
Understanding Protein-DNA Interactions by Paying
Attention to Protein and Genomics Foundation Models

Dhruva Abhijit Rajwade1 Erica Wang2 Aryan Satpathy1 Alexander Brace3, 4

Hongyu Guo5 Arvind Ramanathan3, 4 Shengchao Liu2, 6 Anima Anandkumar2 ∗

Abstract

Protein-nucleic acid (NA) interactions are key in controlling gene regulation. There
lies a strong motivation in understanding these interactions, with a goal of engineer-
ing these interactions to solve biological problems. Current methods to quantify
protein-nucleic acids are mainly experimental and require much time and money.
To mitigate this, Deep learning methods have recently been applied to predict
Protein-DNA contacts. Although promising, these methods are computationally
expensive and face challenges in accuracy. To address these challenges, we pro-
pose Seq2Contact, a novel method to predict the protein-NA binding at a single
nucleotide (DNA) and single amino acid (Protein) level. Seq2Contact is built on
protein and DNA foundation models to obtain nucleotide and amino acid-specific
embeddings and then introduces a cross-attention module to obtain the binding
contact maps. We employ a sequence-similarity based clustering method to split
the train-test data and empirically illustrate that Seq2Contact can achieve state-
of-the-art performance, beating existing baselines by almost 20% (F1-Score) for
Protein-DNA binding prediction. Our method is computationally more efficient,
with up to 80% less memory cost and more than 90% less inference time. Code is
available at https://github.com/DhruvaRajwade/Seq2Contact.

1 Introduction

Deep Learning has seen pivotal advances in the field of Structural Biology with the advent of
AlphaFold2 (Jumper et al. (2021)) and RoseTTAFold (Baek et al. (2021)), marking never-seen-before
progress in the task of tertiary protein structure prediction. More recently, RoseTTAFoldNA (RF2NA)
(Baek et al. (2023)) and AlphaFold3(Abramson et al. (2024)) were released, which now support
predicting 3D Structures for Protein-Nucleic acid complexes as well. However, these models require
a large amount of computational resources for inference 2, while also facing overfitting and structure
memorization issues (Chakravarty et al. (2024)).

Protein-nucleic acid (NA) interactions are crucial in many essential biological processes, including
gene regulation, transcription, translation, and recombination. These interactions also hold significant
potential for therapeutic applications (Bogdanove et al. (2018)). However, current methods for
quantifying protein-NA interactions are predominantly experimental, requiring substantial time and
resources. While models like RF2NA and AlphaFold3 can predict the 3D structures of protein-NA
complexes, they often fall short in accurately modeling interactions at the resolution of individual
amino acids and nucleotides, which is an important aspect for fully understanding these interactions.

∗1Indian Institute of Technology Kharagpur, 2Caltech, 3University of Chicago, 4Argonne National Laboratory
5NRC Canada, 6UC Berkeley

2(RF2NA requires around 500GB of storage just for inference as they do MSAs on locally hosted databases,
while AlphaFold3 is not open-source, also uses MSAs in its pipeline and has a job limit of 20 jobs per day)

Foundation Models for Science Workshop,38th Conference on Neural Information Processing Systems (NeurIPS
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Figure 1: Overview of Seq2Contact: Protein and NA sequences are passed through FMs to get
embeddings, which the Cross-Attention module uses to predict binding probabilities for each pair
(amino-acid, nucleotide). 3D Structures are used to generate ground truth contact maps, which are
compared with the predictions through a cross-entropy loss, and the whole ensemble (Cross-Attention
Module + FMs) is backpropagated.

Our contributions: To address these challenges, we present Seq2Contact, a method for predicting
protein-DNA binding at a single amino acid and single nucleotide level, exploiting the sequence data
of the complexes while using the structural information purely as supervision. We leverage some
recent advancements in the field of genomics and protein foundation models (FMs). We categorize
these as FMs following Bommasani et al. (2021), who define FMs as models trained on a broad range
of data, which can be applied to a wide range of downstream tasks. We use ESM2 (Lin et al. (2023))
and GPN (Benegas et al. (2023)) for this work, which are FMs for the Protein and DNA modalities,
respectively. These FMs are trained on millions of sequences using a masked language modeling
paradigm and have been demonstrated to capture information about the secondary structure and
tertiary structure (Lin et al. (2023)). We exploit this fact and place embeddings produced from these
models under a binding lens, which is a Cross-Attention module that predicts the binding probability
of every pair of amino acids and nucleotides as a contact map. We partially finetune the FMs (Sec.
3.4) along with the training of our Cross-Attention module (Sec. 3.3). Seq2Contact requires just
sequences during inference to obtain binding contact maps and takes only 1.2 GB of GPU memory
and 50 seconds for inference (Sec. 4.4.1). Seq2Contact achieves state-of-the-art performance with a
PR-AUC of 0.3372 and an F1 score of 0.3445 (Table 1). It surpasses existing methods not only in
terms of inference time and memory efficiency but also in the quality of its predictions.

