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Abstract

In production, multi-modal large language001
models (MLLMs) are expected to support002
multi-turn queries of interchanging image and003
text modalitie. However, the current MLLMs004
trained with visual-question-answering (VQA)005
datasets could suffer from degradation, as VQA006
datasets lack the diversity and complexity of007
the original text instruction datasets which the008
underlying language model had been trained009
with. To address this challenging degradation,010
we first collect a lightweight (6k entries) VQA011
preference dataset where answers were anno-012
tated by Gemini for 5 quality metrics in a gran-013
ular fashion, and investigate standard Super-014
vised Fine-tuning, rejection sampling, Direct015
Preference Optimization (DPO), and SteerLM.016
Our findings indicate that the with DPO we017
are able to surpass instruction-following ca-018
pabilities of the language model, achieving a019
6.73 score on MT-Bench, compared to Vicuna’s020
6.57 and LLaVA’s 5.99 despite small data scale.021
This enhancement in textual instruction profi-022
ciency correlates with boosted visual instruc-023
tion performance (+4.9% on MM-Vet, +6% on024
LLaVA-Bench), with minimal alignment tax025
on visual knowledge benchmarks compared026
to previous RLHF approach. In conclusion,027
we propose a distillation-based multi-modal028
alignment model with fine-grained annotations029
on a small dataset that reconciles the textual030
and visual performance of MLLMs, restoring031
and boosting language capability after visual032
instruction tuning.033

1 Introduction034

Recent advancements in artificial intelligence have035

led to the rise of multi-modal large language mod-036

els (MLLMs), which combine textual and visual037

interpretation capabilities in a single model (Shen038

et al., 2023). However, effectively blending multi-039

modality in one system has proven non-trivial. The040

integration of diverse data forms often creates in-041

ternal representation conflicts, giving rise to the042

issue known as "catastrophic forgetting" (Kirk- 043

patrick et al., 2017). The diversity constraint in 044

visual question answering (VQA) datasets could 045

be attributed as a source of the issue. VQA tasks 046

typically focus on descriptive queries about im- 047

age contents, whereas textual datasets encompass 048

a broader range of complex cognitive tasks, in- 049

cluding reasoning, writing, summarization, and 050

coding. This discrepancy in dataset complexity 051

is a key factor contributing to the observed perfor- 052

mance degradation in MLLMs. Our evaluation of 053

models such as BLIP-2, InstructBLIP, and LLaVA 054

against language instruction-following benchmarks 055

like MT-Bench (Zheng et al., 2023) and AlpacaE- 056

val (Li et al., 2023b) revealed diminished language 057

capabilities in comparison to their linguistic back- 058

bones. For instance, LLaVA, built on the Vicuna- 059

13b LLM, demonstrated a decline in MT-Bench 060

performance from 6.57 to 5.92, even underperform- 061

ing the Vicuna-7B model. 062

Driven by the limitations observed in distillation- 063

based instruction tuning, particularly its con- 064

strained generalizability and the narrow perfor- 065

mance improvements on tasks outside the training 066

distribution, this study investigates the efficacy of 067

distillation-based preference alignment in address- 068

ing modality conflict in MLLMs. The decision to 069

explore this avenue is predicated on the hypothesis 070

that integrating AI-generated preference data can 071

provide a more granular and nuanced alignment 072

with human expectations, potentially mitigating 073

the adverse effects of modality conflict. 074

This study rigorously evaluates three baseline 075

methodologies—Direct Preference Optimization 076

(DPO), SteerLM, and Rejection Sampling—as po- 077

tential solutions to utilize the distilled preference 078

data and enhance the instruction-following capa- 079

bilities and address the modality conflict inher- 080

ent in MLLMs. Each of these methods offers a 081

unique approach to model alignment, from the di- 082

rect optimization of preferences in DPO to the 083
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conditional supervision in SteerLM and the se-084

