
Published as a conference paper at ICLR 2024

THE EXPRESSIVE POWER OF TRANSFORMERS WITH
CHAIN OF THOUGHT

William Merrill
New York University
willm@nyu.edu

Ashish Sabharwal
Allen Institute for AI
ashishs@allenai.org

ABSTRACT

Recent theoretical work has identified surprisingly simple reasoning problems,
such as checking if two nodes in a graph are connected or simulating finite-state
machines, that are provably unsolvable by standard transformers that answer im-
mediately after reading their input. However, in practice, transformers’ reason-
ing can be improved by allowing them to use a “chain of thought” or “scratch-
pad”, i.e., generate and condition on a sequence of intermediate tokens before
answering. Motivated by this, we ask: Does such intermediate generation fun-
damentally extend the computational power of a decoder-only transformer? We
show that the answer is yes, but the amount of increase depends crucially on the
amount of intermediate generation. For instance, we find that transformer de-
coders with a logarithmic number of decoding steps (w.r.t. the input length) push
the limits of standard transformers only slightly, while a linear number of decoding
steps, assuming projected pre-norm (a slight generalization of standard pre-norm),
adds a clear new ability (under standard complexity conjectures): recognizing
all regular languages. Our results also imply that linear steps keep transformer
decoders within context-sensitive languages, and polynomial steps with general-
ized pre-norm make them recognize exactly the class of polynomial-time solvable
problems—the first exact characterization of a type of transformers in terms of
standard complexity classes. Together, this provides a nuanced framework for
understanding how the length of a transformer’s chain of thought or scratchpad
impacts its reasoning power.

1 INTRODUCTION

A series of recent theoretical results (Merrill & Sabharwal, 2023b;a; Merrill et al., 2022; Liu et al.,
2023; Chiang et al., 2023; Hao et al., 2022) has unveiled surprising limits on realistic formal models
of transformers. They have shown that standard transformers, even with ideal parameters, cannot
perfectly solve many sequential reasoning problems at scale, such as simulating finite-state ma-
chines, deciding whether nodes in a graph are connected, or solving matrix equalities. The intuition
here is that the transformer lacks recurrent connections, and recurrence is required to solve these
sequential reasoning problems. Empirically, reasoning problems inspired by these results cannot
be solved by cutting-edge transformer language models such as ChatGPT and GPT-4 (Zhang et al.,
2023), and the reasoning performance of GPT-4 negatively correlates with the depth of the problem’s
computation graph (Dziri et al., 2023). These results show certain kinds of sequential reasoning pose
a challenge for the transformer and motivate extensions to address this issue.

One method that has been empirically successful for improving sequential reasoning with transform-
ers is adding a so-called chain of thought (Wei et al., 2022) or scratchpad (Nye et al., 2021). These
methods allow the transformer to output a sequence of intermediate tokens before answering, rather
than answering right away after reading the input. Intuitively, such methods could unlock greater
expressive power on sequential reasoning problems because the model can use each intermediate
token as a kind of recurrent state. Feng et al. (2023) recently showed how chain of thought lets
transformers solve a specific modular arithmetic problem that they likely cannot solve without one.
Yet there is no general characterization of the class of problems transformers can solve with chain of
thought. Thus, the extent to which chain of thought alleviates transformers’ weaknesses is unclear,
as well as the number of chain of thought steps required to gain reasoning power.

1



Published as a conference paper at ICLR 2024

CoT(n)

CoT(log n)

CoT(1)

(no int. decoding)

T̃IME(n2)

L

TC0

CoT(n) CSL

CFL

Reg

Figure 1: Summary of results: transformers with intermediate generation against various classes
of formal languages. A logarithmic number of chain-of-thought steps remains in log-space (L).
A linear number of steps adds more power, enabling recognizing all regular languages (Reg), but
is contained within context-sensitive languages (CSL). We assume context-free languages (CFL)
require ω̃(n2) time to recognize. Some regions with area in the plot are not known to be non-empty.

In this work, we address these open questions by characterizing the reasoning power of transformer
decoders that can take intermediate steps before generating an answer and comparing them against
transformers without intermediate steps. A transformer with a chain of thought constitutes a special
case of a transformer decoder with intermediate steps. Our fine-grained results give upper and lower
bounds on transformers’ power depending on t(n): the number of allowed intermediate steps as a
function of the input size n. We focus mainly on understanding three regimes: logarithmic steps
(when t(n) = Θ(log n)), linear steps (when t(n) = Θ(n)), and polynomial steps:

1. Prior Work: No Intermediate Steps. Recent work has shown transformer decoders with-
out any intermediate steps can only solve problems that lie inside the fairly small circuit
complexity class TC0 (Merrill & Sabharwal, 2023b) and related logical classes (Merrill
& Sabharwal, 2023a; Chiang et al., 2023). This implies basic transformers are far from
Turing-complete: they cannot even solve problems complete for classes larger than TC0

such as simulating automata (NC1-complete), deciding directed graph connectivity (NL-
complete), or solving linear equalities (P-complete).1

2. Logarithmic Steps. With a logarithmic number of intermediate steps, we show that the
upper bound for transformers expands slightly from TC0 to L. This means transformers
with a logarithmic number of intermediate steps might gain power, but they still cannot
solve NL-complete problems like directed graph connectivity or P-complete problems like
solving linear equalities.2

3. Linear Steps. Linear intermediate steps allow transformers with projected pre-norm3 to
simulate automata (NC1-complete), which cannot be done without intermediate steps un-
less TC0 = NC1. Polynomial Steps. With a polynomial number of decoding steps, we
show that transformers with strict causal attention and projected pre-norm are equivalent
to the class P. This, to our best knowledge, is the first equivalence between a class of
transformers and a standard complexity class.

Together, our results provide a framework for understanding how the length of a transformer’s chain
of thought affects its reasoning power. We find a logarithmic chain does not add much, while a linear
chain affords more power on inherently sequential reasoning problems.

1.1 MAIN RESULTS: POWER OF TRANSFORMERS WITH INTERMEDIATE DECODING

Let TIME(t(n)) be the class of languages L for which there exists a Turing machine that runs in time
O(t(n)) and accepts L.4 Let T̃IME(t(n)) be the class of problems in TIME(t(n) logk n) for some
k, which is meaningful for t(n) ≥ n. Let SPACE(s(n)) be the class of languages L for which there
exists a Turing machine with tape size bounded by O(s(n)) that accepts L. We show the following

1Assuming NC1, NL, and P do not collapse to TC0, respectively.
2 Assuming NL and P do not collapse to L, respectively.
3i.e., standard pre-norm but applied only to a linear projection of a sublayer’s input; cf. Definition 4
4As we will define later, this is a non-random-access multitape Turing machine.

2



Published as a conference paper at ICLR 2024

relationship between transformers with t(n) steps and standard time/space complexity classes:

TIME(t(n)) ⊆ CoT(t(n))
⊆ SPACE(t(n) + log n)

⊆ T̃IME(t(n)2 + n2)
. (1)

Here CoT(t(n)) denotes the set of languages recognized by some transformer using t(n) decoding
steps. Our lower bound (left side of Equation (1)) assumes strict causal saturated attention and
projected pre-norm, while upper bounds hold both with and without these architectural assumptions.
Both our time lower bound and space upper bound are fairly tight: improving either by a factor larger
than log t(n) would result in a fundamental complexity theory advance (Hopcroft et al., 1977).

