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Abstract

Deep neural networks have revolutionized 3D point cloud
processing, yet efficiently handling large and irregular point
clouds remains challenging. To tackle this problem, we
introduce FastPoint, a novel software-based acceleration
technique that leverages the predictable distance trend be-
tween sampled points during farthest point sampling. By
predicting the distance curve, we can efficiently identify
subsequent sample points without exhaustively computing
all pairwise distances. Our proposal substantially acceler-
ates farthest point sampling and neighbor search operations
while preserving sampling quality and model performance.
By integrating FastPoint into state-of-the-art 3D point cloud
models, we achieve 2.55x end-to-end speedup on NVIDIA
RTX 3090 GPU without sacrificing accuracy.

1. Introduction

3D point clouds have become increasingly important for
representing and understanding 3D scenes, driving ad-
vancements in fields like robotics and autonomous driv-
ing. Deep neural networks [4, 6, 7, 13, 17, 20, 23—
26, 30, 32, 33, 37, 42, 43] have emerged as powerful tools
for processing this type of data. While PointNet++ [24] and
its successors have improved efficiency and performance of
these point cloud models, the irregular nature and grow-
ing size of point cloud data continue to impose signifi-
cant computational challenges, especially for real time use
cases. Operations such as Farthest Point Sampling (FPS)
and neighbor search remain major bottlenecks.

While various hardware accelerators [8, 9, 12, 16, 18,
36, 40] have been explored to accelerate the models,
software-only solutions are less common. Given the high
cost and complexity of developing specialized accelerators,
software-based acceleration is a more practical approach.
Recently, several software-based techniques [15, 39] have
been proposed to accelerate these models through approx-
imation. However, such approaches often come at the cost

of significant accuracy loss, limiting their practical use.

To address this challenge, we propose FastPoint, a novel
software-based acceleration technique with sample point
distance prediction. We observe that the inherent nature
of FPS, which iteratively selects the point farthest from
the current set of sampled points, leads to two predictable
trends in the minimum distances between these points:

1. Decreasing minimum distance: As FPS makes progress,
the number of remaining points decreases, forcing the al-
gorithm to select points closer to those already sampled.
This results in a smoothly decreasing curve of minimum
distances between sampled points.

2. Early structure capture: The initial sample points tend
to be the extremities of the point cloud, effectively cap-
turing its overall shape and boundaries.

Our proposal leverages these observations to accurately
estimate the distance curve using only a few initial FPS iter-
ations. By predicting the distance curve, we can efficiently
identify subsequent sample points without computing and
comparing pairwise distances at each FPS iteration. This
leads to significant latency savings while maintaining sam-
pling quality comparable to that of the original FPS. Fur-
thermore, predicting the distance curve enables the sam-
pling process to be decoupled from distance computation.
This decoupling exposes new opportunities for paralleliz-
ing distance calculations in the proposed sampling, further
enhancing efficiency. This approach not only accelerates
FPS itself but also benefits subsequent operations such as
neighbor search by leveraging pre-computed distances.

Our key contributions are summarized as follows:

* We identify two key latency bottlenecks in point cloud
models: FPS and neighbor search. Limited parallelism
in FPS and redundant distance computations across both
operations are the primary sources of inefficiency.

* We empirically analyze 3D point cloud models and iden-
tify the decreasing trend and early structure capture trend.

* Based on the observations, we introduce a novel sampling
approach with sample point distance prediction. With the
estimated distance curve, this approach not only accel-
erates FPS itself but also benefits subsequent neighbor
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Figure 1. Overview of PointNet++ Based Model Architecture

search, which relies on pre-computed distances.

* We integrate FastPoint into OpenPoints library and ex-
periment on state-of-the-art PointNet++ based mod-
els, achieving geomean 2.55x end-to-end speedup on
NVIDIA RTX 3090 GPU while preserving accuracy.

2. Background and Related Work

2.1. Deep Learning on 3D Point Clouds

Deep Neural Networks on Raw Point Cloud Since the
release of PointNet [23], which is the first to apply deep
neural networks directly to the raw point clouds, numer-
ous successors [6, 13, 17, 19, 24-27, 30, 31, 34, 41] have
been developed, improving both model performance and ef-
ficiency. PointNet++ [24] introduces a hierarchical struc-
ture to PointNet through sampling and grouping, which
has become the core architecture of subsequent PointNet++
based models. PointNeXt [27] revisits PointNet++, achiev-
ing substantial improvements in model performance, while
PointVector [6] and PointMetaBase [17] push the model
performance and efficiency even further. Although the ar-
chitectural details of each model differ, all models follow
the PointNet++ structure, utilizing Set Abstraction and Fea-
ture Propagation layers as core components. This work fo-
cuses on identifying and accelerating the primary latency
bottlenecks in PointNet++ based models.

Deep Neural Networks on Voxelized Point Cloud Sev-
eral works [3, 4, 10, 22, 28, 43] propose to voxelize point
clouds, using voxels as input rather than raw points. The
advent of 3D sparse convolution [4] has made this voxel-
based approach increasingly popular due to its efficiency
and high performance. Recently, transformer-based mod-
els [7, 21, 37, 38] operating on voxelized point clouds are
gaining significant attention. Although voxelization alle-
viates the computational cost of mapping operations (i.e.,
downsampling and neighbor search), it has a notable lim-
itation due to the loss of position information during the
voxelization process.

