

000 001 002 003 004 005 SEESAW: ACCELERATING TRAINING BY BALANCING 006 LEARNING RATE AND BATCH SIZE SCHEDULING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015

016 ABSTRACT 017

018 Increasing the batch size during training — a “batch ramp” — is a promising strat-
019 egy to accelerate large language model pretraining. While for SGD, doubling the
020 batch size can be equivalent to halving the learning rate, the optimal strategy for
021 adaptive optimizers like Adam is less clear. As a result, any batch-ramp schedul-
022 ing, if used at all, is typically tuned heuristically.
023

024 This work develops a principled framework for batch-size scheduling and intro-
025 duces *Seesaw*: whenever a standard scheduler would halve the learning rate, See-
026 saw instead multiplies it by $1/\sqrt{2}$ and doubles the batch size, preserving loss
027 dynamics while reducing serial steps. Theoretically, we provide, to our knowl-
028 edge, the first finite-sample proof of equivalence between learning-rate decay
029 and batch-size ramp-up for SGD on noisy linear regression, and we extend this
030 equivalence to normalized SGD, a tractable proxy for Adam, under a variance-
031 dominated regime observed in practice. Empirically, on 150M/300M/600M-
032 parameter models trained at Chinchilla scale using a constant (critical) batch size,
033 *Seesaw* matches cosine decay at equal FLOPs while reducing wall-clock time by
034 $\approx 36\%$, *approaching the theoretical limit* implied by our analysis.
035

036 1 INTRODUCTION 037

038 In recent years, large language models (LLMs) have demonstrated remarkable progress across di-
039 verse tasks, including outperforming humans in competitive benchmarks and international competi-
040 tions (Huang & Yang, 2025; Petrov et al., 2025; El-Kishky et al., 2025). A central driver of this
041 progress has been the steady increase in pre-training compute, measured in floating point operations
042 (FLOPs) (Kaplan et al., 2020; Hoffmann et al., 2022). However, hardware improvements have not
043 kept pace with the rapid escalation of training requirements, resulting in wall-clock times extending
044 to several months for state-of-the-art models (Erdil & Schneider-Joseph, 2024).
045

046 A widely studied strategy to reduce wall clock time is increasing the batch size (You et al., 2017;
047 Goyal et al., 2017). Empirical studies show that larger batches can proportionally reduce the number
048 of optimization steps required for convergence (Zhang et al., 2024; McCandlish et al., 2018; Shallue
049 et al., 2019). However, beyond a maximum batch size termed as critical batch size (CBS), further
050 scaling reduces sample efficiency and limits gains in training speed.
051

052 While most prior work assumes a fixed batch size, recent large-scale LLM training runs employ
053 batch size schedules that gradually increase batch size over the course of training (Dubey et al.,
054 2024; Touvron et al., 2023; Adler et al., 2024; OLMo et al., 2024; Team, 2025). This practice has
055 been observed to further reduce training times without compromising model performance. However,
056 to the best of our knowledge, the “batch ramp” schedules are not theoretically grounded and instead
057 tuned heuristically. The lack of theoretical justification leaves open whether these heuristics are close
058 to optimal, motivating the central question of our study: *what is the optimal batch size schedule for
059 minimizing serial runtime while not sacrificing performance?*
060

061 1.1 THEORETICAL CONTRIBUTIONS 062

063 We theoretically prove, to the best of our knowledge, the first non-asymptotic equivalence result be-
064 tween learning rate decay and batch size ramp up in SGD in linear regression with additive noise.
065

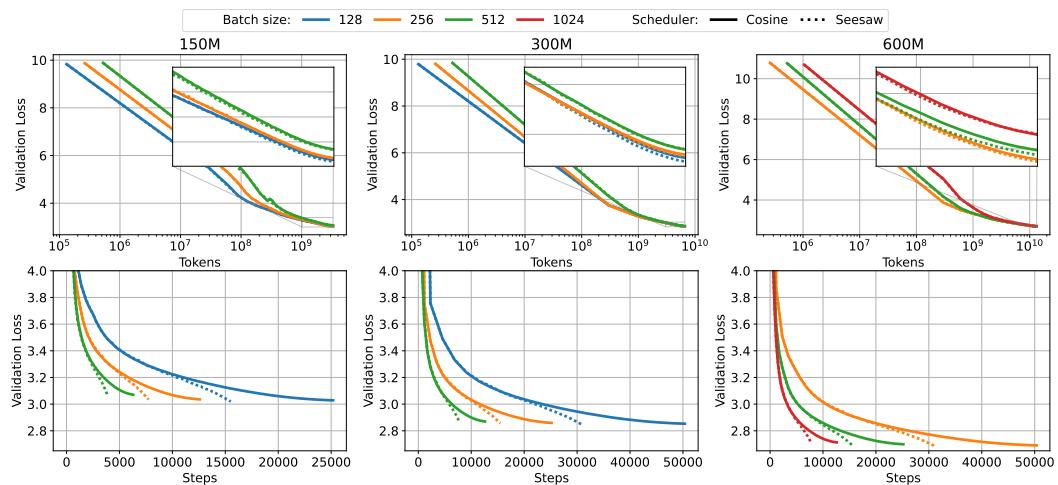
054 We introduce an informal version of our main theorem here, as well as the corollary leading up to
 055 Seesaw, and we formalize the statements in Section 5.

056 **Theorem** (Informal version of Theorem 1). *Consider mini-batch SGD on D total samples. Consider
 057 a base process where we run with a stepwise batch ramp up schedule which doubles the batch size
 058 at certain points while keeping the learning rate fixed. Consider an alternative process where at
 059 the same points we instead halve the learning rate, while keeping the batch size fixed and adjust the
 060 number of steps such that the total processed samples remains D . Then, the excess risk of the base
 061 process is within a constant factor of that of the alternative process.*

062 **Corollary** (Informal version of Corollary 1). *Under mild assumptions, we extend the equivalence
 063 to normalized SGD with different schedulers. Consider a base process where we run with a stepwise
 064 batch ramp up schedule which doubles the batch size at certain points while decaying the learning
 065 rate by $\sqrt{2}$. Consider the same alternative process as before. Then, the excess risk of the base
 066 process is within a constant factor of that of the alternative process.*

068 1.2 EMPIRICAL CONTRIBUTIONS

070 Based on the theoretical analysis, we introduce *Seesaw*, a learning rate and batch size scheduler that
 071 reduces the serial runtime of LLM pre-training runs by approximately 36% via increasing the batch
 072 size during training at specific points. We provide empirical results in Figure 11 and show that at (or
 073 below) the critical batch size, our method achieves a significant serial runtime acceleration across
 074 several model and data scales, while maintaining the same performance as training with cosine
 075 decay.



092 Figure 1: Seesaw comparison with cosine decay in 150M (left), 300M (middle) and 600M (right)
 093 models trained at Chinchilla scale. Seesaw matches the loss dynamics of cosine annealing in FLOPs
 094 (top row), but achieves a significant speed up in terms of serial runtime (bottom row). Runs are swept
 095 over learning rates and plotted at the best learning rate for cosine annealing in terms of validation
 096 loss, at each batch size. The validation losses at the end of training are provided in Table 1. Note
 097 the axes: the top plots are on a logarithmic scale while the bottom are on a linear scale. For more
 098 experimental details, see Section 4.

101 2 RELATED WORK

103 **Role of batch size in scaling.** Understanding batch size ramp up schemes during training has been
 104 a topic of interest in recent years due to its crucial role in decreasing wall clock runtime. Various
 105 methods of increasing the batch size have been used in common LLMs such as LLaMA (Dubey
 106 et al., 2024; Touvron et al., 2023), Nemotron (Adler et al., 2024), OLMo (OLMo et al., 2024;
 107 Groeneveld et al., 2024), Apertus (Team, 2025). The reason behind ramping up the batch size is
 108 to take advantage of the parallel computation of samples and thus reducing the total number of

sequential steps. However, since increasing the batch size reduces the total number of gradient steps taken by the model during training, there is a maximal batch size which can be achieved without becoming data inefficient, called the critical batch size (CBS) (Erdil & Schneider-Joseph, 2024; Jain et al., 2018; Zhang et al., 2024; Shallue et al., 2019). Recent work also looks at the effect of batch size on SGD optimization in LLMs (Srećković et al., 2025; Marek et al., 2025), following previously established theoretical results in noisy quadratic models (Zhang et al., 2019).

SGD for linear regression. Recently, Zhang et al. (2024) have analyzed the CBS using weight averaging in linear regression and established scaling laws as a function of data and model size. The bias-variance analysis used by Zhang et al. (2024) has a longstanding history in the literature (Jain et al., 2017) and has been used to study batch ramp-up schemes in SGD (Jain et al., 2018). These rates have been recently made tight by (Zou et al., 2021; Wu et al., 2022a;b) for general spectra of the data covariance. Recently, (Meterez et al., 2025) have used a simplified mathematical framework for rederiving the same bounds by rotating the dynamics in the eigenbasis of the data. A similar diagonalizing idea has also been previously used in literature by Bordelon & Pehlevan (2021); Wu et al. (2023b;a).

Stochastic Differential Equations (SDEs). Another point of view for studying the interaction between batch size and learning rate in optimization is through SDEs (Li et al., 2021; Xie et al., 2020; Compagnoni et al., 2024; Jastrzębski et al., 2017). Malladi et al. (2022) study how to scale the learning rate as a function of the batch size in adaptive algorithms, extending previous work that introduced the square root scaling rule (Granziol et al., 2022; You et al., 2019).

Empirical Work. Scaling laws for the CBS and the optimal batch size have also been recently observed by (Bergsma et al., 2025). In line with our conclusions regarding SGD, the linear scaling rule for SGD has been observed by (Smith et al., 2017), showing that in SGD, linearly increasing the batch size is equivalent to decreasing the learning rate. McCandlish et al. (2018) propose a metric based on the Hessian and the noise that correlates with the CBS over training. While their proposed metric is based on having access to the Hessian, which is prohibitive for current large-scale runs, they find that the noise scale increases during a training run, which aligns with our theoretical predictions. Lastly, perhaps the most similar to our work is Merrill et al. (2025), who propose a batch size warmup scheme based on starting from a checkpoint with various multiples k of the current batch size, and pick the largest k^* where the loss is ϵ -close to the original loss. Based on this methodology, they propose the scaling rule $B_{t+1} = 2B_t$ and $\eta_{t+1} = \sqrt{2}\eta$. In contrast, we propose a simple drop-in replacement for existing cosine schedulers, motivated rigorously by (normalized) SGD on quadratics. Moreover, we argue that the scheduler proposed by (Merrill et al., 2025) will lead to instabilities and divergence after a fixed number of steps, based on our theoretical analysis in Lemma 4.

