
Under review as a conference paper at ICLR 2024

BLOCK-LOCAL LEARNING WITH
PROBABILISTIC LATENT REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ubiquitous backpropagation algorithm requires sequential updates through
the network introducing a locking problem. In addition, backpropagation relies
on the transpose of forward weight matrices to compute updates, introducing a
weight transport problem across the network. Locking and weight transport are
problems because they prevent efficient parallelization and horizontal scaling of
the training process. We propose a new method to address both these problems and
scale up the training of large models. Our method works by dividing a deep neural
network into blocks and introduces a feedback network that propagates the infor-
mation from the targets backwards to provide auxiliary local losses. Forward and
backward propagation can operate in parallel and with different sets of weights,
addressing the problems of locking and weight transport. Our approach derives
from a statistical interpretation of training that treats output activations of network
blocks as parameters of probability distributions. The resulting learning frame-
work uses these parameters to evaluate the agreement between forward and back-
ward information. Error backpropagation is then performed locally within each
block, leading to “block-local” learning. Several previously proposed alternatives
to error backpropagation emerge as special cases of our model. We present results
on a variety of tasks and architectures, demonstrating state-of-the-art performance
using block-local learning. These results provide a new principled framework for
training networks in a distributed setting.

1 INTRODUCTION

Recent developments in machine learning have seen deep neural network architectures scale to bil-
lions of parameters (Touvron et al., 2023; Brown et al., 2020). While this has increased the power
of these models to unprecedented levels, it has also pushed the computing hardware on which large
network models run to its limits. As a result, it has become increasingly important to distribute the
model training across many independent computing devices. However, today’s machine learning
algorithms are poorly suited for distributed training. The error backpropagation algorithm requires
an alternation of interdependent forward and backward phases, each requiring sequential computa-
tion. This introduces a locking problem because each phase must wait for the other (Jaderberg et al.,
2016). Furthermore, the two phases rely on the same weight matrices to compute updates, which
makes it impossible to separate memory spaces. This is referred to as the weight transport problem,
see Grossberg (1987); Lillicrap et al. (2014a). Locking and weight transport are problems because
they make efficient parallelization and horizontal scaling of large machine learning models across
compute nodes extremely difficult.

We propose a new method to address these problems that distributes a globally defined optimization
algorithm across a large network of computing devices using only local updates for training. Our
approach utilizes a variational inference approach that uses results from probabilistic models to
provide auxiliary local targets from a separate feedback network that propagates information from
the targets to the input. Thus, messages can be communicated forward and backwards between
computational nodes in parallel and include information about extracted features, which are updated
using local probabilistic losses calculated using the targets provided by the feedback network. In
contrast to previous results, optimizing these local losses does not require a contrastive step where
different positive and negative samples are propagated through the network. Within each block,
conventional error backpropagation is performed locally (“block local”) both in the forward network

1

Under review as a conference paper at ICLR 2024

and the backward feedback to adapt parameters during training. Performing forward and backward
propagation in parallel mitigates the locking problem, and having a separate feedback network solves
the weight transport problem.

The learning model developed here provides a new principled method for distributing the training
of networks across multiple computing devices. The solutions emerging from this framework show
striking similarities to those of previous models that used random feedback weights to provide local
targets (Lee et al., 2015; Meulemans et al., 2020; Lillicrap et al., 2020; Ernoult et al., 2022), but we
provide a principled way to train these feedback weights.

In summary, the contribution of this paper is threefold:

1. We provide a theoretical framework for interpreting the representations of deep neural net-
works as parameters of probability distributions.

2. Based on this probabilistic framework, we derive a new variational bound that allows us
to decompose the global log-likelihood loss into a sum of local terms, which provides a
principled approach to block-local training of these networks.

3. We show that this probabilistic learning method can achieve state-of-the-art performance
on several benchmark classification tasks.

2 RELATED WORK

A number of methods for using local learning in DNNs have been introduced previously. Random
feedback alignment (Lillicrap et al., 2016) and related approaches (Akrout et al., 2019; Nøkland,
2016; Samadi et al., 2017) use fixed random feedback weights to back-propagate errors. Jaderberg
et al. (2017) used layer-wise learned predictors of gradients, called “synthetic gradients” to decou-
ple the training of different layers. Target propagation (Lee et al., 2015; Meulemans et al., 2020)
has been demonstrated to have competitive performance using random projections for target labels
instead of errors (Frenkel et al., 2021; Ernoult et al., 2022; Shibuya et al., 2023). Target Projection
Stochastic Gradient Descent (tpSGD) Lomnitz et al. (2022) uses layer-wise SGD and local targets
generated via random projections of the labels but does not adapt the backward weights. The net-
work architecture used in our approach is similar to these prior works, but, in addition, provides a
principled way to adapt feedback weights.

Some previous methods are based on probabilistic or energy-based cost functions. Jimenez Rezende
et al. (2016) used a generative model and a KL-loss for local unsupervised learning of 3D structures.
Contrastive learning (Chen et al., 2020; Oord et al., 2019) has been used to construct block-local
losses (Xiong et al., 2020; Illing et al., 2021). Equilibrium propagation replaces target clamping
with a target nudging phase (Scellier and Bengio, 2017). Another interesting contrastive approach,
forward propagation, was recently introduced (Hinton, 2022; Zhao et al., 2023) which needs task-
specific negative input examples. In contrast to these methods, our approach does not need separate
positive and negative data samples and focuses on block-local learning. A number of methods have
been proposed based on predictive coding framework (Millidge et al., 2022; Salvatori et al., 2022)
but with a focus on biologically motivated generative models (Ororbia and Mali, 2019).

Other methods (Belilovsky et al., 2019; Löwe et al., 2019) have used greedy local, block- or layer-
wise optimization. Notably, (Nøkland and Eidnes, 2019) achieved good results by combining a
matching and a local cross-entropy loss. In contrast to our method, they used a similarity matching
loss across mini-batches which prevents parallelization across a batch of data samples. Siddiqui
et al. (2023) recently used block-local learning based on a contrastive cross-correlation metric over
feature embeddings (Zbontar et al., 2021), demonstrating promising performance. Wu et al. (2021)
used greedy layer-wise optimization of hierarchical autoencoders for video prediction. Wu et al.
(2022) used an encoder-decoder stage for pre-training. In contrast to these methods, we do not
rely solely on local greedy optimization but provide a principled way to combine local losses with
feedback information without locking and weight transport across blocks and without contrastive
learning.

2

Under review as a conference paper at ICLR 2024

Figure 1: Illustration of use of block-local representations as learning signals on intermediate net-
work layers. A deep neural network architecture NA is split into multiple blocks (forward blocks)
and trained on an auxiliary local loss. Targets for local losses are provided by a feedback backward
network NB .

3 A PROBABILISTIC FORMULATION OF DISTRIBUTED LEARNING

In this section we establish a method to partition a deep neural network into blocks by interpret-
ing activations as parameters of probability distributions. We use these intermediate probabilistic
representations at each block to derive block-local losses. To do this, we introduce a feedback net-
work that accompanies the feedforward network to compute probabilistic representations. We show
that the derived block-local losses and the resulting block-local learning (BLL) can be realized by a
posterior bootstrapping mechanism that combines forward and feedback activations.

