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Abstract
Parameter shift rules (PSRs) are key techniques
for efficient gradient estimation in variational
quantum eigensolvers (VQEs). In this paper, we
propose its Bayesian variant, where Gaussian pro-
cesses with appropriate kernels are used to es-
timate the gradient of the VQE objective. Our
Bayesian PSR offers flexible gradient estimation
from observations at arbitrary locations with un-
certainty information, and reduces to the general-
ized PSR in special cases. In stochastic gradient
descent (SGD), the flexibility of Bayesian PSR
allows reuse of observations in previous steps,
which accelerates the optimization process. Fur-
thermore, the accessibility to the posterior uncer-
tainty, along with our proposed notion of gradi-
ent confident region (GradCoRe), enables us to
minimize the observation costs in each SGD step.
Our numerical experiments show that the VQE
optimization with Bayesian PSR and GradCoRe
significantly accelerates SGD, and outperforms
the state-of-the-art methods, including sequential
minimal optimization.

1. Introduction
The variational quantum eigensolver (VQE) (Peruzzo et al.,
2014; McClean et al., 2016) is a hybrid quantum-classical
algorithm for approximating the ground state of the Hamilto-
nian of a given physical system. The quantum part of VQEs
uses parameterized quantum circuits to generate trial quan-
tum states and measures the expectation value of the Hamil-
tonian, i.e., the energy, while the classical part forms energy
minimization with noisy observations from the quantum
device. Provided that the parameterized quantum circuits
can accurately approximate the ground state, the minimized
energy gives a tight upper bound of the ground state energy
of the Hamiltonian.

The observation noise in the quantum device comes from
multiple sources. One source of noise is measurement shot
noise, which arises from the statistical nature of quantum
measurements—outcomes follow the probabilities speci-
fied by the quantum state, and finite sampling introduces
fluctuations. Since this noise source is random and inde-

pendent, it can be reduced by increasing the number of
measurement shots, to which the variance is inversely pro-
portional. Another source of noise stems from imperfections
in the quantum hardware, which have been reduced in re-
cent years by hardware design (Bluvstein et al., 2023), as
well as error mitigation (Cai et al., 2023), quantum error
correction (Roffe, 2019; Acharya et al., 2024), and machine
learning (Nicoli et al., 2025) techniques. In this paper, we
do not consider hardware noise, as is common in papers
developing optimization methods (Nakanishi et al., 2020;
Nicoli et al., 2023b).

Stochastic gradient descent (SGD), sequential minimal opti-
mization (SMO), and Bayesian optimization (BO) have been
used to minimize the VQE objective function. Under some
mild assumptions (Nakanishi et al., 2020), this objective
function is known to have special properties. Based on those
properties, SGD methods can use the gradient estimated by
so-called parameter shift rules (PSRs) (Mitarai et al., 2018),
and specifically designed SMO (Platt, 1998) methods, called
Nakanishi-Fuji-Todo (NFT) (Nakanishi et al., 2020), per-
form one-dimensional subspace optimization with only a
few observations in each iteration. Iannelli & Jansen (2021)
applied BO to solve VQEs as a noisy global optimization
problem.

Although Gaussian processes (GPs) have been used in VQEs
as a common surrogate function for BO (Frazier, 2018), they
have also been used to improve SGD-based and SMO-based
methods. Nicoli et al. (2023a) proposed the VQE kernel—a
physics-informed kernel that fully reflects the properties
of VQEs—and combined SMO and BO with the expected
maximum improvement within confident region (EMICoRe)
acquisition function. This allows for the identification of the
optimal locations to measure on the quantum computer in
each SMO iteration. Tamiya & Yamasaki (2022) combined
SGD and BO, and proposed stochastic gradient line BO
(SGLBO), which uses BO to identify the optimal step size
in each SGD iteration. Anders et al. (2024) proposed the
subspace in confident region (SubsCoRe) approach, where
the observation costs are minimized based on the posterior
uncertainty estimation in each SMO iteration.

In this paper, we take a different approach by leveraging
GPs to introduce a Bayesian parameter shift rule (Bayesian
PSR), where the gradient of the VQE objective is estimated

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Bayesian Parameter Shift Rules in Variational Quantum Eigensolvers

Figure 1. Illustration of our gradient confident region (GradCoRe)
approach. Our goal is to minimize the true energy f∗(x) over
the set of parameters x ∈ [0, 2π)D . We use a GP surrogate
f(x) for f∗(x). Observing f∗ at points x− and x+ (green cir-
cles) along the d-th direction (solid horizontal line) decreases the
GP uncertainty (dashed curves) not only at f(x±), but also at
∂df(x̂

t−1) which thus falls within the GradCoRe (blue square).
Our GradCoRe-based SGD minimizes the total number of mea-
surement shots for optimization.