2.2. Related Work

Numerous solutions have been proposed to accelerate sam-
pling and neighbor search operations in PointNet++ based
models. We categorize them into hardware- and purely
software-based approaches.

Hardware-Assisted Acceleration QuickFPS [12] intro-
duces a k-d tree based FPS algorithm which reduces compu-
tation and memory access in each FPS iteration, along with
specialized hardware designed for this method. MARS [36]
and PTrAcc [16] both propose hardware accelerators that
employ a distance filtering technique which skips unnec-
essary distance computations in each iteration of FPS. Al-
though these techniques achieve substantial speedups in
FPS without any loss in sampling quality, they require spe-
cialized hardware to fully harness their algorithms, limiting
their effectiveness on commodity hardware like GPU. For
more thorough evaluation, we compare the speedup of our
proposal with pure software version [11] of QuickFPS in
Section 5.4, evaluating its effectiveness on GPU.

Software-Only Acceleration To mitigate the high la-
tency associated with FPS, various alternative sampling
methods have been explored. RandLA-Net [13] replaces
FPS with random sampling and introduces a local feature
aggregation module that compensates for the low sampling
quality of random sampling. Grid sampling, the most com-
monly used alternative, is adopted by Grid-GCN [35] and
KPConv [29], offering faster processing with reasonable
sampling quality compared to random sampling. Despite
the latency advantages of these methods, none have con-
sistently outperformed FPS for overall performance. This
is illustrated by the fact that most PointNet++-based mod-
els [6, 17, 24-27] continue to rely on FPS, highlighting its
broad applicability and superior sampling quality. The ex-
perimental results in Appendix B.1 corroborate this claim.
EdgePC [39] structures the point cloud with morton
codes to accelerate FPS and neighbor search on edge GPUs,
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Figure 2. Latency Breakdown of PointNet++ Based Models

while Adjustable FPS [15] accelerates FPS by leveraging
the intrinsic locality of the point cloud data. However,
both methods demonstrate significant accuracy loss com-
pared to the baseline (i.e., up to 2% mloU loss) due to
their aggressive approximations, limiting their effective-
ness. Prior work [14] accelerates the training of PointNet++
based models by precomputing the minimum point spacing
of farthest-sampled points before training and reusing this
value across epochs for fast sampling. While this approach
effectively speeds up training, it is not suitable for inference,
as the minimum spacing value cannot be determined in ad-
vance in inference scenarios. Detailed comparisons with
our work are provided in Appendix A.4.

3. Challenges of Point Cloud Models

3.1. Model Architecture Overview

Figure | illustrates the detailed process of PointNet++-
based models. Similar to 2D convolutional neural networks,
these models consist of both downsampling and upsampling
layers. Commonly referred to as the set abstraction layer,
the downsampling layer in PointNet++-based models com-
prises three main stages, as outlined below:
© Farthest Point Sampling (FPS): Downsampling be-
gins by selecting N/stride output points from N input
points, where stride represents the downsampling rate.
Typically, the FPS is used to maintain the shape and struc-
ture of the input point cloud.
@ Ball Query: Next, a ball query with radius R is per-
formed around each sampled point to gather neighboring
points for feature aggregation.
© Aggregation: The features of neighboring points
identified in the ball query are then processed. A
multi-layer perceptron (MLP) is applied to these features,
followed by max pooling to aggregate the information
for each centroid. The details of this process, e.g.,
positional embedding [17], can vary depending on the
model architectures.

Algorithm 1 Farthest Point Sampling

Input P: input point cloud, n: number of points to sample,
N: number of original points

Output sampled_idx: indices of sampled points

1: sampled-idx[0] <— seed_tdx // Starts with a random point
2: min_dists[¢] < oo fort =0,..., N — 1
3: fori <~ 1ton —1do // Not parallelized

4: for j <~ 0to N —1do // Parallelized

5: dnew < dist(P[sampled_idx[i: — 1]], P[j])
6: if min_dists[j] > dnew then

7: min_dists[j] < dnew

8: sampled-idx[¢] - argmax(min_dists)

The upsampling layer, often referred to as a feature prop-
agation layer, takes the downsampled points from the corre-
sponding downsampling layer as inputs and propagates the
features back to the original point cloud. This process is
done by following steps.

© k-NN: For each upsampled point, k-NN is applied to
identify its k nearest neighbors among the input points.
@ Interpolation: Based on the k-NN results, neighbor-
ing input points are interpolated, concatenated with skip-
connected features from the corresponding downsampling
layer, and the information is passed through an MLP to
propagate the features to the subsequent layer.