3.1 USING LATENT REPRESENTATIONS TO CONSTRUCT PROBABILISTIC BLOCK-LOCAL
LOSSES

Learning in deep neural networks can be formulated probabilistically (Ghahramani, 2015) in terms
of maximum likelihood, i.e. the problem is to minimize the negative log-likelihood L =
− log p (x,y) = − log p (y |x) − log p (x) with respect to the network parameters θ. For many
practical cases where we may not be interested in the prior distribution of the input p (x), we would
like to directly minimize L = − log p (y |x).
This probabilistic interpretation of deep learning can be used to define block-local losses and dis-
tribute learning across multiple blocks of networks by introducing intermediate latent representa-
tions. The idea is illustrated in Fig. 1. A neural networkNA computing the mapping x→ y takes x
as input and its outputs can be interpreted as the statistical parameters of the conditional distribution
p (y |x). When the network is split at intermediate layers into blocks, training using end-to-end
gradient estimation can be replaced by estimators that optimize the blocks x → z1, z1 → z2
. . .zN → y separately. To see this, consider the gradient of the log-likelihood loss function

−∇L = ∇ log p (y |x) , (1)

where ∇ is the vector differential operator over parameters θ. For any deep network, it is possi-
ble to choose an intermediate activation at an arbitrary layer to represent a latent variable zk so
that p (y |x) = Ep(zk |x,y) [p (y | zk) p (zk |x)], where Ep [] denotes expectation with respect to
p. Therefore, the representations of y depend on x only through zk, as expected for a feedforward
network. Using this conditional independence property, the log-likelihood (1) expands to

−∇L = Ep(z1...zN |x,y) [∇ log p (z1 |x) +∇ log p (z2 | z1) + · · ·+∇ log p (y | zN)] . (2)

The identity in (2) is well known and also exploited in the derivation of the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) (see Sec. S1.3 in the Supplement for a recap).

3

Under review as a conference paper at ICLR 2024

Computing the expectation with respect to p (zk |x,y) corresponds to the E-step and calculating the
gradients corresponds to the M-step. The sum inside the expectation separates the gradient estima-
tors into parts: x→ z1 . . .zN → y. Importantly, the parts can have separate parameter spaces θ(1)

k ,
θ
(2)
k , . . . , θ(N)

k so that the gradient estimators become independent. This provides the core idea for
how to split the training problem into smaller, and potentially more local sub-problems.

However, the E-step is impractical to compute for most interesting applications because of the com-
binatorial explosion in the state space of zk, which renders the expectation in Eq. (2) intractable.
To get around this, we use a variational upper bound F ≥ L (Jordan et al., 1999). We introduce
a feedback network with independent parameters (see Fig. 1), that is used to construct an auxiliary
distribution q (zk |x,y) to substitute the intractable posterior p (zk |x,y). The variational loss F is
then used to jointly minimize L together with the distance between p and q. We demonstrate that
this approach can be used to split gradients in a similar fashion to Eq. (2), yielding a distributed
approximate solution to Eq. (1). In the next section, we describe how we construct the variational
distribution q.

3.2 AUXILIARY LATENT REPRESENTATIONS

The probabilistic interpretation of hidden layer activity outlined above is valid under relatively mild
assumptions, which we will establish here. It is important to note that at no point does the network
produce samples of the implicit random variables zk; they are introduced here only to conceptualize
the mathematical framework. Instead, at block k, the network outputs the parameters of a proba-
bility distribution αk(zk) (e.g., means and variances if αk is Gaussian). αk(zk) = p (zk |x) is the
distribution over zk for given inputs x. The network thus translates αk−1 → αk → . . . by out-
putting the statistical parameters of the conditional distribution αk(zk) and taking the αk−1(zk−1)
parameters as input. More specifically, the network implicitly calculates a marginal distribution

αk (zk) = p (zk |x) = Ep(zk−1 |x) [pk (zk | zk−1)] = Eαk−1(zk−1) [pk (zk | zk−1)] , (3)

where Ep [] denotes expectation with respect to the probability distribution p. Consequently, the net-
work realizes a conditional probability distribution p (y |x) (where x and y are network inputs and
outputs, respectively). Eq. (3) is an instance of the belief propagation algorithm to efficiently com-
pute conditional probability distributions. If all blocks have a rich enough expressive power (e.g.
sufficient number of hidden layers) an accurate representation of the mappings between distribu-
tions can be learned in the network weights through error back-propagation. Thus, the distributions
p (zk |x) in the variational learning framework outlined above are realized simply by propagating
inputs x through the forward network NA.

To construct the variational distribution q, we introduce the backward network NB , which propa-
gates messages βk backward. Inferences about the posterior distribution p (zk |x,y) for any latent
variable zk can be made using the belief propagation algorithm, which propagates messages αk (zk)
forward through the network using Eq. (3) and messages βk (zk) = q (y | zk) backwards from the
labels. In Section 4.2 we also experimented with a variant where feedback messages are propagated
backward through a multi-layer network. In both cases the variational posterior can be computed up
to normalization

ρk (zk) = q (zk |x,y) ∝ p (zk |x) q (y | zk) = αk (zk) βk (zk) . (4)

We make use of the fact that, through Eq. (3), the parameters of a probability distribution p (zk |x)
are a function of the parameters of p (zi |x), for 0 < i < k, e.g. if α is assumed to be Gaussian
we have

(
µ (αk) , σ

2 (αk)
)
= f

(
µ (αi) , σ

2 (αi)
)
, where µ (.) and σ2 (.) are the mean and vari-

ance of the distribution respectively. Thus, if a network outputs
(
µ (αi) , σ

2 (αi)
)

on layer i and(
µ (αk) , σ

2 (αk)
)

on layer k, a suitable probabilistic loss function will allow the network to learn f
from examples. Therefore, the conditional distributions pk (zk | zk−1) and the expectation in Eq. (3)
are only implicitly encoded in the network weights. Clearly, the sub-networks that compute the
transition from one latent variable to the next can have separated parameter spaces. We will use the
exponential family of probability distributions for which this observation can be formalized more
thoroughly, as described next.

4

Under review as a conference paper at ICLR 2024

Figure 2: Illustration of posterior bootstrapping. Either the forward message αk or the posterior
message ρk is propagated for each sample and block.

3.3 EXPONENTIAL FAMILY DISTRIBUTIONS

To derive concrete losses and update rules for the forward and backward networks, we assume that
αk’s and βk’s are from the exponential family (EF) of probability distributions, given by

αk (zk) =
∏
j

αkj (zkj) =
∏
j

h(zkj) exp (T (zkj)ϕkj −A (ϕkj)) , (5)

with base measure h, sufficient statistics T , log-partition function A, and natural parameters ϕkj .
This rich class contains the most common distributions, such as Gaussian, Poisson or Bernoulli, as
special cases. For the example of a Bernoulli random variable we have zkj ∈ {0, 1}, T (zkj) = zkj
and A (ϕkj) = log

(
1 + eϕkj

)
(Koller and Friedman, 2009). One interesting property of the EF is

that the Kullback-Leibler (KL-) divergence, to measure the distance between two distributions ρk
and αk, with parameters γk and ϕk, can be expressed using only the means µ and variances σ2 of
the distributions, i.e.

−∇DKL (ρk |αk) =
∑
j

(µ (ρkj)− µ (αkj))∇ϕkj + σ2 (ρkj) (ϕkj − γkj)∇γkj . (6)

We will exploit this property to construct local learning rules that can be computed efficiently. A
network directly implements an EF distribution if the activations akj at block k encode the natural
parameters, akj = ϕkj .

To summarize, a feed-forward DNN NA : x → y, can be split into N + 1 blocks by introducing
implicit latent variables zk : x→ zk → y, and generating the respective natural parameters. Blocks
can be separated after any arbitrary layer, but some splits may turn out more natural for a particular
network architecture. If both distributions αkj and βkj are (assumed to be) members of the EF with
natural parameters ϕkj,α and ϕkj,β , then ρkj is also EF with parameters 1

2 (ϕkj,α + ϕkj,β)
1.