using a GP with the VQE kernel. The Bayesian PSR trans-
lates into a regularized variant of PSRs if the observations
are performed at designated locations. However, our ap-
proach offers significant advantages—flexibility and direct
access to uncertainty—over existing PSRs (Wierichs et al.,
2022). More specifically, the Bayesian PSR can use ob-
servations at any set of locations, which allows the reuse
of observations performed in previous iterations of SGD.
Reusing previous observations along with new observations
improves the gradient estimation accuracy, and thus acceler-
ates the optimization process. Furthermore, the uncertainty
information can be used to adapt the observation cost in
each SGD iteration, in a similar spirit to Anders et al. (2024).
Adapting the observation cost can significantly reduce the
necessary cost of obtaining new observations, while main-
taining a required level of accuracy. We implement this
adaptive observation cost strategy by introducing a novel no-
tion of gradient confidence region (GradCoRe)—the region
in which the uncertainty of the gradient estimation is below
a specific threshold (see Figure 1). Our empirical evalua-
tions show that our proposed Bayesian PSR improves the
gradient estimator, and SGD equipped with our GradCoRe
approach outperforms all previous state-of-the-art methods
including NFT and its variants.

The main contributions are summarized as follows:

• We propose Bayesian PSR, a flexible variant of existing
PSRs that provides access to uncertainty information.

• We theoretically establish the relationship between
Bayesian PSR and existing PSRs, revealing the op-

timality of the shift parameter in first-order PSRs.

• We introduce the notion of GradCoRe, and propose an
adaptive observation cost strategy for SGD optimiza-
tion.

• We numerically validate our theory and empirically
demonstrate the effectiveness of the proposed Bayesian
PSR and GradCoRe.

Related work: Finding the optimal set of parameters
for a variational quantum circuit is a challenging problem,
prompting the development of various approaches to im-
prove the optimization in VQEs. Gradient-based methods
for VQEs often rely on PSRs (Mitarai et al., 2018; Wierichs
et al., 2022), which enable reasonably accurate gradient esti-
mation of the output of quantum circuits with respect to their
parameters. Nakanishi et al. (2020) proposed an SMO (Platt,
1998) algorithm, known as NFT, where, at each step of SMO,
one parameter is analytically minimized by performing a
few observations. Nicoli et al. (2023a) combined NFT with
GP and BO by developing a physics-inspired kernel for GP
regression and proposing the EMICoRe acquisition func-
tion, relying on the concept of confident regions (CoRe).
This method improves upon NFT by leveraging the infor-
mation from observations in previous steps to identify the
optimal locations to perform the next observations. An-
ders et al. (2024) leveraged the same notion of CoRe, and
proposed SubsCoRe, where, instead of optimizing the ob-
served locations, the minimal number of measurement shots
is identified to achieve the required accuracy defined by
the CoRe. The resulting algorithm converges to the same
energy as NFT with a smaller quantum computation cost,
i.e., the total number of measurement shots on a quantum
computer. Tamiya & Yamasaki (2022) combined SGD with
BO to tackle the excessive cost of standard SGD approaches
and used BO to accelerate the convergence by finding the
optimal step size. On a related note, recent works (Jiang
et al., 2024) have begun integrating GP with error mitigation
techniques, further highlighting the potential of Bayesian
approaches for noisy intermediate-scale quantum (NISQ)
devices (Preskill, 2018).

The remainder of the paper is structured as follows: in Sec-
tion 2, we provide the necessary background on GP and
VQEs. In Section 3, we propose our Bayesian PSR and
provide a theory that relates it to the existing PSRs. In Sec-
tion 4, we propose our novel SGD-based algorithms based
on Bayesian PSR and GradCoRe. In Section 5, we describe
the experimental setup and present numerical experiments.
Finally, in Section 6, we summarize our findings and provide
an outlook for future research.
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2. Background
Here we briefly introduce Gaussian process (GP) regres-
sion and its derivatives, as well as VQEs with their known
properties.

2.1. GP Regression and Derivative GP

Assume we aim to learn an unknown function f∗(·) : X 7→
R from the training data X = (x1, . . . ,xN ) ∈ XN ,y =
(y1, . . . , yN )⊤ ∈ RN ,σ = (σ2

1 , . . . , σ
2
N ) ∈ RN

++ that ful-
fills

yn = f∗(xn) + εn, εn ∼ N1(yn; 0, σ
2
n), (1)

where ND(·;µ,Σ) denotes the D-dimensional Gaussian
distribution with mean µ and covariance Σ. With the Gaus-
sian process (GP) prior

p(f(·)) = GP(f(·); 0(·), k(·, ·)), (2)

where 0(·) and k(·, ·) are the prior zero-mean and the kernel
(covariance) functions, respectively, the posterior distribu-
tion of the function values f ′ = (f(x′

1), . . . , f(x
′
M ))⊤ ∈

RM at arbitrary test pointsX ′ = (x′
1, . . . ,x

′
M ) ∈ XM is

given as

p(f ′|X,y) = NM (f ′;µ′
[X,y,σ],S

′
[X,σ]), where (3)

µ′
[X,y,σ] =K

′⊤ (K + Diag(σ))−1
y and (4)