3 SEESAW: ALGORITHMIC DETAILS

We begin by providing an intuitive derivation of Seesaw, and the practical implementation of our algorithm. To build intuition, consider 2 different SGD processes. In one process we take 2 steps at learning rate $\eta/2$ and batch size B , and in the other we take 1 step at learning rate η and batch size $2B$. Intuitively, both processes should look the same up to first order: the deterministic part of the update stays the same, and the noise averages out. Consider a general smooth loss function $\mathcal{L}(\mathbf{x})$ and let $\mathbf{g}_0 = \nabla \mathcal{L}(\mathbf{x}_0)$. Then, through a simple Taylor expansion up to first order in η , we have the loss of the $(\eta, 2B)$ process and the loss of the 2 half step process $(\eta/2, B)$ respectively:

$$\begin{aligned} \mathcal{L}(\mathbf{x}_1) &= \mathcal{L}(\mathbf{x}_0) - \eta \mathbf{g}_0^\top (\mathbf{g}_0 + \xi') + \mathcal{O}(\eta^2) & \text{Cov}(\xi') &= \frac{\sigma^2}{2B} \mathbf{I}_d \\ \mathcal{L}(\mathbf{x}_2) &= \mathcal{L}(\mathbf{x}_0) - \frac{\eta}{2} \mathbf{g}_0^\top (2\mathbf{g}_0 + \xi_0 + \xi_1) + \mathcal{O}(\eta^2) & \text{Cov}(\xi_i) &= \frac{\sigma^2}{B} \mathbf{I}_d. \end{aligned}$$

Note that the 2 processes are equivalent up to first order both in the deterministic part and in the noise terms up to $\mathcal{O}(\eta^2)$, an argument which has been previously shown by Malladi et al. (2022). We formalize this SGD intuition in Theorem 1 and extend it to normalized SGD as an analytical proxy to Adam.

162 3.1 EXTENSION TO NORMALIZED SGD
163

164 From the previous subsection, intuitively, for SGD, cutting the learning rate by a factor of α should
165 be equivalent to increasing the batch size by a factor of α . To design a practical training algorithm
166 based on the SGD analysis and arrive at Seesaw, we begin with the Adam update rule and simplify
167 until we obtain normalized SGD (NSGD), which is a commonly used tractable analytical proxy for
168 Adam (Jelassi et al., 2022; Zhao et al., 2024; Xie et al., 2024). Suppose we are optimizing over
169 parameters θ and denote the gradients at each time step \mathbf{g}_t . Then, for learning rate η and ignoring
170 the bias correction, the parameter update is:

171
$$\mathbf{m}_t = \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \mathbf{g}_t \quad (1)$$

172
$$\mathbf{v}_t = \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2 \quad (2)$$

173
$$\theta_t = \theta_t - \eta \frac{\mathbf{m}_t}{\sqrt{\mathbf{v}_t} + \epsilon} \quad (3)$$

174 where \mathbf{m}_t is the momentum term, \mathbf{v}_t is the second moment term, β_1, β_2 are their respective exponential
175 decay rates, and ϵ ensures stability. For NSGD, we approximate the per-coordinate updates
176 of Adam with full parameter updates, set $\beta_1 = \beta_2 = 0$ and replace the denominator with the true
177 expected value of the squared gradient norms over the population:

178
$$\theta_t = \theta_t - \eta \frac{\mathbf{g}_t}{\sqrt{\mathbb{E}\|\mathbf{g}_t\|^2}} \quad (4)$$

179 Equation 4 describes the NSGD update
180 rule, which is a crucial component of
181 designing Seesaw. While the full analysis is
182 deferred to Appendix B, the expected
183 gradient norms can be decomposed as:

184
$$\mathbb{E}\|\mathbf{g}_t\|^2 = \text{mean} + \text{variance} \quad (5)$$

185 where the variance scales down with the
186 batch size. To design Seesaw, we assume
187 that the variance dominates the expected
188 gradient squared norms (Assumption 3), and we motivate why this assumption is
189 reasonable in Appendix B. This step reduces (up to constant factors) the NSGD
190 update rule to SGD with a rescaled learning rate, allowing us to extend risk equivalence to NSGD
191 (Corollary 1) in Section 5. For NSGD, informally, Corollary 1 shows that any learning rate cut by a
192 factor of α and batch size increase by a factor of β are equivalent as long as $\alpha\sqrt{\beta}$ is held constant.
193 We further empirically compare Seesaw with other possible schedulers in Figure 4.

200 3.2 ACHIEVABLE SPEEDUPS
201

202 While our theory is established for step decay schedulers, in practice we approximate cosine decay
203 with a step decay by considering a decay of α , and passing the times (as measured in tokens) where
204 the cosine would cut the learning rate by α as input to Seesaw. Then, at these points, we instead
205 cut the learning rate by $\sqrt{\alpha}$ and increase the batch size by β , where the schedulers are equivalent in
206 terms of loss as long as we keep the product $\alpha\sqrt{\beta}$ fixed. However, we cannot arbitrarily increase
207 the batch size at time t and expect the risk to match the underlying process. Lemma 4 quantifies this
208 and the main takeaway is stated below:

209 **Remark 1.** *The most aggressive ramp up scheme we can use is given by $\alpha = \sqrt{\beta}$. (for a formal
210 argument see Lemma 4)*

211 In Section 4.1 we empirically verify this constraint and show that $\alpha = \sqrt{\beta}$ is the most aggressive
212 scheme we can choose without divergence, which is the reason for presenting Algorithm 1 in this
213 setting.

214 At the most aggressive limit, we can compute the theoretical speedup we would hope to achieve
215 where the standard scheduler is the cosine decay.

216 **Lemma 1** (Maximum Theoretical Speedup under Cosine Decay). *Consider a baseline training*
 217 *process of T total steps using a constant batch size and a cosine learning rate schedule $\eta(t) =$*
 218 *$\eta_0 \cos(\frac{\pi t}{2T})$. An equivalent process run with a batch ramping schedule like Seesaw, in the continuous*
 219 *limit ¹, will have a total of $\frac{2T}{\pi}$ steps. This yields a maximum theoretical serial runtime reduction of*
 220 *$(1 - \frac{2}{\pi}) \approx 36.3\%$.*

222 Lemma 1 provides an intuitive upper bound on the acceleration from *Seesaw*. The speedup is sig-
 223 nificant but less than 50% because most of the training progress under a cosine schedule occurs
 224 early, when the learning rate is high and the batch size must consequently be relatively small. While
 225 *Seesaw* aggressively increases parallelism in the later stages of training, the initial, more sequential
 226 phase remains the primary bottleneck on total runtime.

228 4 EMPIRICAL FINDINGS

230 In this section, we present the experimental details and methodology for evaluating *Seesaw*. We
 231 denote by D the dataset size, N the number of parameters.

	B=128	B=256	B=512	B=1024
150M (cosine)	3.0282	3.0353	3.0696	3.1214
150M (Seesaw)	3.0208	3.0346	3.0687	3.1318
300M (cosine)	2.8531	2.8591	2.8696	2.9369
300M (Seesaw)	2.8452	2.8561	2.8700	2.9490
600M (cosine)	-	2.6904	2.6988	2.7128
600M (Seesaw)	-	2.6883	2.6944	2.7132

241 Table 1: Final validation losses picked at the best learning rate (for the cosine annealing scheduler)
 242 for each batch size, for $\alpha = 1.1$. Note that the dynamics match robustly across the 2 schedulers
 243 when trained at CBS.

245 **Model and Dataset.** We pretrain models of size 150M, 300M and 600M (non-embedding) param-
 246 eters at Chinchilla scaling i.e. $D = 20N$ (Hoffmann et al., 2022). We use the OLMo (Groeneveld
 247 et al., 2024) codebase to train all of our models. For each experiment, we do learning rate warmup
 248 for 10% of the total amount of tokens, followed by learning rate decay following cosine scheduling
 249 or *Seesaw*. We report the architectural details of each model as a tuple (depth, # heads, width),
 250 and thus we have for 150M (12, 16, 1024), 300M (24, 16, 1024) and for 600M (24, 22, 1408). Un-
 251 less mentioned otherwise, each model is trained using AdamW, with weight decay $\lambda = 0.0$ (no
 252 weight decay), $\beta_1 = 0.9$, $\beta_2 = 0.95$, $\epsilon = 10^{-8}$. For each run we sweep over learning rates
 253 $\eta \in \{0.001, 0.003, 0.01, 0.03\}$ and initial batch sizes $B \in \{128, 256, 512, 1024\}$, at sequence length
 254 $L = 1024$. Similar to the OLMo training codebase, we enable z-loss during training, but provide
 255 ablations over it in Appendix D showing that it does not affect the model performance at our scales.
 256 All our models are pretrained on the C4 dataset (Raffel et al., 2020), tokenized with the T5 tokenizer.

257 **Experimental Design.** We compare *Seesaw* with cosine annealing by training models at the crit-
 258 ical batch size (CBS) B^* , approximated based on (Zhang et al., 2024), namely $B^* \approx 256 \times L$
 259 (150M), $B^* \approx 512 \times L$ (300M) and $B^* \approx 1024 \times L$ (600M) tokens. The main results comparing
 260 *Seesaw* and cosine annealing at equal FLOPs are provided in Figure 11. The precise final losses
 261 obtained by the 2 schedulers are provided in Table 1.

263 4.1 CAN WE DO BETTER?

265 Recall that based on Corollary 1 and Lemma 4, we have a family of equivalent schedules in NSGD,
 266 given by a fixed product $\alpha\sqrt{\beta}$, under the constraint that $\alpha \geq \sqrt{\beta}$. Ideally, we would like to make β

268 ¹In the continuous-time limit, we consider an aggressive (non-divergent) batch size ramp that maintains
 269 the relationship $\alpha = \sqrt{\beta}$. Consequently, the total number of sequential steps is given by the integral of the
 normalized learning rate schedule: $\int_0^T \frac{\eta(t)}{\eta_0} dt = \int_0^T \cos(\frac{\pi t}{2T}) dt = \frac{2T}{\pi}$.

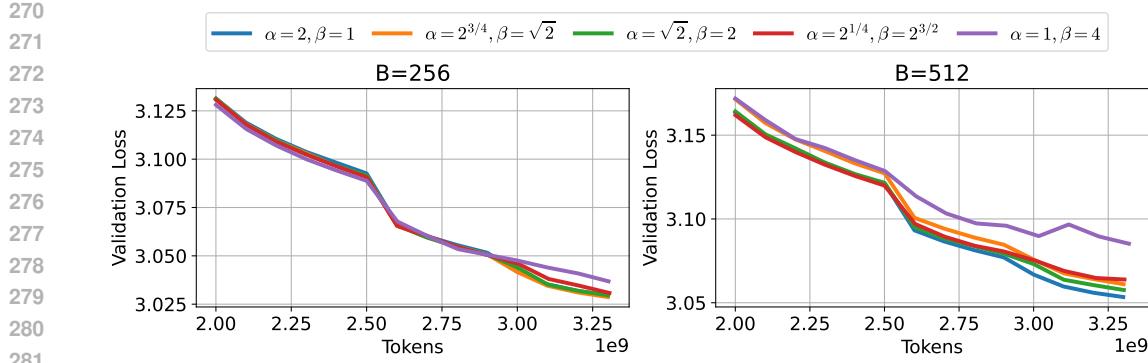


Figure 2: 150M models trained at batch size 256 (left) and 512 (right) with α and β values following the line of equivalence $\alpha\sqrt{\beta} = 2$ described in Table 2. Note that the target to match is the blue trace, and our theory (Lemma 4) predicts that the red and purple traces should not match the baseline (blue trace) due to instabilities.

as large as possible, since this would lead to larger batch sizes, and thus assuming enough devices are available, the lowest serial runtime. Crucially, the constraint prevents us from using a too aggressive batch size scheduler. In this section, we empirically verify our theoretical prediction by testing schedulers positioned at various points on the (α, β) axis. Namely, we train 150M models at fixed

α	2	$2^{1/4}$	$2^{1/2}$	$2^{3/4}$	1
β	1	$2^{3/2}$	2	$2^{1/2}$	2^2

Table 2: α, β values used to test the extreme values of the equivalence.

batch size and Chinchilla scale, and we approximate cosine decay with a step decay scheduler that halves the learning rate at the token counts where the cosine schedule’s learning rate would halve. This gives us the baseline $\alpha = 2$ and $\beta = 1$, with the product $\alpha\sqrt{\beta} = 2$. Based on the theoretical constraint and the equivalence line, the most aggressive scheduler we could use is $\alpha = \sqrt{2}$ and $\beta = 2$. To validate our hypothesis, we compare with $\alpha = 1$ and $\beta = 4$, and points in between at geometric intervals. Table 2 gives an overview of the experimental design, and Figure 2 shows that indeed the most aggressive schedules tend to underperform.