3.2. Latency Breakdown

Figure 2 presents the latency breakdown of PointMetaBase-
L model evaluated on both indoor (S3DIS) and outdoor (Se-
manticKITTI) scenes. The results show that coordinate-
based operations (i.e., FPS, k-NN, and Ball Query) dom-
inate the execution time, consuming significantly more
time than feature-based operations (i.e., Aggregation and
MLP). These coordinate-based operations account for ap-
proximately 88.1% of the total inference time for indoor
scenes and 94.1% for the outdoor scenes. Among these,
FPS emerges as the primary performance bottleneck, re-
quiring the most execution time. Additionally, neighbor
search operations, including k-NN and Ball Query, con-
tribute significantly to the overall latency. To address these
challenges, we first analyze the root causes of these ineffi-
ciencies and propose novel optimization techniques in sub-
sequent sections.

3.3. Inefficiencies in Farthest Point Sampling

Farthest point sampling operates iteratively by selecting one
point at a time. In each iteration, the sampling algorithm
identifies the point farthest from the set of the previously
sampled points. The detailed process is outlined in Algo-
rithm 1. Initially, a random point in P is chosen as the seed
point (Line 1) and added to the sampled_idx. Then, a dis-
tance matrix (i.e., min_dists) is created to store the distance
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between each point in P and the set of the previously sam-
pled points, where the distance from a point to a point set
is defined as minimum distance between the point and any
point in the set. This matrix is initialized to oo (Line 2). In
each iteration, the distance between the most recently sam-
pled point and every other point in P is calculated (Lines
3-7). If a newly calculated distance is smaller than the
corresponding entry in the min_dists matrix, the matrix is
updated with the smaller value. Finally, the index of the
point with the maximum distance in the min_dists is added
to the sampled_idx (Line 8). This process is repeated until
the specified number of points (n) is sampled.

The sequential nature of the FPS algorithm is the pri-
mary reason of the inefficiency. Because only one point is
sampled per iteration, the O(NV) distance calculations re-
quired in each iteration must be sequentially executed n
times. This tight coupling between sampling and distance
calculation significantly limits the potential for parallelism
in distance computations.

To unlock this parallelism potential, we introduce Mini-
mum Distance Prediction Sampling (MDPS) in Section 4.1,
a novel sampling strategy that fully decouples sampling
from distance computation, enabling greater parallelism
and faster processing speeds.

3.4. Inefficiencies in Neighbor Search

As explained in Section 3.1, PointNet++ based models em-
ploy two types of neighbor search algorithms: Ball Query
and k-NN. These operations play a critical role in capturing
local geometric relationships in the point cloud. Ball Query
identifies neighbor points within a fixed radius around the
downsampled points. k-NN identifies k nearest neighbors
among the downsampled points for each original point.

The inefficiencies in these neighbor search operations
stem from redundant distance computations in both the FPS
and subsequent neighbor search operations. For instance, as
shown in Figure 1, the distance between PO and P2 is com-
puted while updating P2’s minimum distance in FPS. How-
ever, the same distance is redundantly recalculated in both
Ball Query and k-NN. Section 4.2 introduces redundancy-
[free neighbor search techniques to address this issue.

4. FastPoint: Fast Point Cloud Inference

Trends in Minimum Distance of Sample Points The

FPS iteratively selects the point farthest from the current

set of sampled points, which leads to predictable trends in

the distance between the sampled points.

1. Decreasing minimum distance: As sampling proceeds,
the pool of the remaining points shrinks, the FPS al-
gorithm selects points closer to those already sampled
over time. Thus, the maximized minimum distance (i.e.,
max(min_dists) in Algorithm 1) decreases, which we de-
fine as minimum distance for brevity. This is particu-
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Figure 3. Motivation of Minimum Distance Curve Estimation

larly evident in Figure 3a, showing a smooth, decreasing
curve for various input point clouds.

2. Early structure capture: Importantly, we observe that
a few initial sample points are sufficient to capture the
overall shape and boundaries of the input point cloud
(Figure 3b). This is because the initial sample points
tend to be the extremities of the point cloud.

Optimization Opportunities The trend of early structure
capture suggests that the initial iterations of FPS are impor-
tant in accurately representing the point cloud’s structure.
The Decreasing trend suggests that the later portion of the
minimum distance curve becomes more predictable as sam-
pling progresses. Building upon these trends, if we could
accurately estimate this curve using only a few initial FPS
iterations, we could maintain a comparable sampling qual-
ity while achieving substantial latency reduction by select-
ing points guided by the predicted curve.

Proposed Techniques We introduce two optimizations by
leveraging these opportunities: Minimum Distance Pre-
diction Sampling and Redundancy-Free Neighbor Search.
Minimum Distance Prediction Sampling (MDPS) is a novel
sampling strategy designed to approximate the sampling
quality of FPS while significantly reducing latency. This
approach estimates the distance curve using only a few ini-
tial non-parallelizable FPS iterations. Subsequent sample
points are selected based on the predicted distances, elim-
inating the need for pairwise distance comparisons in later
iterations. Furthermore, MDPS enables Redundancy-Free
Neighbor Search by reusing precomputed distance infor-
mation, thereby eliminating redundant computations dur-
ing subsequent Ball Query and k-NN operations. This
optimization further enhances the overall efficiency of
PointNet++-based models during inference.