2 Related Work

2.1 Protein and Genomics Language Models

Protein Language Models: Protein language models have been developed and used for various down-
stream applications, including structure design, protein function prediction, and post-translational
regulation identification, and can be trained by many sequence-modeling methods. Alley et al. (2019)
use RNNs for unsupervised representation learning of protein sequences. ESM2 (Lin et al. (2023))
and ProteinBERT (Brandes et al. (2022)) are examples of transformer-based models trained on a
masked language modeling (MLM) loss by filling in missing amino acids in protein sequences. The
ESM2 model can learn dependencies among the amino acids and other biological information. With
GPT-style architectures, Ferruz et al. (2022) and Madani et al. (2023) use language modeling for the
generative design of protein sequences.
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Rich textual data on protein functional description also exists, which can be incorporated to support
more diverse tasks. ProteinDT Liu et al. (2023b) is built on ProtTrans Elnaggar et al. (2021), first
utilizing such a free-text format for protein design. ChatDrug Liu et al. (2024) utilizes the ChatGPT
as the core agent for protein optimization. The most recent work is ESM3 Hayes et al. (2024). It
incorporates all the modalities of data (sequence, structure, and textual description) for protein design
with a wet lab verification.

Genomics Language Models: Genomics language models operate on DNA sequences and utilize
MLM for a next token prediction task. However, there is a lot of freedom in choosing a token size
as a K-mer (K nucleotides are assigned to a single token). GPN (Benegas et al. (2023)) is a model
trained through an MLM task of predicting masked nucleotides (k=1) given a genomic context.
GPN achieves SOTA performance on prediction of genome-wide variant effects and is a critical
development in the prediction of genome-wide variant effects given a DNA sequence. Compared
to GPN, which focuses on DNA sequences, Evo (Nguyen et al. (2024)) is a multi-modal model
trained to generate DNA sequences, aiming to learn the relationships between and functions of
DNA, RNA and proteins encoded in a genome. Ji et al. (2021), Dalla-Torre et al. (2023), Tomaz da
Silva et al. (2024), Hwang et al. (2024), and Sanabria et al. (2024) are some recent works utilizing
DNA language models for various downstream applications using genome annotation, understanding
protein co-regulation and discovering genomic functional elements. Proteins are encoded by codons,
which are specific sequences of 3 nucleotides that code for (produce) a specific amino acid. GenSLM
(Zvyagin et al. (2023)) exploits this fact and uses a codon-level tokenization scheme (k=3) to quickly
and accurately identify variants of SARS-CoV-2. Outeiral & Deane (2024) provides another example
of a codon-based language model, which outperforms amino-acid-based models on downstream tasks
for the protein modality.

2.2 Protein-NA Contact Prediction

To study Protein-NA interactions, a large focus has been on identifying DNA-binding proteins (DBP)
given a protein sequence or structure. DeepDBP-ANN and DeepDBP-CNN (Shadab et al. (2020)) are
two deep learning approaches using a traditional neural network and a convolutional neural network
to identify DPBs given a protein sequence. Protein structures often offer a more comprehensive
understanding of the protein’s characteristics and may provide better results. Graphsite (Yuan
et al. (2022)) implements a graph neural network combined with AlphaFold2 predicted structures
to perform protein-DNA binding site prediction. PNABind (Sagendorf et al. (2024)) similarly
incorporates a graph neural network that encodes spatial representations of physicochemical and
geometric properties of the protein’s surface to predict its binding function. DeepPBS (Mitra et al.
(2024)) is a geometric deep learning model that captures physicochemical and geometric contexts of
protein–DNA interactions to output a position weight matrix (PWM) that predicts binding specificity.
DeepPBS is applied to both experimental and predicted structures (such as from AlphaFold2, etc.)
and serves as a fundamentally new approach for protein-binding specificity. Alphafold3 (Abramson
et al. (2024)) and RF2NA (Baek et al. (2023)) map Protein and NA sequences to 3D structures from
which contacts can be inferred. FAFormer (Huang et al. (2024)) exploits the geometry of 3D complex
structures by coupling Frame Averaging with a SE(3) equivariant transformer model to directly
predict contact maps.

