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ABSTRACT

Bayesian reinforcement learning (RL) offers a principled and elegant approach
for sequential decision making under uncertainty. Most notably, Bayesian agents
do not face an exploration/exploitation dilemma, a major pathology of frequentist
methods. A key challenge for Bayesian RL is the computational complexity of
learning Bayes-optimal policies, which is only tractable in toy domains. In this
paper we propose a novel model-free approach to address this challenge. Rather
than modelling uncertainty in high-dimensional state transition distributions as
model-based approaches do, we model uncertainty in a one-dimensional Bellman
operator. Our theoretical analysis reveals that existing model-free approaches either
do not propagate epistemic uncertainty through the MDP or optimise over a set
of contextual policies instead of all history-conditioned policies. Both approx-
imations yield policies that can be arbitrarily Bayes-suboptimal. To overcome
these issues, we introduce the Bayesian exploration network (BEN) which uses
normalising flows to model both the aleatoric uncertainty (via density estimation)
and epistemic uncertainty (via variational inference) in the Bellman operator. In
the limit of complete optimisation, BEN learns true Bayes-optimal policies, but like
in variational expectation-maximisation, partial optimisation renders our approach
tractable. Empirical results demonstrate that BEN can learn true Bayes-optimal
policies in tasks where existing model-free approaches fail.

1 INTRODUCTION

Detailed proofs for theorems and examples are provided in Appendix C

In reinforcement learning (RL), an agent is tasked with learning an optimal policy that maximises
expected return in a Markov decision process (MDP). In most cases, the agent is in a learning setting
and does not know the underlying MDP a priori: typically the reward and transition distributions are
unknown. A Bayesian approach to reinforcement learning characterises the uncertainty in unknown
governing variables in the MDP by inferring a posterior over their values conditioned on observed
histories of interactions. Using the posterior it is possible to marginalise across unknown variables
and derive a belief transition distribution that characterises how the uncertainty will evolve over all
future timesteps. The resulting Bayesian RL (BRL) objective transforms a learning problem into
a planning problem with a well defined set of optimal policies, known as Bayes-optimal policies
which are a gold standard for exploration (Martin, 1967; Duff, 2002). From this perspective, the
exploration/exploitation dilemma is a major pathology of frequentist RL due to the violation of
the conditionality principle: when in a learning problem, frequentist methods can condition on
information that the agent does not have access to, namely the unknown transition and reward
distributions. Frequentist RL researchers must close this gap by developing exploration heuristics
as there is no formal method to tackling this dilemma. In contrast Bayes-optimal policies solve
the exploration/exploitation dilemma by exploring to reduce epistemic uncertainty in the MDP, but
only insofar as that reduction in uncertainty increases expected returns as the belief evolves across
timesteps. Moreover any non-Bayesian policy is suboptimal in terms of optimising the expected
returns according to the belief induced by the prior and model of the state and reward transition
distributions.

Despite the formal theoretical benefits, learning Bayes-optimal policies that scale to domains beyond
toy examples remains a significant challenge due to several sources of intractability. Firstly, model-
based approaches must maintain a posterior over a model of the state transition dynamics, which
is notoriously computationally complex for even low dimensional state spaces (Wasserman, 2006).
Secondly, even if it is tractable to calculate and maintain the posterior, the marginalisation needed
to find the Bayesian transition and reward distributions requires high dimensional integrals. Finally,
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given the Bayesian distributions, a planning problem must then be solved in belief space for every
history-augmented state to obtain the Bayes-optimal policy.

Alternatively, model-free approaches characterise uncertainty in a Bellman operator. This avoids the
issues of modelling uncertainty in high dimensional transition distributions, as Bellman operators
require the specification of a one-dimensional conditional distribution. Whilst existing model-
free approaches to BRL exist, our key contribution is to provide a rigorous theoretical analysis
demonstrating that all existing methods inadvertently solve a myopic or contextual approximation to
the true Bayesian objective, which prevents them from learning a true Bayes-optimal policy. Our
novel formulation rewrites the Bayesian Bellman operator as an expectation over optimal Bellman
operators using the posterior over MDPs. This allows uncertainty to be characterised in optimal
Bellman operators, whilst still solving the true BRL objective, with the corresponding optimal policy
being Bayes-optimal.

Motivated by these shortcomings, we introduce a Bayesian exploration network (BEN) for model-free
BRL that is exactly equivalent to modelling uncertainty in a transition and reward function using a
model-based approach. BEN first reduces the dimensionality of inputs to a one-dimensional variable
using a Q-function approximator. The output is then passed through a Bayesian network, which
significantly reduces the dimensionality of Bayesian parameters we must infer a posterior over. The
Q-function approximator parameters can then be found by solving a Bayesian Bellman equation.
Moreover, like in an actor-critic approach, BEN can be trained using partial stochastic gradient
descent methods at each timestep, bypassing computational complexity issues associated with finding
a Bayes-optimal policy. This comes at the expense of learning an approximately Bayes-optimal
policy instead but one that converges to the true Bayes-optimal policy in the limit of complete
optimisation.

To verify our theoretical claims, we evaluate BEN in a search and rescue environment, which is a novel
higher dimensional variant of the tiger problem (Kaelbling et al., 1998). We show BEN solves the
task while oracles of existing state-of-the-art model-free BRL approaches based on BootDQN+Prior
(Osband et al., 2018) and Bayesian Bellman Actor Critic (Fellows et al., 2021) fail due to their
inability to learn Bayes-optimal policies. Moreover, our results show that whilst in the limit of
complete optimisation, BEN recovers true Bayes-optimal policies, complete optimisation is not
necessary as BEN behaves near Bayes-optimally after taking a small number of optimisation steps on
our objective for every observation.

2 BAYESIAN AND FREQUENTIST REINFORCEMENT LEARNING

2.1 FREQUENTIST RL
We define a space of infinite-horizon, discounted Markov decision processes (MDPs) by introducing
a variable ϕ ∈ Φ ⊆ Rd: M(ϕ) := ⟨S,A, P0, PS(s, a, ϕ), PR(s, a, ϕ), γ⟩ where each ϕ indexes a
specific MDP by parametrising a transition distribution PS(s, a, ϕ) : S ×A×Φ→ P(S) and reward
distribution PR(s, a, ϕ) : S × A × Φ → P(R). We denote the corresponding joint conditional
state-reward distribution as PR,S(s, a, ϕ). We assume that the agent has complete knowledge of
the set of states S, set of actions A, initial state distribution P0 ∈ P(S) and discount factor γ. A
frequentist agent follows a policy π : S × Φ → P(A), taking actions at ∼ π(st, ϕ). We denote
the set of all MDP conditioned policies as ΠΦ := {π : S × Φ → P(A)}. Given an initial state
s0 ∼ P0 we denote a trajectory of future state-action-rewards up to state st at time t as the sequence:
τt := {s0, a0, r0, s1, a1, r1, . . . at−1, rt−1, st} ∈ Tt where Tt := S × A × R . . .A × R × S is the
corresponding product space. We denote the distribution over trajectory τt as: Pπt (ϕ).

In the infinite horizon, discounted setting, the goal of a frequentist agent is to find a policy that opti-
mises the objective: Jπ(ϕ) = Eτ∞∼Pπ∞(ϕ) [

∑∞
t=0 γ

trt]. We denote an optimal policy as: π⋆(·, ϕ) ∈
Π⋆Φ(ϕ) := arg supπ∈ΠΦ

Jπ(ϕ), where Π⋆Φ(ϕ) is the set of all optimal MDP-conditioned policies
that are optimal for M(ϕ). For an optimal policy π⋆, the optimal quality function (Q-function)
Q⋆ : S × A × Φ → R satisfies the optimal Bellman equation: B⋆ [Q⋆] (st, at, ϕ) = Q⋆(st, at, ϕ)
where B⋆ [Q⋆] (st, at, ϕ) := Ert,st+1∼PR,S(st,at,ϕ)[rt+supa′∈AQ

⋆(st+1, a
′, ϕ)] is the optimal Bell-

man operator.

If the agent has access to the true MDP M(ϕ⋆), computational complexity issues aside, an op-
timal policy can be obtained by solving a planning problem, either by optimising the RL ob-
jective Jπ(ϕ⋆) directly for π or by solving an optimal Bellman equation and taking the action
at ∈ arg supa′∈AQ

⋆(st, a
′, ϕ⋆). In the more realistic setting, the agent does not have access to the
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MDP’s transition dynamics and/or reward function, and must balance learning these variables through
exploration of the MDP at the cost of behaving suboptimally with solving the underlying planning
problem by exploiting the information it has observed. This setting is known as a learning problem
and solving the exploration/exploitation dilemma remains a major challenge for any agent learning to
behave optimally.

2.2 BAYESIAN RL
A Bayesian epistemology characterises the agent’s uncertainty in the MDP through distributions over
Φ. We start by defining the prior distribution PΦ which represents the a priori belief in the true value
ϕ⋆ before the agent has observed any transitions. Priors are a powerful aspect of BRL, allowing us to
provide the agent with any information about the MDP and transfer knowledge between agents and
domains. In the tabula rasa setting, priors can be uninformative; can be used to encode optimism or
pessimism in unknown states; or a minimax prior representing the worst possible prior distribution
over MDPs an agent could face (Buening et al., 2023). As the agent interacts with the environment,
it observes a history of data ht := {s0, a0, r0, s1, a1, r1, . . . at−1, rt−1, st} ∈ Ht where Ht is the
corresponding state-action-reward product space. Given a set of historical data ht, we aim to reason
over future trajectories; thus Bayesian agents follow policies that condition on histories, rather than
single states. We denote the space of all trajectories H := {Ht|t ≥ 0} and the set of all trajectory
conditioned policies as ΠH := {π : H → P(A)}. A Bayesian agent characterises the uncertainty in
the MDP by inferring the posterior PΦ(ht) for each t ≥ 0.

The prior is a special case of the posterior with ht = ∅. The posterior PΦ(ht) represents
the agent’s beliefs in the MDP and can be used to marginalise across all MDPs according the
agent’s uncertainty. This yields the Bayesian state-reward transition distribution: pR,S(ht, at) :=
Eϕ∼PΦ(ht) [PR,S(st, at, ϕ)]. Given this distribution we can reason over counterfactual future trajecto-
ries τt:t′ := {at, rt, st+1, . . . st′} using the predictive distribution over trajectories conditioned on ht,
which we denote as Pπt:t′(ht) with density: Pπt:t′(τt:t′ |ht) =

∏t′−1
i=t π(ai|hi)p(ri, si+1|hi, ai). Using

the predictive distribution, we define the BRL objective as: JπBayes := Eτ0:∞∼Pπ0:∞
[∑∞

i=0 γ
iri
]
. A

corresponding optimal policy is known as a Bayes-optimal policy, which we denote as: π⋆Bayes(·) ∈
Π⋆Bayes := arg supπ∈ΠH

JπBayes.

