
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEESAW: ACCELERATING TRAINING BY BALANCING
LEARNING RATE AND BATCH SIZE SCHEDULING

Anonymous authors
Paper under double-blind review

ABSTRACT

Increasing the batch size during training — a “batch ramp” — is a promising strat-
egy to accelerate large language model pretraining. While for SGD, doubling the
batch size can be equivalent to halving the learning rate, the optimal strategy for
adaptive optimizers like Adam is less clear. As a result, any batch-ramp schedul-
ing, if used at all, is typically tuned heuristically.
This work develops a principled framework for batch-size scheduling and intro-
duces Seesaw: whenever a standard scheduler would halve the learning rate, See-
saw instead multiplies it by 1/

√
2 and doubles the batch size, preserving loss

dynamics while reducing serial steps. Theoretically, we provide, to our knowl-
edge, the first finite-sample proof of equivalence between learning-rate decay
and batch-size ramp-up for SGD on noisy linear regression, and we extend this
equivalence to normalized SGD, a tractable proxy for Adam, under a variance-
dominated regime observed in practice. Empirically, on 150M/300M/600M-
parameter models trained at Chinchilla scale using a constant (critical) batch size,
Seesaw matches cosine decay at equal FLOPs while reducing wall-clock time by
≈ 36%, approaching the theoretical limit implied by our analysis.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable progress across di-
verse tasks, including outperforming humans in competitive benchmarks and international compe-
titions (Huang & Yang, 2025; Petrov et al., 2025; El-Kishky et al., 2025). A central driver of this
progress has been the steady increase in pre-training compute, measured in floating point operations
(FLOPs) (Kaplan et al., 2020; Hoffmann et al., 2022). However, hardware improvements have not
kept pace with the rapid escalation of training requirements, resulting in wall-clock times extending
to several months for state-of-the-art models (Erdil & Schneider-Joseph, 2024).

A widely studied strategy to reduce wall clock time is increasing the batch size (You et al., 2017;
Goyal et al., 2017). Empirical studies show that larger batches can proportionally reduce the number
of optimization steps required for convergence (Zhang et al., 2024; McCandlish et al., 2018; Shallue
et al., 2019). However, beyond a maximum batch size termed as critical batch size (CBS), further
scaling reduces sample efficiency and limits gains in training speed.

While most prior work assumes a fixed batch size, recent large-scale LLM training runs employ
batch size schedules that gradually increase batch size over the course of training (Dubey et al.,
2024; Touvron et al., 2023; Adler et al., 2024; OLMo et al., 2024; Team, 2025). This practice has
been observed to further reduce training times without compromising model performance. However,
to the best of our knowledge, the “batch ramp” schedules are not theoretically grounded and instead
tuned heuristically. The lack of theoretical justification leaves open whether these heuristics are close
to optimal, motivating the central question of our study: what is the optimal batch size schedule for
minimizing serial runtime while not sacrificing performance?

1.1 THEORETICAL CONTRIBUTIONS

We theoretically prove, to the best our knowledge, the first non-asymptotic equivalence result be-
tween learning rate decay and batch size ramp up in SGD in linear regression with additive noise.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We introduce an informal version of our main theorem here, as well as the corollary leading up to
Seesaw, and we formalize the statements in Section 5.

Theorem (Informal version of Theorem 1). Consider mini-batch SGD on D total samples. Consider
a base process where we run with a stepwise batch ramp up schedule which doubles the batch size
at certain points while keeping the learning rate fixed. Consider an alternative process where at
the same points we instead halve the learning rate, while keeping the batch size fixed and adjust the
number of steps such that the total processed samples remains D. Then, the excess risk of the base
process is within a constant factor of that of the alternative process.

Corollary (Informal version of Corollary 1). Under mild assumptions, we extend the equivalence
to normalized SGD with different schedulers. Consider a base process where we run with a stepwise
batch ramp up schedule which doubles the batch size at certain points while decaying the learning
rate by

√
2. Consider the same alternative process as before. Then, the excess risk of the base

process is within a constant factor of that of the alternative process.

1.2 EMPIRICAL CONTRIBUTIONS

Based on the theoretical analysis, we introduce Seesaw, a learning rate and batch size scheduler that
reduces the serial runtime of LLM pre-training runs by approximately 36% via increasing the batch
size during training at specific points. We provide empirical results in Figure 11 and show that at (or
below) the critical batch size, our method achieves a significant serial runtime acceleration across
several model and data scales, while maintaining the same performance as training with cosine
decay.

105 106 107 108 109

Tokens

4

6

8

10

Va
lid

at
io

n 
Lo

ss

150M

105 106 107 108 109 1010

Tokens

4

6

8

10

Va
lid

at
io

n 
Lo

ss

300M

106 107 108 109 1010

Tokens

4

6

8

10
Va

lid
at

io
n 

Lo
ss

600M

0 5000 10000 15000 20000 25000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

0 10000 20000 30000 40000 50000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

0 10000 20000 30000 40000 50000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

Batch size: 128 256 512 1024 Scheduler: Cosine Seesaw

Figure 1: Seesaw comparison with cosine decay in 150M (left), 300M (middle) and 600M (right)
models trained at Chinchilla scale. Seesaw matches the loss dynamics of cosine annealing in FLOPs
(top row), but achieves a significant speed up in terms of serial runtime (bottom row). Runs are swept
over learning rates and plotted at the best learning rate for cosine annealing in terms of validation
loss, at each batch size. The validation losses at the end of training are provided in Table 1. Note
the axes: the top plots are on a logarithmic scale while the bottom are on a linear scale. For more
experimental details, see Section 4.

2 RELATED WORK

Role of batch size in scaling. Understanding batch size ramp up schemes during training has been
a topic of interest in recent years due to its crucial role in decreasing wall clock runtime. Various
methods of increasing the batch size have been used in common LLMs such as LLaMA (Dubey
et al., 2024; Touvron et al., 2023), Nemotron (Adler et al., 2024), OLMo (OLMo et al., 2024;
Groeneveld et al., 2024), Apertus (Team, 2025). The reason behind ramping up the batch size is
to take advantage of the parallel computation of samples and thus reducing the total number of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

sequential steps. However, since increasing the batch size reduces the total number of gradient steps
taken by the model during training, there is a maximal batch size which can be achieved without
becoming data inefficient, called the critical batch size (CBS) (Erdil & Schneider-Joseph, 2024; Jain
et al., 2018; Zhang et al., 2024; Shallue et al., 2019). Recent work also looks at the effect of batch
size on SGD optimization in LLMs (Srećković et al., 2025; Marek et al., 2025), following previously
established theoretical results in noisy quadratic models (Zhang et al., 2019).

SGD for linear regression. Recently, Zhang et al. (2024) have analyzed the CBS using weight
averaging in linear regression and established scaling laws as a function of data and model size. The
bias-variance analysis used by Zhang et al. (2024) has a longstanding history in the literature (Jain
et al., 2017) and has been used to study batch ramp-up schemes in SGD (Jain et al., 2018). These
rates have been recently made tight by (Zou et al., 2021; Wu et al., 2022a;b) for general spectra of the
data covariance. Recently, (Meterez et al., 2025) have used a simplified mathematical framework
for rederiving the same bounds by rotating the dynamics in the eigenbasis of the data. A similar
diagonalizing idea has also been previously used in literature by Bordelon & Pehlevan (2021); Wu
et al. (2023b;a).