3 Method

In this section, we describe our problem statement and end-to-end method for Protein-DNA contact
map prediction, as depicted in Figure 1.

3.1 Problem Formulation

For a given Protein sequence P of length Lp and Nucleic Acid sequence N of length Ln, our goal is
to predict binding, same as a contact map C ∈ BLp×Ln such that

C(i, j) =
{
1 if the ith amino acid and jth nucleotide are in contact,
0 if the ith amino acid and jth nucleotide are not in contact.
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Given a dataset D = {x1, . . . , x|D|} containing triplets xi = (Pi,N i, Ci), we first generate sequence-
level embeddings for P and N , which is then passed into our model M to predict the contact
probability Ĉ = p(C = 1|P,N ) containing values between [0, 1] (therefore representing binding in a
continuous value).

3.2 Contact Map Generation from 3D Structures

We start by collecting all protein-NA complex structures available on the PDB (Berman et al. (2003))
and the NAKB (Lawson et al. (2023)) databases. Similar to Huang et al. (2024), given any Protein-NA
complex structure, we represent all amino acids and all nucleotides as points in 3D space, based
on the XY Z coordinates of the Cα and C ′

4 carbon atoms, respectively. We calculate Euclidean
distances for all pairs of points (Pi, Pj) for all i, j ∈ [Lp, Ln] and define a threshold distance 3 of
6Å to classify all pairs as binding or non-binding. This gives us a binary contact map C ∈ BLp×Ln

with values 1 (binding) or 0 (non-binding). We use these contact maps as supervision for training our
Cross-Attention module (Sec. 3.3).

3.3 Cross-Attention Module

We start by generating sequence-level embeddings for protein (eip|i=1,...Lp
) and NA (ejn|j=1,...Ln

).
We use Protein as the query and NA as the key in our cross-attention module and project both
embeddings to a common embedding dimension d using the projectors Wq ∈ Rd×dp and Wk ∈
Kd×dn to get q and k. The Attention map A (of shape (Lp, Ln)) is then obtained by multiplying
query and key matrices.

qi = Wqe
i
p kj = Wke

j
n

Aij =
qi · kj

√
d

Instead of performing a softmax on A to get the attention scores, we apply sigmoid on A to get
probabilities of contact Ĉ = p(C = 1|N ,P) (or binding strength) between [0, 1]. Since it is a Binary
Classification problem, we optimize the weighted binary cross-entropy loss Lbce to train our model.

Lij = − 1

wc + 1

[
wcCij · logĈij + (1− Cij) · log(1− Ĉij)

]
Lbce = −mean(L)

where wc is a hyperparameter that accounts for class imbalance.

In addition to contact map prediction, using cross-attention to model binding makes it possible to
generate binding-aware joint embedding (e ∈ RLp×do) that can be used for downstream tasks such
as 3D complex structure decoding. Consider a value matrix v ∈ RLn×do , obtained by projecting NA
embeddings using a projection matrix Wv ∈ Rdo×dn .

vj = Wve
j
n ei = softmax(Ai)v

3.4 Finetuning Protein and NA foundation models

We use ESM2 (Lin et al. (2023)) and GPN (Benegas et al. (2023))foundation models for our work to
generate sequence-level representations of Protein and DNA, respectively, which are used as input to
the Cross Attention module. However, these raw embeddings are unsuitable for our objective (Table
2) as they do not embed any information regarding the binding of protein and NA.

For downstream tasks using pre-trained protein language models, it has been shown (Valeriani et al.
(2024)), Li et al. (2022)) that the last layer representations of pre-trained models might not be optimal.
Recently, Schmirler et al. (2024) showed that finetuning Protein language models for residue-specific
tasks (including secondary structure and disorder prediction) is generally beneficial. We finetune
ESM2 and GPN by optimizing their last layers with a small learning rate (compared to the Cross