Unlike in frequentist RL, Bayesian variables depend on histories obtained through posterior marginal-
isation; hence the posterior is often known as the belief state, which augments each ground state
st like in a partially observable MDP. Analogously to the state-transition distribution in frequentist
RL, we can define a belief transition distribution PH(ht, at) using the Bayesian reward and tran-
sition distributions, which has the density pH(ht+1|ht, at) = p(st+1, rt|ht, at) p(ht, at|ht, at)︸ ︷︷ ︸

=1

=

p(st+1, rt|ht, at). Using the belief transition, we define the Bayes-adaptive MDP (BAMDP) (Duff,
2002):MBAMDP := ⟨H,A, P0, PH(h, a), γ⟩, which can be solved using planning methods to obtain
a Bayes-optimal policy (Martin, 1967).

A Bayes-optimal policy naturally balances exploration with exploitation: after every timestep the
agent’s uncertainty is characterised via the posterior conditioned on the history ht, which includes all
future trajectories to marginalise over. The BRL objective therefore accounts for how the posterior
evolves after each transition, and hence any Bayes-optimal policy π⋆Bayes is optimal not only according
to the epistemic uncertainty at a single timestep, but also to the epistemic uncertainty at every future
timestep, decaying at a rate according to the discount factor.

Unlike in frequentist RL, if the agent is in a learning problem, finding a Bayes-optimal policy is
always possible given sufficient computational resources. This is because any uncertainty in the MDP
is marginalised over according to the belief characterised by the posterior. BRL thus does not suffer
from the exploration/exploitation dilemma as actions are sampled from optimal policies that only
condition on historical observations ht, rather than the unknown MDP ϕ⋆. More formally, this is a
direct consequence of the conditionality principle, which all Bayesian methods adhere to, meaning
that Bayesian decisions never condition on data that the agent has not observed. From this perspective,
the exploration/exploitation dilemma is a pathology that arises because frequentist approaches violate
the conditionality principle.

For a Bayes-optimal policy π⋆, we define the optimal Bayesian Q-function as Q⋆(ht, at) :=

Qπ
⋆
Bayes(ht, at), which satisfies the optimal Bayesian Bellman equation Q⋆(ht, at) = B⋆[Q⋆](ht, at)
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where:
B⋆[Q⋆](ht, at) = Eht+1∼PH(ht,at)

[
rt + γ sup

a′
Q⋆(ht+1, a

′)

]
, (1)

is the optimal Bayesian Bellman operator. It is possible to construct a Bayes-optimal policy by
choosing the action that maximises the optimal Bayesian Q-function at ∈ arg supa′ Q

⋆(ht, a
′);

hence learning Q⋆(ht, ·) is sufficient for solving the BAMDP. We take this value based approach in
this paper.

3 RELATED WORK

BEN is the first model-free approach to BRL that can learn Bayes-optimal policies. To relate BEN to
other approaches, we clarify the distinction between model-free and model-based BRL:
Definition 1. Model-based approaches define a prior PΦ over and a model of the MDP’s state and
reward transition distributions: PS(s, a, ϕ) and PR(s, a, ϕ). Model-free approaches define a prior
PΦ over and a model of the MDP’s Bellman operators (or Q-functions): PB(·, ϕ) (or PQ(·, ϕ)).
This definition mirrors classical interpretations of model-based and model-free RL, which categorises
algorithms according to whether a model of transition dynamics is learnt or the Q-function is
estimated directly (Sutton and Barto, 2018). We prove in Theorem 3 that due to the sufficiency
principle, whichever approach is taken, a Bayes-optimal policy may still be learnt, and is key to
proving Bayes-optimality of BEN. A further detailed discussion of this core contribution can be found
in Appendix C.1.

As many real-world problems of interest have high dimensional state spaces, representing the
transition distribution accurately requires a model PS(s, a, ϕ) with a large number of parameters.
This further compounds the intractability issues associated with taking a model-based approach to
solving the BAMDP as a posterior needs to be inferred over an infeasible number of parameters and
marginalisation involves higher dimensional integrals. Moreover, the sample efficiency for density
estimation of conditional distributions scales poorly with increasing dimensionality (Grünewälder
et al., 2012): Wasserman (2006) show that when using a nonparametric frequentist kernel approach
to density estimation, even with an optimal 4 + d bandwidth, the mean squared error scales as
O(N

−4
d+4 ) where N is the number of samples from the true density - to ensure a mean squared error

of less than 0.1 when the target density is a multivariate Gaussian of dimension 10, the number
of samples required is 842000 in comparison to 19 for a 2 dimensional problem. In a parametric
approach, this implies that the number of parameters required to sufficiently represent more realistic
multi-modal transition distributions will scale poorly with increasing dimension of the state-space.
From a Bayesian perspective, we would expect the posterior to concentrate at a slower rate with
increasing dimensionality as the agent would require more data to decrease its uncertainty in the
transition model parameters. We provide a review of several model-based approaches and their
approximations in Appendix B

In contrast, the majority of existing model-free approaches attempt to infer a posterior over Q-
functions PπQ(ht) given a history of samples ht, thus requiring a model of the aleatoric uncertainty
in the Q-function samples q ∼ PπQ(s, a, ϕ). PπQ(s, a, ϕ) : S × A × Φ → P(R) is typically a
parametric Gaussian, which is a conditional distribution over a one-dimensional space, allowing for
standard techniques from Bayesian regression to be applied. As inferring a posterior over Q-functions
requires samples from complete returns, some degree of bootstrapping using function approximation
is required for algorithms to be practical (Gal and Ghahramani, 2016; Osband et al., 2018; Fortunato
et al., 2018; Lipton et al., 2018; Osband et al., 2019; Touati et al., 2019). By introducing bootstrapping,
model-free approaches actually infer a posterior over Bellman operators, which concentrates on the
true Bellman operator with increasing samples under appropriate regularity assumptions (Fellows
et al., 2021). Instead of attempting to solve the BAMDP exactly, existing model-free approaches
employ posterior sampling where a single MDP is drawn from the posterior at the start of each
episode (Thomson, 1933; Strens, 2000; Osband et al., 2013), or optimism in the face of uncertainty
(OFU) (Lai and Robbins, 1985; Kearns and Singh, 2002) where exploration is increased or decreased
by a heuristic to reflect the uncertainty characterised by the posterior variance (Jin et al., 2018; Ciosek
et al., 2019; Luis et al., 2023). Unfortunately, both posterior sampling and OFU exploration can be
highly inefficient and far from Bayes-optimal (Zintgraf et al., 2020; Buening et al., 2023). Exploration
strategies aside, a deeper issue with existing model-free Bayesian approaches is that an optimal
policy under their formulations is not Bayes-optimal, but instead solves either a myopic or contextual
approximation to the BRL objective. We now investigate this problem further in Section 4.
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4 SHORTCOMINGS OF MODEL-FREE APPROACHES

As motivated in Section 3, modelling uncertainty in a low-dimensional variable such as a value
function or Bellman operator is clearly desirable; however naively defining a model over any variable
in the MDP may result in policies that are not Bayes-optimal. We now take a theoretical look at the
approximations implicit in existing model-free approaches to BRL to recover the objectives that are
actually optimised.

4.1 CONTEXTUAL BRL
If we make the simplifying assumption that the set of Bayesian policies can be represented by the
set of MDP-conditioned policies ΠΦ using the posterior to marginalise over ϕ, we can define a set
of contextual policies: ΠContextual :=

{
Eϕ∼PΦ(Ht) [π(·, θ)] |π ∈ ΠΦ

}
. Clearly ΠContextual ⊂ ΠH but

it is not obvious whether it is possible to obtain a Bayes-optimal policy using the set of contextual
policies in place of the full set of Bayesian policies Π⋆Bayes. To answer this question, we first define
the set of optimal contextual policies as: Π⋆Contextual := arg supπ∈ΠContextual

JπBayes, which we relate to
the set of optimal MDP-conditioned policies using the following theorem:
Theorem 1. Contextual Bayesian value functions and optimal policies can be related to fre-
quentist value functions and optimal policies through marginalisation, that is: Π⋆Contextual ={
Eϕ∼PΦ(ht) [π

⋆(·, ϕ)] |π⋆(·, ϕ) ∈ Π⋆Φ
}
, Q⋆Contextual(ht, a) = Eϕ∼P (ϕ|ht) [Q

⋆(st, a, ϕ)] .

Theorem 1 proves that the set of contextual optimal policies Π⋆Contextual can only be formed from
a mixture of optimal policies conditioned on specific MDPs using the posterior. We confirm this
implies contextual optimal policies can be arbitrarily Bayes-suboptimal in Corollary 1.1, using the
tiger problem (Kaelbling et al., 1998) as a counterexample:
Corollary 1.1. There exist MDPs with priors such that Π⋆Contextual ∩Π⋆Bayes = ∅.
Theorem 1 also proves that modelling uncertainty in an (optimal) Q-function is equivalent to
learning a Bayesian (optimal) Q-function over the set of contextual policies:Eq∼PQ(ht,a)[q] =

Eϕ∼PΦ(ht)

[
Eq∼PQ(st,a,ϕ) [q]

]
= Eϕ∼PΦ(ht) [Q

⋆(st, a, ϕ)] = Q⋆Contextual(ht, a). Hence at best exist-
ing model-free approaches yield contextual optimal policies.

4.2 MYOPIC BRL
A further approximation to exact BRL, whether intentional or not, is to solve a myopic varia-
tion of the true BAMDP through methods such as a QMDP (Kaelbling et al., 1998). Here the
distribution: PR,S(ht, st′ , at′) =

∫
PR,S(st′ , at′ , ϕ)dPΦ(ϕ|ht) is used to characterise the epis-

temic uncertainty over all future timesteps t′ ≥ t and does not account for how the posterior
evolves after each transition. The corresponding myopic distribution over a trajectory τt:t′ is:
pπMyopic(τt:t′ |ht) =

∏t′−1
i=t π(ai|si, ht) · pR,S(ri, si+1|si, ai, ht). Here, only PΦ(ht) is used to

marginalise over uncertainty at each timestep t′ ≥ t and information in τt:t′ is not used to up-
date the posterior.

Several existing model-free approaches (Gal and Ghahramani, 2016; Fortunato et al., 2018; Lipton
et al., 2018; Touati et al., 2019) naively introduce aQ-function approximatorQω : S×A → R whose
parameters minimise the mean-squared Bayesian Bellman error: ω⋆ ∈ argminω∈Ω∥Qω(s, a) −
B⋆Myopic[Qω](ht, s, a)∥2ρ where B⋆Myopic[Qω] is the myopic Bellman operator:

B⋆Myopic[Qω](ht, st′ , at′) = Ert′ ,st′+1∼PR,S(ht,st′ ,at′ )

[
rt′ + γ sup

a′
Qω(st′+1, a

′)

]
, (2)

thereby finding a myopic optimal policy instead of a true Bayes-optimal policy. Two notable
exceptions are BootDQN+Prior (Osband et al., 2018; 2019) and its actor-critic analogue BBAC
(Fellows et al., 2021); however these two approaches still only solve the BRL objective for contextual
policies.