S′
[X,σ] =K

′′ −K ′⊤ (K + Diag(σ))−1
K ′ (5)

are the posterior mean and covariance, respectively (Ras-
mussen & Williams, 2006). Here Diag(v) is the di-
agonal matrix with v specifying the diagonal entries,
and K = k(X,X) ∈ RN×N ,K ′ = k(X,X ′) ∈
RN×M , and K ′′ = k(X ′,X ′) ∈ RM×M are the
train, train-test, and test kernel matrices, respectively,
where k(X,X ′) denotes the kernel matrix evaluated at
each column of X and X ′ such that (k(X,X ′))n,m =
k(xn,x

′
m). We also denote the posterior as p(f(·)|X,y) =

GP(f(·);µ[X,y,σ](·), s[X,σ](·, ·)) with the posterior mean
µ[X,y,σ](·) and covariance s[X,σ](·, ·) functions.

Since the derivative operator is linear, the derivative ∇xf =
(∂1f, . . . , ∂Df)

⊤ ∈ RD, where we abbreviate ∂d = ∂
∂xd

,
of GP samples also follows a GP. Therefore, we can straight-
forwardly handle the derivative outputs at training and
test points by modifying the kernel function. Assume
that x is a training or test point with non-derivative out-
put y = f∗(x) + ε, and x′ and x′′ are training or test
points with derivative outputs, y′ = ∂d′f∗(x′) + ε′, y′′ =
∂d′′f∗(x′′) + ε′′. Then, the kernel functions should be re-
placed with

k̃(x,x′) = ∂
∂x′

d′
k(x,x′), (6)

k̃(x′,x′′) = ∂2

∂x′
d′∂x

′′
d′′
k(x′,x′′). (7)

The posterior (3) with appropriately replaced kernel matrix
entries gives the posterior distribution of derivatives at test
points. We denote the GP posterior of a single component
of the derivative as

p(∂df(·)|X,y) = GP
(
∂df(·); µ̃(d)

[X,y,σ](·), s̃
(d)
[X,σ](·, ·)

)
(8)

with the posterior mean µ̃(d)(·) and covariance s̃(d)(·, ·)
functions for the derivative with respect to xd. More gener-
ally, GP regression can be analytically performed in the case
where the training outputs (i.e., observations) and the test
outputs (i.e., predictions) contain derivatives with different
orders (see Appendix A for more details).

2.2. Variational Quantum Eigensolvers and their
Physical Properties

The VQE (Peruzzo et al., 2014; McClean et al., 2016) is a
hybrid quantum-classical computing protocol for estimating
the ground-state energy of a given quantum Hamiltonian
for a Q-qubit system. The quantum computer is used to
prepare a parametric quantum state |ψx⟩, which depends
on D angular parameters x ∈ X = [0, 2π)D. This trial
state |ψx⟩ is generated by applying D′(≥ D) quantum gate
operations, G(x) = GD′ ◦ · · · ◦G1, to an initial quantum
state |ψ0⟩, i.e., |ψx⟩ = G(x)|ψ0⟩. All gates {Gd′}D′

d′=1

are unitary operators, parameterized by at most one vari-
able xd. Let d(d′) : {1, . . . , D′} 7→ {1, . . . , D} be the
mapping specifying which one of the variables {xd} pa-
rameterizes the d′-th gate. We consider parametric gates
of the form Gd′(x) = Ud′(xd(d′)) = exp

(
−ixd(d′)Pd′/2

)
,

where Pd′ is an arbitrary sequence of the Pauli operators
{1q, σ

X
q , σ

Y
q , σ

Z
q }

Q
q=1 acting on each qubit at most once.

This general structure covers both single-qubit gates, such
as RX(x) = exp

(
−iθσX

q

)
, and entangling gates acting

on multiple qubits simultaneously, such as RXX(x) =
exp

(
−ixσX

q1 ◦ σ
X
q2

)
for q1 ̸= q2, commonly realized in

trapped-ion quantum hardware setups (Kielpinski et al.,
2002; Debnath et al., 2016).

The quantum computer is used to evaluate the energy of the
resulting quantum state |ψx⟩ by observing

y = f∗(x) + ε, where

f∗(x) = ⟨ψx|H|ψx⟩ = ⟨ψ0|G(x)†HG(x)|ψ0⟩, (9)

and † denotes the Hermitian conjugate. For each observa-
tion, repeated measurements, called shots, on the quantum
computer are performed. Averaging over the number Nshots

of shots suppresses the variance σ∗2(Nshots) ∝ N−1
shots of

the observation noise ε.1 Since the observation y is the
1We do not consider the hardware noise, and therefore, the

observation noise ε consists only of the measurement shot noise.

