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Abstract

In production, multi-modal large language
models (MLLMs) are expected to support
multi-turn queries of interchanging image and
text modalitie. However, the current MLLMs
trained with visual-question-answering (VQA)
datasets could suffer from degradation, as VQA
datasets lack the diversity and complexity of
the original text instruction datasets which the
underlying language model had been trained
with. To address this challenging degradation,
we first collect a lightweight (6k entries) VQA
preference dataset where answers were anno-
tated by Gemini for 5 quality metrics in a gran-
ular fashion, and investigate standard Super-
vised Fine-tuning, rejection sampling, Direct
Preference Optimization (DPO), and SteerLM.
Our findings indicate that the with DPO we
are able to surpass instruction-following ca-
pabilities of the language model, achieving a
6.73 score on MT-Bench, compared to Vicuna’s
6.57 and LLaVA’s 5.99 despite small data scale.
This enhancement in textual instruction profi-
ciency correlates with boosted visual instruc-
tion performance (+4.9% on MM-Vet, +6% on
LLaVA-Bench), with minimal alignment tax
on visual knowledge benchmarks compared
to previous RLHF approach. In conclusion,
we propose a distillation-based multi-modal
alignment model with fine-grained annotations
on a small dataset that reconciles the textual
and visual performance of MLLMs, restoring
and boosting language capability after visual
instruction tuning.

1 Introduction

Recent advancements in artificial intelligence have
led to the rise of multi-modal large language mod-
els (MLLMs), which combine textual and visual
interpretation capabilities in a single model (Shen
et al., 2023). However, effectively blending multi-
modality in one system has proven non-trivial. The
integration of diverse data forms often creates in-
ternal representation conflicts, giving rise to the

issue known as "catastrophic forgetting" (Kirk-
patrick et al., 2017). The diversity constraint in
visual question answering (VQA) datasets could
be attributed as a source of the issue. VQA tasks
typically focus on descriptive queries about im-
age contents, whereas textual datasets encompass
a broader range of complex cognitive tasks, in-
cluding reasoning, writing, summarization, and
coding. This discrepancy in dataset complexity
is a key factor contributing to the observed perfor-
mance degradation in MLLMs. Our evaluation of
models such as BLIP-2, InstructBLIP, and LLaVA
against language instruction-following benchmarks
like MT-Bench (Zheng et al., 2023) and AlpacaE-
val (Li et al., 2023b) revealed diminished language
capabilities in comparison to their linguistic back-
bones. For instance, LLaVA, built on the Vicuna-
13b LLM, demonstrated a decline in MT-Bench
performance from 6.57 to 5.92, even underperform-
ing the Vicuna-7B model.

Driven by the limitations observed in distillation-
based instruction tuning, particularly its con-
strained generalizability and the narrow perfor-
mance improvements on tasks outside the training
distribution, this study investigates the efficacy of
distillation-based preference alignment in address-
ing modality conflict in MLLMSs. The decision to
explore this avenue is predicated on the hypothesis
that integrating Al-generated preference data can
provide a more granular and nuanced alignment
with human expectations, potentially mitigating
the adverse effects of modality conflict.

This study rigorously evaluates three baseline
methodologies—Direct Preference Optimization
(DPO), SteerLM, and Rejection Sampling—as po-
tential solutions to utilize the distilled preference
data and enhance the instruction-following capa-
bilities and address the modality conflict inher-
ent in MLLMs. Each of these methods offers a
unique approach to model alignment, from the di-
rect optimization of preferences in DPO to the



conditional supervision in SteerLM and the se-
lective acceptance in Rejection Sampling. Our
empirical analysis reveals that DPO, in particular,
demonstrates a pronounced efficacy in reconcil-
ing the performance disparities observed between
textual and visual modalities. By leveraging a re-
fined preference dataset, fine-tuned with the DPO
objective and supplemented with comprehensive
annotations from advanced Al models, DPO not
only addresses the modality conflict but also signif-
icantly enhances the model’s performance across
a spectrum of benchmarks. The results indicate
that, through the application of DPO, MLLMs can
achieve a more robust alignment with human-like
preferences, thereby mitigating the adverse effects
of catastrophic forgetting and modality conflict,
and elevating the models’ capabilities to a level
that surpasses traditional instruction tuning meth-
ods.