4.2 WHEN DOES ASSUMPTION 3 FAIL?

Up to this point, a crucial assumption for the development of our theory and the design of Seesaw has been Assumption 3. Recall that Assumption 3 states that the expected gradient norms – namely, the denominator of the NSGD update step, is dominated by the additive noise. Intuitively, since the noise variance decreases with the batch size as $\mathcal{O}(1/B)$, one can see that past a certain batch the additive noise will become small, and thus Assumption 3 will fail. In Figure 3, we can see that at sufficiently large batch sizes, indeed Seesaw starts to perform worse as compared to the underlying cosine schedule. The first hypothesis could be that it is still possible to match the underlying schedule, but with a learning rate equivalence as given by mean dominating in the denominator. As mean does not scale with batch size, therefore, using the equivalence schedule as required by SGD could be a promising candidate. We explore this option in Figure 3, and it turns out that this schedule performs even worse than the Seesaw schedule. We hypothesise that beyond a certain batch size, it is not possible to match the performance of learning rate decay by any equivalent batch size ramp up for Adam or normalized SGD, which we motivate using the following toy example.

For simplicity, we look at NGD in 1D, for the quadratic loss $\mathcal{L}(x) = \frac{1}{2}hx^2$, where $x, h \in \mathbb{R}$ and $h \geq 0$. Training with NGD, we have the loss gradients with respect to the parameters and the update rule:

$$\nabla_x \mathcal{L} = hx \quad x_{t+1} := x_t + \eta h \text{ sign}(x_t) \quad \Delta_t = \eta h \text{ sign}(x_t)$$

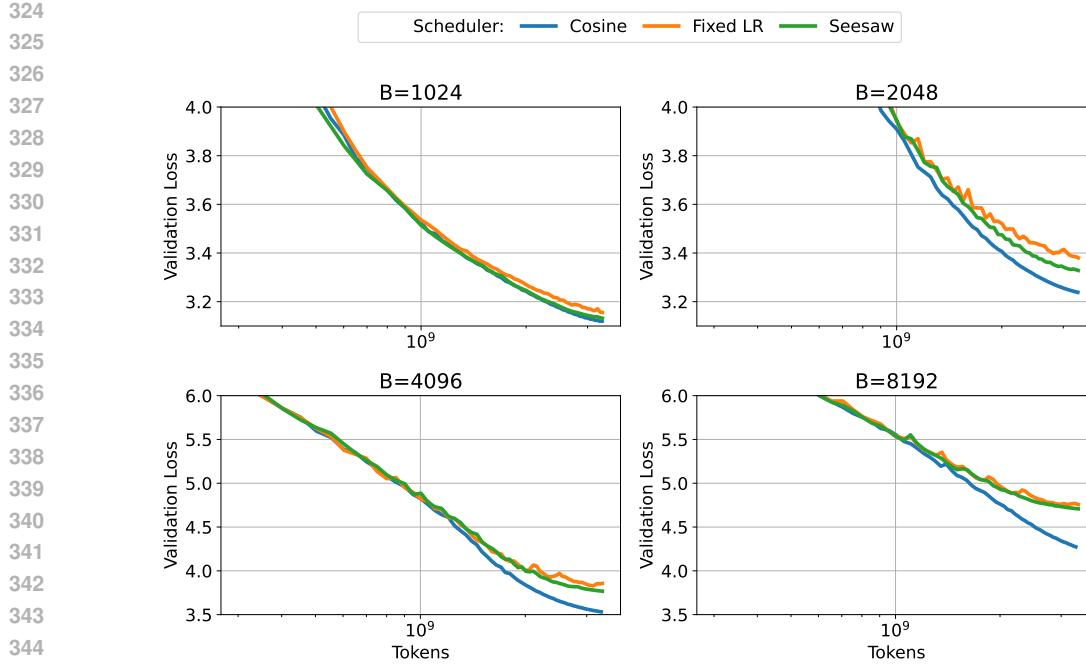


Figure 3: 150M models trained past CBS (roughly 256), at batch sizes 1024, 2048, 4096 and 8192, for 3 schedulers: cosine decay (blue), constant learning rate with increasing batch size based on Seesaw (orange) and Seesaw (green). Note that none of the proposed schedules is able to match the cosine curve, with the discrepancy increasing as the batch size grows more.

where $\text{sign}(x_t) = \frac{x_t}{|x_t|}$, and $\Delta_t = x_t - x^*$ is the distance of the current iterate from the minimizer. Note that if $x_t > 0$, then $\Delta_t = \eta h$ and if $x_t < 0$, then $\Delta_t = -\eta h$, implying that the model does not reach the minimizer and instead converges to a stable cycle of $\mathcal{O}(\eta)$ around the minimizer. In order to escape this stable cycle and reach the minimizer, it is thus necessary to decay the learning rate. Therefore, if we slightly relax the setup and think of a large training batch as being close to NGD regime, we can see that further increasing the batch size does not change the dynamics. Therefore, past a certain batch size, it is fundamentally impossible to formulate a batch size ramp up scheme with fixed learning rate that achieves the same loss as a learning rate scheduler at fixed batch size.

5 THEORETICAL ANALYSIS

In this section we introduce the main theoretical contributions of our work. Namely, under mild assumptions, we establish a formal equivalence between learning rate decay and batch size ramp up in SGD and normalized SGD.

Setup and Notation. We use the notation $f \lesssim g$ to mean that there exists some constant $c > 0$ such that $f(x) \leq cg(x)$ for any x . We also use the notation $f \asymp g$ if $f(x) \lesssim g(x) \lesssim f(x)$ for all x . We denote the samples (\mathbf{x}, y) where $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$, with the distribution and risk:

$$\mathbf{x} \sim \mathcal{N}(0, \mathbf{H}) \quad y|\mathbf{x} \sim \mathcal{N}(\langle \mathbf{w}^*, \mathbf{x} \rangle, \sigma^2) \quad \mathcal{R}(\mathbf{w}) = \frac{1}{2} \mathbb{E}(\langle \mathbf{w}, \mathbf{x} \rangle - y)^2$$

where the expectation is over the (\mathbf{x}, y) , \mathbf{w}^* is the minimizer, and σ^2 is the variance of the additive noise. We also use $\mathcal{R}(\mathbf{w}_t, \eta)$ to denote the risk at time t for a process trained with η , but we drop the η parameter when it is clear from context. We consider step decay schedules for the learning rate, where, the learning rate in the k^{th} phase is denoted by η_k and P_k denotes the total number of data samples used in the k^{th} phase. Similarly, for batch ramp schedules, B_k denotes the batch size in the k^{th} phase. For discussion, we will use the bias-variance decomposition terminology of risk (Jain et al., 2018; 2017; Zou et al., 2021; Wu et al., 2022a,b; Meterez et al., 2025). Informally,

378 bias corresponds to the risk of the averaged iterates, while variance corresponds to the noise in the
 379 iterates, and $\mathcal{R}(\mathbf{w}_t) = \text{bias}_t + \text{variance}_t$. We will denote the stochastic gradient at time t by g_t
 380 and let $\mathbb{E}\|g_t\|^2$ represent its expected squared norm under the population distribution.
 381

382 5.1 MAIN RESULTS

384 In this section, we first introduce the main assumptions and discuss their implications, followed by
 385 the main theoretical results. Our first assumption states that the risk is almost non expansive, in the
 386 sense that at any point during training after starting the scheduling, the risk is close to the starting
 387 risk.

388 **Assumption 1** (Bounded risk.). *Suppose an SGD process and a given scheduling scheme, and let*
 389 *t_0 be the time where the scheduler starts. Then, we assume that there exists a constant $c > 1$ such*
 390 *that $\mathcal{R}(\mathbf{w}_t) \leq c\sigma^2$ for all $t > t_0$.*

391 In general, we expect every “well tuned” scheduler to start cutting when $\mathcal{R}(\mathbf{w}_{t_0}) \lesssim \sigma^2$, as we want
 392 to minimize the bias component of the risk before cutting down the learning rate to reduce noise in
 393 the iterates. Moreover, for a well-behaved schedule, as we expect the risk to decrease over time, this
 394 condition should hold throughout the process.

395 Our second assumption characterizes the gradient norms in the normalized SGD update rule.

396 **Assumption 2** (NSGD oracle access). *For normalized SGD, we assume access to an oracle that*
 397 *provides, at every step, the exact value of the expected squared gradient norms $\mathbb{E}\|g_t\|^2$.*

398 In general, we don’t have access to the ground truth gradient norms and rely on an exponential
 399 moving average - controlled by the β_2 hyperparameter in Adam, in order to estimate the gradient
 400 norms. Assumption 2 simplifies the analysis by giving us access to the true expected gradient
 401 squared norms. Our final assumption states that the expected gradient squared norms of the NSGD
 402 update rule are dominated by the additive noise term.

403 **Assumption 3** (Variance dominated.). *Assume that $\mathbb{E}\|g_t\|^2 \lesssim \frac{\sigma^2}{B_t}$.*

404 Under Assumption 3, the NSGD process effectively reduces to SGD with a rescaled learning rate,
 405 up to constant factors. Based on the previously established assumptions, we can now state the
 406 equivalence result. We use the notation $\mathcal{R}(\eta_t, B_t)$ to denote the risk at time t of an SGD process
 407 trained with the learning rate scheduler η and batch size scheduler B_t , where we omit the time
 408 subscript to denote constant learning rate or batch size respectively.