Stochastic Differential Equations (SDEs). Another point of view for studying the interaction
between batch size and learning rate in optimization is through SDEs (Li et al., 2021; Xie et al.,
2020; Compagnoni et al., 2024; Jastrzębski et al., 2017). Malladi et al. (2022) study how to scale
the learning rate as a function of the batch size in adaptive algorithms, extending previous work that
introduced the square root scaling rule (Granziol et al., 2022; You et al., 2019).

Empirical Work. Scaling laws for the CBS and the optimal batch size have also been recently
observed by (Bergsma et al., 2025). In line with our conclusions regarding SGD, the linear scaling
rule for SGD has been observed by (Smith et al., 2017), showing that in SGD, linearly increasing
the batch size is equivalent to decreasing the learning rate. McCandlish et al. (2018) propose a
metric based on the Hessian and the noise that correlates with the CBS over training. While their
proposed metric is based on having access to the Hessian, which is prohibitive for current large-scale
runs, they find that the noise scale increases during a training run, which aligns with our theoretical
predictions. Lastly, perhaps the most similar to our work is Merrill et al. (2025), who propose a
batch size warmup scheme based on starting from a checkpoint with various multiples k of the
current batch size, and pick the largest k⋆ where the loss is ϵ-close to the original loss. Based on this
methodology, they propose the scaling rule Bt+1 = 2Bt and ηt+1 =

√
2η. In contrast, we propose

a simple drop-in replacement for existing cosine schedulers, motivated rigorously by (normalized)
SGD on quadratics. Moreover, we argue that the scheduler proposed by (Merrill et al., 2025) will
lead to instabilities and divergence after a fixed number of steps, based on our theoretical analysis in
Lemma 4.

3 SEESAW: ALGORITHMIC DETAILS

We begin by providing an intuitive derivation of Seesaw, and the practical implementation of our
algorithm. To build intuition, consider 2 different SGD processes. In one process we take 2 steps at
learning rate η/2 and batch size B, and in the other we take 1 step at learning rate η and batch size
2B. Intuitively, both processes should look the same up to first order: the deterministic part of the
update stays the same, and the noise averages out. Consider a general smooth loss function L(x)
and let g0 = ∇L(x0). Then, through a simple Taylor expansion up to first order in η, we have the
loss of the (η, 2B) process and the loss of the 2 half step process (η/2, B) respectively:

L(x1) = L(x0)− ηg⊤
0 (g0 + ξ′) +O(η2) Cov(ξ′) = σ2

2B Id

L(x2) = L(x0)−
η

2
g⊤
0 (2g0 + ξ0 + ξ1) +O(η2) Cov(ξi) =

σ2

B Id.

Note that the 2 processes are equivalent up to first order both in the deterministic part and in the
noise terms up to O(η2), an argument which has been previously shown by Malladi et al. (2022).
We formalize this SGD intuition in Theorem 1 and extend it to normalized SGD as an analytical
proxy to Adam.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 EXTENSION TO NORMALIZED SGD

From the previous subsection, intuitively, for SGD, cutting the learning rate by a factor of α should
be equivalent to increasing the batch size by a factor of α. To design a practical training algorithm
based on the SGD analysis and arrive at Seesaw, we begin with the Adam update rule and simplify
until we obtain normalized SGD (NSGD), which is a commonly used tractable analytical proxy for
Adam (Jelassi et al., 2022; Zhao et al., 2024; Xie et al., 2024). Suppose we are optimizing over
parameters θ and denote the gradients at each time step gt. Then, for learning rate η and ignoring
the bias correction, the parameter update is:

mt = β1mt−1 + (1− β1)gt (1)

vt = β2vt−1 + (1− β2)g
2
t (2)

θt = θt − η
mt√
vt + ϵ

(3)

where mt is the momentum term, vt is the second moment term, β1, β2 are their respective expo-
nential decay rates, and ϵ ensures stability. For NSGD, we approximate the per-coordinate updates
of Adam will full parameter updates, set β1 = β2 = 0 and replace the denominator with the true
expected value of the squared gradient norms over the population:

θt = θt − η
gt√

E∥gt∥2
(4)

Algorithm 1: Seesaw
Inputs: η0 (initial learning rate), B0 (initial batch
size), α > 1 (step decay factor), S (steps at
which input scheduler cuts η by α)

// For a given input scheduler, Si are the steps
where η = η0/α

i

η ← η0, B ← B0, scheduler← []
for t ∈ S do

η ← η/
√
α

B ← B · α
scheduler.append(t, η, B)

end
return scheduler

Equation 4 describes the NSGD update
rule, which is a crucial component of de-
signing Seesaw. While the full analysis is
deferred to Appendix B, the expected gra-
dient norms can be decomposed as:

E∥gt∥2 = mean+ variance (5)

where the variance scales down with the
batch size. To design Seesaw, we assume
that the variance dominates the expected
gradient squared norms (Assumption 3),
and we motivate why this assumption is
reasonable in Appendix B. This step re-
duces (up to constant factors) the NSGD
update rule to SGD with a rescaled learning rate, allowing us to extend risk equivalence to NSGD
(Corollary 1) in Section 5. For NSGD, informally, Corollary 1 shows that any learning rate cut by a
factor of α and batch size increase by a factor of β are equivalent as long as α

√
β is held constant.

We further empirically compare Seesaw with other possible schedulers in Figure 4.

3.2 ACHIEVABLE SPEEDUPS

While our theory is established for step decay schedulers, in practice we approximate cosine decay
with a step decay by considering a decay of α, and passing the times (as measured in tokens) where
the cosine would cut the learning rate by α as input to Seesaw. Then, at these points, we instead
cut the learning rate by

√
α and increase the batch size by β, where the schedulers are equivalent in

terms of loss as long as we keep the product α
√
β fixed. However, we cannot arbitrarily increase

the batch size at time t and expect the risk to match the underlying process. Lemma 4 quantifies this
and the main takeaway is stated below:
Remark 1. The most aggressive ramp up scheme we can use is given by α =

√
β. (for a formal

argument see Lemma 4)

In Section 4.1 we empirically verify this constraint and show that α =
√
β is the most aggressive

scheme we can choose without divergence, which is the reason for presenting Algorithm 1 in this
setting.

At the most aggressive limit, we can compute the theoretical speedup we would hope to achieve
where the standard scheduler is the cosine decay.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Lemma 1 (Maximum Theoretical Speedup under Cosine Decay). Consider a baseline training
process of T total steps using a constant batch size and a cosine learning rate schedule η(t) =
η0 cos(

πt
2T ). An equivalent process run with a batch ramping schedule like Seesaw, in the continuous

limit 1, will have a total of 2T
π steps. This yields a maximum theoretical serial runtime reduction of

(1− 2
π ) ≈ 36.3%.

Lemma 1 provides an intuitive upper bound on the acceleration from Seesaw. The speedup is sig-
nificant but less than 50% because most of the training progress under a cosine schedule occurs
early, when the learning rate is high and the batch size must consequently be relatively small. While
Seesaw aggressively increases parallelism in the later stages of training, the initial, more sequential
phase remains the primary bottleneck on total runtime.

4 EMPIRICAL FINDINGS

In this section, we present the experimental details and methodology for evaluating Seesaw. We
denote by D the dataset size, N the number of parameters.