4.1. Minimum Distance Prediction Sampling

© Minimum Distance Curve Estimation To build a low-
cost estimator for the minimum distance curve (as shown in
Figure 4), we aim to estimate the curve with minimal error
using the results from as few FPS iterations as possible. We
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formulate the estimator £ as a function which gets initial
p segment (where p is the ratio of initial FPS iterations to
total iterations, 0 < p < 1) of the curve C' as input and
outputs the rest of the estimated curve C (e., Equation 1).
Note that C'(1) represents the minimum distance among the
sampled points after all sampling iterations are finished.

C(t)=&(Ct) | t € [0,p]) ()

We have experimented with various models, including
polynomial functions and MLPs, and find that MLPs yield
the best performance (Appendix A.3). We train a 3-layer
MLP on minimum distance curves extracted from the train-
ing split of each point cloud dataset, setting p 0.1
to balance error and efficiency. Our estimator achieves a
low Mean Absolute Percentage Error (MAPE) of 1.02%,
0.77%, and 1.93% on S3DIS, ScanNet, and SemanticKITTI
datasets, respectively, performing better on indoor datasets
(S3DIS, ScanNet) due to their more consistent point density
and distribution. Appendix B.6 and B.8 discuss ablation
study for p and cross-dataset applicability of estimators.

fort € (p, 1]

® Distance Curve Segmentation Ideally, what we want
is to sample points whose minimum distance matches the
value on the curve at each iteration. However, directly find-
ing the point that yields the exact minimum distance in ev-
ery iteration is computationally expensive.

To efficiently sample points along the estimated mini-
mum distance curve, we first divide the curve into multiple
segments. Note that each segment is associated with a group
of consecutive iterations. Then, the corresponding predicted
minimum distances are employed to identify sample point
at the segment-level granularity in the sampling process.

As illustrated in Figure 4, the curve is segmented at it-
erations dj, ds, and ds, resulting in three segments. For

imum Distance Prediction Sampling

each input point, we identify points within a specified ra-
dius of each segment boundary (i.e, R;, Rs, and R3) and
store them in the exclusion list for three segments. This list
prevents sampling closely located points by considering the
sampled points.

To optimize computational efficiency, building the ex-
clusion list across all segments is fused into a single GPU
kernel. By calculating the distance between the points only
once, regardless of the number of segments, we minimize
the latency overhead. For example, the distance between
PO and P1 is computed only once. If P1 is within R3 (i.e.,
dist(PO, P1) < R3 < Ry < Ry), P1 is added to the exclu-
sion list of PO at all segments. Refer to Table 3 for latency
overhead with an increase in the segment count.

Building the exclusion list still requires computing pair-
wise distances; however, this process is much faster than
the original FPS algorithm. This improvement is achieved
because all computations are fully parallelizable, as sam-
pling and distance calculations are completely decoupled.
For details on the algorithm, refer to Appendix A.1.

© Sampling with Predicted Distance The sampling pro-
cess employs the exclusion list. Starting from Segment 1,
a seed point (PO in Figure 4) is chosen. In each sampling
iteration, points within a radius 21 from the most recently
sampled point are filtered out based on the exclusion list.
We employ bitmaps to record which points are available for
sampling. For instance, in the first iteration of Figure 4,
Point PO, P1, P4, P5, P6, P7, and P11 are excluded based
on the exclusion list of Segment 1. Point P3 is randomly
selected among the eight available points for the second it-
eration in the same segment. Excluded points remain un-
available until the current segment is complete.

As the sampling progresses and the segment changes
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ing segment counts.

(e.g., from Segment 1 to Segment 2), the radius threshold is
adjusted (e.g., from R; to R»). This transition changes the
set of points that are available for sampling. By iteratively
applying this process, we ensure that the distance between
sampled points meets or exceeds the threshold for each seg-
ment. This results in a minimum distance that lies above the
blue step function in the segmented distance curve (i.e., R;
serves as the lower bound of the minimum distance in Seg-
ment 7). Increasing the number of segments allows the step
function to approach the red minimum distance curve, im-
proving sampling quality and converging towards the qual-
ity of FPS. Figure 5 demonstrates this convergence. With
more segments, the distribution of minimum distance be-
tween sampled points becomes closer to that of FPS. Details
on implementation are provided in Appendix A.l.

O Early Termination While the estimated minimum dis-
tance curve exhibits low error, overestimation can still nega-
tively impact sampling quality. This is because it can lead to
an excessive number of point exclusions, limiting the avail-
ability of points in later iterations. To mitigate this issue,
we introduce Early Termination. This technique monitors
the availability of points at each iteration. If no points re-
main, it advances to the next segment earlier than planned.
When the final segment is exhausted, Sampling with Pre-
dicted Distance is terminated, and the remaining iterations
are completed using the original FPS algorithm. For seam-
less transition to FPS, we efficiently update the minimum
distance matrix (dists in Algorithm 1) by leveraging the
exclusion list. This approach avoids recalculating all-to-all
distances between points, significantly reducing the search
space and minimizing the impact on sampling time. Ap-
pendix A.1 describes the details of Early Termination.

Factors Contributing to Speedup The primary factors
contributing to the latency of MDPS are:
1. Minimum Distance Curve Estimation: This step, requir-
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ing 1/10 of the original FPS iterations, adds only a frac-
tion of the original FPS latency.