3
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sum of many random variables, it approximately follows
the Gaussian distribution, according to the central limit the-
orem. The Gaussian likelihood (1) therefore approximates
the observation y well if σ2

n ≈ σ∗2(Nshots). Using the noisy
estimates of f∗(x) obtained from the quantum computer, a
protocol running on a classical computer is used to solve
the following minimization problem:

minx∈[0,2π)D f
∗(x), (10)

thus finding the minimizer x̂, i.e., the optimal parameters
for the (rotational) quantum gates. Given the high expense
of quantum computing resources, the computation cost is
primarily driven by quantum operations. As a result, the
optimization cost in VQE is typically measured by the total
number of measurement shots required during the optimiza-
tion process.2 We refer to Tilly et al. (2022) for further
details about VQEs and their challenges.

Let Vd be the number of gates parameterized by xd, i.e.,
Vd = |{d′ ∈ {1, . . . D′}; d = d(d′)}|. Mitarai et al. (2018)
proved that the VQE objective (9) for Vd = 1 satisfies the
parameter shift rule (PSR)

∂df
∗(x′) =

f∗(x′+αed)−f∗(x′−αed)
2 sinα ,

∀x ∈ [0, 2π)D, d = 1, . . . , D, α ∈ [0, 2π), (11)

where {ed}Dd=1 are the standard basis, and the shift α is
typically set to π

2 . Wierichs et al. (2022) generalized the
PSR (11) for arbitrary Vd with equidistant observations
{xw = x′ + 2w+1

2Vd
πed}2Vd−1

w=0 :

∂df
∗(x′) = 1

2Vd

∑2Vd−1
w=0

(−1)wf∗(xw)

2 sin2
(

(2w+1)π
4Vd

) . (12)

Most gradient-based approaches rely on those PSRs,
which allow reasonably accurate gradient estimation from∑D

d=1 2Vd observations. Let

ψγ(θ) = (γ,
√
2 cos θ,

√
2 cos 2θ, . . . ,

√
2 cosVdθ,

√
2 sin θ,

√
2 sin 2θ, . . . ,

√
2 sinVdθ)

⊤ ∈ R1+2Vd (13)

be the (1-dimensional) Vd-th order Fourier basis for arbitrary
γ > 0. Nakanishi et al. (2020) found that the VQE objective
function f∗(·) in Eq. (9) with any3 G(·), H , and |ψ0⟩ can
be expressed exactly as

f∗(x) = b⊤vec
(
⊗D

d=1ψγ(xd)
)

(14)

2When the Hamiltonian consists of Nog groups of non-
commuting operators, each of which needs to be measured sep-
arately, Nshots denotes the number of shots per operator group.
Therefore, the number of shots per observation is Nog ×Nshots.
In our experiments, we report on the total number of shots per oper-
ator group, i.e., the cumulative sum of Nshots over all observations,
when evaluating the observation cost.

3Any circuit consisting of parametrized rotation gates and non-
parametric unitary gates.

for some b ∈ R
∏D

d=1(1+2Vd), where ⊗ and vec(·) denote
the tensor product and the vectorization operator for a ten-
sor, respectively. Based on this property, the Nakanishi-
Fuji-Todo (NFT) method (Nakanishi et al., 2020) performs
SMO (Platt, 1998), where the optimum in a chosen 1D
subspace for each iteration is analytically estimated from
only 1 + 2Vd observations (see Appendix B for the detailed
procedure). It was shown that the PSR (11) and the trigono-
metric polynomial function form (14) are mathematically
equivalent (Nicoli et al., 2023a).

Inspired by the function form (14) of the objective, Nicoli
et al. (2023a) proposed the VQE kernel

kγ(x,x
′) = σ2

0

∏D
d=1

(
γ2+2

∑Vd
v=1 cos(v(xd−x′

d))
γ2+2Vd

)
, (15)

which is decomposed as kγ(x,x′) = ϕγ(x)
⊤ϕγ(x

′) with
feature maps ϕγ(x) = σ0

(γ2+2Vd)
D/2vec

(
⊗D

d=1ψγ(xd)
)
,

for GP regression. The kernel parameter γ2 controls the
smoothness of the function, i.e., suppressing the interac-
tion terms when γ2 > 1. When γ2 = 1, the Fourier basis
(13) is orthonormal, and the VQE kernel (15) is propor-
tional to the product of Dirichlet kernels (Rudin, 1964). The
VQE kernel reflects the physical knowledge (14) of VQE,
and thus allows us to perform a Bayesian variant of NFT—
Bayesian NFT or Bayesian SMO—where the 1D subspace
optimzation in each SMO step is performed with GP (see
Appendix B for more details and the performance compari-
son between the original NFT and Bayesian NFT). Nicoli
et al. (2023a) furthermore enhanced Bayesian NFT with BO,
using the notion of confident region (CoRe),

Z[X,σ](κ
2) =

{
x ∈ X ; s[X,σ](x,x) ≤ κ2

}
, (16)

i.e., the region in which the uncertainty of the GP predic-
tion is lower than a threshold κ. More specifically, they
introduced the EMICoRe acquisition function to find the
best observation points in each SMO iteration, such that
the maximum expected improvement within the CoRe is
maximized.

3. Bayesian Parameter Shift Rules
We propose the Bayesian PSR, which estimates the gradient
of the VQE objective (9) by the GP posterior (8) with the
VQE kernel (15) along with its derivatives (6) and (7). The
advantages of the Bayesian PSR include the following:

• The gradient estimator has an analytic-form.

