADJ | ar-nyuad | 94.15-96.94-62.54 |  |  |  |
| ADJ | be-hse | 89.59-95.06-43.83 |  |  |  |
| ADJ | ur-udtb | 99.04-98.81-62.02 |  |  |  |
| ADJ | lt-alksnis | 96.89-96.72-25.5 |  |  |  |
| ADJ | uk-iu | 97.38-98.15-46.39 |  |  |  |
| DET | ro-nonstandard | 97.01-95.87-75.58 |  |  |  |
| DET | sk-snk | 95.7-93.24-43.74 |  |  |  |
| DET | got-proiel | 94.78-96.25-32.29 |  |  |  |
| DET | hr-set | 94.87-95.64-42.81 |  |  |  |
| DET | lv-lvtb | 96.59-97.12-30.15 |  |  |  |
| DET | et-edt | 96.73-96.19-34.25 |  |  |  |
| DET | el-gdt | 91.42-93.64-47.48 |  |  |  |
| DET | hi-hdtb | 88.89-92.87-76.1 |  |  |  |
| DET | ur-udtb | 95.79-95.91-64.33 |  |  |  |
| DET | lt-alksnis | 79.46-83.65-39.92 |  |  |  |
| DET | uk-iu | 94.31-94.86-27.93 |  |  |  |
| PROPN | ro-nonstandard | 97.35-96.77-92.98 |  |  |  |
| PROPN | ga-idt | 79.87-85.78-73.28 |  |  |  |
| PROPN | sk-snk | 90.24-88.9-46.39 |  |  |  |
| PROPN | hu-szeged | 91.47-89.36-89.36 |  |  |  |
| PROPN | got-proiel | 85.91-86.89-50.91 |  |  |  |
| PROPN | hr-set | 92.42-94.67-48.27 |  |  |  |
| PROPN | lv-lvtb | 88.64-90.13-39.91 |  |  |  |
| PROPN | el-gdt | 91.44-90.32-32.58 |  |  |  |

Table 9: Accuracy results for all relations across different languages. Baseline is the most frequent value training data.


[^0]:    ${ }^{1}$ Code and data are released on https://github.com/ emnlp-autolex/autolex. Currently, the online web site (https://emnlp-autolex.github.io/autolex) shows all rules for some languages, we are working on adding the rest.

[^1]:    ${ }^{2}$ This translates to $\{$ eight, sixty $\}$

[^2]:    3https://www.thoughtco.com/
    ordinal-numbers-in-spanish-3079591

[^3]:    ${ }^{4}$ house,room,door,world

[^4]:    ${ }^{5}$ In questions such as Que signifie l' acronyme NASA? ("What does the acronym NASA mean?"), the verb comes before its subject, but for questions such as Qui produit le logiciel? ("Who produces the software?") the subject is before the verb.
    ${ }^{6}$ The rule was, "proper-nouns modifiers do not need to necessarily agree with their head nouns".

[^5]:    ${ }^{7}$ Although ObjV order doesn't vary much in this corpus, the model achieves only $87 \%$ accuracy, which could be due to error in object, verb identification.

[^6]:    ${ }^{8}$ Details in Appendix F

[^7]:    ${ }^{9}$ https://fasttext.cc/docs/en/pretrained-vectors. html
    ${ }^{10}$ https://github.com/harsh19/SPINE

[^8]:    ${ }^{11}$ Some languages have very little training data on which we couldn't fit a model while for some languages the linguistic questions was not applicable. Some experiments are still in progress.

[^9]:    Table 7: Accuracy results for all relations across different languages. Baseline is Chaudhary et al. (2020)