409 **Theorem 1** (SGD Equivalence). *Fix $\frac{0.01}{\text{Tr}(\mathbf{H})} \geq \eta > 0$, $B > 0$, and parameters $\alpha_1, \alpha_2 > 1$, $\beta_1, \beta_2 > 1$*
 410 *with $\alpha_1\beta_1 = \alpha_2\beta_2$. Define the two phase-indexed schedules*

$$411 \quad (\eta_k, B_k) := (\eta \alpha_1^{-k}, B \beta_1^k), \quad (\eta'_k, B'_k) := (\eta \alpha_2^{-k}, B \beta_2^k), \quad k = 0, 1, 2, \dots$$

412 *and run two SGD procedures in phases $k = 0, 1, \dots$ so that, in phase k , each procedure processes*
 413 *the same number of samples (possibly depending on k) under its respective schedule. Let $\mathcal{R}(\eta_k, B_k)$*
 414 *and $\mathcal{R}(\eta'_k, B'_k)$ denote the (population) risk of the two procedures at the end of phase k . If Assump-*
 415 *tion 1 holds (for both procedures) with constant c , then*

$$416 \quad \mathcal{R}(1.01 \cdot \eta'_k, B'_k) \lesssim_c \mathcal{R}(\eta_k, B_k) \lesssim_c \mathcal{R}(\eta'_k, B'_k),$$

417 *where $\mathcal{R}(\lambda \cdot \eta'_k, B'_k)$ denotes the risk of the second procedure when its entire learning-rate schedule*
 418 *is multiplied by a uniform factor $\lambda > 0$, and $A \lesssim_c B$ means $A \leq C(c)B$ for a numerical constant*
 419 *$C(c)$ depending only on c (and absolute constants).*

420 We defer the full proof to Appendix A.1. Now, we extend this result to Normalized SGD. Under
 421 Assumption 3, NSGD reduces to SGD with a rescaled learning rate $\tilde{\eta} \asymp \eta \frac{\sqrt{B}}{\sigma \sqrt{\text{Tr}(\mathbf{H})}}$ (Equation
 422 equation 11). Consequently, we can extend Theorem 1 to the normalized SGD case. We formalize this
 423 in the following corollary:

424 **Corollary 1** (Normalized SGD Equivalence). *Fix $\frac{0.01}{\text{Tr}(\mathbf{H})} \geq \eta > 0$, $B > 0$, and parameters $\alpha_1, \alpha_2 >$*
 425 *1 , $\beta_1, \beta_2 > 1$ with $\alpha_1\sqrt{\beta_1} = \alpha_2\sqrt{\beta_2}$. Define the two phase-indexed schedules*

$$426 \quad (\eta_k, B_k) := (\eta \alpha_1^{-k}, B \beta_1^k), \quad (\eta'_k, B'_k) := (\eta \alpha_2^{-k}, B \beta_2^k), \quad k = 0, 1, 2, \dots$$

432 and run two normalized SGD procedures in phases $k = 0, 1, \dots$ so that, in phase k , each procedure
 433 processes the same number of samples (possibly depending on k) under its respective schedule. Let
 434 $\mathcal{R}(\eta_k, B_k)$ and $\mathcal{R}(\eta'_k, B'_k)$ denote the (population) risk of the two procedures at the end of phase k .
 435 If Assumption 1 and 3 holds (for both procedures) with constant c , then

$$436 \quad 437 \quad \mathcal{R}(1.01 \cdot \eta'_k, B'_k) \lesssim_c \mathcal{R}(\eta_k, B_k) \lesssim_c \mathcal{R}(\eta'_k, B'_k),$$

438 where $\mathcal{R}(\lambda \cdot \eta'_k, B'_k)$ denotes the risk of the second procedure when its entire learning-rate schedule
 439 is multiplied by a uniform factor $\lambda > 0$, and $A \lesssim_c B$ means $A \leq C(c)B$ for a numerical constant
 440 $C(c)$ depending only on c (and absolute constants).

441 6 DISCUSSION AND CONCLUSIONS

442 In this work we have introduced Seesaw, a drop-in batch size and learning rate scheduler, theoreti-
 443 cally motivated by optimization in quadratics using normalized SGD. We rigorously show that for
 444 stepwise schedulers there exists an equivalence between learning rate decay and batch size ramp-up,
 445 and empirically compare our scheduler with cosine annealing using a stepwise approximation of the
 446 cosine. Crucially, we also show that there exists a maximally aggressive batch size ramp up scheme
 447 without leading to instabilities and divergence during training. In the current implementation, See-
 448 saw is able to decrease the serial runtime of a training run by $\approx 36\%$, bringing significant speedups
 449 to current pretraining pipelines. To conclude, we believe that our scheduler is a principled way of
 450 decreasing the runtime of any LLM pretraining run in an optimizer agnostic way.

451 REFERENCES

452 Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
 453 Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
 454 report. *arXiv preprint arXiv:2406.11704*, 2024.

455 Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
 456 Power lines: Scaling laws for weight decay and batch size in llm pre-training. *arXiv preprint*
 457 *arXiv:2505.13738*, 2025.

458 Blake Bordelon and Cengiz Pehlevan. Learning curves for sgd on structured features. *arXiv preprint*
 459 *arXiv:2106.02713*, 2021.

460 Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto,
 461 and Aurelien Lucchi. Adaptive methods through the lens of sdes: Theoretical insights on the role
 462 of noise. *arXiv preprint arXiv:2411.15958*, 2024.

463 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 464 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 465 *arXiv e-prints*, pp. arXiv–2407, 2024.

466 Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Dohan,
 467 Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive programming
 468 with large reasoning models. *arXiv preprint arXiv:2502.06807*, 2025.

469 Ege Erdil and David Schneider-Joseph. Data movement limits to frontier model training. *arXiv*
 470 *preprint arXiv:2411.01137*, 2024.

471 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
 472 drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imangenet
 473 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

474 Diego Granziol, Stefan Zohren, and Stephen Roberts. Learning rates as a function of batch size:
 475 A random matrix theory approach to neural network training. *Journal of Machine Learning*
 476 *Research*, 23(173):1–65, 2022.

477 Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
 478 Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
 479 science of language models. *arXiv preprint arXiv:2402.00838*, 2024.

486 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 487 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training
 488 compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

489

490 Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. *arXiv preprint*
 491 *arXiv:2507.15855*, 2025.

492

493 Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and
 494 Aaron Sidford. A markov chain theory approach to characterizing the minimax optimality of
 495 stochastic gradient descent (for least squares). *arXiv preprint arXiv:1710.09430*, 2017.

496

497 Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paralleliz-
 498 ing stochastic gradient descent for least squares regression: mini-batching, averaging, and model
 499 misspecification. *Journal of machine learning research*, 18(223):1–42, 2018.

500

501 Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
 502 Bengio, and Amos Storkey. Three factors influencing minima in sgd. *arXiv preprint*
 503 *arXiv:1711.04623*, 2017.

504

505 Samy Jelassi, David Dobre, Arthur Mensch, Yuanzhi Li, and Gauthier Gidel. Dissecting adaptive
 506 methods in gans. *arXiv preprint arXiv:2210.04319*, 2022.

507

508 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 509 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 510 models. *arXiv preprint arXiv:2001.08361*, 2020.

511

512 Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling sgd with stochastic
 513 differential equations (sdes). *Advances in Neural Information Processing Systems*, 34:12712–
 514 12725, 2021.

515

516 Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
 517 rules for adaptive gradient algorithms. *Advances in Neural Information Processing Systems*, 35:
 518 7697–7711, 2022.

519

520 Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
 521 Small batch size training for language models: When vanilla sgd works, and why gradient accu-
 522 mulation is wasteful. *arXiv preprint arXiv:2507.07101*, 2025.

523

524 Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
 525 large-batch training. *arXiv preprint arXiv:1812.06162*, 2018.

526

527 William Merrill, Shane Arora, Dirk Groeneveld, and Hannaneh Hajishirzi. Critical batch size re-
 528 visited: A simple empirical approach to large-batch language model training. *arXiv preprint*
 529 *arXiv:2505.23971*, 2025.

530

531 Alexandru Meterez, Depen Morwani, Costin-Andrei Oncescu, Jingfeng Wu, Cengiz Pehlevan, and
 532 Sham Kakade. A simplified analysis of sgd for linear regression with weight averaging. *arXiv*
 533 *preprint arXiv:2506.15535*, 2025.

534

535 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 536 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*
 537 *arXiv:2501.00656*, 2024.

538

539 Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav
 540 Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa
 541 math olympiad. *arXiv preprint arXiv:2503.21934*, 2025.

542

543 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 544 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 545 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

546

547 Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
 548 George E Dahl. Measuring the effects of data parallelism on neural network training. *Journal of*
 549 *Machine Learning Research*, 20(112):1–49, 2019.

540 Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don't decay the learning rate,
 541 increase the batch size. *arXiv preprint arXiv:1711.00489*, 2017.

542

543 Teodora Srećković, Jonas Geiping, and Antonio Orvieto. Is your batch size the problem? revisiting
 544 the adam-sgd gap in language modeling. *arXiv preprint arXiv:2506.12543*, 2025.

545

546 Apertus Team. Apertus: Democratizing Open and Compliant LLMs for Global Language Environ-
 547 ments. <https://huggingface.co/swiss-ai/Apertus-70B-2509>, 2025.

548

549 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 550 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 551 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

552

553 Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last iterate risk
 554 bounds of sgd with decaying stepsize for overparameterized linear regression. In *International
 555 Conference on Machine Learning*, pp. 24280–24314. PMLR, 2022a.

556

557 Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. The power and
 558 limitation of pretraining-finetuning for linear regression under covariate shift. *Advances in Neural
 559 Information Processing Systems*, 35:33041–33053, 2022b.

560

561 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
 562 How many pretraining tasks are needed for in-context learning of linear regression? *arXiv
 563 preprint arXiv:2310.08391*, 2023a.

564

565 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Sham M Kakade.
 566 Finite-sample analysis of learning high-dimensional single relu neuron. In *International Confer-
 567 ence on Machine Learning*, pp. 37919–37951. PMLR, 2023b.

568

569 Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ℓ_∞ -geometry of loss land-
 570 scape via coordinate-wise adaptivity. *arXiv preprint arXiv:2410.08198*, 2024.

571

572 Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
 573 Stochastic gradient descent exponentially favors flat minima. *arXiv preprint arXiv:2002.03495*,
 2020.

574

575 Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. *arXiv
 576 preprint arXiv:1708.03888*, 2017.

577

578 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 579 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
 580 learning: Training bert in 76 minutes. *arXiv preprint arXiv:1904.00962*, 2019.

581

582 Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
 583 Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
 584 from a noisy quadratic model. *Advances in neural information processing systems*, 32, 2019.

585

586 Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Fos-
 587 ter, and Sham Kakade. How does critical batch size scale in pre-training? *arXiv preprint
 588 arXiv:2410.21676*, 2024.

589

590 Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
 591 ing what makes a good optimizer for language models. *arXiv preprint arXiv:2407.07972*, 2024.

592

593 Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
 594 of constant-stepsize sgd for linear regression. In *Conference on Learning Theory*, pp. 4633–4635.
 595 PMLR, 2021.