3.4 MODULARIZED LEARNING USING LOCAL VARIATIONAL LOSSES AND POSTERIOR
BOOTSTRAPPING

We construct and use an upper bound on the actual log-likelihood loss L for training the model. This
upper bound consists only of block-local losses ℓ at all network blocks and is constructed using the
forward and feedback networks NA and NB , respectively, as shown in the Supplement. The local
loss ℓ can be written as

ℓ (pk, βk |αk−1) = DKL (qk |αk) + H (pk |αk−1) , (7)

where the first divergence term measures the mismatch between the posterior ρk and the forward
message αk, and the second term is an entropy loss that determines the quality of the distributions
when propagating data throughNA, based on the variational posterior (see Supplementary Informa-
tion S1.2.1 for details).

1The dependence is linear and can be augmented with an arbitrary constant factor. 1
2

is conveniently chosen
here because it assures that forward messages and posterior parameters are of the same scale.

5

Under review as a conference paper at ICLR 2024

The loss in Eq. (7) is local in the sense that it is completely determined by the information available
at block k, i.e., the local network transfer function specifying pk, the forward message from the
previous block αk−1, and the feedback βk. Furthermore, the loss is local with respect to learning,
i.e. it doesn’t require global signals to be communicated to each block. In this sense, our approach
differs from previous contrastive methods that need to distinguish between positive and negative
samples. In our approach, any sample that passes through a block can be used directly for weight
updating and is treated in the same way.

To arrive at this key result we use a new approach that we call “posterior bootstrapping”. Poste-
rior bootstrapping combines the information provided by the forward and backward network during
learning by propagating one of either the forward message αk or the parameters to the posterior mes-
sage ρk to the next block. Whether αk or ρk is passed for every sample and every block is determined
by a bootstrapping schedule. The optimal schedule is derived in Supplementary Information S1.2.1
and is shown in Fig. 2, where the pattern of posterior propagation forms a block-triangular matrix,
giving blocks close to the input a tendency to preferentially propagate forward messages. Comput-
ing the posterior in this EF model is computationally very cheap as outlined above, so it introduces
no significant overhead. Posterior bootstrapping also does not introduce a locking problem because
the backward messages bk are simultaneously available at all blocks.

Based on posterior bootstrapping and optimization of ℓ, it is possible to construct an unbiased learn-
ing algorithm for the networks NA and NB . In Supplementary Information S1.2.1 we show the
following theorem in detail

Theorem 1. Let ℓ be the local loss function Eq.(7). Furthermore, let α(m)
k , β(m)

k be messages
created using the posterior bootstrapping schedule outlined above. Then simultaneous minimization
of ℓ

(
p
(m)
k , β

(m)
k

∣∣∣α(m)
k−1

)
in all blocks k, minimizes an upper bound on the log-likelihood loss L.

The proof of Theorem 1 and additional details are presented in 2 steps in the Supplement. First we
show that an upper bound toL can be constructed by adding loss terms of the form (7). We then show
that posterior bootstrapping computes the expectations that are needed to provide the forward and
backward messages α(m)

k and β
(m)
k . In simulations we also tested a simpler bootstrapping schedule

that just passes forward message αk through the network.

3.5 GREEDY LOCAL FORWARD AND FEEDBACK NETWORK OPTIMIZATION

We do the overall training of the model using a greedy block-local learning strategy, meaning that
we treat the inputs as constants and do not apply the chain rule across block boundaries. We apply a
greedy learning strategy to train the feedback networkNB as well. The role of the feedback network
is to propagate information about the labels back to the blocks of the forward network, providing
local targets for the losses ℓ. The construction of the feedback network is therefore arbitrary and need
not reflect the complexity of the forward network. In this paper, we use the simplest version, where
each block ofNB is given by a single linear layer. This special case is of particular interest because
it allows us use a closed form solution to the optimization problem to find the parameters of the
feedback network that minimize ℓ. In the Supplement Sec. S1.3 and S1.5 we show the closed-form
solution is θ(b)

k
!
= argmin

θ
(b)
k

ℓ (pk, βk |αk−1) and convergence properties.

3.6 DISTRIBUTED VARIATIONAL LEARNING

In summary, the BLL algorithm is given by Table 1. The two for loops can be interleaved and
parallelized by pipelining the propagation of data samples through the network as shown in Fig. 3.
Updates can be computed as soon as propagation through a given block is complete. There is no
locking, since only the data labels are needed to compute the output of the backward network.
Furthermore, there is no weight transport problem since parameter spaces are separated and updates
are computed only locally.

BLL shares many similarities with earlier methods. In particular, Direct Feedback Alignment (DFA)
propagates targets through random weights to create local learning targets and can therefore be seen
as a special case of BLL where feedback weights are kept fixed and the number of blocks equals
the number of layers in the model. The loss term that emerges in BLL also shows some similarity

6

Under review as a conference paper at ICLR 2024

for all pairs x,y in the training data set, and learning rate η do
a0 ← x
for 1 ≤ k ≤ N do

βk ← gk (y) ▷ Feedback network
αk ← fk (αk−1) ▷ Forward network, computation depends on previous block

θ
(b)
k ← argmin

θ
(b)
k

ℓ (pk, βk |αk−1)

θ
(a)
k ← θ

(a)
k + η∇

θ
(a)
k

ℓ (pk, βk |αk−1)

if (posterior bootstrapping) then
αk ← ρk

Table 1: Pseudo code of the BLL training algorithm. The for loops can be interleaved and run in
parallel. Colors correspond to the operations in Figure 3

Figure 3: Timeline of execution for error backpropagation (BP) and BLL. BLL presented as a sim-
plest case with forward-only bootstrapping.

with the predictive loss proposed in Nøkland and Eidnes (2019), but losses are derived here from a
probabilistic framework and used to simultaneously learn the forward network and local targets.

4 RESULTS

4.1 BLOCK-LOCAL LEARNING OF VISION BENCHMARK TASKS

We evaluated the BLL algorithm on three vision tasks: Fashion-Mnist, CIFAR-10 and Imagenet-1K.
Its performance is compared on ResNet18 and ResNet50 architectures with that of Backpropagation
(BP), Feedback Alignment (Lillicrap et al., 2014b) (FA) and Local learning using similarity match-
ing loss (Pred-Sim) from (Nøkland and Eidnes, 2019). The ResNet architectures were divided into

Architecture Algorithm Fashion-MNIST CIFAR-10 ImageNet-1K
test-1 test-3 test-1 test-3 test-1 test-5

ResNet-18 BLL 94.2 99.3 88.3 98
BP 92.7 99.3 95.2 99.3
FA 87.9 98.6 70.4 92.5
Pred-Sim 93.9 99.3 88 97.7

ResNet-50 BLL 94.3 99.1 92.6 99.1 53.6 77.1
BP 93.4 99.4 94 99.2 76.1 92.9
FA 83.1 97.9 70.3 92
Pred-Sim 94.3 99.6 92.4 98.8

Table 2: Classification accuracy (% correct) on vision tasks. BP: end-to-end backprop, FA: Feed-
back Alignment, BLL: block local learning, Sim Loss: Local learning with similarity matching loss
(Nøkland and Eidnes, 2019). Top-1,3 and 5 accuracies are reported in the respective columns.

7

Under review as a conference paper at ICLR 2024

four blocks for BLL and Pred-Sim. The splits were introduced after residual layers by grouping
subsequent layers into blocks. We also included the predictive loss as suggested in (Nøkland and
Eidnes, 2019) in our BLL method (see ablation studies in Supplement to see the role of individual
losses in training performance).