B=128 B=256 B=512 B=1024
150M (cosine) 3.0282 3.0353 3.0696 3.1214
150M (Seesaw) 3.0208 3.0346 3.0687 3.1318

300M (cosine) 2.8531 2.8591 2.8696 2.9369
300M (Seesaw) 2.8452 2.8561 2.8700 2.9490

600M (cosine) - 2.6904 2.6988 2.7128
600M (Seesaw) - 2.6883 2.6944 2.7132

Table 1: Final validation losses picked at the best learning rate (for the cosine annealing scheduler)
for each batch size, for α = 1.1. Note that the dynamics match robustly across the 2 schedulers
when trained at CBS.

Model and Dataset. We pretrain models of size 150M, 300M and 600M (non-embedding) param-
eters at Chinchilla scaling i.e. D = 20N (Hoffmann et al., 2022). We use the OLMo (Groeneveld
et al., 2024) codebase to train all of our models. For each experiment, we do learning rate warmup
for 10% of the total amount of tokens, followed by learning rate decay following cosine scheduling
or Seesaw. We report the architectural details of each model as a tuple (depth, # heads, width),
and thus we have for 150M (12, 16, 1024), 300M (24, 16, 1024) and for 600M (24, 22, 1408). Un-
less mentioned otherwise, each model is trained using AdamW, with weight decay λ = 0.0 (no
weight decay), β1 = 0.9, β2 = 0.95, ϵ = 10−8. For each run we sweep over learning rates
η ∈ {0.001, 0.003, 0.01, 0.03} and initial batch sizes B ∈ {128, 256, 512, 1024}, at sequence length
L = 1024. Similar to the OLMo training codebase, we enable z-loss during training, but provide
ablations over it in Appendix D showing that it does not affect the model performance at our scales.
All our models are pretrained on the C4 dataset (Raffel et al., 2020), tokenized with the T5 tokenizer.

Experimental Design. We compare Seesaw with cosine annealing by training models at the crit-
ical batch size (CBS) B⋆, approximated based on (Zhang et al., 2024), namely B⋆ ≈ 256 × L
(150M), B⋆ ≈ 512 × L (300M) and B⋆ ≈ 1024 × L (600M) tokens. The main results comparing
Seesaw and cosine annealing at equal FLOPs are provided in Figure 11. The precise final losses
obtained by the 2 schedulers are provided in Table 1.

4.1 CAN WE DO BETTER?

Recall that based on Corollary 1 and Lemma 4, we have a family of equivalent schedules in NSGD,
given by a fixed product α

√
β, under the constraint that α ≥

√
β. Ideally, we would like to make β

1In the continuous-time limit, we consider an aggressive (non-divergent) batch size ramp that maintains
the relationship α =

√
β. Consequently, the total number of sequential steps is given by the integral of the

normalized learning rate schedule:
∫ T

0

η(t)
η0

dt =
∫ T

0
cos( πt

2T
)dt = 2T

π
.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2.00 2.25 2.50 2.75 3.00 3.25
Tokens 1e9

3.025

3.050

3.075

3.100

3.125
Va

lid
at

io
n 

Lo
ss

B=256

2.00 2.25 2.50 2.75 3.00 3.25
Tokens 1e9

3.05

3.10

3.15

Va
lid

at
io

n 
Lo

ss

B=512
α= 2, β= 1 α= 23/4, β=

√
2 α=

√
2 , β= 2 α= 21/4, β= 23/2 α= 1, β= 4

Figure 2: 150M models trained at batch size 256 (left) and 512 (right) with α and β values following
the line of equivalence α

√
β = 2 described in Table 2. Note that the target to match is the blue trace,

and our theory (Lemma 4) predicts that the red and purple traces should not match the baseline (blue
trace) due to instabilities.

as large as possible, since this would lead to larger batch sizes, and thus assuming enough devices are
available, the lowest serial runtime. Crucially, the constraint prevents us from using a too agressive
batch size scheduler. In this section, we empirically verify our theoretical prediction by testing
schedulers positioned at various points on the (α, β) axis. Namely, we train 150M models at fixed

α 2 21/4 21/2 23/4 1

β 1 23/2 2 21/2 22

Table 2: α, β values used to test the extreme values of the equivalence.

batch size and Chinchilla scale, and we approximate cosine decay with a step decay scheduler that
halves the learning rate at the token counts where the cosine schedule’s learning rate would halve.
This gives us the baseline α = 2 and β = 1, with the product α

√
β = 2. Based on the theoretical

constraint and the equivalence line, the most aggressive scheduler we could use is α =
√
2 and

β = 2. To validate our hypothesis, we compare with α = 1 and β = 4, and points in between at
geometric intervals. Table 2 gives an overview of the experimental design, and Figure 2 shows that
indeed the most aggressive schedules tend to underperform.

4.2 WHEN DOES ASSUMPTION 3 FAIL?

Up to this point, a crucial assumption for the development of our theory and the design of Seesaw has
been Assumption 3. Recall that Assumption 3 states that the expected gradient norms – namely, the
denominator of the NSGD update step, is dominated by the additive noise. Intuitively, since the noise
variance decreases with the batch size as O(1/B), one can see that past a certain batch the additive
noise will become small, and thus Assumption 3 will fail. In Figure 3, we can see that at sufficiently
large batch sizes, indeed Seesaw starts to perform worse as compared to the underlying cosine
schedule. The first hypothesis could be that it is still possible to match the underlying schedule, but
with a learning rate equivalence as given by mean dominating in the denominator. As mean does
not scale with batch size, therefore, using the equivalence schedule as required by SGD could be a
promising candidate. We explore this option in Figure 3, and it turns out that this schedule performs
even worse than the Seesaw schedule. We hypothesise that beyond a certain batch size, it is not
possible to match the performance of learning rate decay by any equivalent batch size ramp up for
Adam or normalized SGD, which we motivate using the following toy example.

For simplicity, we look at NGD in 1D, for the quadratic loss L(x) = 1
2hx

2, where x, h ∈ R and
h ≥ 0. Training with NGD, we have the loss gradients with respect to the parameters and the update
rule:

∇xL = hx xt+1 := xt + ηh sign(xt) ∆t = ηh sign(xt)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

109

3.2

3.4

3.6

3.8

4.0
Va

lid
at

io
n 

Lo
ss

B=1024

109

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

B=2048

109

Tokens

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n 
Lo

ss

B=4096

109

Tokens

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n 
Lo

ss

B=8192

Scheduler: Cosine Fixed LR Seesaw

Figure 3: 150M models trained past CBS (roughly 256), at batch sizes 1024, 2048, 4096 and 8192,
for 3 schedulers: cosine decay (blue), constant learning rate with increasing batch size based on
Seesaw (orange) and Seesaw (green). Note that none of the proposed schedules is able to match the
cosine curve, with the discrepancy increasing as the batch size grows more.

where sign(xt) =
xt

|xt| , and ∆t = xt − x⋆ is the distance of the current iterate from the minimizer.
Note that if xt > 0, then ∆t = ηh and if xt < 0, then ∆t = −ηh, implying that the model does not
reach the minimizer and instead converges to a stable cycle of O(η) around the minimizer. In order
to escape this stable cycle and reach the minimizer, it is thus necessary to decay the learning rate.
Therefore, if we slightly relax the setup and think of a large training batch as being close to NGD
regime, we can see that further increasing the batch size does not change the dynamics. Therefore,
past a certain batch size, it is fundamentally impossible to formulate a batch size ramp up scheme
with fixed learning rate that achieves the same loss as a learning rate scheduler at fixed batch size.

5 THEORETICAL ANALYSIS

In this section we introduce the main theoretical contributions of our work. Namely, under mild
assumptions, we establish a formal equivalence between learning rate decay and batch size ramp up
in SGD and normalized SGD.