• The estimation can be performed using observations at
any set of points.

• The estimation is optimal for heteroschedastically
noisy observations (from the Bayesian perspective),

4
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Figure 2. Illustration of the behavior of the Bayesian PSR when Vd = 1 (left) and when Vd = 2 (middle). Bayesian PSR prediction
(red) coincides with general PSR (green cross) for the designed equidistant observations (magenta crosses). The right plot visualizes the
variance (20) of derivative GP prediction at x′, as a function of the shift α of observations when Vd = 1. Although the optimum is at
α = π

2
, the dependence is weak. For all panels, the noise and kernel parameters are set to σ2 = 0.01, γ2 = 9, σ2

0 = 100.

as long as the prior with the kernel parameters, γ and
σ2
0 , is appropriately set.

• The posterior uncertainty can be analytically computed
before performing the observations.

In Section 4, we propose novel SGD solvers for VQEs that
leverage the advantages of the Bayesian PSR.

As naturally expected, our Bayesian PSR is a generalization
of exisiting PSRs, and reduces to the general PSR (12) for
noiseless and equidistant observations. Let 1D ∈ RD be
the vector with all entries equal to one.

Theorem 3.1. For any x′ ∈ [0, 2π)D and d = 1, . . . , D, the
mean and variance of the derivative GP prediction, given ob-
servations y = (y0, . . . , y2Vd−1)

⊤ ∈ R2Vd at 2Vd equidis-
tant training points X = (x0, . . . ,x2Vd−1) ∈ RD×2Vd

for xw = x′ + 2w+1
2Vd

πed with homoschedastic noise
σ = σ2 · 12Vd

for σ2 ≪ σ0, are

µ̃
(d)
[X,y,σ](x

′) =

∑2Vd−1

w=0
(−1)wyw

2 sin2
(

(2w+1)π
4Vd

)
(γ2+2Vd)

σ2

σ2
0
+2Vd

+O(σ
4

σ4
0
), (17)

s̃
(d)
[X,σ](x

′,x′) = σ2 2V 2
d +1
6 +O(σ

4

σ2
0
). (18)

The proof, the non-asymptotic form of the mean and the vari-
ance, and a numerical validation are given in Appendix C.
Apparently, the mean prediction (17) by Bayesian PSR con-
verges to the general PSR (12) with the uncertainty (18)
converging to zero in the noiseless limit, i.e., σ2 → +0
and hence yw = f∗(xw). In noisy cases, the prior vari-
ance σ2

0 ∼ O(σ2) suppresses the amplitude of the gradient
estimator as a regularizer through the first term in the de-
nominator in Eq. (17).

Figure 2 illustrates the behavior of the Bayesian PSR when
Vd = 1 (left panel) and when Vd = 2 (middle panel). In
each panel, given 2Vd equidistant observations (magenta

crosses), the blue curve shows the (non-derivative) GP pre-
diction with uncertainty (blue shades), while the red curve
shows the derivative GP prediction with uncertainty (red
shades). Note the π

2Vd
shift of the low uncertainty loca-

tions between the GP prediction (blue) and the derivative
GP prediction (red). The green cross shows the output of
the general PSR (12) at x′ = 0, which almost coincides
with the Bayesian PSR prediction (red curve) under this set-
ting. Other examples, including cases where the Bayesian
regularization is visible, are given in Appendix C.

In the simplest first-order case, i.e., where Vd = 1,∀d =
1, . . . , D, we can theoretically investigate the optimality of
the choice of the shift α in Eq. (11) (the proof is also given
in Appendix C).

Theorem 3.2. Assume that Vd = 1,∀d = 1, . . . , D.
For any x′ ∈ [0, 2π)D and d = 1, . . . , D, the mean
and variance of the derivative GP prediction, given ob-
servations y = (y1, y2)

⊤ ∈ R2 at two training points
X = (x′ − αed,x

′ + αed) ∈ RD×2 with homoschedastic
noise σ = (σ2, σ2)⊤, are

µ̃
(d)
[X,y,σ](x

′) = (y2−y1) sinα
(γ2/2+1)σ2/σ2

0+2 sin2 α
, (19)

s̃
(d)
[X,σ](x

′,x′) = σ2

(γ2/2+1)σ2/σ2
0+2 sin2 α

. (20)

Again, the mean prediction (19) is a regularized version
of the PSR (11). The uncertainty prediction (20) implies
that α = π/2 minimizes the uncertainty in the noisy case,
regardless of σ2, σ2

0 and γ. This supports most of the use
cases of the PSR in the literature (Mitarai et al., 2018), and
matches the intuition that the maximum span minimizes the
uncertainty. However, the right panel in Figure 2, where
the variance (20) of the derivative GP prediction at x′ is
visualized as a function of the shift α of observations for
Vd = 1, implies that the estimation accuracy is not very
sensitive to the choice of α.