Group sizes in the blocks were (4,5,4,5) for ResNet-18 and (12,13,12,13) for ResNet-50. Backward
networks for BLL were constructed as linear layers with label size as input and the output size
equal to the number of channels in the corresponding ResNet block output. The kernels of ResNet-
18/ResNet-50 used by FA architectures during backpropagation were fixed and uniformly initialised
following the Kaiming He et al. (2015) initialisation method.

We train ResNet-50 on ImageNet-1K using the standard ImageNet training pipeline from Pytorch
(Paszke et al., 2019) without any additional augmentation. We use FFCV (Leclerc et al., 2022) data-
loading and training scripts to speed up training. Additional training details and hyperparameters
are documented in the Supplement.

The results are summarized in Table 2, top-k test accuracies are shown. Top-3 accuracies count
the number of test samples for which the correct class was among the network’s three highest out-
put activations (see Supplement for results over multiple runs). BLL performs slightly better than
Pred-Sim overall for all tasks and architectures. It also performs close to end-to-end backpropaga-
tion performance except for CIFAR-10 using ResNet18 and ImageNet task, hinting at insufficient
information being sent to the blocks through the linear feedback network. Unsurprisingly, FA is out-
performed by BLL, the gap becoming wider as the task and model complexity increases (Bartunov
et al., 2018).

4.2 BLOCK-LOCAL TRANSFORMER ARCHITECTURE FOR SEQUENCE-TO-SEQUENCE
LEARNING

Figure 4: Block local learning of transformer architecture. A: Illustration of the transformer forward
and feedback network. B: Learning curves of block local (BLL) and end-to-end backpropagation
(BP) training. C: Test accuracy vs. number of blocks in the transformer model. Error bars show
standard deviations over 5 runs.

Transformer architectures are well suited for distributed computing due to their repetitive network
structure. We demonstrate a proof-of-concept result on training a transformer with BLL. We used a
transformer model with 20 self-attention blocks with a single attention head each. Block local losses
were added after each block and trained locally. The feedback network was constructed here as a
multi-layer network by projecting targets through dense layers and used the local loss for training.
See Fig. 4 A for an illustration. The transformer was trained for 5 epochs on a sequence-to-sequence
task, where a random permutation of numbers 0..9 was presented and had to be re-generated in
reverse order.

BLL achieves a convergence speed that is comparable to that of end-to-end BP on this task. Fig. 4 B
shows learning curves of BLL and BP. Both algorithms converge after around 3 epochs to nearly
perfect performance. BLL also achieved good performance for a wide range of network depths.
Fig. 4 C shows the performance after 5 epochs for different transformer architectures. Using only 5
transformer blocks yields performance of around 99.9% (average over five independent runs). The

8

Under review as a conference paper at ICLR 2024

test accuracy on this task for the 20 block transformer was 99.6%. These results suggest that BLLod
is equally applicable to transformer architectures.

5 DISCUSSION

We have demonstrated a probabilistic framework for rigorously defining block-local losses for deep
architectures. Our method represents the parameters of probability distributions using the network
activations and introduces a feedback network that propagates information backwards from the tar-
gets to the input to provide targets for intermediate layers. These targets can be interpreted as
prototypical representations that each block must achieve in order to solve the overall classification
task. The forward network and the backward feedback can work in parallel and with different sets
of weights, solving the locking problem and the weight transport problem. We have shown that our
block-local training approach outperforms existing local training approaches and approaches the
task performance of backprop in some cases.

While we used linear layers for the feedback network in most of this work, which scales to mid-sized
learning problems, in Section 4.2 we demonstrated a proof of concept of using more complex feed-
back structures. It will be interesting to explore potentially biologically realistic feedback structures
for future work as well.

We also showed that our method can scale up to ImageNet and work on different architectures,
including transformers. Both of these results on complex tasks and network structures suggest that
BLL can scale up to very large models. Our method not only provides a novel way of performing
distributed training of large models but also hints at new paradigms of self-supervised training that
are biologically plausible.

The proposed method may also help further blur the boundary between deep learning and probabilis-
tic models. Several previous models have shown that DNNs can represent probability distribution
(Abdar et al., 2021; Pawlowski et al., 2017; Tran et al., 2019; Malinin and Gales, 2019). Unlike
these previous methods, our method does not require Monte Carlo sampling or contrastive training.
Instead, it exploits the log-linear structure of exponential family distributions to propagate proba-
bilistic messages efficiently. In fact, we found that combining our local loss with the information-
theoretic predictive loss proposed in (Nøkland and Eidnes, 2019) gave the best results. Although
BLL was derived using a probabilistic approach, it also shares interesting similarities with earlier
non-probabilistic method, such as DirectFeedback Alignment.

Overall, this work addresses an important open problem of modern ML: How can ML models be
efficiently distributed and horizontally scaled over many compute nodes for training models too
large to fit on one node. Doing so may also allow us to train large models more efficiently, since it
would allow us to distribute computation over many smaller, energy-efficient devices rather than a
large power-hungry device. This would also make our method especially well suited for new energy
efficient hardware for ML, such as neuromorphic devices. The energy consumption and resulting
carbon footprint of ML is becoming a major concern and the proposed training method may provide
a new direction to reduce the impact of ML.

REPRODUCIBILITY

We ensure that the results presented in this paper are easily reproducible using just the information
provided in the main text as well as the supplement. Details of the models used in our simulations
are presented in the main paper and further elaborated in the supplement. We provide additional
details and statistics over multiple runs in the supplement section S2. We use publicly available
libraries and datasets in our simulations. We will further provide the source code to the reviewers
and ACs in an anonymous repository once the discussion forums are opened. This included code
will also contain “readme” texts to facilitate easy reproducibility. The theoretical analysis provided
in Section 3 is derived in the supplement.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information Fusion, 76:243–297, 2021.

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. Advances in neural information processing systems, 32, 2019.

Sergey Bartunov, Adam Santoro, Blake A. Richards, Luke Marris, Geoffrey E. Hinton, and Tim-
othy P. Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms
and architectures. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 9390–9400, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can
scale to ImageNet. In Proceedings of the 36th International Conference on Machine Learn-
ing, pages 583–593. PMLR, 2019. URL https://proceedings.mlr.press/v97/
belilovsky19a.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165
[cs], July 2020. URL http://arxiv.org/abs/2005.14165.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977. ISSN 00359246. doi: 10.1111/j.2517-6161.1977.tb01600.x. URL https://
onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01600.x.

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky, Irina
Rish, Blake Richards, and Yoshua Bengio. Towards scaling difference target propagation by
learning backprop targets. In International Conference on Machine Learning, pages 5968–5987.
PMLR, 2022.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed ran-
dom learning signals allow for feedforward training of deep neural networks. Frontiers in
Neuroscience, 15, 2021. ISSN 1662-453X. URL https://www.frontiersin.org/
articles/10.3389/fnins.2021.629892.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):
452–459, 2015.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cog-
nitive science, 11(1):23–63, 1987.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Bernd Illing, Jean Ventura, Guillaume Bellec, and Wulfram Gerstner. Local plasticity rules
can learn deep representations using self-supervised contrastive predictions. In Advances
in Neural Information Processing Systems, volume 34, pages 30365–30379. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
feade1d2047977cd0cefdafc40175a99-Abstract.html.

10

Under review as a conference paper at ICLR 2024

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients.
arXiv:1608.05343 [cs], August 2016. URL http://arxiv.org/abs/1608.05343.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Pro-
ceedings of the 34th International Conference on Machine Learning, pages 1627–1635. PMLR,
2017. URL https://proceedings.mlr.press/v70/jaderberg17a.html.

Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max
Jaderberg, and Nicolas Heess. Unsupervised learning of 3d structure from im-
ages. In Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
1d94108e907bb8311d8802b48fd54b4a-Abstract.html.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction
to variational methods for graphical models. Machine learning, 37:183–233, 1999.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009. URL
https://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/, 2022. commit xxxxxxx.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pages 498–515.
Springer, 2015.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random feedback
weights support learning in deep neural networks. arXiv:1411.0247 [cs, q-bio], November 2014a.
URL http://arxiv.org/abs/1411.0247.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247, 2014b.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7(1):
13276, 2016. ISSN 2041-1723. doi: 10.1038/ncomms13276. URL https://www.nature.
com/articles/ncomms13276.

Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020. ISSN 1471-
0048. doi: 10.1038/s41583-020-0277-3. URL https://www.nature.com/articles/
s41583-020-0277-3.

Michael Lomnitz, Zachary Daniels, David Zhang, and Michael Piacentino. Learning with local
gradients at the edge, 2022. URL http://arxiv.org/abs/2208.08503.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

Sindy Löwe, Peter O’ Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-
isolated learning of representations. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/hash/851300ee84c2b80ed40f51ed26d866fc-Abstract.html.

Andrey Malinin and Mark Gales. Reverse kl-divergence training of prior networks: Improved un-
certainty and adversarial robustness. Advances in Neural Information Processing Systems, 32,
2019.

11

Under review as a conference paper at ICLR 2024

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F
Grewe. A theoretical framework for target propagation. Advances in Neural Information Pro-
cessing Systems, 33:20024–20036, 2020.

Beren Millidge, Tommaso Salvatori, Yuhang Song, Rafal Bogacz, and Thomas Lukasiewicz. Pre-
dictive coding: towards a future of deep learning beyond backpropagation? arXiv preprint
arXiv:2202.09467, 2022.

Radford M. Neal and Geoffrey E. Hinton. A View of the Em Algorithm that Justifies Incremental,
Sparse, and other Variants, pages 355–368. Springer Netherlands, Dordrecht, 1998. ISBN 978-
94-011-5014-9. doi: 10.1007/978-94-011-5014-9 12. URL https://doi.org/10.1007/
978-94-011-5014-9_12.

Arild Nøkland. Direct Feedback Alignment Provides Learning in Deep Neural Networks.
arXiv:1609.01596 [cs, stat], September 2016. URL http://arxiv.org/abs/1609.
01596.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Inter-
national conference on machine learning, pages 4839–4850. PMLR, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding, 2019. URL http://arxiv.org/abs/1807.03748.

Alexander G Ororbia and Ankur Mali. Biologically motivated algorithms for propagating local
target representations. In Proceedings of the aaai conference on artificial intelligence, volume 33,
pages 4651–4658, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker. Implicit weight
uncertainty in neural networks. arXiv preprint arXiv:1711.01297, 2017.

Tommaso Salvatori, Luca Pinchetti, Beren Millidge, Yuhang Song, Tianyi Bao, Rafal Bogacz, and
Thomas Lukasiewicz. Learning on arbitrary graph topologies via predictive coding. Advances in
neural information processing systems, 35:38232–38244, 2022.

Arash Samadi, Timothy P. Lillicrap, and Douglas B. Tweed. Deep Learning with Dynamic Spiking
Neurons and Fixed Feedback Weights. Neural Computation, 29(3):578–602, January 2017. ISSN
0899-7667. doi: 10.1162/NECO a 00929. URL https://doi.org/10.1162/NECO_a_
00929.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

Tatsukichi Shibuya, Nakamasa Inoue, Rei Kawakami, and Ikuro Sato. Fixed-weight difference target
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
9811–9819, 2023.

Shoaib Ahmed Siddiqui, David Krueger, Yann LeCun, and Stéphane Deny. Blockwise self-
supervised learning at scale, 2023. URL http://arxiv.org/abs/2302.01647.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, February 2023. URL http://arxiv.org/abs/2302.13971.

12

Under review as a conference paper at ICLR 2024

Dustin Tran, Mike Dusenberry, Mark Van Der Wilk, and Danijar Hafner. Bayesian layers: A module
for neural network uncertainty. Advances in neural information processing systems, 32, 2019.

Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei, and Chelsea Finn. Greedy hierarchi-
cal variational autoencoders for large-scale video prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2318–2328, 2021.

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
TinyViT: Fast pretraining distillation for small vision transformers, 2022. URL http://
arxiv.org/abs/2207.10666.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yuwen Xiong, Mengye Ren, and Raquel Urtasun. LoCo: Local contrastive representation learning.
In Advances in Neural Information Processing Systems, volume 33, pages 11142–11153. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/7fa215c9efebb3811a7ef58409907899-Abstract.html.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction, 2021. URL http://arxiv.org/abs/2103.03230.

Gongpei Zhao, Tao Wang, Yidong Li, Yi Jin, Congyan Lang, and Haibin Ling. The cascaded forward
algorithm for neural network training. arXiv preprint arXiv:2303.09728, 2023.

13

Under review as a conference paper at ICLR 2024

SUPPLEMENTARY INFORMATION

S1 A PROBABILISTIC FORMULATION OF DISTRIBUTED LEARNING

S1.1 MARKOV CHAIN MODEL

Here, we provide additional details to the learning model presented in Section 3 of the main text.
To establish these results, we consider the Markov chain model x → z1 → z2 → · · · → y
of a DNN split into N + 1 blocks, with inputs x, outputs y and intermediate representations zk
at block k. To simplify the notation we will define the input z0 := x and output zN+1 := y, and
z = {zk}, 1 ≤ k ≤ N , the auxiliary latent variables. The DNN suggests a conditional independence
structure given by the first-order Markov chain of random variables zk

p (y, z |x) = p (z1 . . . zN+1 | z0) =

N+1∏
k=1

pk (zk | zk−1,θk) , (S1)

where pk (zk | zk−1,θk) is the input-output mapping of the k-th block subject to block-local network
parameters θk. If it is clear from the context, we will omit the explicit mention of the parameter
vectors θk. The computation of messages αk comes naturally in a feed-forward neural network as
the flow of information follows the canonical form, input → output. Every block of the network
thus translates αk−1 → αk by outputting the statistical parameters of the conditional distribution
p (zk |x) and takes p (zk−1 |x) as input. This interpretation is valid for a suitable split of any DNN
into N + 1 blocks (N is the number of splits) that fulfills a mild set of conditions (see Section S1.4
for details). It is important to note that the random variables (z1, z2, . . .) are only implicit. The
network generates the parameters to the probability distribution and at no points needs to sample
values for these random variables.

S1.2 USING LATENT REPRESENTATIONS TO CONSTRUCT PROBABILISTIC BLOCK-LOCAL
LOSSES

Many commonly used loss functions in deep learning have a probabilistic interpretation, e.g., the
cross entropy loss of a binary classifier is identical to the Bernoulli log-likelihood, and the mean
squared error corresponds to the log-likelihood of a Gaussian with constant variance. In this formu-
lation, the outputs of the DNN are interpreted as the statistical parameters to a conditional probability
distribution (e.g., the mean of a Gaussian) and the loss function measures the support of observed
data samples x and y.

To introduce intermediate block-local representations zk in the network, we consider a variational
upper bound F to the log-likelihood loss L

F = − log p (y |x) + 1

N

N∑
k=1

DKL (qk | pk) ≥ L , (S2)

where pk and qk are true and variational posterior distributions over latent variables p (zk |x,y) and
q (zk |x,y), respectively. Using the Markov property (S1), assuming a fully factorized distribution,
implies the conditional independence

p (y, zk |x) = p (y | zk) p (zk |x) , (S3)

for any k. Using this property, we can rewrite Eq. (S2)

F = − log p (y |x) + 1

N

N∑
k=1

DKL (qk | pk) =
1

N

N∑
k=1

Eqk

[
log

q (zk |x,y)
p (y, zk |x)

]

=
1

N

N∑
k=1

Eqk

[
log

q (zk |x,y)
p (zk |x)

− log p (y | zk)
]
.