lective acceptance in Rejection Sampling. Our085

empirical analysis reveals that DPO, in particular,086

demonstrates a pronounced efficacy in reconcil-087

ing the performance disparities observed between088

textual and visual modalities. By leveraging a re-089

fined preference dataset, fine-tuned with the DPO090

objective and supplemented with comprehensive091

annotations from advanced AI models, DPO not092

only addresses the modality conflict but also signif-093

icantly enhances the model’s performance across094

a spectrum of benchmarks. The results indicate095

that, through the application of DPO, MLLMs can096

achieve a more robust alignment with human-like097

preferences, thereby mitigating the adverse effects098

of catastrophic forgetting and modality conflict,099

and elevating the models’ capabilities to a level100

that surpasses traditional instruction tuning meth-101

ods.102

Our main contributions are:103

1. Exploration of Modality Degradation: This104

work is at the forefront of identifying and ad-105

dressing modality degradation in MLLMs, a106

phenomenon where visual instruction tuning107

detrimentally impacts language instruction ca-108

pabilities. Our systematic investigation into109

this issue contributes novel insights to the110

field, laying the groundwork for further re-111

search in mitigating such degradation.112

2. Innovative Preference Alignment Method-113

ology: We propose a groundbreaking prefer-114

ence alignment framework that not only miti-115

gates the negative effects of visual instruction116

tuning on text-based tasks but also enhances117

the MLLM’s performance beyond its original118

language model backbone. This method also119

demonstrates significant improvements in vi-120

sual instruction benchmarks, underscoring the121

efficacy of preference alignment in augment-122

ing MLLM functionalities.123

3. Efficient Data Annotation Scheme: Our124

data collection strategy employs a granular125

quality metric annotation format, leveraging126

cost-effective commercial APIs. This scal-127

able approach enables the efficient production128

of high-quality datasets, addressing a critical129

challenge in MLLM development and facilitat-130

ing extensive model training and refinement.131

2 Related Work 132

2.1 MLLMs and Visual Instruction Tuning 133

Incorporating another modality into large language 134

models represents a natural evolution for these sys- 135

tems. Modality expansion can be achieved through 136

system-level enhancements at inference time, with 137

approaches such as Mm-react (Yang et al., 2023), 138

Visual ChatGPT (Wu et al., 2023), and Hugging- 139

GPT (Shen et al., 2023) enabling the LLM to in- 140

voke off-the-shelf vision models and APIs. An al- 141

ternative strand of research involves the training of 142

end-to-end MLLMs. To avoid the prohibitive costs 143

associated with pre-training from scratch, these 144

models often integrate pre-trained vision models 145

with large language models, applying various de- 146

grees of modality adaptation. Mini-GPT4 (Gong 147

et al., 2023) focuses solely on training a linear 148

projection matrix to connect CLIP-based (Radford 149

et al., 2021) vision representations with the LLaMA 150

model (Touvron et al., 2023a); BLIP-2 introduces 151

a cross-attention module to extract vision tokens 152

relevant to the query. Both LLaVA (Liu et al., 153

2023c) and mPlug-OWL (Ye et al., 2023a) fea- 154

ture cross-modality connectors between the vision 155

and language domains, but they also fine-tune the 156

LLM and vision encoder, respectively. Flamingo 157

(Alayrac et al., 2022), in contrast, incorporates new 158

cross-attention layers directly into the LLM. 159

In the language domain, Wei et al. (2022) dis- 160

covered that fine-tuning a base LLM with instruc- 161

tions described in natural language enhances the 162

model’s ability to follow those instructions. In 163

a similar vein, MLLMs are typically fine-tuned 164

with instructions; Mini-GPT4 (Gong et al., 2023) 165

utilized template instructions based on image-text 166

pairs, while InstructBLIP (Dai et al., 2023), Otter 167

(Li et al., 2023a), and LLaVA (Liu et al., 2023c) 168

employed human-written visual question-answers 169

or synthetically generated question-answer pairs by 170

prompting GPT-4 with COCO captions and bound- 171

ing boxes (Liu et al., 2023c). However, consid- 172

ering that both LLaVA and Instruct-BLIP utilize 173

Vicuna (Chiang et al., 2023)—an instruction-tuned 174

LLaMA—it remains a topic of debate whether their 175

steps of visual instruction tuning genuinely add to 176

the model’s instruction-following capabilities or 177

merely conform to the instruction-following for- 178

mat used in Vicuna’s training. 179
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2.2 Mitigating Modality Conflict in MLLMs180