2. Exclusion List Construction: The required all-to-all dis-
tance calculations are fully parallelizable, resulting in
minimal latency overhead. Detailed analysis on this fac-
tor is provided in Appendix A.2.

3. Sampling Process: The use of exclusion list eliminates
the need for additional distance calculations. Early ter-
mination requires additional FPS iterations. However,
the impact is minimal: the overhead of 2.02%, 0.58%,
and 1.18% of original FPS iterations in S3DIS, ScanNet,
and SemanticKITTI dataset, respectively.

Due to these optimizations, MDPS can achieve a 4-5x
speedup relative to the original FPS algorithm. Detailed la-

tency breakdown of MDPS is provided in Appendix B.2.

4.2. Redundancy-Free Neighbor Search

The exclusion list in MDPS captures spatial relationships
between points, providing an opportunity to optimize sub-
sequent Ball Query and k-NN operations. We introduce Re-
dundancy Free Ball Query and k-NN, which fully leverage
the exclusion list from the sampling stage.

Redundancy-Free Ball Query Ball query, which identifies
neighbors within a radius R, is performed after sampling,
before aggregation (refer to Figure 1). The exclusion list is
well-suited for this task, as it contains points within a spec-
ified radius of each point. By adding an extra list to the
exclusion list for the radius R, as illustrated in Figure 6,
we can directly use it for ball query. As discussed in Sec-
tion 4.1, this approach minimizes computational overhead;
distances between points are calculated only once, regard-
less of the number of segments. After sampling, we extract
the relevant entries from the corresponding exclusion list for
the ball query, which serve as centroids for aggregation.

Redundancy-Free k-NN While directly reusing the exclu-
sion list for k-NN is challenging, we can leverage it to re-
duce the search space. By using the exclusion list of Seg-
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Average Minimum Distance (Ratio to Baseline)

Dataset Baseline | Random Grid MDPS
(FPS) Sampling | Sampling (Ours)

0.03478 0.04971 0.06359

S3DIS 006395 | (5438%) | (77.72%) | (99.45%)
0.02035 0.02400 0.03677

ScanNet 0.03701 | (54.99%) | (64.84%) | (99.35%)

. 0.12775 0.21519 0.25087

SemanticKITTI | 0.25505 (50.09%) | (84.37%) | (98.36%)

Table 1. Comparison of Sampling Quality among FPS, Random
Sampling, Grid Sampling and MDPS.

ment 1, we can limit the search space by eliminating points
that are too far away to be potential k-NN neighbors. For
example, to find the three nearest neighbors of point P7 in
Figure 6, we calculate distances between P7 and the points
from the corresponding exclusion list to identify the three
nearest neighbors. Because k-NN upsampling relies on the
downsampled set, points that were not downsampled are ex-
cluded from the search space. This approach significantly
reduces the number of distance calculations, leading to sub-
stantial latency reduction.

5. Evaluation
5.1. Methodology

We evaluate FastPoint on PointMetaBase [17] and
PointVector [6], two recent models based on Point-
Net++. We evaluate our proposal on both indoor and
outdoor datasets to demonstrate its scalability. We use
S3DIS [1] and ScanNet [5] for indoor datasets and use Se-
manticKITTI [2] for outdoor datasets.

The end-to-end latency is measured for processing all
scenes in each dataset’s validation split. We use mean Inter-
section over Union (mloU) as a model accuracy evaluation
metric. Detailed evaluation methodologies follow the same
approach in PointMetaBase [17], and PointVector [6]. We
apply FastPoint and the other baseline methods only to the
first layer of each model as the first layer’s FPS and neigh-
bor search dominates the total computation time (>90%).

We implement FastPoint with custom CUDA kernels and
integrate them into OpenPoints library. We also integrate
the software implementation [11] of QuickFPS [12] open-
sourced by the authors to OpenPoints for comparison. The
experiments are conducted using an NVIDIA Geforce RTX
3090 GPU with 24GB of memory. We use CUDA 11.8 and
PyTorch 1.10.1 for software setup.

5.2. Sampling Quality of MDPS

To evaluate sampling quality, we compute the average min-
imum distance between neighboring sampled points. A
larger average distance indicates better coverage of sample
points from the perspectives of point distribution and struc-
ture preservation. As shown in Table 1, MDPS achieves
sampling quality comparable to FPS, with an average min-

mloU (Diff. to Baseline FPS)

Model Dataset | Baseline | Random Grid MDPS
(FPS) Sampling | Sampling | (Ours)

64.33 70.97 71.37
S3DIS 71.33 (-6.5) (:0.36) (+0.04)

59.94 69.61 70.63

PV-L ScanNet 70.70 (-10.76) (-1.09) (-0.07)
Semantic 50.91 38.46 50.62 50.79

KITTI : (-12.45) (-0.29) (-0.12)

68.21 69.54 69.74
S3DIS | 6972 1 151y | (-0.18) | (+0.02)

67.66 70.36 70.89
PMB-L | ScanNet 70.86 (:3.2) (-0.50) (+0.03)
Semantic 5219 47.26 52.27 52.09

KITTI : (-4.93) (+0.08) (-0.10)

Table 2. Accuracy comparison. PV and PMB stand for PointVec-
tor and PointMetaBase.

imum distance reaching over 99% of the FPS baseline for
S3DIS and ScanNet, and over 98% for SemanticKITTI. In
contrast, Random Sampling and Grid Sampling [29] ex-
hibit significantly lower quality, with their average mini-
mum distances deviating substantially from the FPS base-
line. We also compare the minimum spacing distribution
of each sampling method via visualization in Appendix B.9
and evaluate the robustness of MDPS in Appendix B.7.