3Our baselines (AlphaFold3 (Abramson et al. (2024)), RF2NA (Baek et al. (2023)) and FAFormer (Huang
et al. (2024)) ) use threshold distances of 5,7 and 6 Å respectively
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Table 1: Comparison of our method and baselines based on F1, PR-AUC, and MCC
Method F1 PR-AUC MCC
Seq2Contact (Ours) 0.3445 0.3372 0.3638
AlphaFold3 0.1615 0.1612 0.1627
RF2NA∗ 0.0850 0.1015 -
FAFormer∗ 0.1457 0.1279 -
Random 0.0058 0.0094 0.0012

∗ denotes that the values have not been reproduced and are taken from Huang et al. (2024)

Table 2: Metrics for Seq2Contact Under Different Gradient Configurations
Method F1 PR-AUC MCC Loss
Both fine-tuned 0.3445 0.3372 0.3638 .1697
ESM2 frozen | GPN fine-tuned 0.1339 0.1021 0.1407 0.2076
ESM2 fine-tuned | GPN frozen 0.2326 0.2064 0.2549 0.1708
Both frozen 0.0979 0.0723 0.1022 0.2032

Attention module) along with the Cross Attention module and notice a significant improvement in
performance (Table 2). Finetuning encourages the foundation models to embed binding information
by adding prior to the interaction information of individual nucleotides and amino acids.

4 Experiments

We first introduce evaluation metrics. Although AUROC (area under the receiver operating charac-
teristic curve) is commonly used for classification, it is unsuitable for class-imbalanced problems.
This is because the number of binding contacts is much less than that of binding contacs, resulting
in a significantly low false positive rate (FPR) in this scenario. We use the PR-AUC metric, as it
is particularly valuable in imbalanced datasets because it focuses on the model’s performance in
predicting the minority class, without being influenced by the abundance of the majority class. We
also use F1-score and Matthew’s correlation coefficient as metrics, and equations for all metrics are
provided in appendix E

4.1 Baselines

To compare the efficacy of Seq2Contact, we use AlphaFold3 (Abramson et al. (2024)), RF2NA (Baek
et al. (2023)), FAFormer (Huang et al. (2024)), and a random baseline (appendix C) as a comparison
for the DNA-Protein contact prediction task. For AlphaFold3, we randomly choose 60 structures
from the AlphaFold3 evaluation set, while for FAFormer and RF2NA we report metrics from Huang
et al. (2024)4. For the random baseline, we sample contact maps randomly based on the unconditional
Bernoulli distribution of binding.

4.2 Dataset Details

Table 3: Summary Dataset Statistics
Total Structures Train set Eval Set ratio(binding/non-binding)

4021 3272 749 0.0035

We started with all available structures of Protein-DNA complexes until 12-01-2024, downloaded
from the Nucleic Acid Knowledgebase (Lawson et al. (2023)). Similar to RF2NA, we do not include
structures solved using NMR spectroscopy and also filter off structures with a resolution higher
in magnitude than 4.0 Å. We also filter off DNA sequences that are less than 5 or more than 100

4Code and dataset details are unavailable for FAFormer, and they provide metrics for RF2NA as their baseline
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(a) PDB: 8ICH

(b) PDB: 4TUR

(c) PDB: 8E4H

Figure 2: Contact maps (Ground-Truth (GT), Overlay of GT and Prediction (Pred), and Pred ) shown
for three complexes. Purple indicates no contact, and yellow indicates contact. In the overlays, black
indicates a match, red indicates a Pred mismatch and blue indicates a GT mismatch

nucleotides in length and protein sequences that are more than 1000 amino acids in length. Our
dataset statistics are summarized in Table 3. We split our protein-NA complexes to ensure that no
DNA sequence in the training or evaluation datasets shares over 30% sequence similarity. We provide
additional details on data processing in appendix B.

4.3 Experimental Details

For all experiments, we use a single RTX 4090 GPU which has 24 GB of memory, along with an
AMD Ryzen 9 7900X 12-Core Processor and 64 GB of memory. We use the 8 Million parameter
variant of ESM2 (which consists of 6 Transformer layers), and the 23 Million parameter variant of
the GPN FM (which consists of 24 Transformer layers). For this work, we finetune the last layers
of either of the models. We would like to note that we did not use any hyperparameter tuning at all,
nor did we use the most expressive version of the ESM2 family (with 15 Billion parameters and 48
Transformer layers). Our reasoning is two-fold; firstly, in a low-data problem setting like ours, more
parameters do not always lead to the best results and may cause overfitting. Second, just making the
trainable part of our pipeline deeper increases the risk of our model memorizing information, which
is not easy to detect and mitigate. (Chakravarty et al. (2024) recently showed that some AlphaFold2’s
better predictions are a result of memorization of training data).