To preserve the ability to follow language in-181

structions, mPLUG-OWL (Ye et al., 2023b)182

and LLaVA 1.5 (Liu et al., 2023c) incorporate183

language-only instruction data back into their184

mixed visual-language instruction datasets, specif-185

ically ShareGPT. It is noteworthy that the LLM186

backbone of LLaVA 1.5, Vicuna, had been previ-187

ously trained on this identical ShareGPT dataset.188

Further investigation reveals that, despite the in-189

tegrated dataset, LLaVA 1.5 exhibits degradation190

in language instruction-following capabilities; the191

MT-Bench score for LLaVA-1.5-13b is notably192

lower than that for Vicuna-V1.5-7b.193

While mPLUG-OWL-2 (Ye et al., 2023b)194

presents promising solutions to the challenges of195

modality conflict, and has shown superior perfor-196

mance on text-based benchmarks, it also intro-197

duces increased parameter count and more com-198

plex implementation, which poses practical chal-199

lenges. Specifically, mPLUG-OWL-2 implements200

modality-adaptive modules that include distinct201

layer normalization, as well as separate key and202

value projection matrices for text and visual to-203

kens, whilst maintaining a shared structure for204

query projection matrices. The model is fine-tuned205

from the non-instruction-tuned LLaMA-2-7B base206

model, incorporating 548K textual instruction data207

samples from a total of 1.2M, derived from both208

SlimOrca (Lian et al., 2023) and ShareGPT. This209

approach has enabled mPLUG-OWL-2 to excel in210

language and visual-language tasks, outperforming211

RLHF-augmented LLaMA-2 Chat on text-centric212

evaluations such as MMLU and BBH (Ye et al.,213

2023b). However, the introduction of modality-214

specific modules has led to an increase in the215

model’s parameter count from 7.2 billion to 8.2216

billion. Additionally, the separate processing paths217

for visual and language tokens have resulted in a218

more intricate compute graph, complicating the uti-219

lization of fused GPU kernels to achieve efficient220

inference. The methodologies discussed so far are221

reliant on standard fine-tuning practices, necessi-222

tating a significant augmentation of computational223

resources to integrate text instruction data effec-224

tively, with the aim of resolving the challenges225

posed by modality conflict.226

2.3 Distillation-based Instruction Tuning227

Leveraging the output of large proprietary mod-228

els, smaller open-source models such as Vicuna229

(Chiang et al., 2023), Alpaca, and more recently 230

ShareGPT4V (Chen et al., 2023), have been fine- 231

tuned, although this approach has limitations in 232

terms of generalization capabilities. Gudibande 233

et al. (2023) observed that models fine-tuned 234

through instruction tuning by imitation barely 235

bridge the performance gap in tasks beyond the 236

scope of the training data. They contend that im- 237

itation as a strategy is a false promise, asserting 238

that only a significant volume of imitation data 239

or a larger base model can close the disparity be- 240

tween open and closed-source models (Gudibande 241

et al., 2023). While recognizing the utility of 242

the expansive GPT4V dataset like ShareGPT4V 243

(Chen et al., 2023), it is posited that such scal- 244

ing of distillation-based instruction tuning primar- 245

ily extends the model’s competency within the 246

distribution it was trained on rather than its out- 247

of-distribution generalizability. Further research 248

indicated that distillation instruction tuning on a 249

smaller scale tends to skew the model’s perfor- 250

mance towards a niche subset and significantly 251

impair its broader applicability. This was evi- 252

denced by a baseline experiment in which fine- 253

tuning LLaVA with a 6k VQA dataset, sourced 254

from Gemini Pro-generated answers, resulted in 255

pronounced performance declines across both tex- 256

tual and visual benchmarks. 257

2.4 Preference Alignment 258

The Instruct-GPT series (Ouyang et al., 2022) 259

has shown that merely employing supervised fine- 260

tuning (SFT) on Large Language Models (LLMs) 261

is insufficient for aligning them with human prefer- 262

ences. The technique of Reinforcement Learning 263

from Human Feedback (RLHF) (Ouyang et al., 264

2022) addresses this by constructing a reward 265

model that encapsulates human preferences and 266

then applying reinforcement learning to maximize 267

this reward. The Direct Preference Optimization 268

(DPO) approach posits that directly tuning the pref- 269

erence dataset can serve as an effective substitute 270

for reward modeling, offering the added benefit of 271

reduced computational complexity. Another novel 272

method, known as rejection sampling SteerLM, 273

has recently been identified to achieve performance 274

akin to RLHF by incorporating human-annotated 275

quality metrics before generation, serving as a con- 276

ditional SFT-based strategy for alignment (Dong 277

et al., 2023). Our experiments with DPO, SteerLM, 278

and rejection sampling reference the prior work 279

on LLaVA-RLHF (Sun et al., 2023), using it as a 280

3



benchmark for RLHF performance.281

2.5 Distilling AI Feedback for Preference282

Alignment283

In the realm of alignment methods, reliance on284

human-annotated preference annotations is com-285

mon. While effective on a large scale, this approach286

incurs substantial costs and operational complexi-287

ties (Touvron et al., 2023b). The effectiveness of288