594 **A PROOFS FOR SECTION 5**

595 **A.1 PRELIMINARIES**

598 We take as a convention for eigenvalues ordering $\lambda_{\max} = \lambda_1 \geq \lambda_2 \geq \dots > 0$. For two matrices \mathbf{A}
 599 and \mathbf{B} we use the notation $\mathbf{A} \preceq \mathbf{B}$ to denote that $\mathbf{B} - \mathbf{A}$ is positive semi-definite (PSD). We denote
 600 $\langle \mathbf{u}, \mathbf{v} \rangle$ for the inner product between \mathbf{u} and \mathbf{v} . Moreover, with a slight abuse of notation, we use the
 601 notation \leq as elementwise comparison, namely $\mathbf{u} \leq \mathbf{v}$ if $\mathbf{u}_i \leq \mathbf{v}_i$ for all i and $\mathbf{A} \leq \mathbf{B}$ if $\mathbf{A}_{ij} \leq \mathbf{B}_{ij}$
 602 for all i, j . To simplify the analysis, we will follow the approach of Meterez et al. (2025) and work
 603 in the eigenbasis of the data covariance \mathbf{H} . Denote the eigendecomposition of $\mathbf{H} = \mathbf{Q}\Lambda\mathbf{Q}^\top$. For
 604 the sake of completeness, we restate the main derivation for the bias and variance iterates in the case
 605 of constant learning rate and constant batch size, starting from the SGD update rule:

$$\begin{aligned} 606 \mathbf{w}_{t+1} - \mathbf{w}^* &= \left(\mathbf{I} - \frac{\eta}{B} \sum_{i=1}^B \mathbf{x}_i \mathbf{x}_i^\top \right) (\mathbf{w}_t - \mathbf{w}^*) - \frac{\eta}{B} \sum_{i=1}^B \mathbf{x}_i \epsilon_i \\ 607 &\implies \Sigma_{t+1} = \Sigma_t - \eta \Sigma_t \mathbf{H} - \eta \mathbf{H} \Sigma_t + \eta^2 \left(1 + \frac{1}{B} \right) \mathbf{H} \Sigma_t \mathbf{H} + \frac{\eta^2}{B} \text{Tr}(\mathbf{H} \Sigma_t) \mathbf{H} + \frac{\eta^2}{B} \sigma^2 \mathbf{I} \\ 608 &\implies \mathbf{M}_{t+1} = \mathbf{M}_t - \eta \mathbf{M}_t \Lambda - \eta \Lambda \mathbf{M}_t + \eta^2 \left(1 + \frac{1}{B} \right) \Lambda \mathbf{M}_t \Lambda + \frac{\eta^2}{B} \text{Tr}(\Lambda \mathbf{M}_t) \Lambda + \frac{\eta^2}{B} \sigma^2 \mathbf{I} \quad (6) \end{aligned}$$

614 where in the last equation $\mathbf{M}_t = \mathbf{Q} \Sigma_t \mathbf{Q}^\top$ is the iterate covariance matrix rotated in the eigenbasis
 615 of \mathbf{H} . Since we can write the excess risk as:

$$616 \mathcal{R}(\mathbf{w}_t) - \mathcal{R}(\mathbf{w}^*) = \frac{1}{2} \text{Tr}(\Lambda \mathbf{M}_t) = \frac{1}{2} \langle \lambda, \mathbf{m}_t \rangle$$

618 where $\mathbf{m}_t = \text{diag}(\mathbf{M}_t)$, it suffices to push a diag operator through equation equation 6. Finally, we
 619 get:

$$620 \mathbf{m}_{t+1} = \underbrace{\left[\mathbf{I} - 2\eta \Lambda + \eta^2 \left(1 + \frac{1}{B} \right) \Lambda^2 + \frac{\eta^2}{B} \lambda \Lambda^\top \right]}_{\mathbf{A}} \mathbf{m}_t + \frac{\eta^2 \sigma^2}{B} \lambda = \mathbf{A}^t \mathbf{m}_0 + \frac{\eta^2 \sigma^2}{B} \sum_{i=0}^{t-1} \mathbf{A}^i \lambda$$

624 where $\tilde{\mathbf{m}}_t := \mathbf{A}^t \mathbf{m}_0$ and $\bar{\mathbf{m}}_t := \frac{\eta^2 \sigma^2}{B} \sum_{i=0}^{t-1} \mathbf{A}^i \lambda$ are the bias and variance iterates respectively.

626 Before we begin proving the main statements, we introduce several helpful lemmas that we will use.

627 **Lemma 2.** *For $\eta \leq 0.01/\text{Tr}(\mathbf{H})$ and $\alpha \geq 1$, we have the elementwise inequality:*

$$630 \frac{\alpha^k}{\eta} \mathbf{1} \geq \left(\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha^k} \Lambda \right)^2 \right)^{-1} \lambda \geq \frac{\alpha^k}{2\eta} \mathbf{1}$$

633 *Proof.* We have:

$$\begin{aligned} 634 \left(\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha^k} \Lambda \right)^2 \right)^{-1} &= \left(\mathbf{I} - \left(\mathbf{I} + \frac{\eta^2}{\alpha^{2k}} \Lambda^2 - 2 \frac{\eta}{\alpha^k} \Lambda \right) \right)^{-1} \\ 635 &= \left(\frac{\eta}{\alpha^k} \Lambda \left(2 - \frac{\eta}{\alpha^k} \Lambda \right) \right)^{-1} \\ 636 &\geq \left(\frac{2\eta}{\alpha^k} \Lambda \right)^{-1} \end{aligned}$$

641 Note that trivially we also have the other direction by noticing that $\frac{1}{2 - \frac{\eta}{\alpha^k} \lambda} \leq 1$. Multiplying by λ
 642 gives us the conclusion. \square

644 **Lemma 3.** *For $\eta \leq 0.01/\text{Tr}(\mathbf{H})$ and $\alpha_1, \alpha_2, \beta_1, \beta_2 \geq 1$ such that $\alpha_1 \beta_1 = \alpha_2 \beta_2$ and $\alpha_1 \leq \alpha_2$, we
 645 have:*

$$646 \left(\mathbf{I} - \frac{1.01\eta}{\alpha_2^k} \Lambda \right)^{2\beta_1^k} \preceq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \Lambda \right)^{2\beta_2^k} \preceq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \Lambda \right)^{2\beta_1^k}.$$

648 **Proof. RHS bound.** Since both sides are diagonal matrices, it suffices to prove the scalar inequality
 649 for every $x = \eta\lambda_i$:

$$650 \quad 651 \quad 652 \quad \left(1 - \frac{x}{\alpha_1^k}\right)^{2\beta_2^k} \leq \left(1 - \frac{x}{\alpha_2^k}\right)^{2\beta_1^k}.$$

653 Taking logarithms and defining

$$654 \quad 655 \quad 656 \quad f(x) = \frac{2\beta_2^k \log(1 - x/\alpha_1^k)}{2\beta_1^k \log(1 - x/\alpha_2^k)} = \frac{\alpha_1^k \log(1 - x/\alpha_1^k)}{\alpha_2^k \log(1 - x/\alpha_2^k)} = \frac{g(\alpha_1)}{g(\alpha_2)},$$

657 where $g(y) = y \log(1 - x/y)$. For $0 < x < 1$ and $y > 1$, $g(y)$ is monotonically increasing, so for
 658 $\alpha_1 \leq \alpha_2$, we have $g(\alpha_1) \leq g(\alpha_2)$ and hence $g(\alpha_1)/g(\alpha_2) \geq 1$ (since $g(\alpha_2) < 0$). Thus $f(x) \geq 1$,
 659 which proves the RHS inequality.

660 **LHS bound.** Similarly, we use the scalar inequality and the bounds

$$661 \quad 662 \quad -x - \frac{x^2}{2} \geq \ln(1 - x) \geq -x - x^2.$$

664 Since $\ln(\cdot)$ is monotone, we apply it to both sides:

$$665 \quad 666 \quad \beta_1^k \ln\left(1 - \frac{1.01}{\alpha_2^k} x\right) \leq \beta_1^k \left(-\frac{1.01}{\alpha_2^k} x - \frac{1.01^2}{2\alpha_2^{2k}} x^2\right),$$

$$667 \quad 668 \quad \beta_2^k \ln\left(1 - \frac{1}{\alpha_1^k} x\right) \geq \beta_2^k \left(-\frac{1}{\alpha_1^k} x - \frac{1}{\alpha_1^{2k}} x^2\right).$$

670 It suffices to prove that:

$$671 \quad 672 \quad 673 \quad \beta_1^k \left(-\frac{1.01}{\alpha_2^k} x - \frac{1.01^2}{2\alpha_2^{2k}} x^2\right) \geq \beta_2^k \left(-\frac{1}{\alpha_1^k} x - \frac{1}{\alpha_1^{2k}} x^2\right).$$

674 Using $\frac{\beta_1}{\alpha_2} = \frac{\beta_2}{\alpha_1}$ and $\frac{\beta_1}{\alpha_2^2} = \frac{\beta_2}{\alpha_1 \alpha_2}$, we obtain:

$$675 \quad 676 \quad \frac{1}{\alpha_1^k} (1.01) + \frac{1}{2\alpha_1^k \alpha_2^k} (1.01)^2 x - \frac{1}{\alpha_1^k} - \frac{1}{\alpha_1^{2k}} x \geq 0,$$

$$677 \quad 678 \quad \iff x \leq \frac{0.01}{\frac{1}{\alpha_1^k} - \frac{1.01^2}{2\alpha_2^k}}.$$

680 Using $\alpha_1 \leq \alpha_2$, we get

$$681 \quad 682 \quad 683 \quad x \leq \frac{\alpha_1^k \cdot 0.01}{1 - \frac{1.01^2}{2}},$$

684 which holds automatically under $\eta \leq 0.01/\text{Tr}(\mathbf{H})$ and $x = \eta\lambda_i$. This concludes the proof. \square

685 A.2 PROOFS OF MAIN STATEMENTS

687 **Proof of Theorem 1.** Consider 2 processes: process 1 will have a learning rate step decay factor of
 688 α_1 and a batch size ramp up factor of β_1 and process 2 will have α_2 and β_2 respectively. Define the
 689 transition matrices:

$$690 \quad 691 \quad \mathbf{A}_k = \left[\left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \mathbf{\Lambda} \right)^2 + \frac{\eta^2}{B\alpha_1^{2k} \beta_1^k} (\mathbf{\Lambda}^2 + \mathbf{\Lambda} \mathbf{\Lambda}^\top) \right]$$

$$692 \quad 693 \quad \mathbf{C}_k = \left[\left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \mathbf{\Lambda} \right)^2 + \frac{\eta^2}{B\alpha_2^{2k} \beta_2^k} (\mathbf{\Lambda}^2 + \mathbf{\Lambda} \mathbf{\Lambda}^\top) \right]$$

698 Denote process 1 as $\mathbf{m}_k(\eta)$ and process 2 as $\mathbf{r}_k(\eta)$ where they depend on the base learning rate η
 699 - note that we skip the indexing on η when it is clear from context. In order to keep both the per
 700 stage data count, \mathbf{m}_k does $\beta_2^k P_k$ steps per stage, and \mathbf{r}_k does $\beta_1^k P_k$ steps per stage. We begin by
 701 establishing the upper bound first. Note that we assume that $\alpha_1 \beta_1 = \alpha_2 \beta_2$, and without loss of
 generality due to symmetry, that $\beta_1 \geq \beta_2$ (and consequently $\alpha_1 \leq \alpha_2$).

702 **Upper bound.** Before we begin, we introduce the idea behind the proof. We define $M_k = \beta_1^k P_k$
 703 and $N_k = \beta_2^k P_k$. The derivation proceeds by unrolling the recurrence first over a single step, then
 704 over β_2^k steps, and finally over P_k stages.

$$\begin{aligned} 708 \mathbf{m}_{N_{1:k}} &\leq \mathbf{A}_k \mathbf{m}_{N_{1:k-1}} + \frac{\eta^2 \sigma^2}{B \alpha_1^{2k} \beta_1^k} \lambda \\ 709 &\leq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^2 \mathbf{m}_{N_{1:k-1}} + (1+2c) \frac{\eta^2 \sigma^2}{B \alpha_1^{2k} \beta_1^k} \lambda, \\ 710 \end{aligned}$$

711 which follows from Assumption 1.