5
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4. SGD with Bayesian PSR
In this section, we equip SGD with the Bayesian PSR. In the
standard implementation of SGD for VQE, 2Vd equidistant
points along each direction d = 1, . . . , D are observed
for gradient estimation by the general PSR (12) (or by the
PSR (11) if Vd = 1,∀d) in each SGD iteration.

Bayesian SGD (Bayes-SGD): A straightforward applica-
tion of the Bayesian PSR is to replace existing PSRs with
the Bayesian PSR for gradient estimation, allowing for the
reuse of previous observations. We retain R · 2Vd ·D lat-
est observations for a predetermined R in our experiments.
We expect that reusing previous observations accumulates
the gradient information, and thus improves the gradient
estimation accuracy.

4.1. Gradient Confident Region (GradCoRe)

We propose an adaptive observation cost control strategy
that leverages the uncertainty information provided by the
Bayesian PSR. This strategy adjusts the number of measure-
ment shots for gradient estimation in each SGD iteration
so that the variances of the derivative GP prediction at the
current optimal point x̂ are below certain thresholds. In a
fashion similar to the CoRe (16), we define the gradient
confident region (GradCoRe)

Z̃[X,σ](κ) =
{
x ∈ X ; s̃

(d)
[X,σ](x,x) ≤ κ2d,∀d

}
, (21)

where κ = (κ21, . . . , κ
2
D)⊤ ∈ RD are the required accuracy

thresholds. Our proposed SGD-based optimizer, named
SGD-GradCoRe, measures new equidistant points X̆ =

{{x(d)
w = x̂ + 2w+1

2Vd
πed}2Vd

w=0}Dd=1 for all directions with
the minimum total number of shots such that the current
optimal point x̂ is in the GradCoRe (see Figure 1).

Following Anders et al. (2024), we estimate the single-shot
observation noise variance σ∗2

1 = σ∗2(1) before the opti-
mization by collecting measurements at random locations in
order to estimate the observation noise variance as a function
of the number of shots as

σ∗2(Nshots) =
σ∗2
1

Nshots
. (22)

Let (Xt,yt,σt) be the training data (all previous observa-
tions) at the t-th SGD iteration step, and let ν̆ ∈ R2VdD be
the vector of the numbers of measurement shots at the new
equidistant measurement points X̆ for all directions. Before
measuring at X̆ in the (t + 1)-th SGD iteration, we solve
the following:

min
ν̃

∥ν̃∥1 s.t. x̂ ∈ Z̃[(Xt,X̆),(σt,σ̆(ñ))](κ(t)), (23)

where σ̆(ν̃) = σ∗2
1 · (ν̃−1

1 , . . . , ν̃−1
2VdD

)⊤, and κ(t) is the
required accuracy dependent on the iteration step t. Infor-
mally, we minimize the total measurement budget under the

constraint that the posterior gradient variance along each
direction d is smaller than the required accuracy threshold.
For simplicity, we solve the GradCoRe problem (23) by
grid search over [κ2d, σ

2∗
1 ]∀d under the additional constraint

that all 2VdD points are measured with an equal number of
shots.

We set the required accuracy thresholds κ(t) = κ2(t)1D,
where

κ2(t) = max

(
c0,

c1
D

∑D
d=1

(
µ̃
(d)

[Xt,yt,σt]
(x̂t)

)2)
. (24)

Namely, κ(t) is set proportional to the L2-norm of the es-
timated gradient at the current optimal point at the t-th
SGD iteration, as long as it is larger than a lower bound.
The lower bound c0 and the slope c1 are hyperparame-
ters to be tuned. This strategy for setting the required
accuracy based on the estimated gradient norm was pro-
posed by Tamiya & Yamasaki (2022). Alternatively, one
could also set κd(t) proportional to the absolute value of
the estimated gradient separately for each direction, i.e.,
κd(t) = max(c0, c1|µ̃(d)

[Xt,yt,σt]
(x̂t)|), and solve the Grad-

CoRe problem (23) direction-wise.

In the experiment plots in Section 5, we will refer to SGD-
GradCoRe as GradCoRe. Further algorithmic details, in-
cluding pseudo-code and used hyperparameters, are given
in Appendix D.

5. Experiments
5.1. Setup

We demonstrate the performance of our Bayesian PSR and
GradCoRe approaches in the same setup used by Nicoli
et al. (2023a). For all experiments, we prepared 50 different
random initial points from which all methods are initialized.
Our Python implementation uses Qiskit (Abraham et al.,
2019) for the classical simulation of quantum hardware.
The implementation for reproducing our results is attached
as supplemental material.