Finally, the 1
N term can be dropped since it is a constant factor with respect to the network parame-

ters, merely scaling the loss and thus ineffective in learning. To arrive at a block-local formulation

14

Under review as a conference paper at ICLR 2024

of the loss, we separate the generation of the forward and backward messages, and the computation
of the local losses. Using this, we write Eq. (S4) in the form

F =

N∑
k=1

ℓ(α) (pk, βk |αk−1) − Eqk [log p (y | zk)] , (S4)

with local losses given by

ℓ(α) (pk, βk |αk−1) = DKL (gk(αk−1, βk) | fk(αk−1)) = DKL (qk |αk) ,

where we defined the mapping fk(αk−1) = Eαk−1
[pk (zk | zk−1)] = αk and gk(αk−1, βk) =

Eαk−1

[
1
Z pk (zk | zk−1) β(zk,y)

]
= Eαk−1

[q (zk | zk−1,y))] = qk, with normalization Z .
Eq. (S4) is an upper bound on the log-likelihood loss L = − log p (y |x) ≤ F . Since L is strictly
positive, minimizing F to zeros implies that also L becomes zero (Jordan et al., 1999). We can also
add any positive auxiliary loss ℓ̃ (pk, βk |αk−1) ≥ 0 to ℓ(α), which results in a new upper bound for
L. Therefore, in Eq. (S4) we can also use the augmented loss

ℓ (pk, βk |αk−1) = DKL (qk |αk) + ℓ̃ (pk, βk |αk−1) , (S5)

instead of ℓ(α) (pk, βk |αk−1) directly. Importantly, all terms of the loss ℓ can be computed locally
through the forward propagation of the k-th block to realize fk and the computation of the posterior
gk.

The variational posterior q is given by Eq. (4). Alternatively we can also use a multi-layer feedback
network, that propagates messages βk backward

βk (zk) = p (y | zk) = Ezk+1
[pk (y | zk+1) pk (zk+1 | zk)]

= Ezk+1
[βk+1 (zk+1) pk (zk+1 | zk)] . (S6)

This is the method that was using in Section 4.2. This method re-introduces a locking problem but
may work better in some scenarios where more complex feedback messages are required. Also here
the feedback cannot be computed in closed form so we resort to a gradient-based method.

S1.2.1 ESTIMATING THE LOG-LIKELIHOOD LOSS THROUGH POSTERIOR BOOTSTRAPPING

Next, we show how the remaining term Eqk [log p (y | zk)] in Eq. (S4) can be estimated locally. The
intuition behind this result is that −Eqk [log p (y | zk)] is of a similar form as the log-likelihood loss
(Eq. (1) of the main text), i.e., the likelihood of the data labels y of the residual network zk → y.
Thus, treating zk as block-local input data and minimizing the augmented ELBO loss from layer
zk → y minimizes another upper bound on the global loss L. To formalize this observation we
introduce the recursive short-hand notation qk→j = Eqk→(j−1)

[q (zj | zj−1,y)], with qk→k = qk.
Using this, we find the following chain of inequalities
− Eqk [log p (y | zk)]
≤ −Eqk [log p (y | zk)] +DKL (Eqk [q (zk+1 | zk,y)] |Eqk [p (zk+1 | zk,y)]) (S7)

≤ Eqk→(k+1)
[logEqk [q (zk+1 | zk,y)]− Eqk [log p (zk+1 | zk,y) + log p (y | zk)]] (S8)

= Eqk→(k+1)
[logEqk [q (zk+1 | zk,y)]− Eqk [log pk+1 (zk+1 | zk)]]− Eqk→(k+1)

[log p (y | zk+1)]

≤ DKL (Eqk [q (zk+1 | zk,y)] |Eqk [pk+1 (zk+1 | zk)])
− Eqk,qk→(k+1)

[log pk+1 (zk+1 | zk)] − Eqk→(k+1)
[log p (y | zk+1)] (S9)

= ℓ
(ρ)
k,k+1 − Eqk→(k+1)

[log p (y | zk+1)] , (S10)

with local loss

ℓ
(ρ)
k,l = DKL (Eqk→l

[q (zl+1 | zl,y)] |Eqk→l
[pl+1 (zl+1 | zl)]) − H (pl+1 | qk→l)

with H (pl+1 | qk→l) = Eqk→l,qk→(l+1)
[log pl+1 (zl+1 | zl)]

(S11)

and where Eqk→l
[] denotes expectation with respect to qk→l. In (S8) we used Jensen’s inequality,

−E [log p (X)] ≥ − logE [p (X)], and in (S9) we used − logEqk [αk+1(zk)] ≥ 0, i.e., the negative
log expectation of a probability distribution is always positive or zero.

Next we generalize the inequality (S9) in the following theorem:

15

Under review as a conference paper at ICLR 2024

Theorem S1.1. Let p (y, z |x) be a probabilistic model subject to the conditional independence
properties over N + 1 blocks, given by Eq. (S1). Let ℓ(ρ)k be the local loss function Eq.(S11).
Furthermore, let ℓ(ω)

k = −Eqk→N
[log p (y | zN)]. Then the log-likelihood loss Eq. (1) is bounded

from above by the sum of losses FN ≥ L

FN =

N∑
k=1

ℓ
(α)
k + ℓ

(ω)
k +

N∑
l=k+1

ℓ
(ρ)
k,l (S12)

Proof. We prove Theorem 1 by induction over block i. Let L = − log p (y |x), and F1 = F as in
Eq. (S2). We show a transition Fi−1 → Fi, with Fi−1 ≤ Fi, and where FN recovers Eq. (S12).
This result implies a hierarchy of loss functions 0 ≤ L ≤ F1 ≤ F2 ≤ ... ≤ FN , and L ≤ FN

follows, which completes the proof.

We define:

Fi =

N∑
k=1

ℓ
(α)
k +

i∑
l=k+1

ℓ
(ρ)
k,l − Eqk→j

[log p (y | zj)]
∣∣∣∣
j=max(i,k)

(S13)

For i = 1 we recover Eq. (S4) and thus L ≤ F1 holds as established before. Using the result (S9)
we can take the inductive step Li−1 → Li

Fi−1 =

N∑
k=1

ℓ
(α)
k +

i−1∑
l=k+1

ℓ
(ρ)
k,l − Eqk→j

[log p (y | zj)]
∣∣∣∣
j=max(i−1,k)

=

i−1∑
k=1

ℓ
(α)
k +

i−1∑
l=k+1

ℓ
(ρ)
k,l − Eqk→(i−1)

[log p (y | zi−1)] +

N∑
k′=i

ℓ
(α)
k′ − Eqk′ [log p (y | zk′)]

≤
i−1∑
k=1

ℓ
(α)
k +

i−1∑
l=k+1

ℓ
(ρ)
k,l + ℓ

(ρ)
k,i − Eqk→i

[log p (y | zi)]

+ ℓ
(α)
i + ℓ

(ρ)
i,i+1 − Eqi→(i+1)

[log p (y | zi+1)] +

N∑
k′=i+1

ℓ
(α)
k′ − Eqk′ [log p (y | zk′)]

=

N∑
k=1

ℓ
(α)
k +

i∑
l=k+1

ℓ
(ρ)
k,l − Eqk→j

[log p (y | zj)]
∣∣∣∣
j=max(i,k)

= Fi . (S14)

This shows that the global loss can be decomposed into a sum of local losses. Setting i = N in
Eq. (S13), the proof of Theorem S1.1 follows.