712

$$\begin{aligned} 713 \mathbf{m}_{N_{1:k}} &\leq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^{2\beta_2^k} \mathbf{m}_{N_{1:k-\beta_2^k}} + (1+2c) \frac{\eta^2 \sigma^2}{B \alpha_1^{2k} \beta_1^k} \sum_{i=0}^{\beta_2^k-1} \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^{2i} \lambda \\ 714 &\leq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^{2\beta_2^k} \mathbf{m}_{N_{1:k-\beta_2^k}} + (1+2c) \frac{\eta^2 \sigma^2}{B \alpha_1^{2k} \beta_1^k} \left[\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^{2\beta_2^k} \right] \left[\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^2 \right]^{-1} \lambda. \\ 715 \end{aligned}$$

716 Applying Lemma 2, we have:

$$\begin{aligned} 717 \mathbf{m}_{N_{1:k}} &\leq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^{2\beta_2^k} \mathbf{m}_{N_{1:k-\beta_2^k}} + (1+2c) \frac{\eta \sigma^2}{B \alpha_1^k \beta_1^k} \left[\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^{2\beta_2^k} \right] \mathbf{1} \\ 718 &\leq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda} \right)^{2\beta_2^k} \mathbf{m}_{N_{1:k-\beta_2^k}} + 2(1+2c) \frac{\eta^2 \sigma^2}{B} \left(\frac{\beta_2}{\alpha_1^2 \beta_1} \right)^k \lambda. \\ 719 \end{aligned}$$

720 By Lemma 3, we can replace the term with one involving (α_2, β_1) :

$$\mathbf{m}_{N_{1:k}} \leq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda} \right)^{2\beta_1^k} \mathbf{m}_{N_{1:k-\beta_1^k}} + 2(1+2c) \frac{\eta^2 \sigma^2}{B} \left(\frac{\beta_1}{\alpha_2^2 \beta_1} \right)^k \lambda.$$

721 Following, we can unroll over P_k :

$$\mathbf{m}_{N_{1:k}} \leq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda} \right)^{2M_k} \mathbf{m}_{N_{1:k-1}} + 2(1+2c) \frac{\eta^2 \sigma^2}{B} \left(\frac{\beta_1}{\alpha_2^2 \beta_1} \right)^k \sum_{i=0}^{P_k-1} \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda} \right)^{2\beta_1^k i} \lambda.$$

722 Finally, recursively unrolling across k yields:

$$\begin{aligned} 723 \mathbf{m}_{N_{1:k}} &\leq \left[\prod_{s=1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_2^s} \boldsymbol{\Lambda} \right)^{2M_s} \right] \mathbf{m}_0 \\ 724 &\quad + 2(1+2c) \frac{\eta^2 \sigma^2}{B} \sum_{r=1}^k \left(\frac{1}{\alpha_1 \alpha_2} \right)^r \left[\prod_{s=r+1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_2^s} \boldsymbol{\Lambda} \right)^{2M_s} \right] \sum_{i=0}^{P_r-1} \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda} \right)^{2\beta_1^r i} \lambda. \\ 725 \end{aligned}$$

756 For the lower bound, we follow a similar strategy, by bounding the term $\lambda\lambda^\top \geq 0$:
 757

$$\begin{aligned}
 759 \mathbf{r}_{M_{1:k}} &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^2 \mathbf{r}_{M_{1:k}-1} + \frac{\eta^2 \sigma^2}{B \alpha_2^{2k} \beta_2^k} \lambda \\
 760 &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k} \mathbf{r}_{M_{1:k}-\beta_1^k} + \frac{\eta^2 \sigma^2}{B \alpha_2^{2k} \beta_2^k} \sum_{i=0}^{\beta_1^k-1} \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2i} \lambda \\
 761 &= \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k} \mathbf{r}_{M_{1:k}-\beta_1^k} + \frac{\eta^2 \sigma^2}{B \alpha_2^{2k} \beta_2^k} \left[\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k}\right] \left[\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^2\right]^{-1} \lambda \\
 762 &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k} \mathbf{r}_{M_{1:k}-\beta_1^k} + \frac{1}{2} \frac{\eta \sigma^2}{B \alpha_2^k \beta_2^k} \left[\mathbf{I} - \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k}\right] \mathbf{1} \\
 763 &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k} \mathbf{r}_{M_{1:k}-\beta_1^k} + \frac{1}{4} \frac{\eta^2 \sigma^2}{B} \left(\frac{\beta_1}{\alpha_2^2 \beta_2}\right)^k \lambda \\
 764 &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\cdot M_k} \mathbf{r}_{M_{1:k}-1} + \frac{1}{4} \frac{\eta^2 \sigma^2}{B} \left(\frac{\beta_1}{\alpha_2^2 \beta_2}\right)^k \sum_{i=0}^{P_k-1} \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k i} \lambda \\
 765 &\geq \left[\prod_{s=1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_2^s} \boldsymbol{\Lambda}\right)^{2\cdot M_s}\right] \mathbf{r}_0 \\
 766 &\quad + \frac{1}{4} \frac{\eta^2 \sigma^2}{B} \sum_{r=1}^k \left(\frac{1}{\alpha_1 \alpha_2}\right)^r \left[\prod_{s=r+1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_2^s} \boldsymbol{\Lambda}\right)^{2\cdot M_s}\right] \sum_{i=0}^{P_r-1} \left(\mathbf{I} - \frac{\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^r i} \lambda
 \end{aligned}
 \tag{Lemma 2}$$

783 Note that the bias terms are equal $\tilde{\mathbf{r}}_{M_{1:k}} = \tilde{\mathbf{m}}_{N_{1:k}}$, and the variance terms are $\bar{\mathbf{m}}_{N_{1:k}} \geq 4(1 + 2c)\bar{\mathbf{r}}_{M_{1:k}}$. Dotting the terms into λ gives us the upper bound from Theorem 1.
 784
 785
 786

787 **Lower bound.** We now turn our attention towards proving the lower bound in Theorem 1. Note
 788 that the bias terms have an exponentially decaying dominating term. In order to obtain an inequality
 789 in the reverse direction for these terms, we compare $\mathbf{m}(\eta)$ with $\mathbf{r}(1.01\eta)$. We begin with lower
 790 bounding \mathbf{m} :

$$\begin{aligned}
 793 \mathbf{m}_{N_{1:k}}(\eta) &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^2 \mathbf{m}_{N_{1:k}-1} + \frac{\eta^2 \sigma^2}{B \alpha_1^{2k} \beta_1^k} \lambda \\
 794 &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2\beta_2^k} \mathbf{m}_{N_{1:k}-\beta_2^k} + \frac{1}{4} \frac{\eta^2 \sigma^2}{B} \left(\frac{1}{\alpha_1 \alpha_2}\right)^k \lambda \\
 795 &\geq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2N_k} \mathbf{m}_{N_{1:k}-1} + \frac{1}{4} \frac{\eta^2 \sigma^2}{B} \left(\frac{1}{\alpha_1 \alpha_2}\right)^k \sum_{i=0}^{P_k-1} \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2\beta_2^k i} \lambda \\
 796 &\geq \left[\prod_{s=1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_1^s} \boldsymbol{\Lambda}\right)^{2N_s}\right] \mathbf{m}_0 \\
 797 &\quad + \frac{1}{4} \frac{\eta^2 \sigma^2}{B} \sum_{r=1}^k \left(\frac{1}{\alpha_1 \alpha_2}\right)^r \left[\prod_{s=r+1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_1^s} \boldsymbol{\Lambda}\right)^{2N_s}\right] \sum_{i=0}^{P_r-1} \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2\beta_2^r i} \lambda
 \end{aligned}$$

808 Now we need to establish an upper bound for $\mathbf{r}(1.01\eta)$. We follow a similar analysis as we did for
 809 the upper bound subsection:

810
 811
 812 $\mathbf{r}_{M_{1:k}}(1.01\eta)$
 813 $\leq \left(\mathbf{I} - \frac{1.01\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^2 \mathbf{r}_{M_{1:k-1}} + 1.01^2 \cdot (1+2c) \frac{\eta^2 \sigma^2}{B \alpha_1^{2k} \beta_1^k} \lambda$
 814
 815
 816 $\leq \left(\mathbf{I} - \frac{1.01\eta}{\alpha_2^k} \boldsymbol{\Lambda}\right)^{2\beta_1^k} \mathbf{r}_{M_{1:k-\beta_1^k}} + 2 \cdot 1.01^2 \cdot (1+2c) \frac{\eta^2 \sigma^2}{B} \left(\frac{1}{\alpha_1 \alpha_2}\right)^k \lambda$
 817
 818
 819 $\leq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2\beta_2^k} \mathbf{r}_{M_{1:k-\beta_1^k}} + 2 \cdot 1.01^2 \cdot (1+2c) \frac{\eta^2 \sigma^2}{B} \left(\frac{1}{\alpha_1 \alpha_2}\right)^k \lambda \quad \text{Lemma 3}$
 820
 821
 822 $\leq \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2N_k} \mathbf{r}_{M_{1:k-1}} + 2 \cdot 1.01^2 \cdot (1+2c) \frac{\eta^2 \sigma^2}{B} \left(\frac{1}{\alpha_1 \alpha_2}\right)^k \sum_{i=0}^{P_k-1} \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2\beta_2^k i} \lambda$
 823
 824
 825 $\leq \left[\prod_{s=1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_1^s} \boldsymbol{\Lambda}\right)^{2N_s} \right] \mathbf{r}_0$
 826
 827
 828 $+ 2 \cdot 1.01^2 \cdot (1+2c) \frac{\eta^2 \sigma^2}{B} \sum_{r=1}^k \left(\frac{1}{\alpha_1 \alpha_2}\right)^r \left[\prod_{s=r+1}^k \left(\mathbf{I} - \frac{\eta}{\alpha_1^s} \boldsymbol{\Lambda}\right)^{2N_s} \right] \sum_{i=0}^{P_r-1} \left(\mathbf{I} - \frac{\eta}{\alpha_1^k} \boldsymbol{\Lambda}\right)^{2\beta_2^r i} \lambda$
 829

830 Comparing the bias and variance terms gives us the conclusion. \square
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 B NORMALIZED SGD ANALYSIS
865866 Under the setup introduced in Section 5, we have the update rule for normalized SGD is:
867

868
869
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \frac{1}{\sqrt{\mathbb{E}\|\mathbf{g}_t\|^2}} \mathbf{g}_t$$

870

871 where $\mathbf{g}_t = \frac{1}{B} \sum_{i=1}^B \mathbf{g}_t^{(i)}$ for i indexing the sample and batch size B .
872873 For MSE and $y = (\mathbf{w}^*)^\top \mathbf{x} + \epsilon$, the loss is:
874

875
$$\begin{aligned} \mathcal{L}(\mathbf{w}_t) &= \frac{1}{2B} \sum_{i=1}^B (\mathbf{w}_t^\top \mathbf{x}^{(i)} - y^{(i)})^2 \\ &= \frac{1}{2B} \sum_{i=1}^B ((\mathbf{w}_t - \mathbf{w}^*)^\top \mathbf{x}^{(i)} - \epsilon)^2 \end{aligned}$$