Hamiltonian and Quantum Circuit: We focus on the
quantum Heisenberg Hamiltonian with open boundary con-
ditions,

H = −
∑

i∈{X,Y,Z}

[∑Q−1
j=1 (Jiσ

i
jσ

i
j+1) +

∑Q
j=1 hiσ

i
j

]
,

(25)

where {σi
j}i∈{X,Y,Z} are the Pauli operators acting on

the j-th qubit. For the quantum circuit, we use a com-
mon ansatz, called the L-layered Efficient SU(2) cir-
cuit with open boundary conditions, where Vd = 1,∀d
(see Nicoli et al. (2023a) for more details).
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Figure 3. Comparison between SGD with PSR (dashed curves) and SGD with Bayesian PSR (solid curves), as well as GradCoRe (red
solid curve), on the Ising Hamiltonian with (L = 3)-layered (Q = 5)-qubits quantum circuit. The energy (left) and fidelity (right) are
plotted as function of the cumulative Nshots, i.e., the total number of measurement shots. Except GradCoRe equipped with the adaptive
shots strategy, the number of shots per observation is set to Nshots = 128 (blue), 256 (green), 512 (orange), and 1024 (purple).

SGLBO Bayes-NFT EmiCoRe SubsCoRe GradCoRe (our)
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Figure 4. Energy (left) and fidelity (right) achieved within the cumulative number of measurement shots for the Ising Hamiltonian with
an (L = 3)-layered (Q = 5)-qubits quantum circuit. The curves corresponds to SGLBO (blue), Bayes-NFT (green), EMICoRe (orange),
SubsCoRe (purple), and our proposed GradCoRe (red).

Evaluation Metrics: We compare all methods using two
metrics: the cumulatively lowest true energy f∗(x̂), for
f∗(·) defined in Eq. (9), and the fidelity ⟨ψGS|ψx̂⟩ ∈ [0, 1].
The latter is the inner product between the true ground-state
wave function |ψGS⟩, computed by exact diagonalization of
the target Hamiltonian H , and the trial wave function, |ψx̂⟩,
corresponding to the quantum state generated by the circuit
using the optimized parameters x̂. For both metrics, we plot
the difference (smaller is better) to the respective target, i.e.,

∆Energy = ⟨ψx̂|H|ψx̂⟩ − ⟨ψGS|H|ψGS⟩
= f∗(x̂)− ⟨ψGS|H|ψGS⟩, (26)

∆Fidelity = ⟨ψGS|ψGS⟩ − ⟨ψGS|ψx̂⟩
= 1− ⟨ψGS|ψx̂⟩, (27)

in log scale. Here, |ψGS⟩ and ⟨ψGS|H|ψGS⟩ are the ground-
state wave function and the true energy at the ground-state,
respectively, both of which are computed analytically. As
a measure of the quantum computation cost, we consider
the total number of measurement shots per operator group

(see Footnote 2) for all observations over the whole opti-
mization process.

Baseline Methods: We compare our Bayesian SGD and
GradCoRe approaches to the baselines, including SGD, NFT
(Nakanishi et al., 2020), Bayesian NFT, SGLBO (Tamiya
& Yamasaki, 2022), EMICoRe (Nicoli et al., 2023a), and
SubsCoRe (Anders et al., 2024). SGD uses the PSR (11) for
gradient estimation.

Algorithm Setting: All SGD-based methods use the
ADAM optimizer with lr = 0.05, βs = (0.9, 0.999). For
the methods not equipped with adaptive cost control (i.e.,
all methods except SGLBO, SubsCoRe and GradCoRe) we
set Nshots = 1024 for each observation, the same setting
as in Nicoli et al. (2023a), unless specified explicitly. To
avoid error accumulation, all SMO-based methods measure
the “center”, i.e., the current optimal point without shift,
every D+ 1 iterations (Nakanishi et al., 2020). Bayes-SGD
and GradCoRe estimate the gradient from the R · 2Vd ·D
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Figure 5. Gradient estimation error by PSR (dashed curve) and
Bayesian PSR (solid curve) for Nshots = 1024, evaluated by the
L2-distance between the estimated gradient µ̃(x̂) and the true
gradient g∗(x̂) (computed by PSR with simulated noiseless mea-
surements).

latest observations for R = 5. GradCoRe initially uses the
fixed threshold κ2(t) = σ∗2

1 /256 before starting the cost
adaption after D SGD iterations.

Further details on the algorithmic and experimental settings
are described in Appendix D and Appendix E, respectively.

5.2. Improvement over SGD with Bayesian PSR and
GradCoRe

First, we investigate the potential improvement of our
Bayesian PSR and GradCoRe over plain SGD. Figure 3
compares SGD with the standard PSR (SGD) and SGD
with Bayesian PSR (Bayes-SGD) on the Ising Hamilto-
nian, i.e., Eq. (25) with Ji∈{X,Y,Z} = (−1, 0, 0) and
hi∈{X,Y,Z} = (0, 0,−1), with (L = 3)-layered (Q = 5)-
qubits quantum circuit. Both standard and Bayesian PSR
are shown with Nshots = 128, 256, 512, 1024 measurement
shots. The left and right panels plot the difference to the
ground-state in true energy (26) and fidelity (27) achieved
by each method as functions of the cumulative Nshots, i.e.,
the total number of measurement shots. The trial density to
the right of each panel shows a kernel-density estimation
of the true energy distribution over the trials after 1× 107

measurement shots. The median, the 25-th and the 75-th
percentiles are shown as a solid curve and shades, respec-
tively. We observe that Bayesian PSR, with a more accurate
gradient estimator as shown in Figure 5, is comparable or
compares favorably to the original SGD. More importantly,
we observe that GradCoRe automatically selects the optimal
number of measurement shots in each optimization phase,
thus outperforming SGD and Bayes-SGD with fixed Nshots

through the entire optimization process. The adaptively se-
lected measurement shots and accuracy threshold κ(t) for
GradCoRe are shown in Appendix F.