Capabilities of Transformers with CoT. The left side of Equation (1) implies that transformer
decoders with Θ(n) steps can simulate real-time models of computation like automata or counter
machines (Merrill, 2020). Under standard assumptions in complexity theory, transformers with no
decoding steps cannot simulate all automata (Merrill & Sabharwal, 2023b; Merrill, 2023; Liu et al.,
2023). Thus, a linear number of decoding steps makes transformers strictly more powerful. Simi-
larly, the left side of Equation (1) implies transformers with a quadratic number of steps can express
a linear-time algorithm (for a random access Turing machine) to solve directed graph connectivity
(Wigderson, 1992), again a problem known to be beyond the limits of standard transformers. In the
same vein, with a polynomial number of decoding steps, transformers can solve linear equalities,
Horn-clause satisfiability, and universal context-free recognition, all of which are P-complete and
thus known to be inexpressible by standard transformers (Merrill & Sabharwal, 2023b).

The left side of Equation (1) is proven by showing transformer decoders can simulate t Turing
machine steps with t intermediate steps. Similar prior results have assumed a transformer with
external memory (Schuurmans, 2023) or an encoder-decoder model with nonstandard-positional
decodings (Pérez et al., 2021). Our construction adapts these ideas to work for a decoder-only
model without external memory or extra positional encodings, but with strict causal masking and
projected pre-norm (cf. Section 2.1).5 The key idea behind our more general construction is the
layer-norm hash (Section 3.1): a simple module for effectively storing memory in decoder-only
transformers. We believe the layer-norm hash could be broadly useful for building algorithms in
transformers. For example, Yao et al. (2021) used a related idea to construct transformers that
recognize bounded-depth Dyck languages, although in a more ad hoc way.

Limitations of Transformers with CoT. The right side of Equation (1) establishes two upper
bounds on transformer decoders with t(n) intermediate steps that depend on both t(n) and n. We
turn to the implications of this general result in different regimes for t(n):

1. Log Steps: Transformer decoders with O(log n) intermediate steps can only recognize lan-
guages in L = SPACE(log n). This implies that transformers with O(log n) intermediate
steps cannot solve NL- or P-complete problems2 like directed graph connectivity, just like
transformers with no intermediate decoding (Merrill & Sabharwal, 2023b).

2. Linear Steps: Transformer decoders with O(n) intermediate steps can only recognize
languages that are in both T̃IME(n2) and SPACE(n). Since SPACE(n) falls within the
context-sensitive languages (Kuroda, 1964), transformers with linear steps can recognize
at most context-sensitive languages. Alongside our lower bound, this shows transformer
decoders with Θ(n) steps fall somewhere between regular and context-sensitive languages
in the Chomsky hierarchy. Further, transformers with O(n) steps cannot recognize all
context-free languages unless context-free languages can be parsed in soft quadratic time.6

3. Polynomial Steps: If t(n) = O(nc) for some c, we get an upper bound of P =⋃∞
c=1 TIME(nc). Combined with our lower bound, this shows that transformer decoders

with a polynomial number of steps recognize exactly the class P. Thus, a polynomial num-
ber of steps turns transformers into strong reasoners, though running a polynomial number
of forward passes with a large transformer is likely intractable in practice.

Together, these results show that intermediate generation like chain of thought or scratchpad can add
reasoning power to transformers and that the number of steps matters as a computational resource

5Our construction (Theorem 2) can be easily modified to work with an encoder-decoder model as well.
6The best known algorithms for context-free recognition run in time O(nω), where ω is the matrix multipli-

cation constant (Valiant, 1975); the best lower bounds for context-free parsing are sub-quadratic (Lee, 2002).

3



Published as a conference paper at ICLR 2024

akin to time or space. Some of the limitations identified in prior work (Merrill & Sabharwal, 2023b;
Chiang et al., 2023, etc.) can be overcome with a linear or quadratic number of steps, and a poly-
nomial number of steps covers all problems in P. On the other hand, we have not identified any
concrete reasoning problem where a logarithmic number of steps would help. These results provide
a unified understanding of the power of transformer decoders across decoding lengths and problems.

2 PRELIMINARIES

We study the power of decoder-only transformers that can generate intermediate tokens between
reading the input and generating an answer. On input x ∈ Σn, the transformer consumes tokens
x1, . . . , xn for the first n steps, and then, for t(n) intermediate steps, consumes the token gener-
ated by the previous step. At each step, the transformer can attend over all previous hidden states.
This standard method of generating text from a decoder-only model can be described formally as
follows. Let Σ be a finite alphabet and f : Σ∗ → Σ be a function mapping a prefix to a next token
(parameterized by a transformer). Let · be concatenation. We define the k-step extension of f as

f0(x) = x, fk+1(x) = fk(x) · f(fk(x)).

We say we have run f on x with t(n) (additional) decoding steps if we compute the func-
tion f t(|x|)(x). We consider f with t(n) steps to recognize the language of strings such that
f t(|x|)(x) = 1, where 1 ∈ Σ is a special “accept” symbol. We denote by CoT(t(n)) the set of
languages that are recognized by t(n) decoding steps for some transformer f .

2.1 TRANSFORMERS

A transformer is a neural network parameterizing a function Σ∗ → Σ. Let Dp be the datatype of
p-precision floats and define p-truncated addition (+,

∑
), multiplication (·), and division (/) over

Dp as in Merrill & Sabharwal (2023b). We now define the high-level structure of the transformer in
terms of its core components, with the details of those components in Appendix A.

Definition 1 (Merrill & Sabharwal 2023a). A p-precision decoder-only transformer with h heads, d
layers, model dimension m (divisible by h), and feedforward width w is specified by:

1. An embedding function e : Σ× N → Dm
p whose form is defined in Appendix A.2;

2. For each 1 ≤ ℓ ≤ d and 1 ≤ k ≤ h, a head similarity function sℓk : Dm
p ×Dm

p → Dp whose
form is defined in Appendix A.3 (and includes projected layer-norm);

3. For each 1 ≤ ℓ ≤ d and 1 ≤ k ≤ h, a head value function vℓk : Dm
p → Dm/h

p whose form
is defined in Appendix A.3 (and includes projected layer-norm);

4. For each 1 ≤ ℓ ≤ d, an activation function f ℓ : (Dm/h
p )h × Dm

p → Dm
p whose form is

defined in Appendix A.4 and implicitly uses the feedforward dimension w (and includes
projected layer-norm);

5. An output function γ : Dm
p → Σ parameterized as a linear transformation.

Definition 2. We define one decoding step Σn → Σ with a decoder-only transformer as follows:

1. Embeddings: For 1 ≤ i ≤ n, h0
i = e(xi, i).

2. Multihead Self Attention: For each layer 1 ≤ ℓ ≤ d, we compute h attention heads:

aℓi,k =

c(i)∑
j=1

sℓk(h
ℓ−1
i ,hℓ−1

j )

Zℓ
i,k

· vℓk(hℓ−1
j ), where Zℓ

i,k =

c(i)∑
j=1

sℓk(h
ℓ−1
i ,hℓ−1

j )

and c(i) is i for standard causal attention and i− 1 for strict causal attention.
3. Activation Block: For 1 ≤ ℓ ≤ d, activation block ℓ maps the head outputs to hℓ:

hℓ
i = f ℓ(aℓi,1, . . . ,a

ℓ
i,h,h

ℓ−1
i ).