4.3 ALEATORIC UNCERTAINTY MATTERS
Accurately representing the aleatoric uncertainty through the model P ⋆ω(ht, a, ϕ) is the focus of
distributional RL (Bellemare et al., 2017) and has been ignored by the model-free BRL community.
As discussed in Section 3, most existing parametric model-free BRL approaches have focused on
representing the epistemic uncertainty in the posterior under a parametric Gaussian model (Osband
et al., 2018). One exception is Model-based Q-variance estimation (Luis et al., 2023); however
this approach still optimises over contextual policies and relies on optimistic exploration bonuses,
which like posterior sampling, are Bayes-suboptimal. To motivate the need to develop models with
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improved capacity for modelling aleatoric uncertainty, we investigate the relationship between a
model specified over MDPs in model-based BRL and the equivalent model-free distribution over
Bellman operators in the following example:

Example 1. Consider the space of MDPs with S = R, PS(st, at, ϕ) = N (µϕ(st, at), σϕ(st, at))
and a deterministic reward rt = r(st, at) which is known a priori. For any Q-function approximator
Qω(s, a) such that vt = Vω(st) := supa′ Qω(st, a

′) with inverse st = V −1
ω (vt), the distribution

over optimal Bellman operators under the transformation bt = r(st, at) + γ supa′ Qω(st, a
′) has

density: pB(bt|st, at, ϕ) =
(
|∂vtV −1(vt)|√
2πσϕ(st,at)2

exp

(
− (V −1

ω (vt)−µϕ(st,at))
2

2σϕ(st,at)2

)) ∣∣∣∣∣
vt=

bt−r(st,at)
γ

.

Example 1 demonstrates that even the simplest MDPs with contrived assumptions on reward, Q-
function approximators and transition distributions cannot be modelled well by Gaussian models over
Bellman operators as the density pB(bt|st, at, ϕ) can be arbitrarily far from Gaussian depending upon
the choice of function approximator. This issue has been investigated empirically when modelling
uncertainty in Q-functions (Janz et al., 2019), where improving the representative capacity of a
Gaussian model using successor features reduces the learning time from O(L3) to O(L2.5) in the
L-episode length chain task (Osband et al., 2018) under a posterior sampling exploration regime. This
issue is particularly pertinent if we are concerned with finding polices that approach Bayes-optimality.
Epistemic uncertainty estimates are rendered useless if the space of MDPs that the agent is uncertain
over does not reflect the agent’s environment. Indeed, as we later prove in Theorem 2 for our proposed
method BEN, a model with no capacity for modelling aleatoric uncertainty has a degenerate posterior
and the resulting Bayes-optimal policy represents complete exploitation of the current dataset. The
key insight is that accurately representing both aleatoric and epistemic uncertainty is crucial for
learning Bayesian policies with successful exploration strategies as epistemic uncertainty cannot be
considered in isolation from aleatoric uncertainty.

4.4 DESIDERATA

In light of the shortcomings of existing BRL approaches presented above, we motivate our approach
as satisfying three key desiderata. Our method should:

I be a model-free approach to reinforcement learning that allows for bootstrapped samples;

II characterise both the epistemic and aleatoric uncertainty in the MDP; and

III learn Bayes-optimal policies in the limit of complete optimisation.

5 BAYESIAN EXPLORATION NETWORK (BEN)

As we are taking a value based approach in this paper, we focus on solving the optimal Bayesian
Bellman equation; however our approach applies equally to the Bayesian Bellman equation for any
Bayesian policy. We now derive and introduce the Bayesian Exploration network (BEN), which is
comprised of three individual networks: a Q-network to reduce the dimensionality of inputs to a
one-dimensional variable and then two normalising flow networks to characterise both the aleatoric
and epistemic uncertainty over that variable as it passes through the Bellman operator.
5.1 RECURRENT Q-NETWORK

We introduce a function approximator Qω : H × A → R to approximate the optimal Bayesian
Q-function. Any ω⋆ ∈ Ω such that B⋆[Qω⋆ ](ht, a) = Qω⋆(ht, a) for observed history ht and all
actions a ∈ A thus parametrises an optimal Bayesian Q-function from which a Bayes-optimal
policy can be derived at each timestep t. Similarly to model-free approaches that solve POMDPs
(Hausknecht and Stone, 2015; Schlegel et al., 2023), we encode history using a recurrent neural
network (RNN). Unlike a myopic approach that solves Eq. (2), our Q-function approximator is a
mapping from history-action pairs, allowing uncertainty to propagate properly through the Bayesian
Bellman equation. In contrast, encoding of history is missing from myopic model-free approaches as
uncertainty is only characterised in a single step.

5.2 ALEATORIC NETWORK

To characterise the aleatoric uncertainty in the MDP using a model-free approach, we show in
Appendix C.1 that the optimal Bayesian Bellman operator acting on Qω can be rewritten as an
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expectation over optimal Bellman operators using the posterior PΦ(ht):

B⋆[Qω](ht, a) = Eϕ∼PΦ(ht)

[
Ert,st+1∼PR,S(st,at,ϕ)

[
rt + γ sup

a′
Qω(ht+1, a

′)

]]
. (3)

Like Fellows et al. (2021), we introduce a random variable bt using transformation of variables bt =
rt + γ supa′ Qω(ht+1, a

′) with distribution bt ∼ PB(ht, a, ϕ;ω), which characterises the aleatoric
uncertainty in the optimal Bellman operator. More formally, PB(ht, a, ϕ;ω) is the pushforward distri-
bution satisfying: Ebt∼PB(ht,a,ϕ;ω) [f(bt)] = Ert,st+1∼PR,S(st,at,ϕ) [f (rt + γ supa′ Qω(ht+1, a

′))]
for any measurable function f : R → R. As samples of bt are obtained by first sampling
rt, st+1 ∼ PR,S(st, at, ϕ

⋆) from the underlying MDP ϕ⋆ then making the transformation bt =
rt + γ supa′ Qω(ht+1, a

′), a model of PB(ht, a, ϕ;ω) can be learned by using bootstrapped samples
thereby satisfying Desideratum I. Given our framework, we now formally investigate the consequence
of using a model with no capacity for characterising aleatoric uncertainty:

Theorem 2. Consider a model with degenerate aleatoric uncertainty PB(ht, at, ϕ) = δ(bt =
B(ht, at, ϕ)). The corresponding posterior is degenerate: PΦ(ht) = δ(ϕ = ϕ⋆MLE(ht)) and the opti-
mal Bayesian Bellman operator isB(ht, at, ϕ

⋆
MLE(ht)) where: ϕ⋆MLE(ht) ∈ arg infϕ∈Φ

∑t−1
i=0(ri+

γ supa′∈AQω(ht+1, a
′)−B(ht, at, ϕ))

2

As we show in Appendix C, solving the Bellman equation using the optimal Bayesian Bellman
operator in B(ht, at, ϕ

⋆
MLE(ht)) recovers an empirical estimate of the temporal difference fixed

point (Kolter, 2011; Sutton and Barto, 2018) using a history-conditioned Q-function approximator.
Theorem 2 demonstrates that even avoiding issues of myopic or contextual approximations outlined
in Section 4, a model with no aleatoric uncertainty learns a Bayes-optimal policy with no capacity for
exploration.

We use a normalising flow for density estimation (Rezende and Mohamed, 2015; Kobyzev et al.,
2021) to model the distribution over optimal Bellman operators PB(ht, a, ϕ;ω). Details can be found
in Appendix D.1. We refer to this density estimation flow as the aleatoric network as it characterises
the aleatoric uncertainty in the MDP and its expressiveness implicitly determines the space of MDPs
that our model can represent. Unlike in model-based approaches where the hypothesis space must be
specified a-priori, in BEN the hypothesis space is determined by the representability of the aleatoric
network, which can be tuned to the specific set of problems. Under mild regularity assumptions
(Huang et al., 2018), it can be shown that an autoregressive flow as a choice for the aleatoric network
can represent any target distribution PB(ht, a, ϕ;ω) to arbitrary precision given sufficient capacity
and data (Kobyzev et al., 2021), thereby satisfying Desideratum II.

A key advantage of our approach is that we have preprocessed the input to our aleatoric network
through the Bayesian Q-function approximator qt = Qω(ht, a) to extract features that reduce the
dimensionality of the state-action space. This architecture hard-codes the prior information that
a Bellman operator is a functional of the Q-function approximator, meaning that we only need to
characterise aleatoric uncertainty in a lower dimensional input qt. Unlike in VariBAD, we do not
need to introduce frequentist heuristics to learn function approximator parameters ω. Instead these
are learnt automatically by solving the optimal Bayesian Bellman equation, which we detail in
Section 5.4.

5.3 EPISTEMIC NETWORK

Given a model PB(ht, at, ϕ;ω), dataset of bootstrapped samples D(ht) := {bi}t−1
i=0 and prior

over parameters PΦ, our goal is to infer the posterior PΦ(D(ht)) to obtain the predictive mean:
B̂[Qω](ht, a) := Eϕ∼PΦ(D(ht))

[
Ebt∼PB(ht,at,ϕ;ω) [bt]

]
We now prove that the optimal Bayesian

Bellman operator is equivalent to the predictive mean, hence BEN is a Bayes-optimal model free
approach satisfying Desideratum III.

Theorem 3. Let the transformation of variables bt = rt + γ supa′ Qω(ht+1, a
′) be a measurable

mapping S × R → R for all ω ∈ Ω, ht ∈ H. If Qω⋆ satisfies Qω⋆(·) = B̂[Qω⋆ ](·), it also
satisfies an optimal Bayesian Bellman equation: Qω⋆(·) = B⋆[Qω⋆ ](·). Any agent taking action
at ∈ arg supaQω⋆(ht, a) is thus Bayes-optimal with respect to the prior PΦ and likelihood defined
by the model PB(ht, at, ϕ;ω⋆).

Unfortunately, inferring the posterior and carrying out marginalisation exactly is intractable for all but
the simplest aleatoric networks, which would not have sufficient capacity to represent a complex target
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distribution PB(ht, a, ϕ;ω). We instead look to variational inference using a parametric normalising
flow to learn a tractable approximation Pψ parametrised by ψ ∈ Ψ which we learn by minimising the
KL-divergence between the two distributions KL(Pψ ∥ PΦ(D(ht))). This is equivalent to minimising
the evidence lower bound L(ψ;h, ω). We provide details in Appendix D.2. We refer to this flow as
the epistemic network as it characterises the epistemic uncertainty in ϕ. As far as the authors are
aware, BEN is the first time flows have been used for combined density estimation and variational
inference.