Setup and Notation. We use the notation f ≲ g to mean that there exists some constant c > 0
such that f(x) ≤ cg(x) for any x. We also use the notation f ≂ g if f(x) ≲ g(x) ≲ f(x) for all x.
We denote the samples (x, y) where x ∈ Rd and y ∈ R, with the distribution and risk:

x ∼ N (0,H) y|x ∼ N (⟨w⋆,x⟩, σ2) R(w) =
1

2
E(⟨w,x⟩ − y)2

where the expectation is over the (x, y), w⋆ is the minimizer, and σ2 is the variance of the additive
noise. We also use R(wt, η) to denote the risk at time t for a process trained with η, but we drop
the η parameter when it is clear from context. We consider step decay schedules for the learning
rate, where, the learning rate in the kth phase is denoted by ηk and Pk denotes the total number
of data samples used in the kth phase. Similarly, for batch ramp schedules, Bk denotes the batch
size in the kth phase. For discussion, we will use the bias-variance decomposition terminology of
risk (Jain et al., 2018; 2017; Zou et al., 2021; Wu et al., 2022a;b; Meterez et al., 2025). Informally,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

bias corresponds to the risk of the averaged iterates, while variance corresponds to the noise in the
iterates, and R(wt) = biast + variancet. We will denote the stochastic gradient at time t by gt
and let E∥gt∥2 represent its expected squared norm under the population distribution.

5.1 MAIN RESULTS

In this section, we first introduce the main assumptions and discuss their implications, followed by
the main theoretical results. Our first assumption states that the risk is almost non expansive, in the
sense that at any point during training after starting the scheduling, the risk is close to the starting
risk.
Assumption 1 (Bounded risk.). Suppose an SGD process and a given scheduling scheme, and let
t0 be the time where the scheduler starts. Then, we assume that there exists a constant c > 1 such
thatR(wt) ≤ cσ2 for all t > t0.

In general, we expect every “well tuned” scheduler to start cutting when R(wt0) ≲ σ2, as we want
to minimize the bias component of the risk before cutting down the learning rate to reduce noise in
the iterates. Moreover, for a well-behaved schedule, as we expect the risk to decrease over time, this
condition should hold throughout the process.

Our second assumption characterizes the gradient norms in the normalized SGD update rule.
Assumption 2 (NSGD oracle access). For normalized SGD, we assume access to an oracle that
provides, at every step, the exact value of the expected squared gradient norms E∥gt∥2.

In general, we don’t have access to the ground truth gradient norms and rely on an exponential
moving average - controlled by the β2 hyperparameter in Adam, in order to estimate the gradi-
ent norms. Assumption 2 simplifies the analysis by giving us access to the true expected gradient
squared norms. Our final assumption states that the expected gradient squared norms of the NSGD
update rule are dominated by the additive noise term.

Assumption 3 (Variance dominated.). Assume that E∥gt∥2 ≂ σ2

Bt
.

Under Assumption 3, the NSGD process effectively reduces to SGD with a rescaled learning rate,
up to constant factors. Based on the previously established assumptions, we can now state the
equivalence result. We use the notation R(ηt, Bt) to denote the risk at time t of an SGD process
trained with the learning rate scheduler η and batch size scheduler Bt, where we omit the time
subscript to denote constant learning rate or batch size respectively.
Theorem 1 (SGD Equivalence). Fix 0.01

Tr(H) ≥ η > 0, B > 0, and parameters α1, α2 > 1, β1, β2 > 1

with α1β1 = α2β2. Define the two phase-indexed schedules

(ηk, Bk) :=
(
η α−k

1 , B βk
1

)
, (η′k, B

′
k) :=

(
η α−k

2 , B βk
2

)
, k = 0, 1, 2, . . .

and run two SGD procedures in phases k = 0, 1, . . . so that, in phase k, each procedure processes
the same number of samples (possibly depending on k) under its respective schedule. LetR(ηk, Bk)
andR(η′k, B′

k) denote the (population) risk of the two procedures at the end of phase k. If Assump-
tion 1 holds (for both procedures) with constant c, then

R(1.01 · η′k, B′
k) ≲c R(ηk, Bk) ≲c R(η′k, B′

k),

whereR(λ · η′k, B′
k) denotes the risk of the second procedure when its entire learning-rate schedule

is multiplied by a uniform factor λ > 0, and A ≲c B means A ≤ C(c)B for a numerical constant
C(c) depending only on c (and absolute constants).

We defer the full proof to Appendix A.1. Now, we extend this result to Normalized SGD. Under
Assumption 3, NSGD reduces to SGD with a rescaled learning rate η̃ ≂ η

√
B

σ
√

Tr(H)
(Equation equa-

tion 11). Consequently, we can extend Theorem 1 to the normalized SGD case. We formalize this
in the following corollary:
Corollary 1 (Normalized SGD Equivalence). Fix 0.01

Tr(H) ≥ η > 0, B > 0, and parameters α1, α2 >

1, β1, β2 > 1 with α1

√
β1 = α2

√
β2. Define the two phase-indexed schedules

(ηk, Bk) :=
(
η α−k

1 , B βk
1

)
, (η′k, B

′
k) :=

(
η α−k

2 , B βk
2

)
, k = 0, 1, 2, . . .

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and run two normalized SGD procedures in phases k = 0, 1, . . . so that, in phase k, each procedure
processes the same number of samples (possibly depending on k) under its respective schedule. Let
R(ηk, Bk) andR(η′k, B′

k) denote the (population) risk of the two procedures at the end of phase k.
If Assumption 1 and 3 holds (for both procedures) with constant c, then

R(1.01 · η′k, B′
k) ≲c R(ηk, Bk) ≲c R(η′k, B′

k),

whereR(λ · η′k, B′
k) denotes the risk of the second procedure when its entire learning-rate schedule

is multiplied by a uniform factor λ > 0, and A ≲c B means A ≤ C(c)B for a numerical constant
C(c) depending only on c (and absolute constants).

6 DISCUSSION AND CONCLUSIONS

In this work we have introduced Seesaw, a drop-in batch size and learning rate scheduler, theoret-
ically motivated by optimization in quadratics using normalized SGD. We rigorously show that for
stepwise schedulers there exists an equivalence between learning rate decay and batch size ramp-up,
and empirically compare our scheduler with cosine annealing using a stepwise approximation of the
cosine. Crucially, we also show that there exists a maximally aggressive batch size ramp up scheme
without leading to instabilities and divergence during training. In the current implementation, See-
saw is able to decrease the serial runtime of a training run by ≈ 36%, bringing significant speedups
to current pretraining pipelines. To conclude, we believe that our scheduler is a principled way of
decreasing the runtime of any LLM pretraining run in an optimizer agnostic way.

REFERENCES

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. arXiv preprint arXiv:2406.11704, 2024.

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Power lines: Scaling laws for weight decay and batch size in llm pre-training. arXiv preprint
arXiv:2505.13738, 2025.

Blake Bordelon and Cengiz Pehlevan. Learning curves for sgd on structured features. arXiv preprint
arXiv:2106.02713, 2021.

Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto,
and Aurelien Lucchi. Adaptive methods through the lens of sdes: Theoretical insights on the role
of noise. arXiv preprint arXiv:2411.15958, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Dohan,
Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive programming
with large reasoning models. arXiv preprint arXiv:2502.06807, 2025.