Our main contributions are:

1. Exploration of Modality Degradation: This
work is at the forefront of identifying and ad-
dressing modality degradation in MLLMs, a
phenomenon where visual instruction tuning
detrimentally impacts language instruction ca-
pabilities. Our systematic investigation into
this issue contributes novel insights to the
field, laying the groundwork for further re-
search in mitigating such degradation.

2. Innovative Preference Alignment Method-
ology: We propose a groundbreaking prefer-
ence alignment framework that not only miti-
gates the negative effects of visual instruction
tuning on text-based tasks but also enhances
the MLLM’s performance beyond its original
language model backbone. This method also
demonstrates significant improvements in vi-
sual instruction benchmarks, underscoring the
efficacy of preference alignment in augment-
ing MLLM functionalities.

3. Efficient Data Annotation Scheme: Our
data collection strategy employs a granular
quality metric annotation format, leveraging
cost-effective commercial APIs. This scal-
able approach enables the efficient production
of high-quality datasets, addressing a critical
challenge in MLLM development and facilitat-
ing extensive model training and refinement.

2 Related Work

2.1 MLLMs and Visual Instruction Tuning

Incorporating another modality into large language
models represents a natural evolution for these sys-
tems. Modality expansion can be achieved through
system-level enhancements at inference time, with
approaches such as Mm-react (Yang et al., 2023),
Visual ChatGPT (Wu et al., 2023), and Hugging-
GPT (Shen et al., 2023) enabling the LLM to in-
voke off-the-shelf vision models and APIs. An al-
ternative strand of research involves the training of
end-to-end MLLMs. To avoid the prohibitive costs
associated with pre-training from scratch, these
models often integrate pre-trained vision models
with large language models, applying various de-
grees of modality adaptation. Mini-GPT4 (Gong
et al., 2023) focuses solely on training a linear
projection matrix to connect CLIP-based (Radford
et al., 2021) vision representations with the LLaMA
model (Touvron et al., 2023a); BLIP-2 introduces
a cross-attention module to extract vision tokens
relevant to the query. Both LLaVA (Liu et al.,
2023c) and mPlug-OWL (Ye et al., 2023a) fea-
ture cross-modality connectors between the vision
and language domains, but they also fine-tune the
LLM and vision encoder, respectively. Flamingo
(Alayrac et al., 2022), in contrast, incorporates new
cross-attention layers directly into the LLM.

In the language domain, Wei et al. (2022) dis-
covered that fine-tuning a base LLLM with instruc-
tions described in natural language enhances the
model’s ability to follow those instructions. In
a similar vein, MLLMs are typically fine-tuned
with instructions; Mini-GPT4 (Gong et al., 2023)
utilized template instructions based on image-text
pairs, while InstructBLIP (Dai et al., 2023), Otter
(Li et al., 2023a), and LLaVA (Liu et al., 2023c¢)
employed human-written visual question-answers
or synthetically generated question-answer pairs by
prompting GPT-4 with COCO captions and bound-
ing boxes (Liu et al., 2023c). However, consid-
ering that both LLaVA and Instruct-BLIP utilize
Vicuna (Chiang et al., 2023)—an instruction-tuned
LLaMA—it remains a topic of debate whether their
steps of visual instruction tuning genuinely add to
the model’s instruction-following capabilities or
merely conform to the instruction-following for-
mat used in Vicuna’s training.



2.2 Mitigating Modality Conflict in MLLMs

To preserve the ability to follow language in-
structions, mPLUG-OWL (Ye et al., 2023b)
and LLaVA 1.5 (Liu et al., 2023c) incorporate
language-only instruction data back into their
mixed visual-language instruction datasets, specif-
ically ShareGPT. It is noteworthy that the LLM
backbone of LLaVA 1.5, Vicuna, had been previ-
ously trained on this identical ShareGPT dataset.
Further investigation reveals that, despite the in-
tegrated dataset, LLaVA 1.5 exhibits degradation
in language instruction-following capabilities; the
MT-Bench score for LLaVA-1.5-13b is notably
lower than that for Vicuna-V1.5-7b.