5.4 MEAN SQUARED BAYESIAN BELLMAN ERROR (MSBBE)

Having characterised the aleatoric and epistemic uncertainty through BEN, we must learn a parametri-
sation ω⋆ that satisfies the optimal Bayesian Bellman equation for our Q-function approxima-
tor. For BEN, this is equivalent to minimising the following Mean Squared Bayesian Bell-
man Error (MSBBE) between the predictive mean B̂[Qω](ht, a) and Qω: MSBBE(ω;ht, ψ) :=∥∥∥B̂[Qω](ht, a)−Qω(ht, a)

∥∥∥2
ρ

where ρ is an arbitrary sampling distribution with support over

A. Given sufficient compute, at each timestep t it is possible in principle to solve the nested
optimisation problem for BEN: ω⋆ ∈ argminω∈Ω MSBBE(ω;ht, ψ⋆(ω)) s.t. ψ⋆(ht, ω) ∈
argminψ∈Ψ L(ψ;h, ω). Nested optimisation problems are commonplace in model-free RL and
can be solved using two-timescale stochastic approximation: we update the epistemic network param-
eters ψ using gradient descent on an asymptotically faster timescale than the function approximator
parameters ω to ensure convergence to a fixed point (Borkar, 2008; Heusel et al., 2017; Fellows et al.,
2021), with ω playing a similar role as target network parameters used to stabilise TD.

Algorithm 1 APPROXBRL(PΦ,M(ϕ))

Initialise ω, ψ
Sample initial state s ∼ P0

h = s
Take NPretrain SGD Steps on MSBBE(ω)
while posterior not converged do

Take action a ∈ argmaxa′ Qω(h, a
′)

Observe reward r ∼ PR(s, a, ϕ⋆)
Transition to new state s ∼ PS(s, a, ϕ⋆)
h← {h, a, r, s}
for NUpdate Steps: do

Take NPosterior SGD steps on L(ψ;h, ω)
Take a SGD step on MSBBE(ω;h, ψ)

end for
end while

In practice, solving the nested optimisation prob-
lem exactly for every observable history ht is
computationally intractable. To avoid issues
of computational tractability, we propose par-
tial minimisation of our objectives as outlined
in Algorithm 1: after observing a new tuple
{a, r, s}, the agent takes NUpdate MSBBE up-
date steps using the new data. This is equiva-
lent to partially minimising the empirical expec-
tation Eh∼ht [MSBBE(ω;h, ψ⋆(ω))], where each
h ∼ ht is a sequence drawn from the observed
history analogously to how state-action pairs are
drawn from the replay buffer in DQN (Mnih et al.,
2016). To ensure a separation of timescales be-
tween parameter updates, the agent carries out
NPosterior steps of stochastic gradient descent on
the ELBO for every MSBBE update.

Finally, we exploit the fact that the MSBBE can be minimised prior to learning using samples of
state-action pairs and so carry out NPretrain pretraining steps of stochastic gradient descent on the loss
using the prior in place of the approximate posterior. If no prior knowledge exists, then the agent
can be deployed. If there exists additional domain-specific knowledge, such as transitions shared
across all MDPs or demonstrations at key goal states, this can also be used to train the agent using
the model-based form of the Bellman operator in Eq. (3). Full algorithmic details can be found
in Appendix D.3. We remark that BEN’s incorporation of prior knowledge doesn’t require a full
generative model of the environment dynamics and demonstrations can be from simulated or related
MDPs that don’t exactly match the set of tasks the agent is in at test time.

6 EXPERIMENTS

We introduce a novel search and rescue griworld MDP designed to present a in a high-dimensional
challenging extension to the toy tiger problem domain (which we show BEN can solve in Appendix E).
An agent is tasked with rescuing Nvictims victims from a dangerous situation whilst avoiding any one
of Nhazards hazards. Details can be found in Appendix E.4. We evaluate BEN using a 7× 7 gridsize
with 8 hazards and 4 victims to rescue.
Episodic Setting In the episodic setting, the environment is reset after 245 timesteps and a new
environment is uniformly sampled from the space of MDPs. After resetting, the epistemic parameters
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ψ are also reset, representing the belief in the new MDP returning to the prior, however the agent
maintains it’s Q-network parameters ω so it can exploit information that is shared between all MDPs.

Figure 1: Results of evaluation in search and
rescue episodic problem showing the average
return of BEN after each episode.

We initialise the agent with a zero-mean Gaussian prior
of diagonal variance equal to 0.1 and give the agent no
prior domain knowledge except examples of deterministic
movement and the average reward for opening a door at
random. The results for our implementation are shown
in Fig. 1. We plot the return at the end of each 245
timestep episode. As expected, we see that BEN can solve
this challenging problem, exploring in initial episodes to
learn about how the listening states correlate to victim and
hazard positions, then exploiting this knowledge in later
episodes, finding all victims immediately. Our results
demonstrate that BEN can scale to domains that would be
intractable for previous approaches that learn Bayes-optimal policies without forfeiting BRL’s strong
theoretical properties through approximation.
Zero-shot Setting In this setting, our goal is to investigate how effecively BEN can exploit prior
knowledge to solve the search and rescue environment in a single episode. We prior-train BEN
using simulations in related (but not identical) environments drawn from a uniform prior, showing
the agent the affect of listening. Details can be found in Appendix E.5. We plot the cumulative
return as a function of number of gradient steps over the course of the episode in Fig. 2 for both
BEN and a contextual variant where the Q-function approximator has no capacity for representing
history.

Our result demonstrates that by exploiting prior knowledge,BEN can successfully rescue all victims
and avoid all hazards, even when encountering a novel environment that the agent has never seen a
priori. In contrast, existing state-of-the-art model-free methods, which learn a contextual Bayes policy,

Figure 2: Results of evaluation in zero-shot
search and rescue showing BEN vs contextual
methods

cannot solve this problem because as our analysis in Sec-
tion 4 revealed, Π⋆Contextual is limited to mixtures of opti-
mal policies conditioned on ϕ, causing contextual agents
to repeatedly hit hazards. This challenging setting show-
cases the power of our approach, demonstrating high
sample efficiency with low computational complexity.
Moreover, this setting mimics a real-life application of
a search and rescue robot where simulations can be pro-
vided by demonstrators in a generic training setting be-
fore deployment in a novel environment where the robot
has only one chance to succeed.

In addition we performed two ablations; firstly, we
demonstrate that performance depends on the capacity of
the aleatoric network, verifying our claim in Section 5.2
that there exists a trade-off between specifying a rich

enough hypothesis space and a hypothesis space that is too general. Secondly, we investigate how
pre-training affects returns. As we decrease the number of prior pre-training MSBBE minimisation
steps, we see that performance degrades in the zero-shot settling as expected. Moreover, this ablation
shows that a relatively few number of pre-training steps are needed to achieve impressive perfor-
mance once the agent is deployed in an unknown MDP, supporting our central claim that BEN is
computationally efficient Results can be found in Appendix E.7.

7 CONCLUSIONS

In this paper we carried out theoretical analyses of existing model-free approaches for BRL, proving
that they are limited to optimising over a set of contextual policies or that they optimise a myopic
approximation of the true BRL objective. In both cases, the corresponding optimal policies can be
arbitrarily Bayes-suboptimal. To correct these issues, we proposed BEN, a model-free BRL approach
that can successfully learn true Bayes-optimal policies. Our experimental evaluation confirms our
analysis, demonstrating that BEN can behave near Bayes-optimally even under partial minimisation,
paving the way for a new generation of model-free BRL approaches with the desirable theoretical
properties of model-based approaches.
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A MATHEMATICAL NOTATION

With the exception of policies, we denote probability distributions using uppercase notation P and
densities with lower case notation p if they exist. In convention with standard RL notation, we will
denote both densities and distributions of policies using π. The distinction will be clear from context.
We use the notation δ(x = X ′) to denote the Dirac distribution centred on the discrete set X ′ ⊂ X ,
which is defined as:

δ(x = X ′) :=

{
1, x ∈ X ′,

0, otherwise.

We denote the set of probability measures over a set X as P(X ). We use Lebesgue integration in the
appendix of this paper:

EPX [f(x)] :=
∫
f(x)dPX(x).

We will make use of the ℓp norms for vector spaces, which for x ∈ Rd are defined as:

∥x∥p :=

(
d∑
i=1

|xi|p
) 1
p

.

B MODEL-BASED APPROACHES AND THEIR SHORTCOMINGS

Whilst POMDP solvers such as RL2 (Duan et al., 2017) can be naively applied to the BAMDP,
solving the BAMDP exactly is hopelessly intractable for all but the simplest of problems for several
reasons: firstly, unless a conjugate model is used, the posterior over model parameters cannot be
evaluated analytically as the posterior normalisation constant is intractable to evaluate and conjugate
models are often too simple to be of practical value in RL; secondly, even if it is possible to obtain
a posterior over the model parameters, solving the BAMDP requires evaluating high dimensional
integrals by marginalising over model parameters; finally, finding a Bayes-optimal policy in the MDP
requires solving a planning problem at each timestep for all possible histories. Few model-based BRL
algorithms scale beyond small and discrete state-action spaces, even under approximation (Asmuth
and Littman, 2011; Guez et al., 2013).

One notable exception is the VariBAD framework (Zintgraf et al., 2020), and subsequent related
approaches (Yao et al., 2021; Zintgraf et al., 2021), which avoids the problem of intractability by
being Bayesian over a small subset of model parameters. These methods sacrifice Bayes-optimally,
relying on a frequentist heuristic to learn the non-Bayesian parameters; here, parametric models
of the reward and state and transition distributions are introduced: Pθ(r|s, a,m) and Pθ(r|s, a,m)
which are parametrised by θ ∈ Θ and condition on the random variable m. A posterior over m is
then inferred and used to obtain a marginal likelihood over trajectories:

p(τ |θ,D) =
∫
pθ(τ |m)dP (m|D),

which is optimised for θ. In this way, VariBAD is a partially Bayesian approach, inferring a posterior
over m, but not parameters θ. The dimensionality of m can be kept relatively small to ensure
tractability. As the VariBAD optimal policy is not obtained by marginalising over a space of MDPs
nor is the uncertainty accounted for in all of the model’s parameters, it is not Bayes-optimal in the
limit of approximation.

Another issue with model-based approaches, especially those trained in a meta-learning context
such as RL2, is the assumption that the agent has access to a generative hypothesis space where
it is possible to sample MDPs from a prior and collect rollouts of transitions from each sampled
MDP. In real-world settings, knowing the exact hypothesis space is not a feasible assumption as it
is generally not possible to specify transition dynamics a priori for all environments the agent can
encounter.

C PROOFS

Lemma 1. Let π ∈ Πcontextual with π(ht) =
∫
π(st, ϕ)dPΦ(ϕ|ht). It follows:

QπContextual(ht, a) = Eϕ∼P (ϕ|ht) [Q
π(st, a, ϕ)] . (4)
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Proof.