What remains to be shown is that posterior bootstrapping allows us to compute the required terms.
To arrive at this result we further study the local loss (S11). Note, that this expression can be written
in the form (S5) as a function of the forward network transfer p (zl+1 | zl) given the distribution
qk→l(zl) for 1 ≤ k ≤ l ≤ N , i.e.

ℓ
(ρ)
k,l = ℓ (pl+1, βl+1 | qk→l) =

DKL (gk(qk→l, βl+1) | fk(qk→l)) − H (pl+1 | qk→l) , (S15)

where we used the mappings fk and gk as in Eq. (S5). Thus by choosing ℓ̂ (pl+1, βl+1 | qk→l) =
H (pl+1 | qk→l), we can spell out the local loss in the exact same way as Eq. (S5), but passing the
posterior messages qk→l instead of the forward pass αk. The last block with index N + 1 directly
optimizes ℓ(ω)

k = Eqk→N
[log p (y | zN)], which is also local to that block.

We thus propose to realize the sum over k, l in (S14) using a posterior bootstrapping schedule.
Instead of passing only the forward messages, blocks may be selected to compute the variational
posterior distribution q locally and pass that to the next block instead. The optimal posterior boot-
strapping schedule, according to (S14), is the one that computes all N2 combinations of passing α
and q messages giving rise to the structure in Fig. 2. We are now ready to prove Theorem 1, which
we reverberate here for completeness

16

Under review as a conference paper at ICLR 2024

Theorem S1.2. Let p (y, z |x) be a probabilistic model subject to the conditional independence
properties over N + 1 blocks, given by Eq. (S1). Let ℓ be the local loss function Eq.(S5). Fur-
thermore, let α(m)

k , β(m)
k be messages created using the optimal posterior bootstrapping schedule

outlined above. Then, the simultaneous minimization of ℓ
(
p
(m)
l , β

(m)
l

∣∣∣α(m)
k

)
in all blocks k, mini-

mizes an upper bound on the log-likelihood loss L.

Proof. The proof of Theorem S1.2 follows directly from Theorem S1.1 by substituting the loss
terms in the sums with (S15). Importantly, all messages generated by the bootstrapping schedule are
treated the same, so there is no contrastive step or need for global information to signal a network-
wide learning phase. In simulations we also experimented with different bootstrapping schedules,
other than the optimal one.

S1.3 RELATIONSHIP TO EM AND CONVERGENCE PROPERTIES

As outlined above the model can be closely linked to the EM algorithm. The split of gradient
estimators using the Markov assumption is a key property of algorithms derived from EM, and also
the key property exploited in BLL. EM makes use of the identity (Dempster et al., 1977)

−∇L = ∇ log p (y |x) =
1

p (y |x)
∇p (y |x)

=
1

p (y |x)
∇Ezk

[p (y | zk) p (zk |x)] = Ep(zk |x,y) [∇ log p (y | zk) +∇ log p (zk |x)] ,

where in the last step we used that p (y |x) is constant under the expectation and p(y | zk)p(zk |x)
p(y |x) =

p (zk |x,y) (Bayes’ rule).

We use a variational approach where the posterior is replaced by q. It has been established in prior
work that, similar to the EM algorithm, the variational loss L can be minimized by alternating two
optimization steps (Jordan et al., 1999; Neal and Hinton, 1998)

E-step: q(t) = argmin
q

F
(
q, θ(t−1)

)
(S16)

M-step: θ(t) = argmin
θ

F
(
q(t), θ

)
. (S17)

In Neal and Hinton (1998) it was shown that this approach also works if gradient descent is used
for the optimization of (some of) the parameters. We use here the variant where parameters of the
forward network are optimized via gradient descent whereas the loss with respect to the feedback
network parameters is directly optimized.

S1.4 GENERAL EXPONENTIAL FAMILY DISTRIBUTION

To arrive at a result for the gradient of the first (KL-divergence) term ℓk in Eq. (S4) we seek distri-
butions for which the marginals can be computed in closed form. We assume forward messages α
and posterior ρ be given by general exponential family distributions

αk (zk) =
∏
j

αkj (zkj) =
∏
j

h(zkj)exp (T (zkj)ϕkj −A (ϕkj)) (S18)

ρk (zk) =
∏
j

ρkj (zkj) =
∏
j

h(zkj)exp (T (zkj) γkj −A (γkj)) (S19)

with base measure h, sufficient statistics T , log-partition function A, and natural parameters ϕkj and
γkj . Using this the KL loss becomes

DKL (ρk |αk) =
∑
j

Eρkj
[T (zkj) (ϕkj − γkj)−A (ϕkj) +A (γkj)] , (S20)

17

Under review as a conference paper at ICLR 2024

and thus
−∇DKL (ρk |αk) =

∑
j

(
Eρkj

[T (zkj)]− Eαkj
[T (zkj)]

)
∇ϕkj +(

Eρkj

[
T (zkj)

2
]
− Eρkj

[T (zkj)]
2
)

︸ ︷︷ ︸
σ2(ρkj)

(ϕkj − γkj)∇γkj , (S21)

which by defining µ (p) = Ep [T (zkj)] can be written in the compact form

−∇DKL (ρk |αk) =
∑
j

(µ (ρkj)− µ (αkj))∇ϕkj + σ2 (ρkj) (ϕkj − γkj)∇γkj .

This is the result Eq. (6) of the main text.

S1.4.1 GAUSSIAN RANDOM VARIABLES WITH KNOWN VARIANCE

Throughout the numerical simulations we use the network to represent Gaussian distributions with
known variance. For this distribution we have T (zkj) = zkj , Eρkj

[T (zkj)] = ϕkj , and furthermore
σ2 (ρkj) = σ2 (= const). We get

−∇ℓk =
∑
j

(γkj − ϕkj)∇ϕkj + σ (ϕkj − γkj)∇γkj (S22)

Using the parameterization ϕkj = akj and γkj =
1
2 (akj + bkj), we further get

−∇a ℓk =
(σ
2
− 1

)∑
j

(akj − bkj)∇akj . (S23)

This is the KL loss that was used to minimize the distance between forward and feedback features.

S1.5 CLOSED FORM SOLUTION OF BACKWARD NETWORK

Here we show the closed form solution for optimizing the backward network. Over a set of M
training samples we seek to solve

θ
(b)
k

!
= argmin

θ
(b)
k

M∑
m=1

ℓk(ρ
(m)
k , α

(m)
k) = argmin

θ
(b)
k

M∑
m=1

DKL

(
ρ
(m)
k

∣∣∣α(m)
k

)
+ H

(
ρ
(m)
k , α

(m)
k

)
.

As in the remainder of this paper, we treat the inputs to the block k as constants. The second cross-
entropy term only depends on the parameters of the forward network. Taking the gradient with
respect to backward network parameters γkj thus yields
∇γkj

ℓk = ∇γkj
DKL (ρk |αk)

=

M∑
m=1

∇µ
(
γ
(m)
kj

)(
γ
(m)
kj − ϕkj

(m)
)
∇γ(m)

kj + µ
(
γ
(m)
kj

)
∇γ(m)

kj −∇A
(
γ
(m)
kj

)
∇γ(m)

kj ! = 0

↔
M∑

m=1

∇µ
(
γ
(m)
kj

)(
γ
(m)
kj − ϕkj

(m)
)
+ µ

(
γ
(m)
kj

)
−∇A

(
γ
(m)
kj

)
!
= 0

Assuming Gaussian with known variance µ
(
γ
(m)
kj

)
= σ γ

(m)
kj , ∇µ

(
γ
(m)
kj

)
= σ, A

(
γ
(m)
kj

)
=(

γ
(m)
kj

)2

2 and∇A
(
γ
(m)
kj

)
= γ

(m)
kj gradient with respect to γkj

↔
M∑

m=1

∇µ
(
γ
(m)
kj

)(
γ
(m)
kj − ϕkj

(m)
)
+ µ

(
γ
(m)
kj

)
−∇A

(
γ
(m)
kj

)
!
= 0

↔
M∑

m=1

σ
(
γ
(m)
kj − ϕkj

(m)
)
+ σ γ

(m)
kj − γ

(m)
kj

!
= 0

↔
M∑

m=1

γ
(m)
kj (2σ − 1)− σϕkj

(m) !
= 0

18

Under review as a conference paper at ICLR 2024

Hyperparameter Value

weight of KL loss 0.70
weight of entropy lossH 0.014
magnitude of added noise to estimateH 0.013
weight of correlation loss 0.70
predictive loss scaling 0.1
weight of output CE loss 0.49
posterior bootstrapping optimal
batch size 256

Table S1: Hyperparameters used for training ResNet-50 on FashionMNIST task.