While mPLUG-OWL-2 (Ye et al., 2023b)
presents promising solutions to the challenges of
modality conflict, and has shown superior perfor-
mance on text-based benchmarks, it also intro-
duces increased parameter count and more com-
plex implementation, which poses practical chal-
lenges. Specifically, mPLUG-OWL-2 implements
modality-adaptive modules that include distinct
layer normalization, as well as separate key and
value projection matrices for text and visual to-
kens, whilst maintaining a shared structure for
query projection matrices. The model is fine-tuned
from the non-instruction-tuned LLaMA-2-7B base
model, incorporating 548K textual instruction data
samples from a total of 1.2M, derived from both
SlimOrca (Lian et al., 2023) and ShareGPT. This
approach has enabled mPLUG-OWL-2 to excel in
language and visual-language tasks, outperforming
RLHF-augmented LLaMA-2 Chat on text-centric
evaluations such as MMLU and BBH (Ye et al.,
2023b). However, the introduction of modality-
specific modules has led to an increase in the
model’s parameter count from 7.2 billion to 8.2
billion. Additionally, the separate processing paths
for visual and language tokens have resulted in a
more intricate compute graph, complicating the uti-
lization of fused GPU kernels to achieve efficient
inference. The methodologies discussed so far are
reliant on standard fine-tuning practices, necessi-
tating a significant augmentation of computational
resources to integrate text instruction data effec-
tively, with the aim of resolving the challenges
posed by modality conflict.

2.3 Distillation-based Instruction Tuning

Leveraging the output of large proprietary mod-
els, smaller open-source models such as Vicuna

(Chiang et al., 2023), Alpaca, and more recently
ShareGPT4V (Chen et al., 2023), have been fine-
tuned, although this approach has limitations in
terms of generalization capabilities. Gudibande
et al. (2023) observed that models fine-tuned
through instruction tuning by imitation barely
bridge the performance gap in tasks beyond the
scope of the training data. They contend that im-
itation as a strategy is a false promise, asserting
that only a significant volume of imitation data
or a larger base model can close the disparity be-
tween open and closed-source models (Gudibande
et al., 2023). While recognizing the utility of
the expansive GPT4V dataset like ShareGPT4V
(Chen et al., 2023), it is posited that such scal-
ing of distillation-based instruction tuning primar-
ily extends the model’s competency within the
distribution it was trained on rather than its out-
of-distribution generalizability. Further research
indicated that distillation instruction tuning on a
smaller scale tends to skew the model’s perfor-
mance towards a niche subset and significantly
impair its broader applicability. This was evi-
denced by a baseline experiment in which fine-
tuning LLaVA with a 6k VQA dataset, sourced
from Gemini Pro-generated answers, resulted in
pronounced performance declines across both tex-
tual and visual benchmarks.

2.4 Preference Alignment

The Instruct-GPT series (Ouyang et al., 2022)
has shown that merely employing supervised fine-
tuning (SFT) on Large Language Models (LLMs)
is insufficient for aligning them with human prefer-
ences. The technique of Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al.,
2022) addresses this by constructing a reward
model that encapsulates human preferences and
then applying reinforcement learning to maximize
this reward. The Direct Preference Optimization
(DPO) approach posits that directly tuning the pref-
erence dataset can serve as an effective substitute
for reward modeling, offering the added benefit of
reduced computational complexity. Another novel
method, known as rejection sampling SteerLM,
has recently been identified to achieve performance
akin to RLHF by incorporating human-annotated
quality metrics before generation, serving as a con-
ditional SFT-based strategy for alignment (Dong
et al., 2023). Our experiments with DPO, SteerLM,
and rejection sampling reference the prior work
on LLaVA-RLHF (Sun et al., 2023), using it as a



benchmark for RLHF performance.

2.5 Distilling AI Feedback for Preference
Alignment

In the realm of alignment methods, reliance on
human-annotated preference annotations is com-
mon. While effective on a large scale, this approach
incurs substantial costs and operational complexi-
ties (Touvron et al., 2023b). The effectiveness of
reward models based on pairwise ranking is con-
strained by the inherent subjectivity of human pref-
erences, with LLaMA’s reward model achieving
an accuracy range of 64.3-70.6%, and the LLaVA-
RLHF model reaching 67%. In response to these
limitations, Zephyr (Tunstall et al., 2023) and Ultra-
Feedback (Cui et al., 2023) have utilized preference
annotations distilled from GPT-4 to train models
with 7B parameters, achieving performance levels
comparable to those of 70B parameter models. Mo-
tivated to adapt this distillation-preference align-
ment approach for MLLMs, our work introduces
a nuanced chain-of-thought prompting technique,
coupled with a detailed annotation guide, spanning
five assessment metrics.

3 Method

The focus of this study is to investigate improving
the text instruction following of MLLMs while re-
taining or potentially enhancing their multi-modal
reasoning. For this purpose, we propose to har-
ness alignment methods that utilize self-sampled
responses and preference annotations. Therefore,
Pure Supervised Fine-Tuning (SFT) is deemed un-
suitable and thus excluded from our methodology.