Ege Erdil and David Schneider-Joseph. Data movement limits to frontier model training. arXiv
preprint arXiv:2411.01137, 2024.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Diego Granziol, Stefan Zohren, and Stephen Roberts. Learning rates as a function of batch size:
A random matrix theory approach to neural network training. Journal of Machine Learning
Research, 23(173):1–65, 2022.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. arXiv preprint
arXiv:2507.15855, 2025.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and
Aaron Sidford. A markov chain theory approach to characterizing the minimax optimality of
stochastic gradient descent (for least squares). arXiv preprint arXiv:1710.09430, 2017.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paralleliz-
ing stochastic gradient descent for least squares regression: mini-batching, averaging, and model
misspecification. Journal of machine learning research, 18(223):1–42, 2018.

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017.

Samy Jelassi, David Dobre, Arthur Mensch, Yuanzhi Li, and Gauthier Gidel. Dissecting adaptive
methods in gans. arXiv preprint arXiv:2210.04319, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling sgd with stochastic
differential equations (sdes). Advances in Neural Information Processing Systems, 34:12712–
12725, 2021.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697–7711, 2022.

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient accu-
mulation is wasteful. arXiv preprint arXiv:2507.07101, 2025.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

William Merrill, Shane Arora, Dirk Groeneveld, and Hannaneh Hajishirzi. Critical batch size re-
visited: A simple empirical approach to large-batch language model training. arXiv preprint
arXiv:2505.23971, 2025.

Alexandru Meterez, Depen Morwani, Costin-Andrei Oncescu, Jingfeng Wu, Cengiz Pehlevan, and
Sham Kakade. A simplified analysis of sgd for linear regression with weight averaging. arXiv
preprint arXiv:2506.15535, 2025.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav
Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa
math olympiad. arXiv preprint arXiv:2503.21934, 2025.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

Teodora Srećković, Jonas Geiping, and Antonio Orvieto. Is your batch size the problem? revisiting
the adam-sgd gap in language modeling. arXiv preprint arXiv:2506.12543, 2025.

Apertus Team. Apertus: Democratizing Open and Compliant LLMs for Global Language Environ-
ments. https://huggingface.co/swiss-ai/Apertus-70B-2509, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last iterate risk
bounds of sgd with decaying stepsize for overparameterized linear regression. In International
Conference on Machine Learning, pp. 24280–24314. PMLR, 2022a.

Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. The power and
limitation of pretraining-finetuning for linear regression under covariate shift. Advances in Neural
Information Processing Systems, 35:33041–33053, 2022b.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? arXiv
preprint arXiv:2310.08391, 2023a.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Sham M Kakade.
Finite-sample analysis of learning high-dimensional single relu neuron. In International Confer-
ence on Machine Learning, pp. 37919–37951. PMLR, 2023b.

Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ℓ∞-geometry of loss land-
scape via coordinate-wise adaptivity. arXiv preprint arXiv:2410.08198, 2024.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. arXiv preprint arXiv:2002.03495,
2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Fos-
ter, and Sham Kakade. How does critical batch size scale in pre-training? arXiv preprint
arXiv:2410.21676, 2024.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
of constant-stepsize sgd for linear regression. In Conference on Learning Theory, pp. 4633–4635.
PMLR, 2021.

11

https://huggingface.co/swiss-ai/Apertus-70B-2509


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOFS FOR SECTION 5

A.1 PRELIMINARIES

We take as a convention for eigenvalues ordering λmax = λ1 ≥ λ2 ≥ · · · > 0. For two matrices A
and B we use the notation A ⪯ B to denote that B−A is positive semi-definite (PSD). We denote
⟨u,v⟩ for the inner product between u and v. Moreover, with a slight abuse of notation, we use the
notation ≤ as elementwise comparison, namely u ≤ v if ui ≤ vi for all i and A ≤ B if Aij ≤ Bij

for all i, j. To simplify the analysis, we will follow the approach of Meterez et al. (2025) and work
in the eigenbasis of the data covariance H. Denote the eigendecomposition of H = QΛQ⊤. For
the sake of completeness, we restate the main derivation for the bias and variance iterates in the case
of constant learning rate and constant batch size, starting from the SGD update rule:

wt+1 −w⋆ =

(
I− η

B

B∑
i=1

xix
⊤
i

)
(wt −w⋆)− η

B

B∑
i=1

xiϵi

=⇒ Σt+1 = Σt − ηΣtH− ηHΣt + η2
(
1 +

1

B

)
HΣtH+

η2

B
Tr(HΣt)H+

η2

B
σ2I

=⇒Mt+1 = Mt − ηMtΛ− ηΛMt + η2
(
1 +

1

B

)
ΛMtΛ+

η2

B
Tr(ΛMt)Λ+

η2

B
σ2I (6)

where in the last equation Mt = QΣtQ
⊤ is the iterate covariance matrix rotated in the eigenbasis

of H. Since we can write the excess risk as:

R(wt)−R(w⋆) =
1

2
Tr(ΛMt) =

1

2
⟨λ,mt⟩

where mt = diag(Mt), it suffices to push a diag operator through equation equation 6. Finally, we
get:

mt+1 =

[
I− 2ηΛ+ η2

(
1 +

1

B

)
Λ2 +

η2

B
λλ⊤

]
︸ ︷︷ ︸

A

mt +
η2σ2

B
λ = Atm0 +

η2σ2

B

t−1∑
i=0

Aiλ

where m̃t := Atm0 and mt :=
η2σ2

B

∑t−1
i=0 A

iλ are the bias and variance iterates respectively.

Before we begin proving the main statements, we introduce several helpful lemmas that we will use.
Lemma 2. For η ≤ 0.01/Tr(H) and α ≥ 1, we have the elementwise inequality:

αk

η
1 ≥

(
I−

(
I− η

αk
Λ
)2

)−1

λ ≥ αk

2η
1

Proof. We have: (
I−

(
I− η

αk
Λ
)2

)−1

=

(
I−

(
I+

η2

α2k
Λ2 − 2

η

α2
Λ

))−1

=
( η

αk
Λ
(
2− η

αk
Λ
))−1

≥
(
2η

αk
Λ

)−1

Note that trivially we also have the other direction by noticing that 1
2− η

αk λ ≤ 1. Multiplying by λ

gives us the conclusion.

Lemma 3. For η ≤ 0.01/Tr(H) and α1, α2, β1, β2 ≥ 1 such that α1β1 = α2β2 and α1 ≤ α2, we
have: (

I− 1.01 η

αk
2

Λ

)2βk
1

⪯
(
I− η

αk
1

Λ

)2βk
2

⪯
(
I− η

αk
2

Λ

)2βk
1

.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proof. RHS bound. Since both sides are diagonal matrices, it suffices to prove the scalar inequality
for every x = ηλi: (

1− x

αk
1

)2βk
2

≤
(
1− x

αk
2

)2βk
1

.

Taking logarithms and defining

f(x) =
2βk

2 log(1− x/αk
1)

2βk
1 log(1− x/αk

2)
=

αk
1 log(1− x/αk

1)

αk
2 log(1− x/αk

2)
=

g(α1)

g(α2)
,

where g(y) = y log(1 − x/y). For 0 < x < 1 and y > 1, g(y) is monotonically increasing, so for
α1 ≤ α2, we have g(α1) ≤ g(α2) and hence g(α1)/g(α2) ≥ 1 (since g(α2) < 0). Thus f(x) ≥ 1,
which proves the RHS inequality.

LHS bound. Similarly, we use the scalar inequality and the bounds

−x− x2

2
≥ ln(1− x) ≥ −x− x2.