Qπ(ht, at) :=Eτt:∞∼Pπt:∞(ht,at)

[ ∞∑
i=t

γiri

]
,

=

∫ ( ∞∑
i=t

γiri

)
dPπt:∞(τt:∞|ht, at),

=

∫ ( ∞∑
i=t

γiri

)∫
dPπt:∞(τt:∞|ϕ)dPΦ(ϕ|ht),

=

∫ ∫ ( ∞∑
i=t

γiri

)
dPπt:∞(τt:∞|ϕ)dPΦ(ϕ|ht),

=

∫
Qπ(st, at, ϕ)dPΦ(ϕ|ht),

as required.

Theorem 1. Contextual Bayesian value functions and optimal policies can be related to frequentist
value functions and optimal policies through marginalisation, that is:

Π⋆Contextual =
{
Eϕ∼PΦ(ht) [π

⋆(·, ϕ)] |π⋆(·, ϕ) ∈ Π⋆Φ
}
, Q⋆Contextual(ht, a) = Eϕ∼P (ϕ|ht) [Q

⋆(st, a, ϕ)] .

Proof. For optimal policies, we first show by contradiction:

Π⋆Contextual ⊇
{
Eϕ∼PΦ(ht) [π

⋆(·, ϕ)] |π⋆(·, ϕ) ∈ Π⋆Φ
}
.

Assume that there exists some π†(·, ϕ) ∈ Π⋆Φ such that π†(ht) =
∫
π†(st, ϕ)dPΦ(ϕ|ht) /∈ Π⋆Contextual.

Then by definition, there exists some trajectory-action pair ht, at such that:

Qπ
†
(ht, at) < Q⋆(ht, at),

=⇒
∫
Qπ

†
(st, at, ϕ)dPΦ(ϕ|ht) <

∫
Q⋆(st, at, ϕ)dPΦ(ϕ|ht),

where the second line follows from Eq. (4) in Lemma 1. This implies that there exists some set
Φ′ ⊆ Φ with non-zero measure according to PΦ(ht) such that:

Qπ
†
(s, a, ϕ′) < Q⋆(s, a, ϕ′) ∀ ϕ′ ∈ Φ′,

for some s, a and hence by definition π†(·, ϕ) /∈ Π⋆Φ, which is a contradiction.

We are left to prove:

Π⋆Contextual ⊆
{
Eϕ∼PΦ(ht) [π

⋆(·, ϕ)] |π⋆(·, ϕ) ∈ Π⋆Φ
}
.

Assume that there exists some π†(·, ϕ) /∈ Π⋆Φ such that π†(ht) =
∫
π†(st, ϕ)dPΦ(ϕ|ht) ∈ Π⋆Contextual.

By definition, there exists some Φ′ ⊆ Φ with non-zero measure according to PΦ(ht) for some st, at
such that:

Qπ
†
(st, at, ϕ

′) < Q⋆(st, at, ϕ
′) ∀ ϕ′ ∈ Φ′,

=⇒
∫
Qπ

†
(st, at, ϕ)dPΦ(ϕ|ht) <

∫
Q⋆(st, at, ϕ)dPΦ(ϕ|ht),

=⇒ Qπ
†
(ht, at) < Q⋆(ht, at),

which contradicts the definition of π†(ht), hence

Π⋆Contextual =
{
Eϕ∼PΦ(ht) [π

⋆(·, ϕ)] |π⋆(·, ϕ) ∈ Π⋆Φ
}
, , (5)

as required.
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For the optimal Q-function, we start with the definition of the optimal Bayesian Bellman operator:

Q⋆(ht, at) = B⋆[Q⋆](ht, at),

=

∫ (
rt + γ sup

a′∈A
Q⋆(ht+1, a

′)

)
dP (rt, st+1|ht, at),

=

∫
rtdP (rt|ht, at) + γ

∫
sup
a′∈A

Q⋆(ht+1, a
′)dP (rt, st+1|ht, at).

Consider the second term, where we re-write the supremum over actions in terms of the optimal
policy for the Bayesian Q-function:∫

sup
a′∈A

Q⋆(ht+1, a
′)dP (rt, st+1|ht, at)

=

∫ ∫
Qπ

⋆

(ht+1, at+1)dπ
⋆(at+1|ht+1)dP (rt, st+1|ht, at). (6)

Using Eq. (4) and Eq. (5) yields:∫
sup
a′∈A

Q⋆(ht+1, a
′)dP (rt, st+1|ht, at)

=

∫ ∫ ∫
Qπ

⋆

(st+1, at+1, ϕ)dP (ϕ|ht+1)dπ
⋆(at+1|ht+1)dP (rt, st+1|ht, at),

=

∫ ∫ ∫
Q⋆(st+1, at+1, ϕ)dπ

⋆(at+1|st+1, ϕ)dP (rt, st+1|st, at, ϕ)dP (ϕ|ht)

=

∫ ∫
sup
a′∈A

Q⋆(st+1, a
′, ϕ)dP (rt, st+1|st, at, ϕ)dP (ϕ|ht),

which we substitute back into Eq. (6):

B⋆[Q⋆](ht, at) =
∫
rtdP (rt|ht, at) + γ

∫ ∫
sup
a′∈A

Q⋆(st+1, a
′, ϕ)dP (st+1|st, at, ϕ)dPΦ(ϕ|ht),

=

∫ ∫ (
rt + γ sup

a′∈A
Q⋆(st+1, a

′, ϕ)

)
dP (rt, st+1|st, at, ϕ)dPΦ(ϕ|ht),

=

∫
B⋆[Q⋆](ht, at, ϕ)dPΦ(ϕ|ht).

Finally, substituting for B⋆[Q⋆](st, at, ϕ) = Q⋆(st, at, ϕ) yields our desired result:

Q⋆(ht, at) =

∫
Q⋆(st, at, ϕ)dPΦ(ϕ|ht).

Corollary 1.1. There exist MDPs with priors such that Π⋆Contextual ∩Π⋆Bayes = ∅.

Proof. We consider the tiger problem as a counter example (Kaelbling et al., 1998) with γ =
0.9, rtiger = −500, rgold = 10 and rlisten = −1. Details of the space of MDPs can be found in
Appendix E.1. We index the MDP with the tiger in the left door as ϕ = tiger left and the tiger in the
right door as ϕ = tiger right. Consider the uniform prior over MDPs P (ϕ = tiger left) = P (ϕ =
tiger right) = 0.5. As agents always start in state s0, it suffices to find the optimal MDP conditioned
policies in s0:

π⋆(s0, ϕ = tiger left) = δ(a = open right), π⋆(s0, ϕ = tiger right) = δ(a = open left)

From Theorem 1, it follows that the optimal Bayesian contextual policy is a mixture of these two
policies using the prior:

π⋆(s0) = 0.5(δ(a = open right) + δ(a = open left)).
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The optimal Q-function for the optimal MDP-conditioned policies are

Q⋆(s0, a = open right, ϕ = tiger left) = Q⋆(s0, a = open left, ϕ = tiger right) =
rgold

1− γ
= 100,

Q⋆(s0, a = open right, ϕ = tiger right) = Q⋆(s0, a = open left, ϕ = tiger left)

= rtiger +
γrgold

1− γ
= −155.

Using Theorem 1, we can find the Bayesian value function for the optimal contextual policy:

Q⋆contextual(s0, a = open right)
= 0.5 (Q⋆(s0, a = open right, ϕ = tiger left) +Q⋆(s0, a = open right, ϕ = tiger right)) ,
= −27.5,

Q⋆contextual(s0, a = open left)
= 0.5 (Q⋆(s0, a = open left, ϕ = tiger left) +Q⋆(s0, a = open left, ϕ = tiger right)) ,
= −27.5,

from which the Bayesian return for the optimal contextual policy follows:

J
π⋆Contextual
Bayes = Es∼δ(s0)

[
Ea∼π⋆Contextual(s)

[Q⋆contextual(s, a)]
]
,

= 0.5 (Q⋆contextual(s0, a = open left) +Q⋆contextual(s0, a = open right)) ,
= −27.5.

Now consider the policy that always listens π† = δ(a = listen). The Bayesian return for this policy
is:

Jπ
†

Bayes =
rlisten

1− γ
= −10,

hence:

J
π⋆Contextual
Bayes < Jπ

†

Bayes ≤ sup
π∈ΠH

JπBayes = Jπ
⋆

Bayes,

=⇒ Π⋆Contextual ∩Π⋆Bayes = ∅,

as required.

Example 1. Consider the space of MDPs with S = R, PS(st, at, ϕ) = N (µϕ(st, at), σϕ(st, at))
and a deterministic reward rt = r(st, at) which is known a priori. For any Q-function approximator
Qω(s, a) such that vt = Vω(st) := supa′ Qω(st, a

′) with inverse st = V −1
ω (vt), the distribution

over optimal Bellman operators under the transformation bt = r(st, at) + γ supa′ Qω(st, a
′) has

density:

pB(bt|st, at, ϕ) =

( ∣∣∂vtV −1(vt)
∣∣√

2πσϕ(st, at)2
exp

(
−
(
V −1
ω (vt)− µϕ(st, at)

)2
2σϕ(st, at)2

))∣∣∣∣∣
vt=

bt−r(st,at)
γ

.

Proof. The result follows immediately by applying the change of variables formula for a random
variable.

Theorem 2. Consider a model with degenerate aleatoric uncertainty PB(ht, at, ϕ) = δ(bt =
B(ht, at, ϕ)). The corresponding posterior is degenerate: PΦ(ht) = δ(ϕ = ϕ⋆MLE(ht)) and the
optimal Bayesian Bellman operator is B(ht, at, ϕ

⋆
MLE(ht)) where:

ϕ⋆MLE(ht) ∈ arg inf
ϕ∈Φ

t−1∑
i=0

(ri + γ sup
a′∈A

Qω(ht+1, a
′)−B(ht, at, ϕ))

2

Proof. We characterise the degenerate distribution as the limit of a Gaussian with mean centred on
B(ht, at, ϕ):

PB(ht, at, ϕ) = δ(bt = B(ht, at, ϕ)) = lim
σ2→0

N (B(ht, at, ϕ), σ
2).
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Substituting into the posterior yields:

pΦ(ϕ|ht) ∝ lim
σ2→0

t−1∏
i=0

exp

(
− (bi −B(hi, ai, ϕ))

2

2σ2

)
pΦ(ϕ),

= lim
σ2→0

exp

(
−
t−1∑
i=0

(bi −B(hi, ai, ϕ))
2

2σ2
+ log pΦ(ϕ)

)
,

=⇒ PΦ(ht) = δ(ϕ = ϕ⋆MLE(ht)), ϕ⋆MLE(ht) ∈ arg inf
ϕ∈Φ

(
t−1∑
i=0

(bi −B(hi, ai, ϕ)
2

)
. (7)

Recall that the pushforward distribution formally satisfies:

Ebt∼PB(ht,a,ϕ;ω) [f(bt)] = Ert,st+1∼PR,S(st,at,ϕ)

[
f

(
rt + γ sup

a′
Qω(ht+1, a

′)

)]
. (8)

Using the posterior from Eq. (7) and Eq. (8), we derive the corresponding optimal Bayesian Bellman
operator as:

B⋆[Qω](ht, at) =
∫ ∫

btdPB(bt|ht, at, ϕ)dPΦ(ϕ|ht),

=

∫
B(ht, at, ϕ)dδ(ϕ = ϕ⋆MLE(ht)),

= B(ht, at, ϕ
⋆
MLE(ht)),

as required.