3.1 Data Collection

Sources of Multi-modal Prompts. We have cu-
rated 3,000 samples from SciGraphQA (Li and
Tajbakhsh, 2023) and an equal number from
LRV-Instruct (Liu et al., 2023a) to assemble the
image-text prompts for our multi-modal preference
dataset. The LRV-Instruct dataset is a visual in-
struction dataset aimed at mitigating hallucinations
by incorporating both positive prompts (inquiring
about objects present in the image) and negative
prompts (requesting information about absent ob-
jects) (Liu et al., 2023a). The inclusion of negative
examples encourages the multi-modal LLM to crit-
ically evaluate the prompts and identify instances
where the requested objects are not present. The
LRV-Instruct dataset enhanced its performance in

reducing hallucinations, as evidenced by its appli-
cation in the Pope framework (Liu et al., 2023a).

Granular Annotation: We generate 4 comple-
tions for the dataset above using LL.aVA-1.5-13B
with a temperature of 0.7 and then prompt Gemini-
Vision (Team et al., 2023) with the labeling guide
of HelpSteer gave to Scale Al workers (Wang et al.,
2023), images, questions, and the 4 completions,
obtaining granular annotations for various quality
metrics, including helpfulness, correctness, and co-
herence, providing multifaceted insights into the
model’s outputs. We leveraged Zero-Shot Chain-of
Thought prompting (Kojima et al., 2022) such that
the Gemini gives the reasoning for rating each re-
sponse, an inner calibration monologue, and ratings
as shown in 1. Appendix provides two annotation
examples on the LLaVA-RLHF dataset (Sun et al.,
2023) such that we can visualize how Gemini rea-
sons and rate each metric compared to a binary
crow-sourced worker-provided preference.

We selected Gemini Pro (dated 01/01/2024) for
its performance, cost efficiency, and bias mitigation
(Team et al., 2023). Leading the OpenCompass
multi-modal leaderboard with an average rank of
1.89, outperforming GPT-4V’s 2.89 (ope, 2023),
its generous free tier supports extensive data col-
lection. Crucially, using GPT-4(V) for both bench-
mark judging and data labeling could introduce
bias, potentially skewing our models towards GPT-
4’s preferences. This consideration led us to opt
for Gemini to ensure a more objective evaluation
of our fine-tuning efforts.

3.2 Alignment Methods

Self-sampled SteerLM: SteerLM, a conditional
Supervised Fine-Tuning (SFT) technique, aligns
LLMs by augmenting prompts with a description
of the desired response quality, as introduced by
(Dong et al., 2023). This method conditions SFT
on granular annotation generated by Gemini and
surpasses traditional SFT and alignment strategies.
We construct a conditional prompt template for this
technique by incorporating a conditional prompt
following HelpSteer guidelines. For instance,

Rejection Sampling: Following Constitutional Al
(Bai et al., 2022) and LLaMA-2 (Touvron et al.,
2023b), we adopt a simplified rejection sampling
approach. Specifically, we select the top-scoring re-
sponse from the four completions described above,
based on Gemini’s aggregated scores for helpful-
ness, correctness, and coherence. And we apply
standard SFT based on the selected responses with-



Metric Description

Helpfulness | Measures if the response fully addresses the prompt’s request.

Correctness | Assesses the accuracy and relevance of the information, ensuring it’s free from errors or
misinformation.

Coherence Evaluates the clarity and logical consistency of the response.

Complexity | Looks at the level of sophistication in the language used, from simple to advanced.

Verbosity Considers the brevity or lengthiness of the response in relation to the prompt’s needs.

Table 1: Granular annotation format and labelling guide proposed in HelpSteer (Wang et al., 2023) used in VQA
annotation collection. LLaVA-1.5-13b generates 4 candidates. Using the HelpSteer labeling guide, images, and
questions, Gemini rates each completion with a score of 0-4 in each metric.
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Figure 1: Starting from an SFT-ed checkpoint, we generate 4 completions for a given image-question prompt.
These answers are then presented to Gemini to obtain granular annotations given a labeling guide. We construct a
preference dataset of (image-text prompt, preferred completion) and (image-text prompt, rejected completion). We
benchmarked DPO, Rejection sampling, and SteerLM alignment methods, in addition to a pure SFT baseline using

Gemini provided answer directly

out any additional prompt conditions, following a
straightforward format: (image, prompt, best re-
sponse).