γ
(m)
kj = 1

2

(
a
(m)
kj + bkj

)

↔
M∑

m=1

1

2

(
a
(m)
kj + bkj

)
(2σ − 1)− σa

(m)
kj

!
= 0

↔ M

2
(2σ − 1) bkj −

1

2

M∑
m=1

a
(m)
kj

!
= 0

↔ bkj
!
=

1

M (2σ − 1)

M∑
m=1

a
(m)
kj =

c1
M

M∑
m=1

a
(m)
kj ,

with constant c1. The optimal parameters for the backward network is thus given by the class-
specific mean over the forward messages.

S2 NUMERICAL SIMULATIONS

We assessed the models results variability over five runs for each model and each task, using different
random seeds. We used 5 different losses derived from our theoretical framework or previously
established: the BLL KL loss, the entropy loss H, the prediction loss as in (Nøkland and Eidnes,
2019), a correlation loss that punishes high auto-correlation of features within a batch and the output
cross-entropy (CE) loss, that is only effiective at the last block. Each loss was assigned a weight to
scale it relative to the other losses and then combined to block-local losses that were optimized
individually.

S2.0.1 FASHIONMNIST CLASSIFICATION TASK

FashionMNIST is a freely available dataset consisting of 60k training grayscale images and 10k
grayscale test images of fashion items published under the MIT License (MIT) (Xiao et al., 2017).
The images were normalized to have mean 0 and stds 1 and augmented with random horizontal
flips during training. The BLL networks for FashionMNIST experiments used the same ResNet
architectures but augmented with the feedback blocks. For the forward network we used the Adam
optimizer with a learning rate of 0.03 without weight decay, a Cosine annealing learning rate (LR)
scheduler (Loshchilov and Hutter, 2017) with max iterations set to 140. We used the direct closed
form optimization for the feedback network on every batch but applied it with a rate of only 0.9 to
account for missing classes. The remaining hyperparameters used are given in Table S1.

S2.0.2 CIFAR10 CLASSIFICATION TASK

CIFAR10 is a freely available dataset consisting of 50k training images and 10k test images from
(Krizhevsky, 2009). We used the same data augmentation, optimizers and hyperparameters used for
FashionMNIST to train CIFAR10 (see Table S1).

19

Under review as a conference paper at ICLR 2024

test-1 test-3
(mean±std) (mean±std)

ResNet-18 BLL 94±0.2 99.3±0.04
BP 92.7±0.1 99.2±0.7
FA 88.2±0.3 98.7±0.2
Pred-Sim 93.7 ±0.2 99.4±0.1

ResNet-50 BLL 94.1±0.24 99.1±0.1
BP 93.4±0.6 99.4±0.05
FA 86.6±0.7 98.6±0.1
Pred-Sim 94.2 ±0.2 99.4±0.08

Table S2: As in Table 2. Classification accuracy (% correct) for 5 runs on FashionMNIST vision
tasks.

test-1 test-3
(mean±std) (mean±std)

ResNet-18 BLL 88.1±0.2 97.9±0.1
BP 92.5±1.5 98.3±0.3
FA 72.0±0.6 92.8±0.1
Pred-Sim 87.8 ±0.2 97.9±0.1

ResNet-50 BLL 92.3±0.2 98.9±0.1
BP 91.1±1.1 98.7±0.2
FA 62.5±0.4 88.2±0.2
Pred-Sim 92.1 ±0.2 98.8±0.1

Table S3: As in Table 2. Classification accuracy (% correct) for 5 runs on CIFAR10 task.

S2.1 IMAGENET CLASSIFICATION TASK

We train ResNet-50 on Imagenet-1K using FFCV (Leclerc et al., 2022) library. Standard hyperpa-
rameters of ImageNet were not changed from the FFCV baseline results. We reused most of the
hyperparameters specific to our method from the CIFAR-10 task. See Table S4 for full details on
the hyperparameters used for Imagenet-1K.

S2.2 ABLATION STUDY

We performed ablation studies to assess the importance of the different losses in BLL: Correlation
loss, predictive loss and KL loss. To this end, we disabled one loss at a time and trained on CIFAR-
10. In addition we also disabled all local losses, effectively only training the last block directly at the

Hyperparameter Value

weight of KL loss 0.25
weight of entropy lossH 1.0
magnitude of added noise to estimateH 0.01
weight of correlation loss 0.7
feedback network LR 0.9
weight of output CE loss 0.43
predictive loss scaling 0.5
posterior bootstrapping disabled
batch size 512
feedback optimizer momentum 0.01

Table S4: Hyperparameters used for training ResNet-50 on ImageNet task. All other hyperparame-
ters relating to theforward network training are not modified from the baseline FFCV training script

20

Under review as a conference paper at ICLR 2024

modification performance

w/o correlation loss 91.4±0.2
w/o predictive loss 91.5±0.2
w/o KL loss 91.8±0.3
w/o all local losses 52.1±13.3
with simplified bootstrapping 92.4±0.1
benchmark BLL 92.3±0.2

Table S5: BLL CIFAR-10 test accuracy with modified algorithm

targets. Furthermore, we assess the importance of the optimal posterior bootstrapping by using only
the simplified bootstrapping schedule where only forward messages are propagated while keeping
all losses enabled. The results are presented in Table S5.

A decrease in performance is observed whenever one of the local losses is removed, but removing
them all drastically reduces the performance as expected. No local losses means training only the
block layer while freezing the remaining blocks, thus the decrease in performance. Using a sim-
plified boostrapping scheme gives comparable performance as augmenting forward messages with
backward messages. In this case the message augmentation doesn’t provide sensible advantage. Ex-
ploring different augmentation methods on more tasks and architectures might give better insight.

We study the effect of splitting the network into blocks in Figure S1. The performance decreases
as the number introduced in the network increases. This effect is more pronounced as the difficulty
of the task increases. We compare this to the effect of adding additional losses to the training
method without splitting the network. This network is trained end-to-end with backpropagation,
these additional losses introduced slight performance degradation.

Figure S1: Top-1 classification accuracy on CIFAR-10 (Left) and ImageNet (Right) across number
of splits in the ResNet-50. ImageNet performance at 30 epochs of training is compared to backprop-
agation training while keeping additional losses introduced in our method.

S2.3 HARDWARE AND SOFTWARE DETAILS

ResNet18 and ResNet50 models and experiments were implemented in PyTorch (Paszke et al.,
2019). Most of our experiments were run on NVIDIA A100 GPUs and some initial evaluations
and the MINST experiments were conducted on NVIDIA V100 and Quadro RTX 5000 GPUs. In
total we used about 190,000 core hours for training and hyper-parameter searches.

21