Remark: If we solve the MSBBE using the maximum likelihood (MLE) solution in Eq. (7), we
obtain the following solution for ω⋆:

ω⋆ ∈ argmin
ω∈Ω

∥Qω(ht, a)−B(ht, a, ϕ
⋆
MLE(ht))∥2ρ (9)

which corresponds to an empirical TD fixed point (Kolter, 2011) using the data ht. Moreover, if we
assume further that Qω(ht, a) and B(ht, a, ϕ

⋆
MLE(ht)) share a function space, that is there exists

and ω⋆t for every ϕ⋆MLE(ht) such that B(ht, ·, ϕ⋆MLE(ht)) = Qω⋆t (ht, ·), then we can minimise the
MSBBE in Eq. (9) by setting ω⋆t = ϕ⋆MLE(ht). Taking k gradient descent steps to find ϕ⋆MLE(ht)
while keeping ω⋆t fixed:

ϕ← ϕ− α(ri + γ sup
a∈A

Qω⋆t (hi+1, a)−B(hi, ai, ϕ))∇ϕB(hi, ai, ϕ)

and periodically updating the target parameters to ω⋆t+1 = ϕ then becomes exactly equivalent to using
a target network to stabilise TD (Mnih et al., 2015; Fellows et al., 2023).

C.1 THE SUFFICIENCY PRINCIPLE

In the context of Bayesian RL, the sufficiency principle is characterised as follows: let ft =
F (st+1, rt) be a sufficient statistic for ϕ. The sufficiency principle states that the same inference
about ϕ can be made by observing any sufficient statistic ft as directly observing st+1, rt (Birnbaum,
1962). In the case of BEN, the agent observe samples of the variable bt, which is a sufficient statistic
for ϕ if we can learn a parametrisation that characterises and optimal Bellman operator: as each
MDP has a unique optimal Q-function and corresponding optimal Bellman operator, the mapping
from Φ to the space of Bellman operators is one-to-one. Similarly, each MDP is uniquely defined by
its set of transition distributions, and so the mapping from Φ→ S × R is also one-to-one. Overall
the transformation of variables bt = rt + γ supa′ Q

⋆(ht+1, a
′) is thus one-to-one as each unique

transition distribution has a unique optimal Bellman operator, hence bt must be sufficient variable for
learning ϕ⋆.

From this perspective, it does not matter whether we choose to take a model-free approach, char-
acterising uncertainty in the optimal Bellman operator, or a model-based approach, characterising
uncertainty in the transition distributions, a Bayes-optimal policy may still be learned.
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Theorem 3. Let the transformation of variables bt = rt + γ supa′ Qω(ht+1, a
′) be a measurable

mapping S × R → R for all ω ∈ Ω, ht ∈ H. If Qω⋆ satisfies Qω⋆(·) = B̂[Qω⋆ ](·), it also
satisfies an optimal Bayesian Bellman equation: Qω⋆(·) = B⋆[Qω⋆ ](·). Any agent taking action
at ∈ arg supaQω⋆(ht, a) is thus Bayes-optimal with respect to the prior PΦ and likelihood defined
by the model PB(ht, at, ϕ;ω⋆).

Proof. As Qω⋆ satisfies Qω⋆(·) = B̂[Qω](·), and from the definition of the normalising flow defining
the aleatoric network, we can write for every t:

Qω⋆(ht, at) =

∫
Ezal∼Pal [B(qt, zal, ϕ)] dPΦ(ϕ|D(ht)),

=

∫ ∫
btdPB(ht, at, ϕ;ω)dPΦ(ϕ|D(ht)).

As bt is defined as a measurable transformation of variables bt = rt + γ supa′ Qω⋆(ht+1, a
′), it

follows from the change of variables theorem under measurable mappings (see Bogachev (2007,
Theorem 3.6.1)):∫

btdPB(ht, at, ϕ;ω) =

∫ ∫ (
rt + γ sup

a′
Qω⋆(ht+1, a

′)

)
dPS(st+1|st, a, ϕ)dPR(rt|st, a, ϕ),

hence:

Qω⋆(ht, at) = B⋆[Qω⋆ ](ht, at),

=

∫ (∫ ∫ (
rt + γ sup

a′
Qω⋆(ht+1, a

′)

)
dPS(st+1|st, at, ϕ)dPR(rt|st, at, ϕ)

)
dPΦ(ϕ|ht),

=

∫ ∫ (
rt + γ sup

a′
Q⋆(ht+1, a

′)

)∫
dPS(st+1|st, at, ϕ)dPR(rt|st, at, ϕ)dPΦ(ϕ|ht),

=

∫ ∫ (
rt + γ sup

a′
Q⋆(ht+1, a

′)

)
dPR,S(st+1, rt|ht, at),

=

∫ (
rt + γ sup

a′
Q⋆(ht+1, a

′)

)
dPH(ht+1|ht, at), (10)

where we have used the fact that bt is a sufficient variable for learning ϕ to exchange the posterior
given observations D(ht) for the posterior given ht, as the sufficiency principle ensures that the
same inference about ϕ is made by observing either bt or st+1, rt (Birnbaum, 1962). Eq. (10) is
exactly the optimal Bayesian Bellman operator from the definition in Eq. (1), hence Qω⋆(·) satisfied
the optimal Bayesian Bellman equation for the BAMDP defined by model PS(st+1|st, at, ϕ) and
PR(rt+1|st, at, ϕ) and prior PΦ. As Qω⋆(·) satisfies the optimal Bayesian Bellman equation, it is an
optimal Bayesian Q-function, so by definition, any at ∈ arg supaQω⋆(ht, a) is an action taken by a
Bayes-optimal agent.

D NETWORK DETAILS

rt−1

ĥt

qt

st at

Qω(ht, at)

ot

ĥt−1

Figure 3: Recurrent Q Network

Our recurrent Q network architecture is shown Fig. 3. We
encode the prior history-action pair via a recurrent variable
ĥt := {ht, at}. At each timestep our network inputs ĥt−1 and
a tuple of observations ot := {rt−1, st, at} and outputs the
value variable qt = Qω(ht, at) = Qω(ĥt−1, ot) and the new
recurrent encoding ĥt.

D.1 ALEATORIC NETWORK

To model the distribution over optimal Bellman operators
PB(ht, a, ϕ;ω) we introduce a base variable zal ∈ R with a
tractable distribution Pal; in this paper we use a zero-mean,
unit variance Gaussian N (0, 1). We then generate bt using a

change of variables bt = B(zal, qt, ϕ) parameterised by ϕ ∈ Φ, where B(zal, qt, ϕ) is a mapping
in zal with inverse zal = B−1(bt, qt, ϕ). Under this change of variables, Ebt∼PB(ht,a,ϕ;ω) [f(bt)] =
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Ezal∼Pal [f ◦B(zal, qt, ϕ)] for any integrable f : R → R. We refer to B(zal, qt, ϕ) as the aleatoric
network as it characterises the aleatoric uncertainty in the MDP and its expressiveness implicitly
determines the space of MDPs that our model can represent.

qt

f(bt, ν)

ĥt

κφi

(
ĥt, qt

)

bt

ν

zal

Figure 4: Details of Aleatoric Flow

We define our aleatoric flow by adapting the autoregres-
sive flow (Kingma et al., 2016). We take inputs from
the RNN Q-function approximator outputs ĥt, qt (includ-
ing the history encoding) and pass them through a condi-
tioner κϕi(ĥt, qt), which is a feed forward neural network
parametrised by ϕi where ϕi ⊂ ϕ. The output of the
conditioner is a vector that defines the parameters for the
coupling function. We use an inverse autoregressive flow,
with zal ∈ R2 followed with a dimensionality reduction
layer to reduce the dimension of the output to 1 and abs
layers, as detailed in Nielsen et al. (2020). Since only
bt = B(qt, zal, ϕ) needs to be bijective in zal, there are
also no restrictions on Qω(ht, a), allowing us to use any
arbitrary RNN. The aleatoric network then consists of L

coupling functions in composition:

B(zal, qt, ϕ) = fL ◦ fL−1 ◦ · · · f2 ◦ f1(zal, ĥt, qt, ϕ).

D.2 EPISTEMIC NETWORK

Given the aleatoric network B(zal, qt, ϕ), dataset of bootstrapped samples D(ht) := {bi}t−1
i=0 and

prior over parameters PΦ, our goal is to infer the posterior PΦ(D(ht)) to obtain the predictive
mean:

B̂[Qω](ht, a) := Eϕ∼PΦ(D(ht)) [Ezal∼Pal [B(qt, zal, ϕ)]] .

Unfortunately, inferring the posterior and carrying out marginalisation exactly is intractable for all
but the simplest aleatoric networks, which would not have sufficient capacity to represent a complex
target distribution PB(ht, a, ϕ;ω). We instead look to variational inference using a normalising flow
to learn a tractable approximation.

Like in Appendix D.1, we introduce a base variable zep ∈ Rd with a tractable distribution Pep; again
we use a zero-mean Gaussian N (0, Id). We then make a transformation of variables ϕ = tψ(zep)

where tψ : Rd → Rd is a bijective mapping parametrised by ψ ∈ Ψ with inverse zep = t−1
ψ (ϕ).

We refer to tψ(zep) as the epistemic network as it characterises the epistemic uncertainty in ϕ.
From the change of variables formula, it follows that the resulting variational distribution Pψ has a
density pψ(ϕ) = |det (Jψ(ϕ))| pep ◦ t−1

ψ (ϕ) where Jψ(ϕ) := ∇ϕt−1
ψ (ϕ) is the Jacobian of the inverse

mapping. Using variational inference, we treat Pψ as an approximation of the true posterior PΦ(ht),
which we learn by minimising the KL-divergence between the two distributions KL(Pψ ∥ PΦ(ht)).
This is equivalent to minimising the following negative evidence lower-bound (ELBO) objective with
respect to ψ:

L(ψ;ht, ω) := Ezep∼Pep

[(
t−1∑
i=0

(
B−1(bi, qi, ϕ)

2 − log
∣∣∂bB−1(bi, qi, ϕ)

∣∣)− log pΦ(ϕ)

)∣∣∣∣
ϕ=tψ(zep)

]
.

We provide a fully connected schematic of BEN with flow details in Fig. 5.