876
877
878
879
880
881

882 If we look at the risk at time t we have:
883

884
885
$$\mathcal{R}(\mathbf{w}_t) = \frac{1}{2B} \sum_{i=1}^B \mathbb{E}[(\mathbf{w}_t - \mathbf{w}^*)^\top \mathbf{x}^{(i)} \mathbf{x}^{(i),\top} (\mathbf{w}_t - \mathbf{w}^*) + \epsilon^2] \quad (7)$$

886

887
888
$$= \frac{1}{2B} \sum_{i=1}^B \mathbb{E}[(\mathbf{w}_t - \mathbf{w}^*)^\top \mathbf{x}^{(i)} \mathbf{x}^{(i),\top} (\mathbf{w}_t - \mathbf{w}^*)] + \frac{\sigma^2}{2} \quad (8)$$

889

890
891
$$= \frac{1}{2} \mathbb{E}[(\mathbf{w}_t - \mathbf{w}^*)^\top \mathbf{x} \mathbf{x}^\top (\mathbf{w}_t - \mathbf{w}^*)] + \frac{\sigma^2}{2} \quad (9)$$

892

893
894
$$= \frac{1}{2} \text{Tr}(\mathbf{H} \Sigma_t) + \frac{\sigma^2}{2} \quad (10)$$

895 So the risk is equal to:
896

897
898
$$\mathcal{R}(\mathbf{w}_t) = \frac{1}{2} \text{Tr}(\mathbf{H} \Sigma_t) + \frac{\sigma^2}{2} \implies \mathcal{R}(\mathbf{w}_t) - \mathcal{R}(\mathbf{w}^*) = \frac{1}{2} \text{Tr}(\mathbf{H} \Sigma_t)$$

899

900 **Analyzing the gradients** Taking the gradient for 1 sample:
901

902
$$\mathbf{g}_t^{(i)} := \nabla_{\mathbf{w}_t} \mathcal{L} = (\mathbf{w}_t^\top \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} = \mathbf{x}^{(i)} (\mathbf{x}^{(i),\top} (\mathbf{w}_t - \mathbf{w}^*) - \epsilon \mathbf{x}^{(i)})$$

903 So we have:
904

905
$$\mathbf{g}_t = \frac{1}{B} \sum_{i=1}^B \mathbf{x}^{(i)} (\mathbf{x}^{(i),\top} (\mathbf{w}_t - \mathbf{w}^*) - \frac{1}{B} \sum_{i=1}^B \epsilon \mathbf{x}^{(i)})$$

906

907 Moving forwards, we need to calculate the term in the denominator. Skipping the time index in
908 order to simplify the notation, we have:
909

910
911
$$\begin{aligned} \mathbb{E}\|\mathbf{g}\|^2 &= \frac{1}{B^2} \mathbb{E} \sum_{i,j=1}^B \mathbf{g}^{(i),\top} \mathbf{g}^{(j)} \\ &= \frac{1}{B^2} \sum_{i=j}^B \mathbb{E}[\mathbf{g}^{(i),\top} \mathbf{g}^{(i)}] + \frac{1}{B^2} \sum_{i \neq j}^B \mathbb{E}[\mathbf{g}^{(i),\top} \mathbf{g}^{(j)}] \\ &= \frac{1}{B} \mathbb{E}\|\mathbf{g}^{(i)}\|^2 + \left(1 - \frac{1}{B}\right) \mathbb{E}[\mathbf{g}^{(i),\top} \mathbf{g}^{(j)}] \end{aligned}$$

912
913
914
915
916
917

918 **First term** If we look at each of these 2 terms we have:
 919
 920

$$\begin{aligned}
 921 \quad \mathbb{E}\|\mathbf{g}^{(i)}\|^2 &= \mathbb{E}[(\mathbf{w}_t - \mathbf{w}^*)^\top \mathbf{x} \mathbf{x}^\top \mathbf{x} \mathbf{x}^\top (\mathbf{w}_t - \mathbf{w}^*)] + \sigma^2 \mathbb{E}[\mathbf{x}^\top \mathbf{x}] \\
 922 &= \mathbb{E}[\text{Tr}(\mathbf{x} \mathbf{x}^\top \mathbf{x} \mathbf{x}^\top (\mathbf{w}_t - \mathbf{w}^*)(\mathbf{w}_t - \mathbf{w}^*)^\top)] + \sigma^2 \text{Tr}(\mathbb{E}[\mathbf{x} \mathbf{x}^\top]) \\
 923 &= \text{Tr}(\mathbb{E}[\mathbf{x} \mathbf{x}^\top \mathbf{x} \mathbf{x}^\top] \Sigma_t) + \sigma^2 \text{Tr}(\mathbf{H}) \\
 924 &= \text{Tr}((2\mathbf{H}^2 + \mathbf{H} \text{Tr}(\mathbf{H})) \Sigma_t) + \sigma^2 \text{Tr}(\mathbf{H}) \\
 925 &= 2\text{Tr}(\mathbf{H}^2 \Sigma_t) + \text{Tr}(\mathbf{H}) \text{Tr}(\mathbf{H} \Sigma_t) + \sigma^2 \text{Tr}(\mathbf{H}) \\
 926 \\
 927
 \end{aligned}$$

928 **Second term** For the other term, let $\delta_t = \mathbf{w}_t - \mathbf{w}^*$ and we have:
 929
 930

$$\begin{aligned}
 930 \quad \mathbb{E}[\mathbf{g}^{(i)}]^\top \mathbb{E}[\mathbf{g}^{(j)}] &= \mathbb{E}[\mathbf{x}^{(i)} (\mathbf{x}^{(i)})^\top \delta_t]^\top \mathbb{E}[\mathbf{x}^{(j)} (\mathbf{x}^{(j)})^\top \delta_t] + \sigma^2 \delta_{ij} \text{Tr}(\mathbf{H}) \\
 931 &= \mathbb{E}[\delta_t]^\top \mathbf{H}^2 \mathbb{E}[\delta_t] + \sigma^2 \delta_{ij} \text{Tr}(\mathbf{H}) \\
 932 &= \text{Tr}(\mathbf{H}^2 \mathbb{E}[\delta_t] \mathbb{E}[\delta_t]^\top) \quad i \neq j \\
 933 \\
 934
 \end{aligned}$$

935 So the denominator is equal to:
 936
 937

$$\begin{aligned}
 938 \quad \mathbb{E}\|\mathbf{g}_t\|^2 &= \frac{1}{B} [2\text{Tr}(\mathbf{H}^2 \Sigma_t) + \text{Tr}(\mathbf{H}) \text{Tr}(\mathbf{H} \Sigma_t) + \sigma^2 \text{Tr}(\mathbf{H})] + \left(1 - \frac{1}{B}\right) \text{Tr}(\mathbf{H}^2 \mathbb{E}[\delta_t] \mathbb{E}[\delta_t]^\top) \\
 939 &= \frac{\sigma^2}{B} \text{Tr}(\mathbf{H}) + \frac{1}{B} [2\text{Tr}(\mathbf{H}^2 \Sigma_t) + \text{Tr}(\mathbf{H}) \text{Tr}(\mathbf{H} \Sigma_t)] + \left(1 - \frac{1}{B}\right) \text{Tr}(\mathbf{H}^2 \mathbb{E}[\delta_t] \mathbb{E}[\delta_t]^\top) \\
 940 \\
 941
 \end{aligned}$$

943 Since $\mathbb{E}[\delta_t]$ decays to 0 exponentially fast, and $\Sigma_t \preceq \mathcal{O}(\sigma^2 \mathbf{I})$ (Lemma 8) (Jain et al., 2018), then
 944 for large enough t , we have that the gradient norms are dominated by the additive variance, which
 945 is captured in Assumption 3. For the remainder of this paper we will assume t is large enough for
 946 this assumption to hold, and with a slight abuse of notation we will write $=$ (as opposed to \approx):
 947 $\mathbb{E}\|\mathbf{g}_t\|^2 = \frac{\sigma^2}{B} \text{Tr}(\mathbf{H})$.

948 Under Assumption 3, we have the following update rule:
 949
 950

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \frac{\sqrt{B}}{\sigma \sqrt{\text{Tr}(\mathbf{H})}} \nabla_{\mathbf{w}_t} \mathcal{L} \quad (11)$$

951 Note that this is simply SGD with a learning rate $\tilde{\eta} = \eta \frac{\sqrt{B}}{\sigma \sqrt{\text{Tr}(\mathbf{H})}}$.
 952
 953

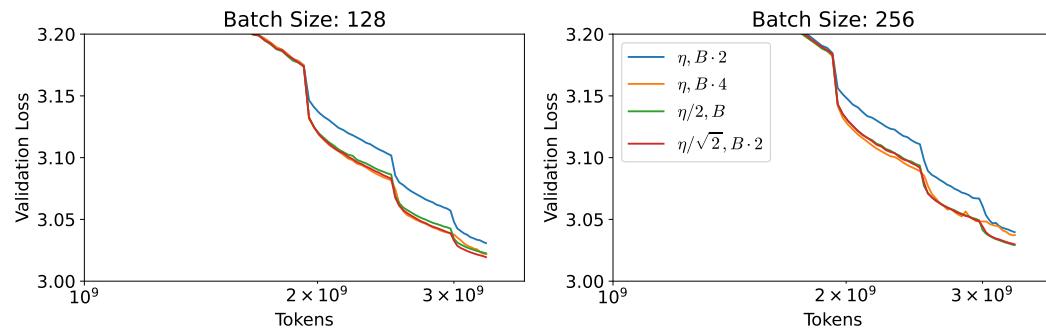
954 B.1 HOW AGGRESIVE CAN THE SCHEDULER BE?

955 In this section we provide a short lemma explaining what is the most aggressive scheduler we could
 956 possibly use, based on hard constraints on α, β .