Since ln(·) is monotone, we apply it to both sides:

βk
1 ln

(
1− 1.01

αk
2

x

)
≤ βk

1

(
−1.01

αk
2

x− 1.012

2α2k
2

x2

)
,

βk
2 ln

(
1− 1

αk
1

x

)
≥ βk

2

(
− 1

αk
1

x− 1

α2k
1

x2

)
.

It suffices to prove that:

βk
1

(
−1.01

αk
2

x− 1.012

2α2k
2

x2

)
≥ βk

2

(
− 1

αk
1

x− 1

α2k
1

x2

)
.

Using β1

α2
= β2

α1
and β1

α2
2
= β2

α1α2
, we obtain:

1

αk
1

(1.01) +
1

2αk
1α

k
2

(1.01)2x− 1

αk
1

− 1

α2k
1

x ≥ 0,

⇐⇒ x ≤ 0.01
1
αk

1
− 1.012

2αk
2

.

Using α1 ≤ α2, we get

x ≤ αk
1 · 0.01

1− 1.012

2

,

which holds automatically under η ≤ 0.01/Tr(H) and x = ηλi. This concludes the proof.

A.2 PROOFS OF MAIN STATEMENTS

Proof of Theorem 1. Consider 2 processes: process 1 will have a learning rate step decay factor of
α1 and a batch size ramp up factor of β1 and process 2 will have α2 and β2 respectively. Define the
transition matrices:

Ak =

[(
I− η

αk
1

Λ

)2

+
η2

Bα2k
1 βk

1

(Λ2 + λλ⊤)

]

Ck =

[(
I− η

αk
2

Λ

)2

+
η2

Bα2k
2 βk

2

(Λ2 + λλ⊤)

]

Denote process 1 as mk(η) and process 2 as rk(η) where they depend on the base learning rate η
- note that we skip the indexing on η when it is clear from context. In order to keep both the per
stage data count, mk does βk

2Pk steps per stage, and rk does βk
1Pk steps per stage. We begin by

establishing the upper bound first. Note that we assume that α1β1 = α2β2, and without loss of
generality due to symmetry, that β1 ≥ β2 (and consequently α1 ≤ α2).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Upper bound. Before we begin, we introduce the idea behind the proof. We define Mk = βk
1Pk

and Nk = βk
2Pk. The derivation proceeds by unrolling the recurrence first over a single step, then

over βk
2 steps, and finally over Pk stages.

mN1:k
≤ AkmN1:k−1 +

η2σ2

Bα2k
1 βk

1

λ

≤
(
I− η

αk
1

Λ

)2

mN1:k−1 + (1 + 2c)
η2σ2

Bα2k
1 βk

1

λ,

which follows from Assumption 1.

mN1:k
≤

(
I− η

αk
1

Λ

)2βk
2

mN1:k−βk
2
+ (1 + 2c)

η2σ2

Bα2k
1 βk

1

βk
2−1∑
i=0

(
I− η

αk
1

Λ

)2i

λ

≤
(
I− η

αk
1

Λ

)2βk
2

mN1:k−βk
2
+ (1 + 2c)

η2σ2

Bα2k
1 βk

1

[
I−

(
I− η

αk
1

Λ

)2βk
2

][
I−

(
I− η

αk
1

Λ

)2
]−1

λ.

Applying Lemma 2, we have:

mN1:k
≤

(
I− η

αk
1

Λ

)2βk
2

mN1:k−βk
2
+ (1 + 2c)

ησ2

Bαk
1β

k
1

[
I−

(
I− η

αk
1

Λ

)2βk
2

]
1

≤
(
I− η

αk
1

Λ

)2βk
2

mN1:k−βk
2
+ 2(1 + 2c)

η2σ2

B

(
β2

α2
1β1

)k

λ.

By Lemma 3, we can replace the term with one involving (α2, β1):

mN1:k
≤

(
I− η

αk
2

Λ

)2βk
1

mN1:k−βk
2
+ 2(1 + 2c)

η2σ2

B

(
β2

α2
1β1

)k

λ.

Following, we can unroll over Pk:

mN1:k
≤

(
I− η

αk
2

Λ

)2Mk

mN1:k−1
+ 2(1 + 2c)

η2σ2

B

(
β2

α2
1β1

)k Pk−1∑
i=0

(
I− η

αk
2

Λ

)2βk
1 i

λ.

Finally, recursively unrolling across k yields:

mN1:k
≤

[
k∏

s=1

(
I− η

αs
2

Λ

)2Ms
]
m0

+ 2(1 + 2c)
η2σ2

B

k∑
r=1

(
1

α1α2

)r
[

k∏
s=r+1

(
I− η

αs
2

Λ

)2Ms
]

Pr−1∑
i=0

(
I− η

αk
2

Λ

)2βr
1 i

λ.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For the lower bound, we follow a similar strategy, by bounding the term λλ⊤ ≥ 0:

rM1:k
≥

(
I− η

αk
2

Λ

)2

rM1:k−1 +
η2σ2

Bα2k
2 βk

2

λ

≥
(
I− η

αk
2

Λ

)2·βk
1

rM1:k−βk
1
+

η2σ2

Bα2k
2 βk

2

βk
1−1∑
i=0

(
I− η

αk
2

Λ

)2i

λ

=

(
I− η

αk
2

Λ

)2·βk
1

rM1:k−βk
1
+

η2σ2

Bα2k
2 βk

2

[
I−

(
I− η

αk
2

Λ

)2·βk
1

][
I−

(
I− η

αk
2

Λ

)2
]−1

λ

≥
(
I− η

αk
2

Λ

)2·βk
1

rM1:k−βk
1
+

1

2

ησ2

Bαk
2β

k
2

[
I−

(
I− η

αk
2

Λ

)2·βk
1

]
1 Lemma 2

≥
(
I− η

αk
2

Λ

)2·βk
1

rM1:k−βk
1
+

1

4

η2σ2

B

(
β1

α2
2β2

)k

λ

≥
(
I− η

αk
2

Λ

)2·Mk

rM1:k−1
+

1

4

η2σ2

B

(
β1

α2
2β2

)k Pk−1∑
i=0

(
I− η

αk
2

Λ

)2βk
1 i

λ

≥

[
k∏

s=1

(
I− η

αs
2

Λ

)2·Ms
]
r0

+
1

4

η2σ2

B

k∑
r=1

(
1

α1α2

)r
[

k∏
s=r+1

(
I− η

αs
2

Λ

)2·Ms
]

Pr−1∑
i=0

(
I− η

αk
2

Λ

)2βr
1 i

λ

Note that the bias terms are equal r̃M1:k
= m̃N1:k

, and the variance terms are mN1:k
≥ 4(1 +

2c)rM1:k
. Dotting the terms into λ gives us the upper bound from Theorem 1.