To derive this result, we start with the definition of the KL-divergence KL(Pψ ∥ PΦ(ht)), using
Bayes’ rule to re-write the log-posterior:

KL(Pψ ∥ PΦ(ht)) :=

∫
(log pψ(ϕ)− log pΦ(ϕ|ht)) dPψ(ϕ),

=

∫
(log pψ(ϕ)− log pΦ(ht|ϕ)− log pΦ(ϕ) + log p(ht)) dPψ(ϕ),

=

∫
(log pψ(ϕ)− log pΦ(ht|ϕ)− log pΦ(ϕ)) dPψ(ϕ) + log p(ht).
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Figure 5: Schematic of BEN

As the log-evidence log p(ht) has no dependence on ψ, we can omit it from our objective, instead
maximising the ELBO:

L(ψ;ht, ω) =
∫

(log pΦ(ht|ϕ) + log pΦ(ϕ)− log pψ(ϕ)) dPψ(ϕ).

Using Eq. (8), we write the expectation with respect to Pψ using the transformation of vari-
ables:

L(ψ;ht, ω) =
∫

(log pΦ(ht|ϕ) + log pΦ(ϕ)− log pψ(ϕ)) |ϕ=tψ(zep)dPep(zep),

=

∫
(log pΦ(ht|ϕ) + log pΦ(ϕ)) |ϕ=tψ(zep)dPep(zep)−

∫
log pψ ◦ tψ(zep)dPep(zep).

Now, by the definition of pψ(ϕ), it follows:

pψ ◦ tψ(zep) = |det (Jψ ◦ tψ(zep))| pep ◦ t−1
ψ ◦ tψ(zep),

=
∣∣∣det(∇ϕt−1

ψ ◦ tψ(zep)
)∣∣∣ pep(zep),

= pep(zep).

As pep(zep) has no dependence on ψ, we can omit it from the objective, yielding:

L(ψ;ht, ω) =
∫

(log pΦ(ht|ϕ) + log pΦ(ϕ)) |ϕ=tψ(zep)dPep(zep),

=

∫ (
log

(
t−1∏
i=0

pB(bi|hi, ai, ϕ;ω)

)
+ log pΦ(ϕ)

)∣∣∣∣
ϕ=tψ(zep)

dPep(zep),

=

∫ (t−1∑
i=0

log pB(bi|hi, ai, ϕ;ω) + log pΦ(ϕ)

)∣∣∣∣
ϕ=tψ(zep)

dPep(zep).

Finally we can derive the exact form of the log-density pB(bi|hi, ai, ϕ;ω) using the change of
variables formula under bt = B(zal, qt, ϕ):

log pB(bi|hi, ai, ϕ;ω) = log
(
exp(−B−1(bi, qi, ϕ)

2)
∣∣∂bB−1(bi, qi, ϕ)

∣∣) ,
= −B−1(bi, qi, ϕ)

2 + log
∣∣∂bB−1(bi, qi, ϕ)

∣∣ .
Substituting and multiplying by −1, thus changing to an objective to minimise rather than maximise,
yields our desired result:

L(ψ;ht, ω) := Ezep∼Pep

[(
t−1∑
i=0

(
B−1(bi, qi, ϕ)

2 − log
∣∣∂bB−1(bi, qi, ϕ)

∣∣)− log pΦ(ϕ)

)∣∣∣∣
ϕ=tψ(zep)

]
.

D.3 NETWORK TRAINING
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Algorithm 2 PRIORINITIALISATION(PΦ, s0,Dprior)

Initialise ω
for NPretrain steps do

Sample action a ∼ ρ
Sample two MDPs ϕ, ϕ′ ∼ PΦ

Sample aleatoric variables zal, z
′
al ∼ Pal

q0 = Qω(s0, a)
ω ← ω − α(B(q0, zal, ϕ)− q0)∇ω(B(q0, z

′
al, ϕ

′)− q0)
Sample from prior data s, a ∼ Dprior
Sample two MDPs ϕ, ϕ′ ∼ PΦ

Sample rewards-state transition r, s+ ∼ PR,S(s, a, ϕ)
Sample rewards-state transition r′, s′+ ∼ PR,S(s, a, ϕ′)
ω ← ω − α(r + γ supa′∈AQω(s, a, r, s+, a

′) −
Qω(s, a))∇ω(γ supa′∈AQω(s, a, r

′, s′+, a
′)−Qω(s, a))

end for

Prior Initialisation Before
any actions have been taken,
we can minimise the MSBBE
using the initial state s0 and
the prior Pϕ, which we assume
is tractable to obtain samples
from. This has the advantage
of initialising the Q-function
approximator to incorporate any
prior domain knowledge we
have about the MDP, in addition
to ensuring that an optimal
Bayesian Bellman equation is
approximately satisfied before
training starts. Once the pos-
terior is updated using a new
observation, we shouldn’t expect
the solution to the MSBBE to

change significantly to reflect the updated belief. Finally, there may be prior knowledge about
state and reward transitions that are available to us a priori that we would like to encode in the
Q-function approximator. If an agent in state s taking action a always transitions according to
a known conditional distribution PR,S(s, a, ϕ), then we can use this information to solve the
Bayesian Bellman equation conditioned on s, a. We combine all such state-action pairs into a dataset
Dprior := {si, ai}

Kprior
i=1 , for which we minimise the MSSBE:

L(ω;Dprior)

=

Kprior∑
i=1

(
Eϕ∼PΦ

[
Eri,si+1∼PR,S(si,ai,ϕ)

[
r + γ sup

a′∈A
Qω(si, ai, ri, si+1, a

′)

]]
−Qω(si, ai)

)2

.

We give specific details of Dprior in the context of our search and rescue environment in Appendix E.4.
Both MSBBE objectives can be minimised using stochastic gradient descent with two independent
samples from the prior to avoid bias in our updates, as outlined in Algorithm 2. Note that for domains
where we don’t have such knowledge, we can take Dprior = ∅ and ignore the minimisation steps on
L(ω;Dprior).
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q0

s0 a0

Qω(h0, a0)

o0
r0 s1 a1
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ĥinit ĥ0 ĥ1

Lt(ψ; qt−1, bt−1, ω)Lt(ψ; q1, b1, ω)Lt(ψ; q0, b0, ω) MSBBE(ω;ht, ψ)

b0 b1 bt−1

Figure 6: Schematic of BEN Training Regime. Losses are shown as hexagons.

Posterior Updating To obtain an efficient algorithm, we note that the ELBO objective can be
written as a summation: L(ψ;ht, ω) =

∑t−1
i=0 Lt(ψ; qi, bi, ω), where each sub-objective is:

Lt(ψ; qi, bi, ω) := Ezep∼Pep

[(
B−1(bi, qi, ϕ

)2 − log
∣∣∂bB−1(bi, qi, ϕ)

∣∣− 1

t
log pΦ(ϕ)

∣∣∣∣
ϕ=tψ(zep)

]
.
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As shown in Fig. 6, we can minimise L(ψ;ht, ω) by unrolling the RNN, starting at i = 0. After each
timestep, we obtain qi, which can be used to minimise the loss Lt(ψ; qi, bi, ω) with the observation
bi whilst keeping ω fixed. Once the network has been unrolled to the timestep t, we can use the
output to minimise the MSBBE. Like in for our prior initialisation algorithm in Algorithm 2, it is
important that we sample two independent samples ϕ, ϕ′ ∼ Pϕ(ht) from our approximate posterior
when minimising the MSBBE to avoid biased gradient estimates. Once t becomes too large, we can
truncate the sequences to length t′, starting at state st−t′ instead of s0. Like when target parameters
used to stabilise frequentist TD methods (Fellows et al., 2023), this updating ensures that the Q-
network is updated on an asymptotically slower timescale to the posterior parameters, and we tune
the length of truncation t′ for the sequence and stepsizes αψ and αω to ensure stability.

E EXPERIMENTS

E.1 TIGER PROBLEM

s0

l

o2o1

s1 s2

o1 o2 o1 o2

l l

Figure 7: Tiger Problem MDP

Algorithm 3 POSTERIORUPDATING(ht, ψ, ω)

for NUpdate steps do
ĥ← ĥinit
o← {s0, a0}
for i ∈ [0 : t− 1] do
ĥ, qi ← Qω(ĥ, o)

bi ← ri + γ supa′ Qω(ĥ, o, ri, si+1, a
′)

gψ ∼ ∇ψLt(ψ; qi, bi, ω)
ψ ← ψ − αψgψ
o← ri, si+1, ai+1

end for
qt ← Qω(ĥ, o)
gω ∼ ∇ωMSBBE(ω; qt, ψ)
ω ← ω − αωgω

end for

The aim of this empirical evaluation is to verify
our claim that BEN can learn a Bayes-optimal
policy and compare BEN to existing model-free
approaches. We evaluate BEN in the coun-
terexample tiger problem domain from Corol-
lary 1.1, which allows for comparison against
a true Bayes-optimal policy. We show our tiger
problem MDP in Fig. 7. The agent is always
initialised in state s0 and can chose to open
door 1 (o1), open door 2 (o2) or to listen (l):
A := {o1, o2, l}. There are two possible MDPs
the agent can be in, with the tiger assigned to
either door 1 or door 2 randomly and the gold
to the other door. If the agent chooses o1, door
1 is opened and the agent receives a reward of
rtiger = −500 if the tiger is behind the door or
rgold = 10 if the gold is behind the door. The

agent always transitions to state s0 after selecting o1 or o2. If the agent chooses to listen, it receives
a small negative reward of rlisten = −1 and if the tiger is behind door 1 transitions to state s1 with
probability 0.85 and state s2 with probability 0.1, or if the tiger is behind door 2, the agent transitions
to state s2 with probability 0.85 and state s1 with probability 0.1.

E.2 TIGER PROBLEM IMPLEMENTATION DETAILS

We initialise the agent with a uniform prior over the two MDPs. The posterior for this problem is
tractable so we use that in place of the epistemic network:

PΦ(ϕ = tiger in 1|ht) =
0.85N1 · 0.1N2

0.85N1 · 0.1N2 + 0.1N1 · 0.85N2
,

PΦ(ϕ = tiger in 2|ht) = 1− PΦ(ϕ = tiger in 1)
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where N1 is the number of visitations to state s1 and N2 is the number of visitations to state s2. If
the agent opens the door, the posterior trivially becomes:

PΦ(ϕ|ht) =


δ(ϕ = tiger in 1), at−1 = o1, rt−1 = rtiger,

δ(ϕ = tiger in 1), at−1 = o2, rt−1 = rgold,

δ(ϕ = tiger in 2), at−1 = o2, rt−1 = rtiger,

δ(ϕ = tiger in 2), at−1 = o1, rt−1 = rgold.