5.3. Accuracy Impact of MDPS

We analyze the impact of MDPS on accuracy by apply-
ing it to the inference stage of PointNet++ models initially
trained with FPS. Since MDPS is designed to closely repli-
cate the FPS sampling pattern, it is compatible with FPS-
trained models, thereby minimizing accuracy degradation.
Note that Redundancy-Free Neighbor Search does not in-
troduce any approximation, thus has no impact on accuracy.
To compare the effects of different sampling methods, we
also evaluate random sampling and grid sampling'.

Table 2 shows that MDPS excels in maintaining accu-
racy, with negligible differences observed across all datasets
and models. This highlights its effectiveness in replicat-
ing FPS behavior. However, the grid sampling exhibits
larger and less consistent accuracy drops. When applied
only during inference, it leads to declines of up to 1.09%
(PointVector-L, ScanNet). While it outperforms FastPoint
in a single instance (PointMetaBase-L, SemanticKITTI), its
performance is generally inferior, with significant accuracy
reductions in other scenarios. The random sampling shows
considerable accuracy drops across all data points.

Overall, FastPoint effectively preserves accuracy by
closely approximating the sampling pattern of FPS, achiev-
ing accuracy levels near-identical to FPS without retrain-
ing. Latency-accuracy comparisons (Appendix B.5) show
that FastPoint resides above the pareto front, emphasizing
the effectiveness of FastPoint.

!Grid sampling is applied only during inference. Appendix B.1 shows
results for cases where both training and inference utilize grid sampling.
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Number of Evaluation Metrics

Method Segments Accuracy | Sampling | Sampling
(mloU) Time (ms) Quality

FPS - 70.70 85.83 0.03701
1 Segment 70.34 18.62 0.03532

2 Segments 70.60 19.43 0.03598

MDPS 3 Segments 70.46 19.79 0.03636
(Ours) 4 Segments 70.54 21.01 0.03662
5 Segments 70.52 21.41 0.03665

6 Segments 70.63 22.06 0.03662

7 Segments 70.63 22.75 0.03664

Table 3. Comparison of mloU, sampling time, and sampling qual-
ity for FPS and MDPS across segments 1 to 7. Sampling time is
measured with a single scene of ScanNet dataset. PointVector-L
model is used for mloU comparison.

" FPS QuickFPS FlashPC B FlashPC + QuickFPS
T4.03
3
[oN
>
Bol
[0]
o
(7p]
1 [

0 PV-L MB-L PV-L MB-L PV-L MB-L Geo
S3DIS ScanNet SemanticKITTI mean

Figure 7. End-to-end speedup of FastPoint and QuickFPS.

5.4. Latency Reduction of FastPoint

To evaluate the impact of FastPoint on end-to-end latency,
we compare its latency to baseline FPS and QuickFPS. Note
that FastPoint includes both MDPS and Redundancy-Free
Neighbor Search. As explained in Section 2.2, QuickFPS
accelerates FPS using k-d tree without approximation.
Since MDPS also contains FPS steps when predicting the
minimum distance curve, we can achieve further latency re-
ductions by replacing them with QuickFPS, meaning that
FastPoint and QuickFPS can be synergetic.

Figure 7 presents the results of this comparison. Across
S3DIS, ScanNet, and SemanticKITTI datasets, FastPoint
achieves substantial latency reductions, with a geomean
end-to-end speedup of 2.55 x compared to baseline FPS. In-
tegrating QuickFPS with FastPoint further reduces the ex-
ecution latency achieving a geomean end-to-end speedup
of 2.76x compared to baseline FPS and 1.41x compared
to standalone QuickFPS. Speedup specific to the sampling
and neighbor search are provided in Appendix B.3 and B .4.

These findings substantiate the effectiveness of Fast-
Point in reducing latency, surpassing existing methods like
QuickFPS. Moreover, the successful combination of Fast-
Point with QuickFPS demonstrates its compatibility with
existing FPS optimizations. Scalability to Non-PointNet++
based models are discussed in Appendix B.10.

Model

Dataset | Method | Speedup  Model | # of Points | Speedup

MDPS | 1.90x 6000 | 133x
S3DIS | AN | 198 32000 | 241x

MDPS | 2.33% 48000 | 2.68%

PV-L | SeanNet| )y ™ | 555 PVLO L gio00 | 301
Sematic | MDPS | 2.07x 80,000 | 325

KITTI | Al | 2.20x 96000 | 340%x

MDPS | 2.50% 16,000 | 158x

S3DIS | AN | 282 32000 | 2.64x

MDPS | 2.89% 48000 | 291x

PMB-L | SeanNet| "y " | 3355 PMB-L | /000 | 306
Sematic | MDPS | 231X 80,000 | 330

KITTI | Al | 2.62x 96,000 | 344x

(a) Comparison of component-wise (b) Comparison of speedup as the
end-to-end speedup of FastPoint. number of points increases.