Lower bound. We now turn our attention towards proving the lower bound in Theorem 1. Note
that the bias terms have an exponentially decaying dominating term. In order to obtain an inequality
in the reverse direction for these terms, we compare m(η) with r(1.01η). We begin with lower
bounding m:

mN1:k
(η) ≥

(
I− η

αk
1

Λ

)2

mN1:k−1 +
η2σ2

Bα2k
1 βk

1

λ

≥
(
I− η

αk
1

Λ

)2βk
2

mN1:k−βk
2
+

1

4

η2σ2

B

(
1

α1α2

)k

λ

≥
(
I− η

αk
1

Λ

)2Nk

mN1:k−1
+

1

4

η2σ2

B

(
1

α1α2

)k Pk−1∑
i=0

(
I− η

αk
1

Λ

)2βk
2 i

λ

≥

[
k∏

s=1

(
I− η

αs
1

Λ

)2Ns
]
m0

+
1

4

η2σ2

B

k∑
r=1

(
1

α1α2

)r
[

k∏
s=r+1

(
I− η

αs
1

Λ

)2Ns
]

Pr−1∑
i=0

(
I− η

αk
1

Λ

)2βr
2 i

λ

Now we need to establish an upper bound for r(1.01η). We follow a similar analysis as we did for
the upper bound subsection:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

rM1:k
(1.01η)

≤
(
I− 1.01η

αk
2

Λ

)2

rM1:k−1 + 1.012 · (1 + 2c)
η2σ2

Bα2k
1 βk

1

λ

≤
(
I− 1.01η

αk
2

Λ

)2βk
1

rM1:k−βk
1
+ 2 · 1.012 · (1 + 2c)

η2σ2

B

(
1

α1α2

)k

λ

≤
(
I− η

αk
1

Λ

)2βk
2

rM1:k−βk
1
+ 2 · 1.012 · (1 + 2c)

η2σ2

B

(
1

α1α2

)k

λ Lemma 3

≤
(
I− η

αk
1

Λ

)2Nk

rM1:k−1
+ 2 · 1.012 · (1 + 2c)

η2σ2

B

(
1

α1α2

)k Pk−1∑
i=0

(
I− η

αk
1

Λ

)2βk
2 i

λ

≤

[
k∏

s=1

(
I− η

αs
1

Λ

)2Ns
]
r0

+ 2 · 1.012 · (1 + 2c)
η2σ2

B

k∑
r=1

(
1

α1α2

)r
[

k∏
s=r+1

(
I− η

αs
1

Λ

)2Ns
]

Pr−1∑
i=0

(
I− η

αk
1

Λ

)2βr
2 i

λ

Comparing the bias and variance terms gives us the conclusion.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B NORMALIZED SGD ANALYSIS

Under the setup introduced in Section 5, we have the update rule for normalized SGD is:

wt+1 = wt − η
1√

E∥gt∥2
gt

where gt =
1
B

∑B
i=1 g

(i)
t for i indexing the sample and batch size B.

For MSE and y = (w⋆)⊤x+ ϵ, the loss is:

L(wt) =
1

2B

B∑
i=1

(w⊤
t x

(i) − y(i))2

=
1

2B

B∑
i=1

((wt −w⋆)⊤x(i) − ϵ)2

If we look at the risk at time t we have:

R(wt) =
1

2B

B∑
i=1

E[(wt −w⋆)⊤x(i)x(i),⊤(wt −w⋆) + ϵ2] (7)

=
1

2B

B∑
i=1

E[(wt −w⋆)⊤x(i)x(i),⊤(wt −w⋆)] +
σ2

2
(8)

=
1

2
E[(wt −w⋆)⊤xx⊤(wt −w⋆)] +

σ2

2
(9)

=
1

2
Tr(HΣt) +

σ2

2
(10)

So the risk is equal to:

R(wt) =
1

2
Tr(HΣt) +

σ2

2
=⇒ R(wt)−R(w⋆) =

1

2
Tr(HΣt)

Analyzing the gradients Taking the gradient for 1 sample:

g
(i)
t := ∇wt

L = (w⊤
t x

(i) − y(i))x(i) = x(i)(x(i))⊤(wt −w⋆)− ϵx(i)

So we have:

gt =
1

B

B∑
i=1

x(i)(x(i))⊤(wt −w⋆)− 1

B

B∑
i=1

ϵx(i)

Moving forwards, we need to calculate the term in the denominator. Skipping the time index in
order to simplify the notation, we have:

E∥g∥2 =
1

B2
E

B∑
i,j=1

g(i),⊤g(j)

=
1

B2

B∑
i=j

E[g(i),⊤g(i)] +
1

B2

B∑
i̸=j

E[g(i),⊤g(j)]

=
1

B
E∥g(i)∥2 +

(
1− 1

B

)
E[g(i)]⊤E[g(j)]

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

First term If we look at each of these 2 terms we have:

E∥g(i)∥2 = E[(wt −w⋆)⊤xx⊤xx⊤(wt −w⋆)] + σ2E[x⊤x]

= E[Tr(xx⊤xx⊤(wt −w⋆)(wt −w⋆)⊤)] + σ2Tr(E[xx⊤])

= Tr(E[xx⊤xx⊤]Σt) + σ2Tr(H)

= Tr((2H2 +HTr(H))Σt) + σ2Tr(H)

= 2Tr(H2Σt) + Tr(H)Tr(HΣt) + σ2Tr(H)

Second term For the other term, let δt = wt −w⋆ and we have:

E[g(i)]⊤E[g(j)] = E[x(i)(x(i))⊤δt]
⊤E[x(j)(x(j))⊤δt] + σ2δijTr(H)

= E[δt]⊤H2E[δt] + σ2δijTr(H)

= Tr(H2E[δt]E[δt]⊤) i ̸= j

So the denominator is equal to:

E∥gt∥2 =
1

B

[
2Tr(H2Σt) + Tr(H)Tr(HΣt) + σ2Tr(H)

]
+

(
1− 1

B

)
Tr(H2E[δt]E[δt]⊤)

=
σ2

B
Tr(H) +

1

B

[
2Tr(H2Σt) + Tr(H)Tr(HΣt)

]
+

(
1− 1

B

)
Tr(H2E[δt]E[δt]⊤)

Since E[δt] decays to 0 exponentially fast, and Σt ⪯ O(σ2I) (Lemma 8) (Jain et al., 2018), then
for large enough t, we have that the gradient norms are dominated by the additive variance, which
is captured in Assumption 3. For the remainder of this paper we will assume t is large enough for
this assumption to hold, and with a slight abuse of notation we will write = (as opposed to ≈):
E∥gt∥2 = σ2

B Tr(H).

Under Assumption 3, we have the following update rule:

wt+1 = wt − η

√
B

σ
√

Tr(H)
∇wt
L (11)

Note that this is simply SGD with a learning rate η̃ = η
√
B

σ
√

Tr(H)
.

B.1 HOW AGGRESIVE CAN THE SCHEDULER BE?

In this section we provide a short lemma explaining what is the most aggressive scheduler we could
possibly used, based on hard contraints on α, β.
Lemma 4 (Divergence conditions.). Suppose we are in the same setting as Corollary 1. For a fixed
initial learning rate η, the training dynamics diverge asymptotically if α <

√
β as the training time

goes to infinity, for α and β constants independent of time.

Proof. To see this, we focus on the scaling of η̃k ≂ η
(√

β
α

)k

. Note that if
√
β > α, then at every cut

we are effectively increasing the learning rate. Thus, there must exist k > 0 such that η̃k > ηmax,
where ηmax is the maximum convergent learning rate for SGD (Wu et al., 2022b; Jain et al., 2018),
leading to divergence.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C COMPARISON TO OTHER SCHEDULERS

We compare our scheme with other schedulers in this section.