4. Classifier Head: The transformer output is γ(hd
n).

These definitions use 1-indexing, but when the input contains a beginning-of-sequence token $ (The-
orems 1 and 2), we will use 0-indexing starting at $ in the natural way.

4



Published as a conference paper at ICLR 2024

Transformer Precision. We consider log-precision transformers (Merrill & Sabharwal, 2023b),
i.e., we allow the transformer at most c logm precision for m decoding steps. As a transformer
with intermediate generation runs for n input steps and t(n) intermediate decoding steps, this means
we have precision at most c log(n + t(n)). Log precision has been analyzed in prior work (Pérez
et al., 2021; Merrill & Sabharwal, 2023b;a) because it gives the transformer just enough precision to
represent indexes and sums across different positions. This means it naturally formalizes a bounded-
precision transformer that is capable of representing position and computing uniform attention, two
important capabilities for constructing algorithms with transformers.

Our lower bound constructions (Theorems 1 and 2) assume the following:

1. Saturated Attention. A saturated transformer (Merrill et al., 2021) is an idealized trans-
former with “averaging hard attention” (Strobl et al., 2024): per head, all attention scores
are either 0 or 1/v for some v. This includes uniform attention (1/n over n tokens) or
hard attention as special cases. Following common practice (Pérez et al., 2021; Merrill &
Sabharwal, 2023b), we use saturated attention for our lower bound constructions.

2. Strict Causal Masking. The formulation of attention in Definition 2 makes the slightly
nonstandard assumption that causally masked attention at position i can view tokens at all
positions up to i− 1 but not the current token i. This is required in Theorem 2.

3. Projected Pre-Norm. Our lower bound constructions require sℓ and fℓ in Definition 2 to
allow a generalization of standard pre-norm. Normally, a layer-norm is applied to the entire
input to each sublayer. We generalize this, allowing each sublayer to apply a linear projec-
tion before layer-norm. Crucially, in particular, this enables each layer to pick out a subset
of the previous hidden state to apply layer-norm to (cf. Definition 4 in Appendix A.1).

For convenience, our proofs with projected pre-norm use an even more general notion of pre-norm,
namely multi-pre-norm, which allows each sublayer to take k different projections of its input,
apply layer-norm to each, and concatenate (cf. Definition 5 in Appendix A.1). Multi-pre-norm can,
however, be simulated by multiple layers of projected pre-norm (see Appendix A.1 for a proof):

Proposition 1 (Chiang, 2024). Multi-pre-norm with k norms can be simulated by k + 1 projected
pre-norm layers.

2.2 MODELS OF COMPUTATION

Automata. A deterministic finite-state automaton is a tuple A = ⟨Σ, Q, q0, δ, F ⟩ where Σ is a
finite input vocabulary, Q is a finite set of states containing initial state q0, δ is a transition function
Q × Σ → Q, and F ⊆ Q is a set of final states. A processes an input string σ ∈ Σn as follows. A
starts with state q0 and reads σ one token at a time, updating qi = δ(qi−1, σi) until i = n. A accepts
σ if qn ∈ F and rejects it otherwise. The language recognized by A is the set of strings it accepts.

Turing Machines. Adapting the notation of Hopcroft et al. (2001), a multitape Turing machine is
a tuple ⟨Σ,Γ, k, b,Q, q0, δ, F ⟩ where:

1. Σ is a finite input vocabulary
2. Γ is a finite tape vocabulary with Σ ⊆ Γ
3. k is the number of work tapes
4. b is a blank symbol such that b ∈ Γ and b ̸∈ Σ
5. Q is a finite set of states containing initial state q0
6. δ is a transition function (Q \ F )× Γk+2 → Q× Γk+1 × {±1}k+2

7. F ⊆ Q is a set of halting states

We define Turing machine computation in the standard way (cf. Appendix B).

3 LOWER BOUNDS FOR TRANSFORMER DECODERS

Prior work (Merrill & Sabharwal, 2023a) has established strong upper bounds on the reasoning
problems transformers can solve. Specifically, under standard conjectures in complexity, transform-
ers without intermediate decoding cannot recognize all regular languages. In this section, we show
some of these shortcomings can be overcome with a suitable number of intermediate decoding steps

5



Published as a conference paper at ICLR 2024

(and projected pre-norm). Specifically, a linear number of steps enables simulating an automaton.
We also show this can be extended to simulate t(n) Turing machine steps with t(n) decoding steps.

3.1 INTRODUCING LAYER-NORM HASH

We first introduce a useful building block for our results that we call the layer-norm hash. The
layer-norm hash is a mechanism that enables retrieval across different columns in the transformer
based on query-key matching of numerical values. Exact-match retrieval is trivial when the query qi
and keys k1, . . . ki are items in a finite set: just one-hot encode qi and kj and the inner product will
be maximized when qi and kj match. But this does not work when the keys and values are counts
produced by uniform attention, which many transformer algorithms use (Weiss et al., 2021), as the
key qi/i and query kj/j have different denominators. The layer-norm hash helps by transforming
qi/i and kj/j so hard attention retrieves j s.t. qi = kj . Let layer norm(x) = x′

∥x′∥ , where x′ = x−x̄.

Definition 3 (Layer-norm hash). For x, y ∈ R, let ϕ(x, y) ≜ layer norm(x, y,−x,−y).

ϕ(x, y) is a unit vector in R4. A key feature is scale invariance, and, in particular, that ϕ(x/i, 1/i) is
invariant w.r.t. i in the sense that it is only a function of x, independent of i. Let ϕx ≜ ϕ(x, 1). Then
we have the following properties, whose proof may be found in Appendix C.
Lemma 1 (Scale invariance). For any x ∈ R and i ∈ R>0, ϕ(x/i, 1/i) = ϕx.

Lemma 2 (Equality check via layer-norm hash). For any q, k ∈ R, ϕq ·ϕk = 1 if and only if q = k.

In other words, the inner product of these representations of two scalars q and k, even if computed
at different positions i and j, respectively, allows us to check for the equality of q and k. We can
look up key qi/i in a sequence of keys k1/1, . . . , ki−1/(i− 1) by attending with query ϕ(qi/i, 1/i)
at position i and key ϕ(kj/j, 1/j) at each j < i. By Lemmas 1 and 2 this averages the values at
all j such that qi = kj . The layer-norm hash can also be used to directly compare two values qi, kj
without removing the denominator by computing ϕ(qi, 1) and ϕ(kj , 1).