Direct Preference Optimization (DPO): We con-
vert our dataset of granular annotation into a prefer-
ence set by selecting the highest score and the worst
response. Specifically, we generate an aggregated
score per response by summing Helpfulness, and
Correctness. When prompting Gemini for annota-
tions, Gemini reviews four responses and provides
absolute quality metrics, which we converted into
a preference dataset. We form (preferred, rejected)
pairs by selecting the best response and randomly
selecting another from the four responses, with a fil-
ter specifying that the preferred response is at least
2 points lower in summed scores across helpful-
ness, correctness, and coherence than the rejected
response.

SFT from Gemini Responses This is an important
baseline not using self-sampling, but using answers
from Gemini directly for pure SFT. Gemini was
prompted with the questions and images from our
dataset. We gather the answer directly from Gemini

answering the question and use the same hyper-
parameters in SteerLM and Rejection Sampling.

4 Experiments

4.1 Experimental Setup

For training, we utilize Azure Cloud (NC-A100
series) with 4 A100-80G GPUs. In all experiments,
LoRA is employed for parameter-efficient tuning.
For the SFT experiments, including standard SFT
with Gemini responses, rejection sampling, and
self-sampled SteerLM, we adhered to the same hy-
perparameters used in LLaVA-v1.5’s instruction
tuning. In our DPO experiments, we performed a
hyperparameter search based on 1000 samples on
LLaVA Bench, exploring various values for beta
(0.1, 0.2, and 0.3, averaged and non-averaged log
probabilities, and learning rates of 5e-5 and 5e-6.
We pre-computed the log probabilities of the refer-
ence model (LLaVA-v1.5-13b) for our preference
dataset before training. Complete list is provided
in the Appendix.



Table 2: Performance comparison among alignment strategies. The results demonstrate DPO-13B’s superior
performance, particularly in reconciling language capabilities while enhancing visual task performance, validating
the DPO methodology’s efficacy in multi-modal alignment.

Model Name Visual Instruction Benchmark | Visual Multi-Choice Benchmark | Text Instruction Benchmark
MM-Vet LLaVA-bench |PoPe MM-Bench MT-bench AlpacaEval
Vicuna-1.5-13b (Chiang |- - - - 6.57 81.4
et al., 2023)
LLaVA-1.5-13b (Liu|36.3 73.1 0.859 67.4 5.99 79.3
et al., 2023c)
LLaVA-RLHF-13b 37.2 76.8 0.869 60.1 6.18 81.0
(Sun et al., 2023)
Alignment method we benchmarked, finetuning LLaVA-1.5-13b
Standard SFT 36.5 63.7 0.850 65.4 5.01 50.2
SteerLM 352 67.0 0.878 65.1 5.70 68.8
Rejection-sampling 38.0 70.6 0.883 67.6 6.22 74.9
DPO 41.2 79.1 0.870 66.8 6.73 86.4

4.2 Benchmarks

We have the following three sets of benchmarks.

Visual Instruction Benchmarks

* MM-Vet: MM-Vet measures six core visual-
language capabilities across 128 tasks, pro-
viding a comprehensive evaluation of multi-
modal understanding. It blends math, reason-
ing, and visual knowledge. (Yu et al., 2023).

e LLaVA-Bench: LLaVA-Bench (in the wild)
is a dev benchmark for LLaVA comprising
60 tasks, designed to test visual instruction-
following and question-answering capabilities
in natural settings (Liu et al., 2023c).

Visual Multi-Choice Benchmarks

* PoPE: An object hallucination benchmark
with 8,440 samples, aimed at evaluating the
model’s ability to discern and describe visual
content accurately. The multi-modal LLM is
prompted to answer yes or no to objects that
could appear in the images (Li et al., 2023c).

* MM-Bench: Serving as a comprehensive
multi-modal benchmark, MM-Bench is a
multi-choice visual knowledge and reason-
ing benchmark with 4.7K samples (Liu et al.,
20234).

Language Instruction-Following Benchmarks

* MT-Bench: Utilizing LLM to approximate
human preferences with over 80% agreement,
MT-Bench focuses on measuring the helpful-
ness of responses across 160 samples in single-
turn and multi-turn settings. (Zheng et al.,
2023).