957 **Lemma 4** (Divergence conditions.). *Suppose we are in the same setting as Corollary 1. For a fixed
 958 initial learning rate η , the training dynamics diverge asymptotically if $\alpha < \sqrt{\beta}$ as the training time
 959 goes to infinity, for α and β constants independent of time.*

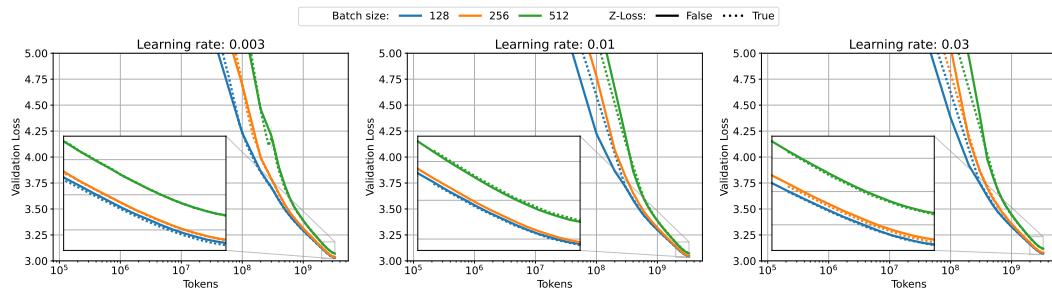
960 *Proof.* To see this, we focus on the scaling of $\tilde{\eta}_k \asymp \eta \left(\frac{\sqrt{\beta}}{\alpha} \right)^k$. Note that if $\sqrt{\beta} > \alpha$, then at every cut
 961 we are effectively increasing the learning rate. Thus, there must exist $k > 0$ such that $\tilde{\eta}_k > \eta_{\max}$,
 962 where η_{\max} is the maximum convergent learning rate for SGD (Wu et al., 2022b; Jain et al., 2018),
 963 leading to divergence. \square

964
 965
 966
 967
 968
 969
 970
 971

972 C COMPARISON TO OTHER SCHEDULERS
973974 We compare our scheme with other schedulers in this section.
975976
977
978
979
980
981
982
983
984
985
986
987 Figure 4: 150M models trained with 4 different schedules, at CBS (right) and just below (left). Blue
988 trace keeps learning rate fixed and doubles batch size, orange trace keeps learning rate fixed and
989 quadruples batch size, green trace halves learning rate at fixed batch size, and red trace is Seesaw.
990 Note that the naive scheduling (blue) severely underperforms the baseline (green) and Seesaw (red).
991992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

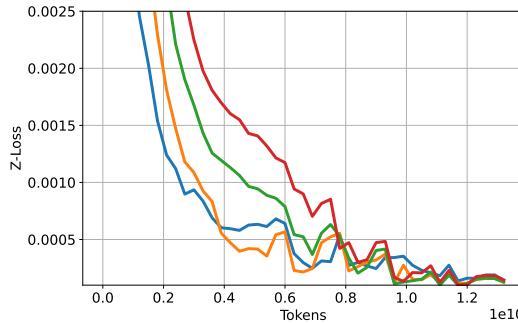
1026 D AUXILIARY LOSSES

1028 In this section we ablate over the effect of z-loss on the training dynamics (OLMo et al., 2024). We
 1029 observe no difference in the training stability of our models at 150M scale in Figure 5:



1041 Figure 5: 150M models trained with cosine decay in Chinchilla scale, across 3 learning rates and 3
 1042 batch sizes. Note that the final validation losses are equal whether Z-Loss is enabled or not.

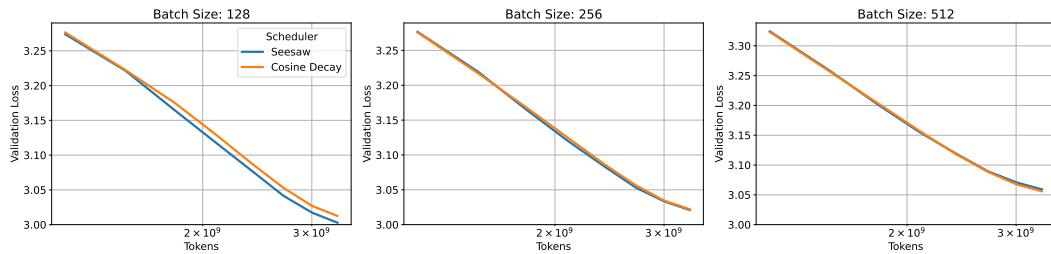
1043 However, while the final validation loss does not change as an effect of z-loss at our scale, we have
 1044 observed certain instabilities in the z-loss towards the end of training when using Seesaw in Figure 6.
 1045 We speculate that the way we are scaling the learning rate and batch size might not be the proper
 1046 way to do it for z-loss, and we leave this study for future work.



1047 Figure 6: 600M models trained with Seesaw decay in Chinchilla scale, with Z-Loss.

1080 **E WEIGHT DECAY**
1081

1082 In this section we provide experiments on 150M models trained with AdamW, sweeping
 1083 weight decay $\lambda \in \{0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0\}$ and learning rate $\eta \in$
 1084 $\{0.001, 0.003, 0.01, 0.03\}$, and the rest of the parameters are as explained in Section 4. For every
 1085 figure we pick the best (η, λ) pair on cosine annealing, and we use the values for Seesaw.
 1086 Across all batch sizes (128, 256, 512), the optimal (η, λ) pair from the sweep turned out to be
 1087 $(\eta, \lambda) = (0.003, 0.0001)$. Figure 7 shows the results:



1097 Figure 7: 150M experiments with weight decay across different batch sizes (128, 256, 512) for
 1098 cosine annealing and Seesaw, for learning rate and weight decay values $(\eta, \lambda) = (0.003, 0.0001)$.
 1099 Note that the losses overlap during training. We provide the final validation losses in Table 3.
 1100

1101 Table 3 shows the final validation losses:

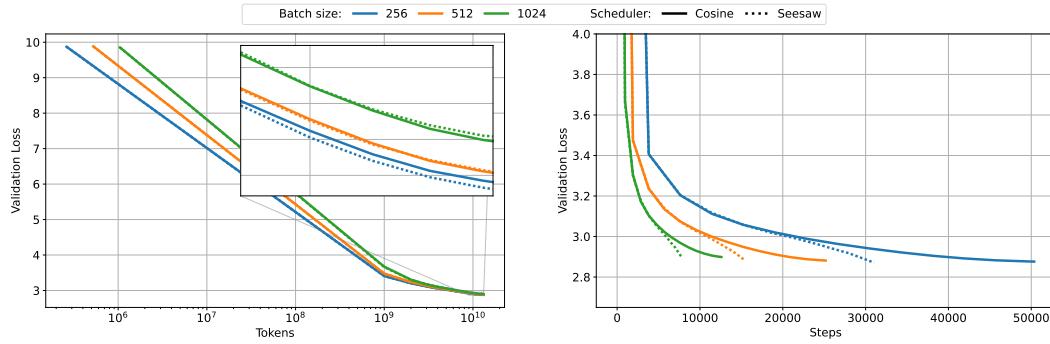
	B=128	B=256	B=512
150M (cosine)	3.0125	3.0220	3.0559
150M (Seesaw)	3.0027	3.0210	3.0588

1107 Table 3: Final validation losses picked at the best learning rate (for the cosine annealing scheduler)
 1108 for each batch size, for $\alpha = 1.1$ and weight decay 0.003. Note that the dynamics match robustly.

1134 **F OVERTRAINED RUNS**

1135

1136 In this section we provide experiments for 150M models in the overtrained regime. We train for $4 \times$
1137 Chinchilla (so approximately 13.2B tokens), while sweeping over learning rates and batch sizes in
1138 the same range as Section 4. We show in Figure 8, and the final losses of these runs in Table 4,
1139 where the plots are done at the optimal learning rate for cosine.


1152

1153 Figure 8: Seesaw comparison with cosine decay in 150M models trained at $4 \times$ Chinchilla scale. For
1154 more experimental details, see Section 4. Note that the schedulers agree in the final losses, with the
1155 actual values shown in Table 4.

1156

1157

	B=256	B=512	B=1024
150M (cosine)	2.8762	2.8814	2.8990
150M (Seesaw)	2.8724	2.8820	2.9016

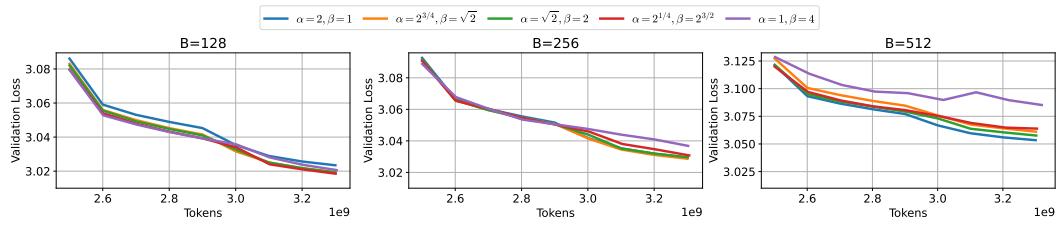
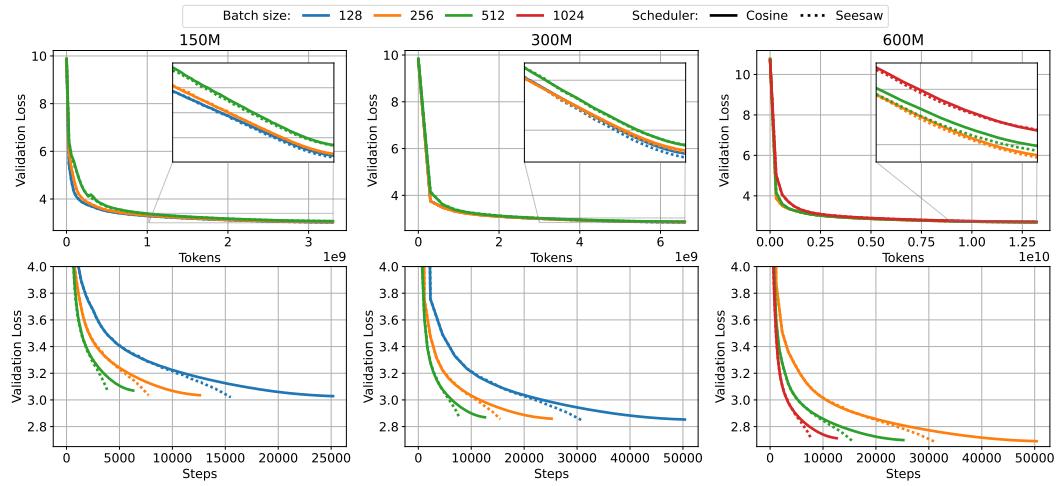
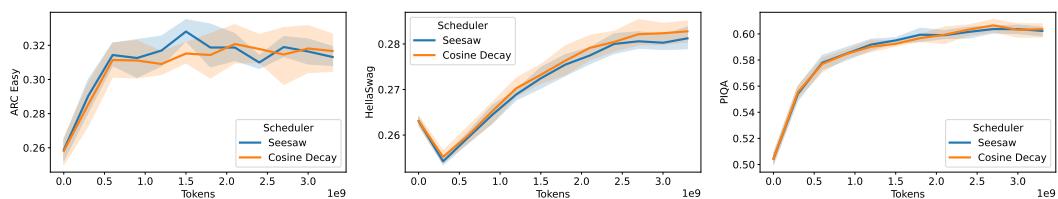
1158
1159
1160

1161

Table 4: Final validation losses for 150M models trained at $4 \times$ Chinchilla.

1162

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **G ADDITIONAL FIGURES**
11891198 Figure 9: 150M models trained at batch size 128, 256, 512 with α and β values following the line
1199 of equivalence $\alpha\sqrt{\beta} = 2$ described in Table 2.
12001218 Figure 10: Seesaw comparison with cosine decay in 150M (left), 300M (middle) and 600M (right)
1219 models trained at Chinchilla scale. The validation losses at the end of training are provided in
1220 Table 1. For more experimental details, see Section 4.
12211229 Figure 11: Downstream evals comparison with cosine decay in 150M models between Seesaw and
1230 Cosine decay trained at CBS (256) for 1x Chinchilla, at the optimal learning rate for cosine.
1231 Note that the 2 methods have similar performance. The shades represent standard deviations over 5 seeds,
1232 taken due to the noisy nature of the evals.
1233
1234
1235
1236
1237
1238
1239
1240
1241