3.2 SIMULATING AUTOMATA

We can use the layer-norm hash to simulate models of computation like automata or Turing machines
with intermediate-generation transformers. To warm up, we first show how to use the layer-norm
hash to simulate an automaton (i.e., recognize a regular language) and then extend it in Section 3.3
to show how a transformer can simulate a Turing machine for a bounded number of steps.
Theorem 1 (Regular language recognition). For any regular language L. there is a decoder-only
projected pre-norm transformer with strict causal saturated attention (with or without positional
encodings) that, on input $x,7,8 checks whether x ∈ L with |x|+ 1 decoding steps.

Proof. Let A be a finite-state automaton recognizing L. We will simulate one step of A with one
transformer decoding step (after first reading n input tokens). We refer to tokens with 0 indexing: $
is token 0, x1 is token 1, etc. At step i, n ≤ i ≤ 2n, we will output a token qi−n encoding the next
state of A. After printing the final state qn, we use one additional step to output 1 iff qn ∈ F , the set
of final states of A. At each token i > 0, we compute 1/i by attending uniformly over the strict left
context with value 1[xj = $]. We show by induction that at step i ≥ n, we can output qi−n.

Base Case: i = n. For i ≤ n, we output q0. Crucially, at i = n, this becomes the next input.

Inductive Case: i > n. We already have a sequence of intermediate tokens q0, . . . , qi−n−1. Our goal
is to compute qi−n = δ(qi−n−1, σi−n), which first involves retrieving qi−n−1 and σi−n. qi−n−1

is the input to the current column of the transformer. We will use hard attention to retrieve the
current input symbol σi−n. To do this, we attend uniformly over the prior decoding tokens and $,
with a value of 1 at $ and 0 elsewhere. At tokens i > n (i.e., decoding tokens), this yields 1

i−n .
Recall that projected pre-norm can simulate multi-pre-norm (Proposition 1). We now leverage the
multi-pre-norm architecture to pass two layer-norms to a feedforward network:

ϕI
i ≜ ϕ(1/i, 1), ϕD

i ≜ ϕ(1/(i− n), 1).

7Theorem 1 goes through without strict causal masking (but Theorem 2 will require strict masking).
8Theorems 1 and 2 both go through without $ as long as token j can compute value vj = 1[j = 0].

6



Published as a conference paper at ICLR 2024

Let di ≜ 1[xi ∈ Q], where Q is the set of states of A. Based on di, we select between ϕI
i and ϕD

i :

ϕi ≜ ReLU(−di1⃗ + ϕI
i) + ReLU(di1⃗− 1⃗ + ϕD

i ).

We attend with query layer norm(ϕi) = ϕi, key layer norm(ϕj) = ϕj if dj = 0 and 0⃗ otherwise,
and value σj if dj = 0 and 0⃗ otherwise. By Lemma 2, at the current step i, the attention score is
maximized when j = i−n, thus retrieving σi−n. We now have the previous state qi−n−1 and current
token σi−n. We conclude by computing qi−n = δ(qi−n−1, σi−n) with a feedforward network.

Theorem 1 shows that a linear number of decoding steps gives additional reasoning power to log-
precision transformers with projected pre-norm (assuming TC0 ̸= NC1). This follows because log-
precision transformers with no decoding steps are contained in uniform TC0 (Merrill & Sabharwal,
2023b), which means they cannot recognize all regular languages. In contrast, Theorem 1 says a
linear number of steps is sufficient for recognizing all regular languages, establishing a conditional
separation. This is an example of simple and familiar additional computational power granted by
additional decoding steps. The core challenge in simulating an automaton is recurrence, which
cannot be done without decoding steps (Merrill & Sabharwal, 2023b). A linear number of decoding
steps allows simulating recurrence, which is where the additional power comes from. However, this
added power does not stop with finite-state machines: the layer-norm hash can be used to simulate
more complex models of computation such as Turing machines, which we will turn to next.

3.3 SIMULATING TURING MACHINES

We now show how a transformer decoder can simulate a Turing machine in real time using the
layer-norm hash. Our decoder-only construction resembles the encoder-decoder construction of
Pérez et al. (2021). However, it avoids simplifying assumptions from Pérez et al. (2021). In addition
to assuming non-standard attention and no layer-norm, they required 1/i, 1/i2, and i in the posi-
tional embeddings, which is problematic because transformers cannot represent unbounded scalars
like i due to layer-norm. In contrast, our construction works with or without positional encodings.
However, it assumes strict causal masking and projected pre-norm (Section 2.1).
Theorem 2 (Turing machine simulation). Let M be a Turing machine that, on input length 1 +
n, runs for at most t(n) steps (at most polynomial). There is a decoder-only projected pre-norm
transformer with strict causal saturated attention (with or without positional encodings) that, on
input $x,8 takes t(n) decoding steps and then, with |M(x)| additional steps, outputs M(x).

Proof. We construct a transformer decoder that uses a single decoding step to simulate each Turing
machine step. The main difficulty is representing a Turing machine tape in a sequence of transformer
state vectors so that the transformer can always correctly reconstruct the value on the tape at the
current head position. The key idea will be to store “diffs” to the tape at each step and use the layer-
norm hash to dynamically reconstruct the contents at the head position at future steps. Concretely,
let ∆ be a finite vocabulary representing elements of Q × Γk+1 × {0,±1}k+2. The deterministic
Turing machine run induces a diff sequence δ0, . . . , δt(n) ∈ ∆ capturing the state entered, tokens
written, and directions moved after each token. Following the proof of Theorem 1, we use 0-indexing
starting at the $ token and compute 1/i at each token i > 0 as a representation of position. We show
by induction that at step i ≥ n, we can output δi−n.

Base Case: i = n. At every input token (crucially, the last one), we output δ0 = ⟨q0, bk+1, 0k+2⟩.
Inductive Case: i > n. We first reconstruct hτi , the current position on each tape τ . For each τ , a
head attends with query 1, key 1[xj ̸∈ Σ], and value being the move direction of τ at j. Since
we assume strict causal attention (for reasons that will become clear later), head τ thus computes
hτi−1/i. Since we need hτi , we write both (hτi−1 ± 1)/i to the residual stream. When we need hτi /i
going forward, we use a linear layer to select either (hτi−1 + 1)/i or (hτi−1 − 1)/i depending on if
the current input δi−n−1 contains a +1 move or a −1 move for τ , respectively.

We now use two layers to compute the contents at h0i on the input tape. Similar to Theorem 1, we
use a feedforward network to implement the following piecewise comparison:

ϕ0i ≜

{
ϕ(1, 1/i) = ϕ(i, 1) if xi ∈ Σ

ϕ(h0i /i, 1/i) = ϕ(h0i , 1) otherwise.

7



Published as a conference paper at ICLR 2024

With some abuse of notation, let ⟨·⟩ denote vector concatenation. We attend with query ⟨ϕ0i ,−1⟩,
key ⟨ϕ0j ,1[xj ̸∈ Σ]⟩, and value ⟨ϕ0j , σj⟩.9 Let ⟨ϕ̄0, σ̄⟩ be the head output. We show in Appendix D
that two properties hold. First, by Lemma 3, ϕ̄0 = ϕ0i iff 1 ≤ h0i ≤ n. Second, by Lemma 4, if
1 ≤ h0i ≤ n, then σ̄ = σhi

. Based on this, we compute the value read from the input tape as γ0i = σ̄
if ϕ̄0 = ϕ0i and as γ0i = b otherwise.