4.4 Results

We present results for the DNA-Protein Contact Prediction Task in Table 1. We see that Seq2Contact
outperforms all the baselines, and achieves state-of-the-art metrics. To gain further insight into the
influence of the Protein and DNA FMs in our task, we conduct further experiments, where we freeze
either FM, freeze neither FM and freeze both FMs. We show the results for this analysis in Table 2,
and show some good model predictions in Figure 2. We see that both the Protein and DNA FM play
important roles in the binding prediction, and fine-tuning both FMs helps their representation spaces
better align with the binding prediction task (Table 2).

4.4.1 Memory and Inference Time Efficiency Comparison

We tracked inference time and GPU utilization for Seq2Contact and found out that our method takes
less than 1.2 GB of cumulative GPU memory (for our entire evaluation dataset of 749 sequence
pairs), and is able to infer a single contact map in less than 0.5 seconds (taking a total of 50 seconds
for the 749 sequence pairs in our evaluation dataset). As a comparison, we tested inference on
the RF2NA pipeline, after downloading the sequence databases required to do so (around 500 GB
when zipped). We chose a single protein-DNA sequence pair of length 360 amino acids and 60
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(a) PDB: 8ICH

(b) PDB: 4TUR

(c) PDB: 8E4H

Figure 3: Poor Predictions: Contact maps (Ground-Truth (GT), Overlay of GT and Prediction (Pred),
and Pred ) shown for three complexes. Purple indicates no contact, and yellow indicates contact.
In the overlays, black indicates a match, red indicates a Pred mismatch and blue indicates a GT
mismatch

nucleotides (close to the mean sequence lengths in our evaluation dataset). For this single sequence
pair, RF2NA took around 4 minutes for the MSA, and a further 1 minute and 8 GB of GPU memory
for structure generation. This was expected since RF2NA is a structure prediction method with a lot
more modules, layers, and parameters than our model. For AlphaFold3, although the code is not
open-source, they report in their work that they use 16 A100 GPUs (which sums up to 1280 GB of
total GPU memory) for inference, and for a single complex of token length 1024, it takes 22 seconds
for structure prediction. For FAFormer, since the code is not public we cannot quantitatively compare
memory usage and inference times, which is one of our goals for the future.

5 Discussion and Future Work

Seq2Contact achieves State-of-the-art performance on the DNA-Protein contact prediction task,
as displayed in Table 1. Our method effectively leverages the highly informative single-element
embeddings that ESM2 and GPN provide and also captures global correlations between each element
and the rest of the complex through Cross-Attention. Finetuning the FMs along with the Cross-
Attention module proves highly beneficial in overall performance as shown in Table 2, and also
following the findings of Schmirler et al. (2024). Seq2Contact requires only sequence data for
inference and is fast and computationally inexpensive as displayed in Sec. 4.4.1. There are many
exciting future directions for this work. The value vector, which is the output of the Cross-Attention
module (Figure 1), is a binding-aware joint embedding containing protein and NA information. One
can use this joint-embedding space for many downstream tasks including structure prediction or
sequence generation similar to ESMFold (Lin et al. (2023)). However, ESM2 (used by ESMFold) is
not generative, and for de novo structure prediction applications, using ESM3 (Hayes et al. (2024))
would be much more useful. We are particularly interested in the conditional generation of DNA
sequences given a protein sequence and a contact map, as this would allow us to design binding DNA
sequences specific to a target protein, along with controlling which motifs in the protein the generated
DNA sequence binds to.

6 Challenges and Limitations

In Figure 3 we show some results of Seq2Contact that fail to accurately predict contact maps. We
observe that the model can learn binding with relatively high specificity along the protein axis. This
observation matches closely with Biological evidence that protein binding is less specific and more
general than DNA binding, and hence our model is able to learn binding from a protein sequence
perspective quite well as compared to DNA.

7



Why did we use the GPN model?: There are many DNA language models or FMs available, with
EVO (Nguyen et al. (2024)) and GenSLM (Zvyagin et al. (2023)) being some highly expressive
models in our knowledge. However, GenSLM produces codon-level representations, meaning we
cannot learn nucleotide-specific embeddings from GenSLM. EVO produces embeddings specific to
individual nucleotides but has an embedding dimension of 4096 and consists of 7 Billion parameters,
making it infeasible to fine-tune given the scarcity of available data. Hence we use GPN, which
has an embedding dimension of 512 and is feasible to partially finetune in parallel with our protein
language model.