Table 4. Ablation study for speedup breakdown and scalability.

5.5. Ablation Study

Segment Count We evaluate the impact of varying the
segment count on accuracy, sampling time, and sampling
quality (i.e, average minimum distance). Table 3 shows
that while sampling time increases gradually with more
segments due to the exclusion list construction (refer to
Section 4.1), both sampling quality and accuracy improve.
However, they get saturated beyond a certain number of seg-
ments. Based on the empirical analysis, we use 6 segments
by default, where accuracy saturates for all workloads.

Component-wise Speedup To understand the individual
contributions of each component in FastPoint, we evalu-
ate the end-to-end speedup by sequentially applying MDPS
and Redundancy Free Neighbor Search. Table 4a shows
that MDPS alone provides significant speedup. Incorporat-
ing Redundancy Free Neighbor Search further provides ad-
ditional improvement, demonstrating that each component
makes a distinct contribution to the overall speedup.

5.6. Scalability Study

To assess the scalability of FastPoint, we evaluate the end-
to-end speedup compared to FPS by varying point cloud
sizes. Table 4b shows that FastPoint consistently achieves
higher speedups as the number of points increases. This
trend highlights the efficiency of our approach, particularly
when processing larger point clouds where the computa-
tional cost of the FPS becomes a significant bottleneck.

6. Conclusion

3D point clouds are critical for representing and under-
standing 3D scenes, and deep learning models like Point-
Net++ have shown great promise in processing this data.
However, computational efficiency remains a key challenge.
We propose FastPoint, a software acceleration technique
that leverages predictable minimum distances between sam-
pled points to efficiently identify subsequent points without
exhaustive computations. Our evaluation shows a 2.55x
speedup over baseline FPS while maintaining accuracy, en-
abling low-cost deployment of PointNet++ based models.

25121



Acknowledgements

This work was supported by the Ministry of Science
and ICT (MSIT), Korea, under the following grants: the
Global Scholars Invitation Program (RS-2024-00456287),
the Graduate School of Artificial Intelligence Semiconduc-
tor grant (IITP-2025-RS-2023-00256081), and the Artifi-
cial Intelligence Innovation Hub (No. 2021-0-02068), all
supervised by the Institute for Information & Communi-
cations Technology Planning & Evaluation (IITP). Addi-
tional support was provided by the National Research Foun-
dation of Korea (NRF) grant (RS-2024-00405857) funded
by the Korea government (MSIT), and the Google Faculty
Research Award. The source code is available at ht tps :
//github.com/SNU-ARC/FastPoint.git. Jae W.
Lee and Hongil Yoon are the corresponding authors.

References

[1] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, loan-
nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-
tic parsing of large-scale indoor spaces. In CVPR, 2016. 7

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In ICCV, 2019. 7

[3] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and
Jiaya Jia. Largekernel3d: Scaling up kernels in 3d sparse
cnns. In CVPR, 2023. 2

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, 2019. 1,2

[5] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias NieB3ner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 7

[6] Xin Deng, WenYu Zhang, Qing Ding, and XinMing Zhang.
Pointvector: A vector representation in point cloud analysis.
In CVPR,2023. 1,2,7

[7] Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang
Zhao, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Embracing Single Stride 3D Object Detector with Sparse
Transformer. In CVPR, 2022. 1,2

[8] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough,
and Yuhao Zhu. Mesorasi: Architecture support for point
cloud analytics via delayed-aggregation. In Proceedings of
the 53th International Symposium on Microarchitecture (MI-
CRO), 2020. 1

[9] Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu.
Crescent: Taming memory irregularities for accelerating
deep point cloud analytics. In Proceedings of the 49th
Annual International Symposium on Computer Architecture
(ISCA), 2022. 1

[10] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg:

Occupancy-aware 3d instance segmentation. In CVPR, 2020.
2

25122

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

Meng Han, Liang Wang, Limin Xiao, Hao Zhang, Chen-
hao Zhang, Xiangrong Xu, and Jianfeng Zhu. Quickfps.
http://github.com/hanm2019/bucket-based_
farthest-point-sampling_GPU. 2,7

Meng Han, Liang Wang, Limin Xiao, Hao Zhang, Chenhao
Zhang, Xiangrong Xu, and Jianfeng Zhu. Quickfps: Archi-
tecture and algorithm co-design for farthest point sampling
in large-scale point clouds. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2023. 1, 2,
7

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In CVPR, 2020. 1, 2

Donghyun Lee, Yejin Lee, Jaec W. Lee, and Hongil Yoon.
Frugal 3d point cloud model training via progressive near
point filtering and fused aggregation. In ECCV, 2024. 3

Jingtao Li, Jian Zhou, Yan Xiong, Xing Chen, and Chaitali
Chakrabarti. An adjustable farthest point sampling method
for approximately-sorted point cloud data. In 2022 IEEE
Workshop on Signal Processing Systems (SiPS), 2022. 1, 3