We now use a single attention layer to compute γτi , the contents at hτi on each non-input tape τ . The
layer uses two layer-norm hashes, again taking advantage of the multi-pre-norm architecture that
projected pre-norm can simulate (Proposition 1):

ϕτi ≜ ϕ(hτi /i, 1/i) = ϕ(hτi , 1)

ψτ
i ≜ ϕ(f(i), 1),

where f(i) is defined in Definition 7 in Appendix E. Crucially, f(i) is computable with a single
transformer layer and monotonically decreasing with i. With strict causal masking, we attend with
query ⟨ϕτi , e1⟩, key ⟨ϕτj ,−ψτ

j ⟩, and value ⟨ϕτj , δj−n−1⟩. Let ⟨ϕ̄τ , δ̄⟩ be the head output. We show
in Appendix E that two properties hold. First, by Lemma 6, ϕ̄τ = ϕτj iff there is some j < i
s.t. hτi = hτj . Second, by Lemma 7, if there is some j < i s.t. hτi = hτj , then the head retrieves
⟨ϕτj , δj⟩ for the greatest such j. Based on this, we compute the last-written value on tape τ at hτi as
γτi = [δ̄]2+τ if ϕ̄τ = ϕτi and γτi = b otherwise. Having obtained all arguments for the transition
function, we now compute δi−n = δ(qi−n−1, σh0

i
, γ1i , . . . γ

k+1
i ) with a feedforward net.

Finally, we use |M(x)| steps to write the Turing machine output. We detect we are at an output step
if either some δj token to the left or the current input encodes a halting state. At each such token
i, we compute hk+1

i /i as before (recall that tape k + 1 is the output tape) via attention, except the
value now is dk+1

i if xi ∈ ∆ and +1 otherwise. We attend as before using hk+1
i /i to retrieve (and

output) γk+1
i . Thus, the |M(x)| tokens generated after a final state are precisely M(x).

The critical role projected pre-norm or multi-pre-norm play in Theorems 1 and 2 suggest it could be
interesting to investigate incorporating these generalized pre-norms into transformers in practice.

Theorem 2 gives us a general result connecting the power of transformer decoders with t(n) steps
to Turing machines with the same number of intermediate steps:
Corollary 2.1. TIME(t(n)) ⊆ CoT(t(n)).

Thus, simulating an automaton (cf. Theorem 1) is not the only new capability unlocked with O(n)
decoding steps: rather, such transformers can solve any problem a Turing machine can solve in O(n)
time, such as simulating real-time counter machines (Weiss et al., 2018). With O(n2) steps, we can
solve directed graph connectivity using standard graph traversal algorithms like depth-first search.
Depth-first search runs in O(n) time on a random access Turing machine (Wigderson, 1992), which
can be simulated in O(n2) time without random access. Possibly, transformers can solve directed
graph connectivity with fewer than O(n2) steps, as results from Zhang et al. (2023) hint at.

4 UPPER BOUNDS FOR TRANSFORMER DECODERS

Having shown lower bounds on transformers with t(n) steps, we present two different upper bounds:
one that relates transformer decoders to time complexity classes, and one that relates them to space
complexity classes. The relative strength of the two different bounds will vary depending on t(n).
A simple upper bound on transformers with chain of thought can be obtained based on the fact that
transformers can be simulated using a quadratic number of arithmetic operations.

Theorem 3. CoT(t(n)) ⊆ T̃IME(n2 + t(n)2).

Proof. We sketch a multitape Turing machine that will simulate the transformer. Each forward pass
i appends key i onto a work tape and value i onto another work tape. To simulate the forward pass
at time i, it suffices to show how to simulate computing self-attention at time i. To compute self

9As in Theorem 1, a second layer norm gets applied to ϕ0
i at the start of the layer but has no effect.

8



Published as a conference paper at ICLR 2024

attention, the Turing machine first computes the query at time i. It then iterates over pairs on the key
and value work tapes. For each pair j, we compute the attention score between query i and key j
and then multiply it by value j using additional work tapes. We then add this value to a running sum
tape. We treat the final sum at the output of the attention mechanism.

This runs n+ t(n) forward passes, and each forward pass loops over n+ t(n) key-value pairs. This
means we run at most O(n2+t(n)2) inner loop calls. It remains to be shown that one inner loop runs
in polylogarithmic time. An inner loop just involves adding and multiplying O(log n)-bit numbers.
p-bit numbers can be added in time O(p) = O(log n). Similarly, p-bit numbers can be multiplied
in time O(p log p) ≤ O(p2), which comes out to O(log2(n + t(n))) with log precision. Thus, one
inner loop can be run in polylogarithmic time. We conclude that a transformer decoder with t(n)
intermediate steps can be simulated by a multitape Turing machine in time Õ(n2 + t(n)2).

Our second upper bound relies on the TC0 upper bound for transformers without intermediate steps.
Theorem 4. CoT(t(n)) ⊆ SPACE(t(n) + log n).

Proof. Since log-precision transformers can be simulated in uniform TC0 (Merrill & Sabharwal,
2023b), they can be simulated in L, i.e., with at most c log n space overhead on inputs of size n.
To compute t(n) intermediate decoding steps of a transformer, we store a buffer of at most t(n)
generated tokens, which has size O(t(n)). To compute the next token, we call the transformer with
an input of size O(n+t(n)) using at most c log(n+t(n)) space overhead. We then clear the memory
used and append the finite token generated to the input buffer. It follows from this algorithm that

CoT(t(n)) ⊆ SPACE(t(n) + c log(n+ t(n)))

⊆ SPACE(t(n) + log n).

With at least Ω(log n) steps, this upper bound can be simplified to SPACE(t(n)). The t(n) = Θ(n)
case establishes the context-sensitive languages as an upper bound for transformers with linear steps.
Given our TIME(t(n)) lower bound (Theorem 2), the tightest possible space upper bound without
making fundamental complexity advances would be SPACE(t(n)/ log t(n)) (Hopcroft et al., 1977).
Conversely, our lower bound can only be tightened to TIME(t(n) log t(n)).

On the other hand, with only O(log n) decoding steps, intermediate decoding does not increase
expressive power much beyond TC0, because the upper bound simplifies to SPACE(t(n)) = L.
Thus, under standard assumptions, transformers with a logarithmic number of decoding steps cannot
solve directed graph connectivity, Horn formula satisfiability, or other NL- or P-complete problems.
Yet, they may be able to solve L-complete problems, unlike transformers without decoding steps.

5 CONCLUSION

We have shown that intermediate decoding steps extend the formal power of transformers well be-
yond previously known upper bounds, such as TC0 circuits and FO(M) logic, on transformers with-
out intermediate decoding. Further, the amount of additional power is closely related to the number
of decoding steps. In particular, transformers with a linear number of decoding steps have the capac-
ity to recognize regular languages, but cannot recognize languages beyond context-sensitive. With
a log number of decoding steps, such transformers can only recognize languages in L, which is
a complexity class relatively close to TC0. Thus, it appears that a linear number of intermediate
decoding steps may be required to overcome the limitations of transformers on many sequential rea-
soning problems of interest. In future work, it may be possible to derive a strict separation between
transformers with a log and a linear number of decoding steps and show that certain problems that
currently have a quadratic bound can in fact be solved with a roughly linear number of steps.