reward models based on pairwise ranking is con-289

strained by the inherent subjectivity of human pref-290

erences, with LLaMA’s reward model achieving291

an accuracy range of 64.3-70.6%, and the LLaVA-292

RLHF model reaching 67%. In response to these293

limitations, Zephyr (Tunstall et al., 2023) and Ultra-294

Feedback (Cui et al., 2023) have utilized preference295

annotations distilled from GPT-4 to train models296

with 7B parameters, achieving performance levels297

comparable to those of 70B parameter models. Mo-298

tivated to adapt this distillation-preference align-299

ment approach for MLLMs, our work introduces300

a nuanced chain-of-thought prompting technique,301

coupled with a detailed annotation guide, spanning302

five assessment metrics.303

3 Method304

The focus of this study is to investigate improving305

the text instruction following of MLLMs while re-306

taining or potentially enhancing their multi-modal307

reasoning. For this purpose, we propose to har-308

ness alignment methods that utilize self-sampled309

responses and preference annotations. Therefore,310

Pure Supervised Fine-Tuning (SFT) is deemed un-311

suitable and thus excluded from our methodology.312

3.1 Data Collection313

Sources of Multi-modal Prompts. We have cu-314

rated 3,000 samples from SciGraphQA (Li and315

Tajbakhsh, 2023) and an equal number from316

LRV-Instruct (Liu et al., 2023a) to assemble the317

image-text prompts for our multi-modal preference318

dataset. The LRV-Instruct dataset is a visual in-319

struction dataset aimed at mitigating hallucinations320

by incorporating both positive prompts (inquiring321

about objects present in the image) and negative322

prompts (requesting information about absent ob-323

jects) (Liu et al., 2023a). The inclusion of negative324

examples encourages the multi-modal LLM to crit-325

ically evaluate the prompts and identify instances326

where the requested objects are not present. The327

LRV-Instruct dataset enhanced its performance in328

reducing hallucinations, as evidenced by its appli- 329

cation in the Pope framework (Liu et al., 2023a). 330

Granular Annotation: We generate 4 comple- 331

tions for the dataset above using LLaVA-1.5-13B 332

with a temperature of 0.7 and then prompt Gemini- 333

Vision (Team et al., 2023) with the labeling guide 334

of HelpSteer gave to Scale AI workers (Wang et al., 335

2023), images, questions, and the 4 completions, 336

obtaining granular annotations for various quality 337

metrics, including helpfulness, correctness, and co- 338

herence, providing multifaceted insights into the 339

model’s outputs. We leveraged Zero-Shot Chain-of 340

Thought prompting (Kojima et al., 2022) such that 341

the Gemini gives the reasoning for rating each re- 342

sponse, an inner calibration monologue, and ratings 343

as shown in 1. Appendix provides two annotation 344

examples on the LLaVA-RLHF dataset (Sun et al., 345

2023) such that we can visualize how Gemini rea- 346

sons and rate each metric compared to a binary 347

crow-sourced worker-provided preference. 348

We selected Gemini Pro (dated 01/01/2024) for 349

its performance, cost efficiency, and bias mitigation 350

(Team et al., 2023). Leading the OpenCompass 351

multi-modal leaderboard with an average rank of 352

1.89, outperforming GPT-4V’s 2.89 (ope, 2023), 353

its generous free tier supports extensive data col- 354

lection. Crucially, using GPT-4(V) for both bench- 355

mark judging and data labeling could introduce 356

bias, potentially skewing our models towards GPT- 357

4’s preferences. This consideration led us to opt 358

for Gemini to ensure a more objective evaluation 359

of our fine-tuning efforts. 360

3.2 Alignment Methods 361

Self-sampled SteerLM: SteerLM, a conditional 362

Supervised Fine-Tuning (SFT) technique, aligns 363

LLMs by augmenting prompts with a description 364

of the desired response quality, as introduced by 365

(Dong et al., 2023). This method conditions SFT 366

on granular annotation generated by Gemini and 367

surpasses traditional SFT and alignment strategies. 368

We construct a conditional prompt template for this 369

technique by incorporating a conditional prompt 370

following HelpSteer guidelines. For instance, 371

Rejection Sampling: Following Constitutional AI 372

(Bai et al., 2022) and LLaMA-2 (Touvron et al., 373

2023b), we adopt a simplified rejection sampling 374

approach. Specifically, we select the top-scoring re- 375

sponse from the four completions described above, 376

based on Gemini’s aggregated scores for helpful- 377

ness, correctness, and coherence. And we apply 378

standard SFT based on the selected responses with- 379
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Metric Description
Helpfulness Measures if the response fully addresses the prompt’s request.
Correctness Assesses the accuracy and relevance of the information, ensuring it’s free from errors or

misinformation.
Coherence Evaluates the clarity and logical consistency of the response.
Complexity Looks at the level of sophistication in the language used, from simple to advanced.
Verbosity Considers the brevity or lengthiness of the response in relation to the prompt’s needs.

Table 1: Granular annotation format and labelling guide proposed in HelpSteer (Wang et al., 2023) used in VQA
annotation collection. LLaVA-1.5-13b generates 4 candidates. Using the HelpSteer labeling guide, images, and
questions, Gemini rates each completion with a score of 0-4 in each metric.