Yaoxiu Lian, Xinhao Yang, Ke Hong, Yu Wang, Guohao
Dai, and Ningyi Xu. A point transformer accelerator with
fine-grained pipelines and distribution-aware dynamic fps.
In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2023. 1,2

Haojia Lin, Xiawu Zheng, Lijiang Li, Fei Chao, Shanshan
Wang, Yan Wang, Yonghong Tian, and Rongrong Ji. Meta

architecure for point cloud analysis. In CVPR, 2023. 1, 2, 3,
7

Xueyuan Liu, Zhuoran Song, Guohao Dai, Gang Li, Can
Xiao, Yan Xiang, Dehui Kong, Ke Xu, and Xiaoyao Liang.
Fusionarch: A fusion-based accelerator for point-based point
cloud neural networks. In ACM/IEEE Design, Automation
and Test in Europe Conference (DATE), 2024. 1

Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In ICCV, 2019. 2

Zhijian Liu, Xinyu Yang, Haotian Tang, Shang Yang, and
Song Han. Flatformer: Flattened window attention for effi-
cient point cloud transformer. In CVPR, 2023. 1

Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi
Feng, Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel
transformer for 3d object detection. In /ICCV, 2021. 2

Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe,
and Francis Engelmann. Mix3D: Out-of-Context Data Aug-
mentation for 3D Scenes. In International Conference on 3D
Vision (3DV), 2021. 2

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. arXiv preprint arXiv:1612.00593, 2016.
1,2

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413,2017. 1,2


https://github.com/SNU-ARC/FastPoint.git
https://github.com/SNU-ARC/FastPoint.git
http://github.com/hanm2019/bucket-based_farthest-point-sampling_GPU
http://github.com/hanm2019/bucket-based_farthest-point-sampling_GPU

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and
Leonidas J. Guibas. Frustum pointnets for 3d object detec-
tion from rgb-d data. In CVPR, 2018.

Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet,
and Bernard Ghanem. Assanet: An anisotropical separable
set abstraction for efficient point cloud representation learn-
ing. In NeurIPS, 2021. 1

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. In NeurIPS, 2022. 2

Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Imvoxelnet: Image to voxels projection for monocular and
multi-view general-purpose 3d object detection. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2022. 2

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Frangois Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In ICCV, 2019. 2,7

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019. 1, 2

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In CVPR, 2019.
2

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-
shuang Zhao. Point transformer v2: Grouped vector atten-
tion and partition-based pooling. In NeurIPS, 2022. 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xi-
hui Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang
Zhao. Point transformer v3: Simpler, faster, stronger. In
CVPR, 2024. 1

Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan
Qi. Paconv: Position adaptive convolution with dynamic ker-
nel assembling on point clouds. In CVPR, 2021. 2
Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and
Ulrich Neumann. Grid-gen for fast and scalable point cloud
learning, 2020. 2

Xinhao Yang, Tianyu Fu, Guohao Dai, Shulin Zeng, Kai
Zhong, Ke Hong, and Yu Wang. An efficient accelerator for
point-based and voxel-based point cloud neural networks. In
ACM/IEEE Design Automation Conference (DAC), 2023. 1,
2

Yu-Qi Yang, Yu-Xiao Guo, Jian-Yu Xiong, Yang Liu,
Hao Pan, Peng-Shuai Wang, Xin Tong, and Baining Guo.
Swin3d: A pretrained transformer backbone for 3d indoor
scene understanding. arXiv preprint arXiv:2304.06906,
2023. 1,2

Yu-Qi Yang, Yu-Xiao Guo, and Yang Liu. Swin3d++: Effec-
tive multi-source pretraining for 3d indoor scene understand-
ing. arXiv preprint arXiv:2304.06906, 2024. 2

Ziyu Ying, Sandeepa Bhuyan, Yan Kang, Yingtian Zhang,
Mahmut T. Kandemir, and Chita R. Das. Edgepc: Efficient
deep learning analytics for point clouds on edge devices. In
Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA), 2023. 1, 2

25123

(40]

(41]

(42]

[43]

Hyunsung Yoon and Jae-Joon Kim. Efficient sampling and
grouping acceleration for point cloud deep learning via sin-
gle coordinate comparison. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2023. 1
Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.
PointWeb: Enhancing local neighborhood features for point
cloud processing. In CVPR, 2019. 2

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and
Vladlen Koltun. Point transformer. In /ICCV, 2021. 1

Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin
Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and
asymmetrical 3d convolution networks for lidar segmenta-
tion. arXiv preprint arXiv:2011.10033, 2020. 1,2



	Introduction
	Background and Related Work
	Deep Learning on 3D Point Clouds
	Related Work

	Challenges of Point Cloud Models
	Model Architecture Overview
	Latency Breakdown
	Inefficiencies in Farthest Point Sampling
	Inefficiencies in Neighbor Search

	FastPoint: Fast Point Cloud Inference
	Minimum Distance Prediction Sampling
	Redundancy-Free Neighbor Search

	Evaluation
	Methodology
	Sampling Quality of MDPS
	Accuracy Impact of MDPS
	Latency Reduction of FastPoint
	Ablation Study
	Scalability Study

	Conclusion