We have focused on expressive power, rather than analyzing learnability. Whereas our upper bounds
directly reveal limitations on what transformers with intermediate generation can learn, one caveat
is that our lower bounds do not directly imply transformers can learn to use intermediate steps
effectively. It would be interesting to formally investigate transformers with CoT from a learning-
theoretic lens, possibly along the lines of Malach (2023), and how different kinds of fine-tuning,
such as reinforcement learning, might better allow models to use the power of chain of thought.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

We thank David Chiang for the valuable feedback and for identifying a mismatch between the trans-
former definition in an earlier version of this paper and standard pre-norm transformers. We also
appreciate helpful comments from Gabriel Faria, Ofir Press, Abulhair Saparov, Jason Wei, and Avi
Wigderson, as well as researchers in ML2 at NYU and at AI2. WM was supported by NSF Award
1922658, an NSF Graduate Research Fellowship, and AI2.

REFERENCES

David Chiang. Personal communication, March 2024.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In ICML, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
Ren, Allyson Ettinger, Zaı̈d Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. In NeurIPS, 2023.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In NeurIPS, 2023.

Sophie Hao, Dana Angluin, and Roberta Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. TACL, 10:800–810, 2022.

John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. On time versus space. J. ACM, 24:
332–337, 1977.

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, lan-
guages, and computation. ACM Sigact News, 32(1):60–65, 2001.

S-Y Kuroda. Classes of languages and linear-bounded automata. Information and control, 7(2):
207–223, 1964.

Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM,
49(1):1–15, Jan 2002.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In ICLR, 2023.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv, abs/2309.06979,
2023.

William Merrill. On the linguistic capacity of real-time counter automata. arXiv, abs/2004.06866,
2020.

William Merrill. Formal languages and neural models for learning on sequences. In François Coste,
Faissal Ouardi, and Guillaume Rabusseau (eds.), ICGI, volume 217 of PMLR, Jul 2023.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In
NeurIPS, 2023a.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. TACL, 11:531–545, 2023b.

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah A. Smith. Effects
of parameter norm growth during transformer training: Inductive bias from gradient descent. In
EMNLP, 2021.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. TACL, 10:843–856, 2022.

10



Published as a conference paper at ICLR 2024

Maxwell Nye, Anders Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Augustus
Odena. Show your work: Scratchpads for intermediate computation with language models. arXiv,
abs/2112.00114, 2021.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing complete. JMLR, 22(1),
January 2021.

Dale Schuurmans. Memory augmented large language models are computationally universal. ArXiv,
2023.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. Transformers as rec-
ognizers of formal languages: A survey on expressivity. TACL, 2024.

Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of Computer
and System Sciences, 10(2):308–315, 1975.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), NeurIPS,
2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite preci-
sion RNNs for language recognition. In ACL, July 2018.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In ICML, 2021.

Avi Wigderson. The complexity of graph connectivity. In International Symposium on Mathematical
Foundations of Computer Science, pp. 112–132. Springer, 1992.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architec-
ture. In ICML, 2020.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. In ACL, 2021.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In NeurIPS, 2019.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A. Smith. How language model
hallucinations can snowball. arXiv, 2023.

A TRANSFORMER COMPONENTS

This section formally defines our generalizations of pre-norm and then recalls the definition from
Merrill & Sabharwal (2023a) for the components of the transformer layer.

A.1 GENERALIZED PRE-NORM

We assume a pre-norm (Xiong et al., 2020) parameterization of the transformer for concreteness, as
this is more standard in newer transformers. As stated in Section 2.1, we allow transformer sublayers
to apply a linear projection before layer-norm. Concretely, we define proj layer norm(v) as follows:

Definition 4 (Projected pre-norm). Let M : Rm → Rm be a parameter matrix that projects m-
dimensional vectors to m-dimensional vectors.

proj layer norm(v;M) = layer norm(Mv).

We will omit the parameter M for convenience, instead writing proj layer norm(v).

Our proofs also allow multiple pre-norms of different projections of the hidden state for our lower-
bound constructions. Concretely, we define multi layer norm(v) as follows.

11



Published as a conference paper at ICLR 2024

Definition 5 (Multi-pre-norm). Let m be divisible by k. For 1 ≤ i ≤ k, let Mi : Rm → Rm/k

be a parameter matrix that projects m-dimensional vectors to m/k-dimensional vectors. Let ⟨·⟩ki=1
denote iterated concatenation. The multi-pre-norm of v ∈ Rm is defined as

multi layer norm(v;M1, . . .Mk) = ⟨proj layer norm(v;Mi)⟩ki=1 .

As for projected pre-norm, we will omit the parameters M1, . . .Mk for multi-pre-norm, instead
writing multi layer norm(v).

As noted earlier, projected pre-norm can simulate multi-pre-norm:

Proposition 1 (Chiang, 2024). Multi-pre-norm with k norms can be simulated by k + 1 projected
pre-norm layers.

Proof. We will simulate a multi-pre-norm layer that takes as input

layer norm(M1v), . . . , layer norm(Mkv)

using only projected pre-norm layers. The idea is to use k different projected pre-norm layers (one
for each input layer norm). At layer i, the layer takes as input layer norm(Miv) and writes this to
the residual stream. Then, after these k layers, a final layer reads as input

layer norm
(
⟨layer norm(Miv)⟩ki=1

)
.

Since each vector in the concatenation has unit norm, this is equivalent to

1√
k
⟨layer norm(Miv)⟩ki=1 .

It follows that this layer receives essentially the same input as the original multi-pre-norm layer, up
to a constant factor. The original weights for the layer can be multiplied by

√
k to implement the

same computation as the original layer. To make sure that
√
k is exactly representable, we can pad

the number of entries so that k is a perfect square.

A.2 TRANSFORMER EMBEDDINGS

For each position 1 ≤ i ≤ n, the transformer embedding function represents token σi ∈ Σ and its
position i with a vector. Let V be an embedding matrix of size |Σ| ×m where each row represents
the embedding for some σ. Let f : N → Dm

p be computable in time O(log n). Then,

e(σi, i) = vσi + f(i).

A.3 SELF ATTENTION

The two components of the self attention block are s, the similarity function, and v, the value
function. Let hi be the hidden state at the previous layer and h̄i = multi layer norm(hi). We define
similarity of keys and queries as follows:

s(hi,hj) = exp

(
q⊤
i ki√
m/h

)
, where qi = Wqh̄i + bq

ki = Wkh̄i + bk
.

Then the value function is defined v(hi) = Whh̄i + bh.

A.4 ACTIVATION BLOCK

The activation function f encapsulates the aggregation of the attention head outputs and the feedfor-
ward subnetwork of the transformer. f takes as input attention head outputs ai,1, . . . ,ai,h ∈ Dm/h

p

and the previous layer value hi.