Figure 1: Starting from an SFT-ed checkpoint, we generate 4 completions for a given image-question prompt.
These answers are then presented to Gemini to obtain granular annotations given a labeling guide. We construct a
preference dataset of (image-text prompt, preferred completion) and (image-text prompt, rejected completion). We
benchmarked DPO, Rejection sampling, and SteerLM alignment methods, in addition to a pure SFT baseline using
Gemini provided answer directly

out any additional prompt conditions, following a380

straightforward format: (image, prompt, best re-381

sponse).382

Direct Preference Optimization (DPO): We con-383

vert our dataset of granular annotation into a prefer-384

ence set by selecting the highest score and the worst385

response. Specifically, we generate an aggregated386

score per response by summing Helpfulness, and387

Correctness. When prompting Gemini for annota-388

tions, Gemini reviews four responses and provides389

absolute quality metrics, which we converted into390

a preference dataset. We form (preferred, rejected)391

pairs by selecting the best response and randomly392

selecting another from the four responses, with a fil-393

ter specifying that the preferred response is at least394

2 points lower in summed scores across helpful-395

ness, correctness, and coherence than the rejected396

response.397

SFT from Gemini Responses This is an important398

baseline not using self-sampling, but using answers399

from Gemini directly for pure SFT. Gemini was400

prompted with the questions and images from our401

dataset. We gather the answer directly from Gemini402

answering the question and use the same hyper- 403

parameters in SteerLM and Rejection Sampling. 404

4 Experiments 405

4.1 Experimental Setup 406

For training, we utilize Azure Cloud (NC-A100 407

series) with 4 A100-80G GPUs. In all experiments, 408

LoRA is employed for parameter-efficient tuning. 409

For the SFT experiments, including standard SFT 410

with Gemini responses, rejection sampling, and 411

self-sampled SteerLM, we adhered to the same hy- 412

perparameters used in LLaVA-v1.5’s instruction 413

tuning. In our DPO experiments, we performed a 414

hyperparameter search based on 1000 samples on 415

LLaVA Bench, exploring various values for beta 416

(0.1, 0.2, and 0.3, averaged and non-averaged log 417

probabilities, and learning rates of 5e-5 and 5e-6. 418

We pre-computed the log probabilities of the refer- 419

ence model (LLaVA-v1.5-13b) for our preference 420

dataset before training. Complete list is provided 421

in the Appendix. 422
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Table 2: Performance comparison among alignment strategies. The results demonstrate DPO-13B’s superior
performance, particularly in reconciling language capabilities while enhancing visual task performance, validating
the DPO methodology’s efficacy in multi-modal alignment.

Model Name Visual Instruction Benchmark Visual Multi-Choice Benchmark Text Instruction Benchmark
MM-Vet LLaVA-bench PoPe MM-Bench MT-bench AlpacaEval

Vicuna-1.5-13b (Chiang
et al., 2023)

- - - - 6.57 81.4

LLaVA-1.5-13b (Liu
et al., 2023c)

36.3 73.1 0.859 67.4 5.99 79.3

LLaVA-RLHF-13b
(Sun et al., 2023)

37.2 76.8 0.869 60.1 6.18 81.0

Alignment method we benchmarked, finetuning LLaVA-1.5-13b
Standard SFT 36.5 63.7 0.850 65.4 5.01 50.2
SteerLM 35.2 67.0 0.878 65.1 5.70 68.8
Rejection-sampling 38.0 70.6 0.883 67.6 6.22 74.9
DPO 41.2 79.1 0.870 66.8 6.73 86.4