* Noisy-image-context MT-Bench: Inspired
by (Zhou et al., 2023b) where the language
commonsense capability of MLLMs was eval-
uated by sending non-informative images in-
cluding the blank and random images to the
Multi-modal LLM to assess their language
commonsense capability, we propose MT-
Bench with non-informative image context
to assess the language instruction-following
capability of MLLM. We evaluate LLaVA,
Blip-2, InstructBLIP. Within the theme of this
paper, we emphasize multi-modal LLM in pro-
duction.

* AlpacaEval: AlpacaEval leveraged GPT-4
to assess the percentage of cases where the
candidate LLM outperforms GPT-3 API (text-
davinci-003) across 160 evaluations (Li et al.,
2023b).

We run benchmark code once on target model,
with greedy decoding unless a benchmark use a
different temperature setting.

4.3 Results

Table 2 illustrates a comparative analysis of var-
ious alignment methods, including RLHF, Stan-
dard SFT, SteerLM, Rejection Sampling, and DPO,
aimed at enhancing the language capabilities of
the LLaVA model that were compromised post-
visual instruction tuning. Vicuna, the base language
model of LLaVA is tested on language tasks. After
visual instruction tuning, LLaVA experiences a de-
cline in language benchmark scores from Vicuna
(from 6.57 to 5.99 on MT-Bench, and from 81.4 to
79.3 on AlpacaEval). However, DPO, among the
alignment strategies on the 5k multi-modal dataset,
not only mitigates the degradation problem but also
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Figure 2: Advances in MT-Bench scores via DPO data
scaling

surpasses Vicuna’s performance on both bench-
marks.

In open-ended visual instruction tasks, DPO sig-
nificantly outperforms the baseline LLaVA and
LLaVA-RLHF models on both the MM-Vet and
LLaVA-bench. These open-ended benchmarks,
structured similarly to MT-Bench where GPT-4
assesses the responses against a gold standard, re-
vealed a relatively high 0.73 Pearson Correlation
between MM-Vet and MT-Bench (n=7, p=0.1).

In visual multi-choice benchmarks, PoPe, which
evaluates for hallucination, and MM-Bench, which
assesses world knowledge and reasoning, rejection
sampling emerged as the most effective method,
whereas DPO showed lesser efficacy. While DPO
improved open-ended benchmarks, it slightly de-
creased LLaVA’s MM-Bench score from 67.4 to
66.8, contrasting with LLaVA-RLHF’s notable
drop from 67.4 to 60.1, indicating a less signifi-
cant alignment tax. Figure 2 illustrates the effect of
scaling the DPO dataset on the MT-Bench scores,
signifying the efficacy of DPO in advancing the
performance of the LLaVA-v1.5-13b model after
visual instruction tuning. The baseline at 0% DPO
data, marked at a score of 5.99, represents the ini-
tial performance of LLaVA-v1.5-13b. As the DPO
dataset’s size increases, a notable rise in MT-Bench
scores is observed, peaking at 6.73 with 100% data
utilization. Remarkably, the performance surpasses
that of the Vicuna-v1.5-13b benchmark using less
than 75% or 4.2K of the DPO data, underlining
DPO’s data efficiency. This data scaling trend em-
phasizes DPO’s potential as an effective alignment
strategy for MLLMs, addressing the challenge of
performance degradation due to visual instruction
tuning.

5 Discussion

The scarcity, high cost, and inconsistency of exist-
ing multi-modal preference datasets present sig-
nificant challenges to model alignment, as evi-
denced by our subjective assessments and objective
evaluations using Gemini. Our manual labeling
of a selected subset from the LLaVA-RLHF hu-
man preference dataset underscored the difficulty
in achieving consensus or identifying clear prefer-
ences, shedding light on the inherent subjectivity
of these datasets. To quantify these observations,
we embarked on a targeted experiment involving
500 samples, wherein Gemini annotated two dis-
tinct responses from the dataset employed in the
LLaVa-RLHF reward model’s data collection (Sun
et al., 2023). This facilitated a direct comparison
between Gemini’s annotations and the human pref-
erences. The correlation heatmap depicted in Fig-
ure 3 reveals a notably weak correlation between
human preferences from LLaVA-RLHF and Gem-
ini scores, with correlation coefficients falling be-
low 0.1. This observation was corroborated by fur-
ther manual inspections, which frequently resulted
in an inability to definitively determine clear pref-
erences. This finding underscores the high subjec-
tivity and individual bias within the LLaVA-RLHF
preference data. Contrarily, the detailed annota-
tion framework employed by Gemini represents a
scalable and more objective method for collecting
preference data, offering a viable solution to the
limitations observed in current datasets.