The aleatoric network can be handcoded as the pushforward of known transition distributions. We
vary the number of steps for the MSBBE minimisation with a learning rate of 0.02 using ADAM
for the stochastic gradient descent. For the for Q-function approximator, we use a fully connected
linear layer with ReLU activations, a gated recurrent unit and a final fully connected linear layer with
ReLU activations. All hidden dimensions are 32. The dimension of ĥ0 is 2. The input dimension is
1 + 2 =3 and the network output is 3 dimensional to reflect the three possible actions the agent can
take.

E.3 TIGER PROBLEM RESULTS

0 2 4 6 8 10
Timesteps

1200

1000

800

600

400

200

0

Cu
m

ula
tiv

e 
Re

tu
rn

Median, 30th, 70th Percentile Cumulative Return vs. Timestep

MSBBE Iterations
Contextual Bayes
1
2
5
10
20
Benchmark (Bayes Optimal)

Figure 8: Results of evaluation in tiger prob-
lem showing BEN with increasing minimisa-
tion steps on MSBBE vs Bayes-optimal and
contextual oracles

We initialise all agents in a tabula rasa setting with a uni-
form prior over MDPs and plot the median returns after
each timestep in Fig. 8 for 11 timesteps, averaged over
MDPs, each drawn uniformly. We plot the performance of
BEN for a varying number of SGD minimisation steps on
our MSBBE objective. Fig. 8 shows that by increasing the
number of SGD minimisation steps, BEN’s performance
approaches that of the Bayes-optimal oracle and the vari-
ance in the policies decreases, with near Bayes-optimal
performance attainted using 20 minimisation steps. We
also compare BEN to an oracle that is optimal over the
space contextual policies, Π⋆Contextual, which is an optimal
policy for existing model-free approaches. As expected,
the contextual optimal policy is limited to a mixture of
optimal policies conditioned on ϕ, hence the performance
is comparatively poor: median returns are significantly
lower than BEN as contextual policies sample an initial
action uniformly before acting optimally once the true MDP is revealed.

E.4 SEARCH AND RESCUE PROBLEM

Figure 9: 5× 5 Search and Rescue Problem MDP with 5 Hazards (red crossed) and 3 Victims (green circles).
Agent (purple circle) is shown in s0. Green actions yield reward rrescue and red actions yield reward rhazard.
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We now present a novel search and rescue MDP designed to present a challenging extension
to the toy tiger problem domain. An agent is tasked with rescuing Nvictims victims from a
dangerous situation whilst avoiding any one of Nhazards hazards. The agent’s action space is
A = {up, down, left, right, listen}. The agent can move in an Ngrid ×Ngrid gridworld where Ngrid is
an odd number and transitions one square deterministically in the direction of the action taken. If the
agent selects an action that would take it off the grid, it remains put and opens the door adjacent to
its square in the direction of the action. If the agent opens a door with a victim behind, it receives a
reward of rvictim = 10 and the victim is removed from the MDP. If the agent . If the agent opens a
door with a hazard behind, it receives a reward of rhazard = −100 and the hazard remains in the MDP.
We show an example MDP in Fig. 9.

The agent is initialised in position (0, 0), which is the central square of the grid. The agent observes
state s ∈ S ⊂ R2+Nvictims+Nhazards where lagent := (s0, s1) is the agent’s location relative to (0, 0). The
agent does not directly observe which doors have hazards or victims behind. If the agent chooses
the action listen, their location remains put and they transition to a new state s′ where s′i for each
i ∈ {2 : 1 +Nvictims +Nhazards} is given by:

s′i = exp

(
−
∥lagent − li∥2

Ngrid
+ η

)
, η ∼ N (0;σ2

noise)

which a noisy variable correlated to the distance between the agent and each victim/hazard li. The
victim locations are {li}i∈{2:Nvictims+1} and the hazard locations are {li}i∈{Nvictims+2:1+Nvictims+Nhazard}.
For each MDP, the victims and hazards are randomly assigned a square each adjacent to the grid and
the initialised uniformly across that square. If an agent opens a door with a victim, their location
becomes (Ngrid · 1000, Ngrid · 1000) and no further reward can be obtained for that victim. Agents
receive a small negative reward for listening rlisten = −1 and no reward for traversing the grid.

E.5 EXPLOITING PRIOR KNOWLEDGE

For the search and rescue environment, there is domain knowledge that we can use to form Dprior
that is common to all MDPs. The first example of this knowledge is that movement transitions are
deterministic and yield no reward when the agent is traversing the grid. To make this precise, we
define the set of states in the interior of the grid:

Sinterior :=

{
s||s0| <

Ngrid − 1

2
, |s1| <

Ngrid − 1

2
, {si}i≥2 = 0

}
,

that is their location is not adjacent to the grid’s boundary. All other values s2 : s1+Nvictims+Nhazards are
set to 0. We define the set of movement actions to be Amovement := {up, down, left, right}. Taking
an action a ∈ Amovement when in state s ∈ Sinterior always moves the agent in the direction of the
action selected without changing the other states and receives a reward of 0, that is:

PS(s ∈ Sinterior, a = up) = δ(s′1 = s1 + 1, s′̸=1 = s̸=1),

PS(s ∈ Sinterior, a = down) = δ(s′1 = s1 − 1, s′̸=1 = s̸=1),

PS(s ∈ Sinterior, a = right) = δ(s′0 = s0 + 1, s′̸=0 = s̸=0),

PS(s ∈ Sinterior, a = left) = δ(s′0 = s0 − 1, s′̸=0 = s̸=0),

PR(s ∈ Sinterior, a ∈ Amovement) = δ(r = 0),

allowing us to sample from Amovement × Sinterior ⊂ Dprior and apply the above transformation.

In addition to the deterministic transitions, we can also include prior reward information. Firstly we
define the boundary states where the agent is adjacent to the edge of the grid

Sboundary :=

{
s||s0| =

Ngrid − 1

2
, {si}i≥2 = 0

}
∪
{
s|||s1| =

Ngrid − 1

2
, {si}i≥2 = 0

}
We note that again all non-locations states s2 : s1+Nvictims+Nhazards are set to 0 because other values are
specific to each MDP. As agents and hazards are initialised uniformly in the squares adjacent to the
grid, if an agent is in Sboundary and takes an action to move out of the grid (i.e. open a door), then the
expected reward will be:

rprior :=
Nvictims

4×Ngrid
· rvictim +

Nhazards

4×Ngrid
· rhazard.
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(a) Return Aleatoric Ablation (b) Hazards Hit Contextual Ablation

Figure 10: Contextual vs BEN Ablation

Listening Information Key to solving the search and rescue environment is learning to listen
before acting.

E.6 SEARCH AND RESCUE IMPLEMENTATION DETAILS

The epistemic network consists of two layers of ActNorm, a Masked Autoregressive Flow with two
blocks and a LU linear decomposition and permutation as in Dinh et al. (2017). The base distribution
is a unit Gaussian. This takes the number of parameters in the Aleatoric Network is a projection to
2d space from 1d, an Inverse Autoregressive Flow, a LU Linear decomposition and Permutation, a
projection back to 1d with the Slice Flow, and an Abs Flow. The base distribution is a standard 1d
Gaussian. The AbsFlow consists of 6 applications of the conditioner network, (K=6), and two layers.
We vary the number of steps for the MSBBE minimisation with a learning rate of 1e-4 using ADAM
for the stochastic gradient descent and use a separate ADAM optimiser, with a learning rate of 1e-4
for the Epistemic Network training on the ELBO. For the for Q-function approximator, we use a fully
connected linear layer with ReLU activations, a gated recurrent unit and a final fully connected linear
layer with ReLU activations. All hidden dimensions are 64. The dimension of the hidden state ĥ0
is 64. The input size is the state space size 14 (4 number of victims + 8 number of hazards + 1 + 1
for x and y dims) The input dimension is state space size + 1 for reward + 1 for action = 16. The
network output is 5 dimensional to reflect the five possible actions the agent can take. The input to
the conditioner network is number of aleatoric parameters+ hidden dim size + 1 for q value, and the
hidden layers and output size are the number of aleatoric parameters. Only a subset of these aleatoric
parameters are used as needed in each layer and the rest are dropped.

E.7 ABLATIONS

We carry out the following ablations in the zero-shot setting for the search and rescue environment,
averaged over 7 seeds in this zero-shot test and plot the sample standard errors:

Contextual Approaches We repeat the ablation carried out in the Tiger Problem for this new
domain, demonstrating the existing approaches that learn a contextual optimal policy (i.e. state of
the art model-free approaches such as BBAC (Fellows et al., 2021) and BootDQN+Prior (Osband
et al., 2019)) cannot succeed in this challenging setting. This corresponds to using a function
approximator with no capacity to represent history. BEN provides a clear improvement over these
existing methods in terms of cumulative return in Fig. 2. To understand why, for each approach we
plot the number of victims rescued in Fig. 10a and hazards hit in Fig. 10b. Although both approaches
save a similar number of victims, the contextual approach hits an order of 10 times more hazards than
BEN.These results demonstrate that contextual approaches struggle to solve this problem whereas
BEN is slightly more conservative, yet does not hit nearly as many hazards, as we would expect given
the disproportionally greater negative reward for hitting a hazard than rescuing the victim in our
environment.

Capacity for Representing Aleatoric Uncertainty We now investigate how reducing increasing
the capacity of our aleatoric network affects the performance in this domain. We increase the number
of aleatoric flow layers from 1 to 4 and plot the returns in Fig. 12a and the number of victims rescued
in Fig. 12b. We see that for this environment, 2 flow layers yields the best returns. As the number
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(a) Return Aleatoric Ablation (b) Victims Saved Aleatoric Ablation

Figure 11: Aleatoric Network Ablation

(a) Return Prior Ablation (b) Victims Saved Prior Ablation

Figure 12: Aleatoric Network Ablation

of aleatoric flow layers is determines the hypothesis space, our results provide evidence that there
exists a trade-off between specifying a rich enough hypothesis space and a hypothesis space that is
too general for the problem setting. For 4 layers, the hypothesis space is too general to learn how
to behave optimally given the number of minimisation steps whereas for 1 layer, the agent cannot
represent aleatoric uncertainty sufficiently to learn a policy that is useful for the environment. This
ablation also supports our central claim that aleatoric uncertainty cannot be neglected in model-free
Bayesian approaches.

Incorporation of Prior Knowledge Finally, we investigate how our prior training regime affects
the performance of BEN, varying the number of prior gradient training steps according to Algorithm 2.
Results are plotted in Appendix E.7. A key motivation for taking a Bayesian approach to RL is the
ability to formally exploit prior knowledge. We use this ablation to demonstrate how knowledge
provided by simple simulations can be incorporated into BEN’s pre-training regime. As we decrease
the number of prior pretraining MSBBE minimisation steps, we see that performance degrades in
the zero-shot settling as expected. Moreover, this ablation shows that a relatively few number of
pre-training steps are needed to achieve impressive performance once the agent is deployed in an
unknown MDP, supporting our central claim that BEN is computationally efficient.
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