The first part of the activation block simulates the pooling part of the self-attention sublayer. The
head outputs are first concatenated to form a vector ai, which is then passed through an affine

12



Published as a conference paper at ICLR 2024

transformation (Wo,bo) : Dm
p → Dm

p followed by residual connections to form the sublayer output
oi ∈ Dm

p :
oi = Woai + bo + hi.

The second part of the activation block first applies multi-layer-norm and then simulates the feed-
forward subnetwork to compute the next layer vector h′

i. Let ōi = multi layer norm(oi). Let σ be a
nonlinearity computable in linear time on its input (in the most standard transformer, ReLU). Then,
for affine transformations (W1,b1) : Dm

p → Dw
p and (W2,b2) : Dw

p → Dm
p , the feedforward

subnetwork can be defined as:

h′
i = W2σ(W1ōi + b1) + b2 + oi.

B TURING MACHINES

A Turing machine takes as input a string σ ∈ Σ∗. A configuration of a Turing machine is a finite
state q along with the contents of an input tape c0, k work tapes c1, . . . , ck, and an output tape ck+1.
Finally, for each tape τ , a configuration specifies a head position hτ . We start with the initial state
q0 and the input tape c00 containing σ starting at position 0 with infinite b’s on each side, and h00 = 0.
All other tapes start containing all b’s and with their head at 0. At each time step i, if qi ̸∈ F , we
recurrently update the configuration by first computing:

⟨qi+1, γ
1
i , . . . , γ

k+1
i , d0i , . . . , d

k+1
i ⟩ = δ(qi, c

0
i [h

0
i ], . . . , c

k+1
i [hk+1

i ]).

We then update tape τ by setting cτi+1[h
j
i ] = γji and keeping all other tape cells the same. We update

the head position on tape τ according to hτi+1 = hτi + dτi . On the other hand, if qi ∈ F , the Turing
machine halts and outputs the string of tokens on the output tape from the current head position on
the left up to (but not including) the first b on the right. A Turing machine can also be viewed as a
language recognizer if we set Σ = {0, 1} and check if the first output token is 0 or 1.

C LAYER-NORM HASH

Lemma 1 (Scale invariance). For any x ∈ R and i ∈ R>0, ϕ(x/i, 1/i) = ϕx.

Proof. Let vx = ⟨x/i, 1/i,−x/i,−1/i⟩. vx is constructed with mean 0, so layer-norm reduces to
RMS-norm (Zhang & Sennrich, 2019). Thus,

ϕ(x/i, 1/i) = vx/∥vx∥

= vx · i√
2x2 + 2

=
1√

2x2 + 2
⟨x, 1,−x,−1⟩

= ϕ(x, 1)

which, by definition, is ϕx.

Lemma 2 (Equality check via layer-norm hash). For any q, k ∈ R, ϕq ·ϕk = 1 if and only if q = k.

Proof. By the definition of layer-norm hash, we have

ϕ(q, 1) · ϕ(k, 1) = 1√
2q2 + 2

⟨q, 1,−q,−1⟩ · 1√
2k2 + 2

⟨k, 1,−k,−1⟩

=
2qk + 2√

(2q2 + 2)(2k2 + 2)

=
qk + 1√

(q2 + 1)(k2 + 1)
.

13



Published as a conference paper at ICLR 2024

The inner product of unit-norm vectors is maximized at 1. In this case, we show that it achieves 1
only when q = k, meaning that is the unique maximum:

1 =
qk + 1√

(q2 + 1)(k2 + 1)

(qk + 1)2 = (q2 + 1)(k2 + 1)

(qk)2 + 2qk + 1 = (qk)2 + q2 + k2 + 1

2qk = q2 + k2

0 = (q − k)2.

We conclude that ϕq · ϕk is maximized (to 1) if and only if q = k.

As the layer-norm hash is constructed to have mean 0, it does not require a fully general layer-norm
implementation and can, in fact, be implemented with simplified RMS norm (Zhang & Sennrich,
2019).

D INPUT TAPE RETRIEVAL VIA THE LAYER-NORM HASH

We now describe an attention head that uses the layer-norm hash to read from the input tape in
Theorem 2. Define a sequence h1, . . . , hi−1, which represents Turing machine tape position in
Theorem 2.

We define the following layer-norm hash based quantity, which is instantiated in Theorem 2 in a
particular way:

ϕi =

{
ϕ(i, 1) if 1 ≤ i ≤ n

ϕ(hi, 1) otherwise.

The attention head we construct can then be described as follows:

• Query: ⟨ϕi,−1⟩
• Key: ⟨ϕj ,1[n < j]⟩
• Value: vj ≜ ⟨ϕj , σj⟩

Let v̄ ≜ ⟨ϕ̄, σ̄⟩ be the head output. This head obeys the following properties:

Lemma 3. Let i > n. Then, 1 ≤ hi ≤ n if and only if ϕ̄ = ϕi.

Proof. We proceed by considering the two directions.

Forward Direction. The query-key inner product has two terms κ1ij + κ2ij . By Lemma 2, κ1ij is
maximized either when h0i = j (and 1 ≤ j ≤ n) or when hi = hj (and n < j). However, if n < j,
the second term κ2ij = 1. Thus, the attention score is maximized uniquely when j = hi, so the head
retrieves v̄ = ⟨ϕ(hi, 1), σhi⟩. Thus, ϕ̄ = ϕ(h1, 1) = ϕi.

Backward Direction. We establish bidirectionality by proving the contrapositive. Assume that either
hi < 1 or hi > n. The head retrieves ϕ̄ = 1

|M |
∑

j∈M ϕ(j, 1) for some M ⊆ {1, . . . , n}. It holds
that, for all 1 ≤ j ≤ n, hi < j, or the other way around (i.e., for all 1 ≤ j ≤ n, hi > j). Thus, by
Lemma 5, ϕ̄ ̸= ϕ(hi, 1) = ϕi.

The following property also emerges from the proof of the forward direction in Lemma 3:

Lemma 4. Let i > n. Then, if 1 ≤ hi ≤ n, σ̄ = σhi
.

The backward direction in Lemma 3 relies on the following lemma:

Lemma 5. Let q ∈ Z and kj ∈ Z for 1 ≤ j ≤ m. Let ≻∈ {<,>}. If, for all j, q ≻ kj , then

ϕq ̸= 1

m

m∑
j=1

ϕkj
.

14



Published as a conference paper at ICLR 2024

Proof. Recall that ϕx = ϕ(x, 1) ∈ R4 has first element x/
√
2x2 + 2, which we will denote as zx.

Observe that zx is a monotonically increasing function of x ∈ R. Thus, zq ≻ zkj
for 1 ≤ j ≤ m,

which implies zq ≻ 1
m

∑m
j=1 zkj , from which the lemma conclusion follows.

E RIGHTMOST RETRIEVAL VIA THE LAYER-NORM HASH

We now describe an attention head that can attend to the rightmost token satisfying a certain property,
capturing the construction in Theorem 2 to retrieve the most recent write to a Turing machine work
tape. Define a sequence h1, . . . , hi−1, which represents Turing machine tape position in Theorem 2.
As is natural for Turing machine tapes, we assume that if h ̸= hi for all i, then it must be that h ≺ hi
for all i, where ≺ is fixed as either > or <.