4.2 Benchmarks423

We have the following three sets of benchmarks.424

Visual Instruction Benchmarks425

• MM-Vet: MM-Vet measures six core visual-426

language capabilities across 128 tasks, pro-427

viding a comprehensive evaluation of multi-428

modal understanding. It blends math, reason-429

ing, and visual knowledge. (Yu et al., 2023).430

• LLaVA-Bench: LLaVA-Bench (in the wild)431

is a dev benchmark for LLaVA comprising432

60 tasks, designed to test visual instruction-433

following and question-answering capabilities434

in natural settings (Liu et al., 2023c).435

Visual Multi-Choice Benchmarks436

• PoPE: An object hallucination benchmark437

with 8,440 samples, aimed at evaluating the438

model’s ability to discern and describe visual439

content accurately. The multi-modal LLM is440

prompted to answer yes or no to objects that441

could appear in the images (Li et al., 2023c).442

• MM-Bench: Serving as a comprehensive443

multi-modal benchmark, MM-Bench is a444

multi-choice visual knowledge and reason-445

ing benchmark with 4.7K samples (Liu et al.,446

2023d).447

Language Instruction-Following Benchmarks448

• MT-Bench: Utilizing LLM to approximate449

human preferences with over 80% agreement,450

MT-Bench focuses on measuring the helpful-451

ness of responses across 160 samples in single-452

turn and multi-turn settings. (Zheng et al.,453

2023).454

• Noisy-image-context MT-Bench: Inspired 455

by (Zhou et al., 2023b) where the language 456

commonsense capability of MLLMs was eval- 457

uated by sending non-informative images in- 458

cluding the blank and random images to the 459

Multi-modal LLM to assess their language 460

commonsense capability, we propose MT- 461

Bench with non-informative image context 462

to assess the language instruction-following 463

capability of MLLM. We evaluate LLaVA, 464

Blip-2, InstructBLIP. Within the theme of this 465

paper, we emphasize multi-modal LLM in pro- 466

duction. 467

• AlpacaEval: AlpacaEval leveraged GPT-4 468

to assess the percentage of cases where the 469

candidate LLM outperforms GPT-3 API (text- 470

davinci-003) across 160 evaluations (Li et al., 471

2023b). 472

We run benchmark code once on target model, 473

with greedy decoding unless a benchmark use a 474

different temperature setting. 475

4.3 Results 476

Table 2 illustrates a comparative analysis of var- 477

ious alignment methods, including RLHF, Stan- 478

dard SFT, SteerLM, Rejection Sampling, and DPO, 479

aimed at enhancing the language capabilities of 480

the LLaVA model that were compromised post- 481

visual instruction tuning. Vicuna, the base language 482

model of LLaVA is tested on language tasks. After 483

visual instruction tuning, LLaVA experiences a de- 484

cline in language benchmark scores from Vicuna 485

(from 6.57 to 5.99 on MT-Bench, and from 81.4 to 486

79.3 on AlpacaEval). However, DPO, among the 487

alignment strategies on the 5k multi-modal dataset, 488

not only mitigates the degradation problem but also 489
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Figure 2: Advances in MT-Bench scores via DPO data
scaling