A big challenge in learning contacts from 3D structures is that the present database of 3D structures
does not simply capture all of the variances of binding interactions in nature, and we cannot accurately
measure how good is the present database with respect to the heterogeneity of interactions. This
means there are limitations on how generalizable any model trained on this data might be. For RNA-
Protein data, initial results indicate that the sparsity of contact maps is making learning meaningful
contact-aware representations quite difficult, as RNAs are usually shorter than DNA, and we only
have about 1000 structures of Protein-RNA complexes available post-filtering. One potential method
to handle this is to inject more physics priors into the modeling, i.e., the SE(3)-equivariant geometric
models over proteins (Liu et al., 2023a), and we would like to leave this for our future exploration.
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A Biological Preliminaries

Protein-Nucleic acid (NA) interactions play a key role in controlling gene regulation and, hence,
life itself. Structural information on these interactions provides vital information on the nature and
consequences of these interactions. Proteins are bio-polymeric compounds that are composed of an
array of 20 possible amino acids. These amino acids, in a specific order, form the sequence of the
protein, but proteins, in reality, exist as a 3D-shaped folded version of the sequence called the tertiary
structure. NAs (DNA and RNA) can be annotated similarly but are composed of combinations of
four possible nucleotides ([A, T, C, G] for DNA and [A, U, C, G] for RNA).

Protein-NA interactions are mainly of two types (Ollis & White (1987)): non-specific interactions
where a positively charged amino acid is attracted to a negatively charged phosphate moiety on
a nucleotide or specific interactions where specific patterns of nucleotides are recognized by sub-
structural elements present in the protein (for e.g., Transcription Factors). These interactions are
usually specific to a given DNA sequence, but proteins, on the other hand, display both specific and
non-specific interactions (one protein may bind to more than one specific sequence of DNA).

Experimental Methods for mapping 3D Complex Structures: For a biological sample of a protein-
NA complex, there are currently multiple experimental methods to obtain the tertiary structure
(Szpotkowski et al. (2023)), including NMR-Spectroscopy, X-ray crystallography, and Cryo-EM
microscopy. 3D structures of protein-NA complexes are deposited and are freely available on the
Protein Data Bank (Berman et al. (2003)) database. However, isolating protein-NA complexes and
solving structures experimentally is a difficult, expensive, and time-consuming task. Hence, there are
very less Protein-NA structures available today, as compared to just Proteins, or just NAs. Similarly,
a wide range of methods have been developed to isolate Protein and NA sequences that interact
(Stormo & Zhao (2010), Ramanathan et al. (2019)), but these methods are again expensive, and often
a bit noisy for highly accurate inference (Chen et al. (2019)).

Experimental Methods for quantifying Protein-NA interactions: Conventional methods of Protein-
DNA binding investigation are performed in laboratory settings and include Electrophoretic Mobility
Shift Assay, Chromatin Immuno-precipitation, SELEX (Systematic Evolution of Ligands by Expo-
nential Enrichment), and more. As with experimentally solving protein-NA 3D structures, these
methods are time-intensive and expensive, motivating a scalable computational approach.

B Dataset Preparation

This section provides details of our data preparation scheme for the contact map prediction task.
Figure 4 ((a) and (b)) shows the distribution of lengths of Proteins and DNA in our data. We apply
sequence-similarity-based clustering for our DNA sequences using Steinegger & Söding (2017). We
set a threshold of 30% similarity, assigning to the same cluster all possible sequence pairs in our
dataset that share sequence similarity more than 30%. We choose to apply clustering based on DNA
sequences as DNA generally binds to proteins with high specificity. In contrast, proteins can display
both specificity and non-specificity in their binding mode (Ollis & White (1987)). We show the
frequency statistics of our data’s Protein-sequence and DNA-sequence clustering in Figure 4 ((c) and
(d)) (where 30% similarity is set as the threshold for both).

To create our train-test splits, we randomly sample clusters from our dataset till we get to 80% of
the size of our dataset. We assign the remaining clusters as our validation set. This setup ensures
that our model does not see any similar sequences (preventing data leakage). Also, it allows us to
gauge model generalization because the evaluation set clusters are completely independent of the
training set. For structures with multiple chains, we simply concatenate all chain sequences together,
making our approach agnostic to the number of chains in either the Protein or the corresponding
DNA structure.