109 2 × 109 3 × 109

Tokens

3.00

3.05

3.10

3.15

3.20

Va
lid

at
io

n 
Lo

ss

Batch Size: 128

109 2 × 109 3 × 109

Tokens

3.00

3.05

3.10

3.15

3.20

Va
lid

at
io

n 
Lo

ss

Batch Size: 256
η, B · 2
η, B · 4
η/2, B

η/
√

2 , B · 2

Figure 4: 150M models trained with 4 different schedules, at CBS (right) and just below (left). Blue
trace keeps learning rate fixed and doubles batch size, orange trace keeps learning rate fixed and
quadruples batch size, green trace halves learning rate at fixed batch size, and red trace is Seesaw.
Note that the naive scheduling (blue) severely underperforms the baseline (green) and Seesaw (red).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D AUXILIARY LOSSES

In this section we ablate over the effect of z-loss on the training dynamics (OLMo et al., 2024). We
observe no difference in the training stability of our models at 150M scale in Figure 5:

105 106 107 108 109

Tokens

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Va
lid

at
io

n 
Lo

ss

Learning rate: 0.003

105 106 107 108 109

Tokens

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Va
lid

at
io

n 
Lo

ss

Learning rate: 0.01

105 106 107 108 109

Tokens

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Va
lid

at
io

n 
Lo

ss

Learning rate: 0.03

Batch size: 128 256 512 Z-Loss: False True

Figure 5: 150M models trained with cosine decay in Chinchilla scale, across 3 learning rates and 3
batch sizes. Note that the final validation losses are equal whether Z-Loss is enabled or not.

However, while the final validation loss does not change as an effect of z-loss at our scale, we have
observed certain instabilities in the z-loss towards the end of training when using Seesaw in Figure 6.
We speculate that the way we are scaling the learning rate and batch size might not be the proper
way to do it for z-loss, and we leave this study for future work.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Tokens 1e10

0.0005

0.0010

0.0015

0.0020

0.0025

Z-
Lo

ss

Figure 6: 600M models trained with Seesaw decay in Chinchilla scale, with Z-Loss.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E WEIGHT DECAY

In this section we provide experiments on 150M models trained with AdamW, sweeping
weight decay λ ∈ {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0} and learning rate η ∈
{0.001, 0.003, 0.01, 0.03}, and the rest of the parameters are as explained in Section 4. For ev-
ery figure we pick the best (η, λ) pair on cosine annealing, and we use the values for Seesaw.
Across all batch sizes (128, 256, 512), the optimal (η, λ) pair from the sweep turned out to be
(η, λ) = (0.003, 0.0001). Figure 7 shows the results:

2 × 109 3 × 109

Tokens
3.00

3.05

3.10

3.15

3.20

3.25

Va
lid

at
io

n 
Lo

ss

Batch Size: 128
Scheduler
Seesaw
Cosine Decay

2 × 109 3 × 109

Tokens
3.00

3.05

3.10

3.15

3.20

3.25

Va
lid

at
io

n 
Lo

ss

Batch Size: 256

2 × 109 3 × 109

Tokens
3.00

3.05

3.10

3.15

3.20

3.25

3.30

Va
lid

at
io

n 
Lo

ss

Batch Size: 512

Figure 7: 150M experiments with weight decay across different batch sizes (128, 256, 512) for
cosine annealing and Seesaw, for learning rate and weight decay values (η, λ) = (0.003, 0.0001).
Note that the losses overlap during training. We provide the final validation losses in Table 3.

Table 3 shows the final validation losses:

B=128 B=256 B=512
150M (cosine) 3.0125 3.0220 3.0559
150M (Seesaw) 3.0027 3.0210 3.0588

Table 3: Final validation losses picked at the best learning rate (for the cosine annealing scheduler)
for each batch size, for α = 1.1 and weight decay 0.003. Note that the dynamics match robustly.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F OVERTRAINED RUNS

In this section we provide experiments for 150M models in the overtrained regime. We train for 4×
Chinchilla (so approximately 13.2B tokens), while sweeping over learning rates and batch sizes in
the same range as Section 4. We show in Figure 8, and the final losses of these runs in Table 4,
where the plots are done at the optimal learning rate for cosine.

106 107 108 109 1010

Tokens

3

4

5

6

7

8

9

10

Va
lid

at
io

n 
Lo

ss

0 10000 20000 30000 40000 50000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

Batch size: 256 512 1024 Scheduler: Cosine Seesaw

Figure 8: Seesaw comparison with cosine decay in 150M models trained at 4× Chinchilla scale. For
more experimental details, see Section 4. Note that the schedulers agree in the final losses, with the
actual values shown in Table 4.

B=256 B=512 B=1024
150M (cosine) 2.8762 2.8814 2.8990
150M (Seesaw) 2.8724 2.8820 2.9016

Table 4: Final validation losses for 150M models trained at 4× Chinchilla.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G ADDITIONAL FIGURES

2.6 2.8 3.0 3.2
Tokens 1e9

3.02

3.04

3.06

3.08

Va
lid

at
io

n 
Lo

ss

B=128

2.6 2.8 3.0 3.2
Tokens 1e9

3.02

3.04

3.06

3.08

Va
lid

at
io

n 
Lo

ss

B=256

2.6 2.8 3.0 3.2
Tokens 1e9

3.025

3.050

3.075

3.100

3.125

Va
lid

at
io

n 
Lo

ss

B=512
α= 2, β= 1 α= 23/4, β=

√
2 α=

√
2 , β= 2 α= 21/4, β= 23/2 α= 1, β= 4

Figure 9: 150M models trained at batch size 128, 256, 512 with α and β values following the line
of equivalence α

√
β = 2 described in Table 2.

0 1 2 3
Tokens 1e9

4

6

8

10

Va
lid

at
io

n 
Lo

ss

150M

0 2 4 6
Tokens 1e9

4

6

8

10

Va
lid

at
io

n 
Lo

ss

300M

0.00 0.25 0.50 0.75 1.00 1.25
Tokens 1e10

4

6

8

10

Va
lid

at
io

n 
Lo

ss

600M

0 5000 10000 15000 20000 25000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

0 10000 20000 30000 40000 50000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

0 10000 20000 30000 40000 50000
Steps

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

Batch size: 128 256 512 1024 Scheduler: Cosine Seesaw

Figure 10: Seesaw comparison with cosine decay in 150M (left), 300M (middle) and 600M (right)
models trained at Chinchilla scale. The validation losses at the end of training are provided in
Table 1. For more experimental details, see Section 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tokens 1e9

0.26

0.28

0.30

0.32

AR
C 

Ea
sy

Scheduler
Seesaw
Cosine Decay

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tokens 1e9

0.26

0.27

0.28

He
lla

Sw
ag

Scheduler
Seesaw
Cosine Decay

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tokens 1e9

0.50

0.52

0.54

0.56

0.58

0.60

PI
QA

Scheduler
Seesaw
Cosine Decay

Figure 11: Downstream evals comparison with cosine decay in 150M models between Seesaw and
Cosine decay trained at CBS (256) for 1× Chinchilla, at the optimal learning rate for cosine. Note
that the 2 methods have similar performance. The shades represent standard deviations over 5 seeds,
taken due to the noisy nature of the evals.

23


	Introduction
	Theoretical Contributions
	Empirical Contributions

	Related Work
	Seesaw: Algorithmic Details
	Extension to Normalized SGD
	Achievable Speedups

	Empirical Findings
	Can we do better?
	When Does Assumption 3 Fail?

	Theoretical Analysis
	Main Results

	Discussion and Conclusions
	Proofs for Section 5
	Preliminaries
	Proofs of Main Statements

	Normalized SGD analysis
	How aggresive can the scheduler be?

	Comparison to other schedulers
	Auxiliary Losses
	Weight Decay
	Overtrained runs
	Additional Figures