surpasses Vicuna’s performance on both bench-490

marks.491

In open-ended visual instruction tasks, DPO sig-492

nificantly outperforms the baseline LLaVA and493

LLaVA-RLHF models on both the MM-Vet and494

LLaVA-bench. These open-ended benchmarks,495

structured similarly to MT-Bench where GPT-4496

assesses the responses against a gold standard, re-497

vealed a relatively high 0.73 Pearson Correlation498

between MM-Vet and MT-Bench (n=7, p=0.1).499

In visual multi-choice benchmarks, PoPe, which500

evaluates for hallucination, and MM-Bench, which501

assesses world knowledge and reasoning, rejection502

sampling emerged as the most effective method,503

whereas DPO showed lesser efficacy. While DPO504

improved open-ended benchmarks, it slightly de-505

creased LLaVA’s MM-Bench score from 67.4 to506

66.8, contrasting with LLaVA-RLHF’s notable507

drop from 67.4 to 60.1, indicating a less signifi-508

cant alignment tax. Figure 2 illustrates the effect of509

scaling the DPO dataset on the MT-Bench scores,510

signifying the efficacy of DPO in advancing the511

performance of the LLaVA-v1.5-13b model after512

visual instruction tuning. The baseline at 0% DPO513

data, marked at a score of 5.99, represents the ini-514

tial performance of LLaVA-v1.5-13b. As the DPO515

dataset’s size increases, a notable rise in MT-Bench516

scores is observed, peaking at 6.73 with 100% data517

utilization. Remarkably, the performance surpasses518

that of the Vicuna-v1.5-13b benchmark using less519

than 75% or 4.2K of the DPO data, underlining520

DPO’s data efficiency. This data scaling trend em-521

phasizes DPO’s potential as an effective alignment522

strategy for MLLMs, addressing the challenge of523

performance degradation due to visual instruction524

tuning.525

5 Discussion 526

The scarcity, high cost, and inconsistency of exist- 527

ing multi-modal preference datasets present sig- 528

nificant challenges to model alignment, as evi- 529

denced by our subjective assessments and objective 530

evaluations using Gemini. Our manual labeling 531

of a selected subset from the LLaVA-RLHF hu- 532

man preference dataset underscored the difficulty 533

in achieving consensus or identifying clear prefer- 534

ences, shedding light on the inherent subjectivity 535

of these datasets. To quantify these observations, 536

we embarked on a targeted experiment involving 537

500 samples, wherein Gemini annotated two dis- 538

tinct responses from the dataset employed in the 539

LLaVa-RLHF reward model’s data collection (Sun 540

et al., 2023). This facilitated a direct comparison 541

between Gemini’s annotations and the human pref- 542

erences. The correlation heatmap depicted in Fig- 543

ure 3 reveals a notably weak correlation between 544

human preferences from LLaVA-RLHF and Gem- 545

ini scores, with correlation coefficients falling be- 546

low 0.1. This observation was corroborated by fur- 547

ther manual inspections, which frequently resulted 548

in an inability to definitively determine clear pref- 549

erences. This finding underscores the high subjec- 550

tivity and individual bias within the LLaVA-RLHF 551

preference data. Contrarily, the detailed annota- 552

tion framework employed by Gemini represents a 553

scalable and more objective method for collecting 554

preference data, offering a viable solution to the 555

limitations observed in current datasets. 556

The superficial alignment hypothesis states that 557

a model’s knowledge capabilities are largely ac- 558

quired during its initial pre-training stage (Zhou 559

et al., 2023a). A corollary of this hypothesis is that 560

alignment tuning refines the model output genera- 561

tion with a preferred response format rather than 562

knowledge acquisition. As a result, models can be 563

effectively realigned post-visual instruction using 564

a relatively small set of examples (Kirstain et al., 565

2022). This principle applies to MLLMs as well, 566

which acquire multi-modal knowledge representa- 567

tion via visual instruction tuning (Liu et al., 2023c). 568

However, existing work mixed large-scale text in- 569

struction data (518K out of 1.23 million in case of 570

mPlug-OWL 2, and 40K in case of LLaVA-1.5). 571

We hypothesize that the data-inefficiency above 572

is attributed to the underlying alignment strategy 573

and demonstrate that one would need only a small 574

alignment dataset so long as a proper alignment 575

strategy such as DPO is utilized. 576
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Figure 3: Pearson Correlation Heatmap among the dif-
ference in Gemini-Annotated data attributes and LLaVA-
RLHF human annotated preference (n=500).

Table 3: This benchmarks adds irreverent image in con-
text when benchmarking MT-Bench, testing for robust-
ness in a real-world condition. Vicuna-7B and Vicuna-
13B are as baseline reference.

Model LLM Noisy-image MT-Bench

Vicuna 13B v1.5 Vicuna13B 6.57
Vicuna 7B v1.5 Vicuna7B 6.17
BLIP-2 FlanT5 1.93
InstructBLIP Vicuna7B 4.73
LLaVA-v1.5-13b Vicuna13B 5.92
DPO (ours) Vicuna13B 6.63

As suggested by Table 2, Direct Preference Opti-577

mization (DPO) emerges as a computationally effi-578

cient solution for enhancing model performance in579

the mixed-modal alignment space. Unlike the mix-580

ing text instruction as described above or LLaVA-581

RLHF, which used a large 82K dataset and com-582

plex training pipeline involving reward modeling583

and PPO, DPO achieves significant improvements584

in language capabilities with a smaller dataset585

and one-stop training setup. A notable advantage586

of DPO is its minimal alignment tax, which cur-587

tails the degradation of existing knowledge, as ev-588

idenced by its performance on benchmarks like589

MM-Bench, where DPO shows minimal impact.590

This method not only enables effective alignment591

of multi-modal models post-visual instruction tun-592

ing but also ensures the preservation of model per-593

formance. We also note that as 3 showed, our DPO594

model is most more robust than other baselines595

in a real-world condition where user may have ir-596

relevant image in the context. Our methodology597

exhibits notable proficiency in value alignment and598

data efficiency, yet it is imperative to acknowledge 599

certain limitations and potential risks. One key 600

consideration is the scalability of our approach. 601

While our data scaling analysis suggests signifi- 602

cant improvements up to a 6K preference dataset, 603

the full extent of scalability beyond this threshold 604

remains unexplored. As the foundational open- 605

sourced models like LLaVA evolve in complexity 606

and size, the effectiveness of our distillation-based 607

approach might encounter diminishing returns. 608

Addressing true human preference accurately is 609

another pivotal concern. The preference dataset 610

distilled from artificial annotations may not fully 611

encapsulate the nuanced spectrum of human val- 612

ues, raising ethical considerations regarding model 613

alignment with societal norms and individual ex- 614

pectations. Moreover, the inherent risks associ- 615

ated with safety and bias propagation are magnified 616

when models are fine-tuned on artificially-labeled 617

data, potentially reinforcing existing prejudices. 618

6 Conclusion 619

In this paper, we addressed the performance decline 620

of the widely-used multi-modal LLM, LLaVA- 621

1.5, on language instruction-following benchmarks. 622

We investigated various alignment strategies to en- 623

hance the model’s language instruction capabilities, 624

including standard SFT with rejection sampling, 625

using gold responses from Gemini, SteerLM, and 626

DPO. Our comprehensive benchmark evaluations 627

revealed that DPO stands out as the most effective 628

method, not only restoring but also surpassing the 629

language capabilities of LLaVA’s foundational Vi- 630

cuna model on both MT-Bench and AlpacaEval. 631

Specifically, LLaVA’s performance on MT-Bench 632

had dipped from Vicuna’s 6.57 to 5.99, whereas 633

our DPO model advanced to 6.73. Beyond lan- 634

guage proficiency, DPO also bolstered performance 635

on multi-modal benchmarks, enhancing accuracy 636

by 4.9% on MM-Vet and 6% on LLaVA-Bench. 637

Remarkably, DPO achieved this with just 5k pref- 638

erence examples, proving more data-efficient than 639

other strategies like RLHF, which typically demand 640

over 80k training examples. Our findings high- 641

light DPO’s minimal ‘alignment tax,’ effectively 642

boosting one performance area without substan- 643

tially detracting from another. This aspect is partic- 644

ularly valuable for practitioners aiming to maintain 645

the pre-training knowledge throughout multi-modal 646

alignment. 647
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Table 4: DPO preference data mixture