The superficial alignment hypothesis states that
a model’s knowledge capabilities are largely ac-
quired during its initial pre-training stage (Zhou
et al., 2023a). A corollary of this hypothesis is that
alignment tuning refines the model output genera-
tion with a preferred response format rather than
knowledge acquisition. As a result, models can be
effectively realigned post-visual instruction using
a relatively small set of examples (Kirstain et al.,
2022). This principle applies to MLLMs as well,
which acquire multi-modal knowledge representa-
tion via visual instruction tuning (Liu et al., 2023c¢).
However, existing work mixed large-scale text in-
struction data (518K out of 1.23 million in case of
mPlug-OWL 2, and 40K in case of LLaVA-1.5).
We hypothesize that the data-inefficiency above
is attributed to the underlying alignment strategy
and demonstrate that one would need only a small
alignment dataset so long as a proper alignment
strategy such as DPO is utilized.
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Figure 3: Pearson Correlation Heatmap among the dif-
ference in Gemini-Annotated data attributes and LLaVA-

RLHF human annotated preference (n=500).

Table 3: This benchmarks adds irreverent image in con-
text when benchmarking MT-Bench, testing for robust-
ness in a real-world condition. Vicuna-7B and Vicuna-
13B are as baseline reference.

Model LLM Noisy-image MT-Bench
Vicuna 13B v1.5  Vicuna;sp 6.57
Vicuna 7B v1.5 Vicunar g 6.17
BLIP-2 FlanT5 1.93
InstructBLIP Vicunar g 4.73
LLaVA-v1.5-13b  Vicunaisp 5.92
DPO (ours) Vicunaiszp 6.63

As suggested by Table 2, Direct Preference Opti-
mization (DPO) emerges as a computationally effi-
cient solution for enhancing model performance in
the mixed-modal alignment space. Unlike the mix-
ing text instruction as described above or LLaVA-
RLHF, which used a large 82K dataset and com-
plex training pipeline involving reward modeling
and PPO, DPO achieves significant improvements
in language capabilities with a smaller dataset
and one-stop training setup. A notable advantage
of DPO is its minimal alignment tax, which cur-
tails the degradation of existing knowledge, as ev-
idenced by its performance on benchmarks like
MM-Bench, where DPO shows minimal impact.
This method not only enables effective alignment
of multi-modal models post-visual instruction tun-
ing but also ensures the preservation of model per-
formance. We also note that as 3 showed, our DPO
model is most more robust than other baselines
in a real-world condition where user may have ir-
relevant image in the context. Our methodology
exhibits notable proficiency in value alignment and

data efficiency, yet it is imperative to acknowledge
certain limitations and potential risks. One key
consideration is the scalability of our approach.
While our data scaling analysis suggests signifi-
cant improvements up to a 6K preference dataset,
the full extent of scalability beyond this threshold
remains unexplored. As the foundational open-
sourced models like LLaVA evolve in complexity
and size, the effectiveness of our distillation-based
approach might encounter diminishing returns.
Addressing true human preference accurately is
another pivotal concern. The preference dataset
distilled from artificial annotations may not fully
encapsulate the nuanced spectrum of human val-
ues, raising ethical considerations regarding model
alignment with societal norms and individual ex-
pectations. Moreover, the inherent risks associ-
ated with safety and bias propagation are magnified
when models are fine-tuned on artificially-labeled
data, potentially reinforcing existing prejudices.

6 Conclusion

In this paper, we addressed the performance decline
of the widely-used multi-modal LLM, LLaVA-
1.5, on language instruction-following benchmarks.
We investigated various alignment strategies to en-
hance the model’s language instruction capabilities,
including standard SFT with rejection sampling,
using gold responses from Gemini, SteerLLM, and
DPO. Our comprehensive benchmark evaluations
revealed that DPO stands out as the most effective
method, not only restoring but also surpassing the
language capabilities of LLaVA’s foundational Vi-
cuna model on both MT-Bench and AlpacaEval.
Specifically, LLaVA’s performance on MT-Bench
had dipped from Vicuna’s 6.57 to 5.99, whereas
our DPO model advanced to 6.73. Beyond lan-
guage proficiency, DPO also bolstered performance
on multi-modal benchmarks, enhancing accuracy
by 4.9% on MM-Vet and 6% on LLaVA-Bench.
Remarkably, DPO achieved this with just Sk pref-
erence examples, proving more data-efficient than
other strategies like RLHF, which typically demand
over 80k training examples. Our findings high-
light DPO’s minimal ‘alignment tax,” effectively
boosting one performance area without substan-
tially detracting from another. This aspect is partic-
ularly valuable for practitioners aiming to maintain
the pre-training knowledge throughout multi-modal
alignment.
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Table 4: DPO preference data mixture