C Random Basline

Let us assume we have D complex structures, each with associated contact map information. For the
i-th complex, the contact map is denoted as Ci ∈ BLp(i)×Ln(i) , where Lp(i) and Ln(i) are the lengths
of the protein and nucleic acid sequences, respectively, and:
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(a) (b)

(c) (d)

Figure 4: (a): DNA sequence similarity-based clustering, (b): Protein sequence similarity-based
clustering. We see the DNA-based clustering to be more diverse than Protein-based clustering. (c):
Histogram of DNA sequence lengths in our final dataset (Mean sequence length is 34.49 nucleotides),
(d): Histogram of Protein sequence lengths in our final dataset (Mean sequence length is 389 amino
acids)

Table 4: Relevant hyperparameters
Hyperparameter Value
d (Cross-Attention) 32
dk (from ESM2) 320
dq (from GPN) 512
Learning rate (Cross-Attention) 1× 10−5

Learning rate (ESM and GPN) 1× 10−6

Loss weight 20
Batch size 12

Ci ∈ {0, 1}Lp(i)×Ln(i) ,∀i = 1, 2, . . . ,D

Given an unknown sequence dataset D′ with protein and nucleic acid sequence pairs (P,N ), where
Lp(i) and Ln(i) ∀i ∈ D′ are the lengths of the protein and nucleic acid sequences, respectively, and
for which the contact map is unknown, our goal is to generate the contact maps Ci ∀i ∈ D′ using the
prior information from the D known contact maps without any parametrization or learning.
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Since the classification problem of Protein-NA binding has a high class imbalance (sparse contacts),
sampling contacts as 0 and 1 with equal probability would make a poor baseline. To this end, sample
contacts from a Bernoulli distribution, considering class imbalance.

We define n as the total number of contacts across all D contact maps, expressed as follows:

n =

D∑
i=1

Lp(i)∑
a=1

Ln(i)∑
b=1

1{Ci(a, b) = 1}

Where 1{·} is the indicator function that is 1 for contacts and 0 otherwise.

Next, we calculate the total number of elements across all contact maps:

Ntotal =

D∑
i=1

Lp(i) × Ln(i)

The probability of success, denoted as p, is then the ratio of the total number of contacts to the total
number of elements:

p =
n

Ntotal

This probability p is used to define a Bernoulli distribution B(p) that models our prior as a Bernoulli
process. To generate the target contact map Ci ∀i ∈ D′, we sample each element Ci(a, b) from B:

Ci(a, b) ∼ B(p), for a = 1, 2, . . . , Lp(i) and b = 1, 2, . . . , Ln(i)

This ensures that the values in Ci are independent and identically distributed (i.i.d.) according to our
prior, which is a fundamental property of the Bernoulli process.

D Additional Experimental Details

Here, we provide our experimental details and related hyperparameters. We train Seq2Contact for
800 epochs and use the Adam optimizer (Kingma & Ba (2014)). We use a split of [80:20] to split our
dataset into train and validation sets based on sequence-similarity clustering as described in Appendix
B. We use weighted cross-entropy as our loss function and describe all relevant hyperparameters in
Table 4

E Metrics

In this section, we describe the key evaluation metrics used to assess the performance of our binding
prediction task, which is a highly class-imbalanced problem.

Precision and Recall Area Under the Curve (PR-AUC)

Precision (P) and Recall (R) are fundamental metrics used to evaluate the performance of a binary
classifier:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where:

14



• TP denotes the number of true positives,
• FP denotes the number of false positives,
• FN denotes the number of false negatives.

The PR curve is plotted with Precision on the Y-axis and Recall on the X-axis. We define PR-AUC as
the area under this curve.

F1 Score

The F1 score is the harmonic mean of Precision and Recall, providing a balance between these two
metrics. It is defined as:

F1 = 2× Precision × Recall
Precision + Recall

(3)

Matthews Correlation Coefficient (MCC)

The Matthews Correlation Coefficient (MCC) is a measure of the quality of binary classifications,
taking into account the four quadrants of the confusion matrix: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). MCC is defined as:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

where:

• TP denotes the number of true positives,
• TN denotes the number of true negatives,
• FP denotes the number of false positives,
• FN denotes the number of false negatives.

The MCC ranges from −1 to +1, where +1 indicates a perfect prediction, 0 indicates a random
prediction, and −1 indicates a completely incorrect prediction.
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