Data Type Data Name Size
VQA LRV-Insturct (Liu et al., 2023b) 2562

SciGraphQA (Li and Tajbakhsh, 2023) 2522
Total 5084

Model Data Name Size
Model architecture Pretrained model checkpoint llava-v1.5-13b

Language Backbone Architecture LLaMA-13B (finetuned to Vicuna and LLaVa)
Vision Tower openai/clip-vit-large-patch14-336
Multi-modal Adapter 2-layer Multi-layer perception

Lora Setting Lora Rank 128
Lora Alphra 256

DPO Setting Use Average Log Probablity False
Use Fine-grained DPO False
Beta 0.1
Learning Rate 5e-5
Gradient Acculumulation Steps 4
Per device train batch size 8
Model Max length 300

SFT Setting Learning Rate 4e-4
Per device train batch size 16
Model Max Length 2048

Common settings Harwdware 4X A100 80G
Distributed Learning Zero-3
Use BF-16 True
Learning Rate Scheduler Cosine
Learning Rate Warm up 0.003
Weight Decay False

Table 5: Model parameters
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Gemini-Annotation example

Question What aspects of the room might
have artistic or creative signifi-
cance?

What do you see happening in this image?

Response 1 In this image, the room has some
artistic or creative significance due
to the presence of several sculptures
placed on a long wooden table. The
sculptures appear to be made from
various materials, such as stone and
wood. Additionally, the room fea-
tures a chair and a light fixture that
resembles a boot. These elements,
combined with the assortment of
sculptures, give the room an eclec-
tic and artistic atmosphere, suggest-
ing that the space might be used for
displaying art, inspiration, or as a
workspace for an artist or designer.
The presence of the boot-shaped
light also adds a unique and imag-
inative touch to the room’s overall
aesthetic.

The image features a person running along a
beach near the water’s edge. Behind the person,
multiple birds are flying in the sky, creating a
dynamic and lively scene. The man is wearing
a swimsuit and appears to be enjoying his time
at the beach. The birds’ positions vary across
the sky, with some flying closer to the person
and others further away, spreading out across
the background.

Gemini-Rating for Reponse 1 Helpfulness:4, Correctness 4, Co-
herence: 4, Complexity: 3, Ver-
bosity: 3.

Helpfulness:3, Correctness 4, Coherence: 4,
Complexity: 2, Verbose: 2

Response 2 In the room, a collection of wooden
shoes on a long table next to a chair
can be considered as having artis-
tic or creative significance. The
display of shoes may represent a
unique form of artistic expression
or a design concept. Additionally,
the white-walled setting with a dim
light allows for a minimalist and vi-
sually striking atmosphere that en-
hances the shoes’ display and cre-
ates a sense of depth and artistic in-
terest in the space.

The image captures a beach scene where a man
is running along the shore near the water, with
waves crashing behind him. The man is in mo-
tion, as he is probably enjoying an invigorating
run on the beach. In the sky above, several
birds fly in a line, adding a sense of movement
and liveliness to the scene. The birds’ positions
vary, with some being closer to the water and
others higher up in the sky. The overall atmo-
sphere of the image suggests a pleasant, active
day at the beach.

Gemini-Rating for Reponse 2 Helpfulness:3, Correctness 3, Co-
herence: 3, Complexity: 2, Ver-
bosity: 3.

Helpfulness:4, Correctness 4, Coherence: 4,
Complexity: 3, Verbosity: 3.

Table 6: Examples of Annotation
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Gemini-Annotation example

Gemini-Reasoning Both responses are relevant to the
question and provide good descrip-
tions of the room. However, the first
response is more detailed and pro-
vides more analysis of the potential
artistic or creative significance of
the room. I will give the first re-
sponse a slightly higher rating for
Helpfulness, Correctness, and Com-
plexity.

I think that Response 2 is the best response be-
cause it is the most detailed, engaging, and ac-
curate. It provides the most information about
the image and uses the most vivid language.
Response 1 is also good, but it is not as de-
tailed or engaging as Response 2.

LLaVA-RLHF rated preference Reponse 2 Response 2

Our preference Response 1 Response 2
Table 6: Examples of Annotation (continued)
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