Let f(i) be a tie-breaking term that we will define later in Appendix E.1. We define two layer-norm
hash quantities:

ϕi ≜ ϕ(h1/i, 1/i)

ψi ≜ ϕ(f(i), 1).

Recall that e1 = ⟨1, 0, 0, 0⟩. Construct an attention head as follows:

• Query: ⟨ϕi, e1⟩
• Key: ⟨ϕj ,−ψj⟩
• Value: vj ≜ ⟨ϕj , δj⟩

Let v̄ ≜ ⟨ϕ̄, δ̄⟩ be the head output. The following properties hold for such a head:

Lemma 6. There exists j < i such that hi = hj if and only if ϕ̄ = ϕi.

Proof. We proceed by considering the two directions.

Forward Direction. The query-key inner product has two terms κ1ij+κ
2
ij . By Lemma 2, the first term

κ1ij is maximized at 1 for each j such that hi = hj . For hi ̸= hj , κ1ij < 1 − 1/(2i4) by Lemma 8.
The second component κ2ij monotonically increases with j and satisfies κ2ij < f(i) < 1/(2i4) by
Lemma 10. Thus, the attention score is maximized for the largest j < i such that hτi = hτj . Thus,
v̄ = vj and ϕ̄ = ϕj for this j, which means ϕ̄ = ϕi.

Backward Direction. We establish bidirectionality by proving the contrapositive. Assume there is
no j < i such that hi = hj . Then ϕ̄ = 1

|M |
∑

j∈M ϕ(hj , 1) for some M ⊆ {1, . . . , n}. By
assumption (top of Appendix E), we have hj ≺ hi for all j < i. It follows from Lemma 5 that
ϕ̄ ̸= ϕ(hi, 1) = ϕi, completing the proof.

The following property also emerges from the forward direction of the proof above:

Lemma 7. If there exists j < i such that hi = hj , then δ̄ = δj for the greatest such j.

E.1 TIE-BREAKING TERM

The construction above uses a tie-breaker that favors retrieving tokens further to the right. We will
justify the construction of such a tie-breaking term here. To begin, we will establish a bound on the
layer-norm hash inner product similarity for inexact matches.

Lemma 8. For any i ≥ 2, ϕ(i, 1) · ϕ(i− 1, 1) ≤ 1− 1/(2i4).

15



Published as a conference paper at ICLR 2024

Proof. Consider the squared dot product:

(
ϕ(i, 1) · ϕ(i− 1, 1)

)2
=

(
⟨i, 1,−i,−1⟩ · ⟨i− 1, 1,−(i− 1),−1⟩

)2
(2i2 + 2)(2(i− 1)2 + 2)

=

(
i(i− 1) + 1

)2
(i2 + 1)((i− 1)2 + 1)

=
i2(i− 1)2 + 2i(i− 1) + 1

i2(i− 1)2 + i2 + (i− 1)2 + 1

=
i2(i− 1)2 + 2i(i− 1) + 1

i2(i− 1)2 + 2i(i− 1) + 2

= 1− 1

i2(i− 1)2 + 2i(i− 1) + 2

= 1− 1

i4 − 2i3 + 3i2 − 2i+ 2

Since (1 − y/2)2 ≥ 1 − y for any y, we have
√
1− y ≤ 1 − y/2 for any y ≤ 1. Applying this to

the right hand side of the above equation, we obtain:

ϕ(i, 1) · ϕ(i− 1, 1) =

√
1− 1

i4 − 2i3 + 3i2 − 2i+ 2

≤ 1− 1

2i4 − 4i3 + 6i2 − 4i+ 4

≤ 1− 1

2i4
for i ≥ 2,

which completes the proof.

To break ties in attention, we aim to construct a function of i that is computable in the transformer,
monotonically decreasing with i, and smaller than 1/(2i4). The following definition will accomplish
this:

Definition 6. We define the following inductively:

f(i, 0) = 1/i

f(i, k + 1) = f(i− 1, k)− f(i, k).

By construction, f(i, k) is monotonically increasing and a linear combination of 1/i, 1/(i −
1), . . . , 1/(i − k). The latter property means it is computable by a single multihead self-attention
layer. To do this, we construct k heads in parallel, where head h attends to all tokens besides the
first h and puts value 1 at token h+ 1 and 0 elsewhere.10 Head h thus computes 1/(i− h). We use
the linear transformation at the end of the layer to compute f(i, k) via a linear combination of the
head outputs.

Lemma 9. For any k and i > k, we have

f(i, k) =
k!∏k

j=0(i− j)
.

Proof. By induction over k.

Base Case: i = 0. We have f(i, 0) = 0!/i.

10This head can be implemented by setting a flag in the previous layer at each i for whether i ≤ h by
hardcoding a comparison between ϕ(1, 1/i) and ϕ(h, 1).

16



Published as a conference paper at ICLR 2024

Inductive Case. We analyze the form of f(i, k + 1):

f(i, k + 1) = f(i− 1, k)− f(i, k)

=
k!∏k

j=0(i− 1− j)
− k!∏k

j=0(i− j)
(Inductive assumption)

= k! ·
∏k

j=0(i− j)−
∏k

j=0(i− 1− j)

i
∏k

j=1(i− j)2(i− k − 1)
(Form common denominator)

= k! ·
i
∏k

j=1(i− j)− (i− k − 1)
∏k

j=1(i− j)

i
∏k

j=1(i− j)2(i− k − 1)
(Pull out factors)

= k! ·
(k + 1)

∏k
j=1(i− j)

i
∏k

j=1(i− j)2(i− k − 1)
(Distributive property)

=
(k + 1)!

i
∏k

j=1(i− j)(i− k − 1)
(Simplify)

=
(k + 1)!∏k+1
j=0 (i− j)

.

It remains to be shown that f(i, k) can be made smaller than 1/(2i4). To handle edge cases around
small values of i, we define:
Definition 7. Let ϵ = 10−10. For i ≥ 1, let

f(i) =

{
1/1000− ϵi if i ≤ 4

f(i, 3)/100 if i ≥ 5

Lemma 10. For i ≥ 1, f(i) < 1/(2i4) .

Proof. When i ≤ 4, we have f(i) < 1/1000 < 1/(2i4).

When i ≥ 5, by Lemma 9, we have:

f(i, 3)

100
=

3!

100i(i− 1)(i− 2)(i− 3)

It can be verified that the values of i for which this expression equals 1/(2i4) are all in the interval
[0, 5), and that for i ≥ 5, (100/6)i(i− 1)(i− 2)(i− 3) > 2i4.

17


	Introduction
	Main Results: Power of Transformers with Intermediate Decoding

	Preliminaries
	Transformers
	Models of Computation

	Lower Bounds for Transformer Decoders
	Introducing Layer-Norm Hash
	Simulating Automata
	Simulating Turing Machines

	Upper Bounds for Transformer Decoders
	Conclusion
	Transformer Components
	Generalized Pre-Norm
	Transformer Embeddings
	Self Attention
	Activation Block

	Turing MAchines
	Layer-Norm Hash
	Input Tape Retrieval via the Layer-Norm Hash
	Rightmost Retrieval via the Layer-Norm Hash
	Tie-Breaking Term