Data Type Data Name Size
VQA LRV-Insturct (Liu et al., 2023b) 2562
SciGraphQA (Li and Tajbakhsh, 2023) 2522
Total 5084
Model Data Name Size

Model architecture

Lora Setting

DPO Setting

SFT Setting

Common settings

Pretrained model checkpoint
Language Backbone Architecture
Vision Tower

Multi-modal Adapter

Lora Rank

Lora Alphra

Use Average Log Probablity
Use Fine-grained DPO

Beta

Learning Rate

Gradient Acculumulation Steps
Per device train batch size
Model Max length

Learning Rate

Per device train batch size
Model Max Length
Harwdware

Distributed Learning

Use BF-16

Learning Rate Scheduler
Learning Rate Warm up
Weight Decay

llava-v1.5-13b

LLaMA-13B (finetuned to Vicuna and LLaVa)
openai/clip-vit-large-patch14-336
2-layer Multi-layer perception
128

256

False

False

0.1

5e-5

4

8

300

4e-4

16

2048

4X A100 80G

Zero-3

True

Cosine

0.003

False

Table 5: Model parameters
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Gemini-Annotation example

Question

What aspects of the room might
have artistic or creative signifi-
cance?

gy

What do you see happening in this image?

Response 1

In this image, the room has some
artistic or creative significance due
to the presence of several sculptures
placed on a long wooden table. The
sculptures appear to be made from
various materials, such as stone and
wood. Additionally, the room fea-
tures a chair and a light fixture that
resembles a boot. These elements,
combined with the assortment of
sculptures, give the room an eclec-
tic and artistic atmosphere, suggest-
ing that the space might be used for
displaying art, inspiration, or as a
workspace for an artist or designer.
The presence of the boot-shaped
light also adds a unique and imag-
inative touch to the room’s overall
aesthetic.

The image features a person running along a
beach near the water’s edge. Behind the person,
multiple birds are flying in the sky, creating a
dynamic and lively scene. The man is wearing
a swimsuit and appears to be enjoying his time
at the beach. The birds’ positions vary across
the sky, with some flying closer to the person
and others further away, spreading out across
the background.

Gemini-Rating for Reponse 1

Helpfulness:4, Correctness 4, Co-
herence: 4, Complexity: 3, Ver-
bosity: 3.

Helpfulness:3, Correctness 4, Coherence: 4,
Complexity: 2, Verbose: 2

Response 2

In the room, a collection of wooden
shoes on a long table next to a chair
can be considered as having artis-
tic or creative significance. The
display of shoes may represent a
unique form of artistic expression
or a design concept. Additionally,
the white-walled setting with a dim
light allows for a minimalist and vi-
sually striking atmosphere that en-
hances the shoes’ display and cre-
ates a sense of depth and artistic in-
terest in the space.

The image captures a beach scene where a man
is running along the shore near the water, with
waves crashing behind him. The man is in mo-
tion, as he is probably enjoying an invigorating
run on the beach. In the sky above, several
birds fly in a line, adding a sense of movement
and liveliness to the scene. The birds’ positions
vary, with some being closer to the water and
others higher up in the sky. The overall atmo-
sphere of the image suggests a pleasant, active
day at the beach.

Gemini-Rating for Reponse 2

Helpfulness:3, Correctness 3, Co-
herence: 3, Complexity: 2, Ver-
bosity: 3.

Helpfulness:4, Correctness 4, Coherence: 4,
Complexity: 3, Verbosity: 3.

Table 6: Examples of Annotation
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Gemini-Annotation example

Gemini-Reasoning Both responses are relevant to the
question and provide good descrip-
tions of the room. However, the first
response is more detailed and pro-
vides more analysis of the potential
artistic or creative significance of
the room. I will give the first re-
sponse a slightly higher rating for
Helpfulness, Correctness, and Com-
plexity.

I think that Response 2 is the best response be-
cause it is the most detailed, engaging, and ac-
curate. It provides the most information about
the image and uses the most vivid language.
Response 1 is also good, but it is not as de-
tailed or engaging as Response 2.

LLaVA-RLHF rated preference Reponse 2

Response 2

Our preference Response 1

Response 2

Table 6: Examples of Annotation (continued)
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