5.3. Comparison with State-of-the-art Methods

Figure 4 compares GradCoRe to the baseline methods
SGLBO, Bayes-NFT, EMICoRe, and SubsCoRe. Our Grad-
CoRe method, which significantly improves upon SGD as
shown in Figure 3, establishes itself as the new state-of-
the-art, exhibiting faster convergence and achieving lower
overall energy. We excluded the original NFT in this com-
parison, as it is outperformed by Bayes-NFT in all observed
settings (see Figure 6 in Appendix B).

6. Conclusion
The physical properties of variational quantum eigensolvers
(VQEs) allow for the use of specialized optimization meth-
ods, i.e., stochastic gradient descent (SGD) with parameter
shift rules (PSRs) and a specialized sequential minimal opti-
mization (SMO), called NFT (Nakanishi et al., 2020). Con-
temporary research has shown that those properties can be
appropriately captured by the physics-informed VQE kernel,
with which NFT has been successfully improved through
Bayesian machine learning techniques. For instance, pre-
vious observations could be used to determine the optimal
measurement points (Nicoli et al., 2023a) and computational
cost could be minimized based on the uncertainty predic-
tion (Anders et al., 2024). In this paper, we have shown
that a similar approach can also improve SGD-based meth-
ods. Specifically, we proposed the Bayesian PSR, where
the gradient is estimated by derivative GPs. The Bayesian
PSR generalizes existing PSRs to allow for flexible esti-
mation from observations at an arbitrary set of locations.
Furthermore, it provides uncertainty information, which en-
ables observation cost adaptation through the novel notion
of gradient confident region (GradCoRe). Our theoretical
analysis revealed the relation between Bayesian PSR and ex-
isting PSRs, while our numerical investigation empirically
demonstrated the utility of our approaches. We envisage
that Bayesian approaches will facilitate further development
of more efficient algorithms for VQEs and, more generally,
quantum computing. In future work, we aim to explore the
optimal combination of existing methods and strategies for
selecting the most suitable approaches for specific tasks, i.e.,
specific Hamiltonians.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning and quantum computing. There are
many potential societal consequences of our work, none of
which we feel must be specifically highlighted here.
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A. General Gaussian Processes (GPs) with Derivative Outputs
The derivative GP regression can be straightforwardly extended to the case where both training outputs (i.e., observations),
and test outputs (i.e., predictions) contain different orders of derivatives.

Assume that we have a set of input points, and for each input point x ∈ RD, the corresponding output, i.e., observation or
prediction, is f(x) or ∂xd

f(x), where ∂xd
≡ ∂

∂xd
. Let us denote the derivative kernel functions as

k̃(d,d
′)(x,x′) =


k(x,x′) if d = 0, d′ = 0,

∂x′
d′
k(x,x′) if d = 0, d′ = 1, . . . , D,

∂xd
k(x,x′) if d = 1, . . . , D, d′ = 0,

∂xd
∂x′

d′
k(x,x′) if d = 1, . . . , D, d′ = 1, . . . , D.

For training points X = {x(n)}Nn=1 and test points X ′ = {x′(m)}Mm=1, we should set the the entries of the train-train
K ∈ RN×N , train-testK ′ ∈ RN×M , and test-testK ′′ ∈ RM×M kernels as

Kn,n′ = k̃(d(xn),d(xn′ ))(xn,xn′), (28)

K ′
n,m = k̃(d(xn),d(xm))(xn,xm), (29)

K ′′
m,m′ = k̃(d(xm),d(xm′ ))(xm,xm′), (30)

where

d(x) =

{
0 if the corresponding output for the input x is f(x),
d if the corresponding output for the input x is ∂xd

f(x).

Eqs.(3)–(5) with the kernel matrices K,K ′,K ′′ set as Eqs.(28)–(30) give the posterior GP for the corresponding test
outputs.

For higher-order derivative outputs, we can define the kernels in exactly the same way as above, by applying the same
derivative operators to the kernels as the ones applied to the outputs, i.e.,

k̃(x,x′) =
[
∂(r1)x1

· · · ∂(rD)
xD

] [
∂
(r′1)

x′
1

· · · ∂(r
′
D)

x′
D

]
k(x,x′),

if the corresponding outputs at x and x′ are ∂(r1)x1 · · · ∂(rD)
xD f(x) and ∂(r

′
1)

x′
1

· · · ∂(r
′
D)

x′
D
f(x′), respectively, where ∂(r)xd ≡ ∂r

∂xd
r

denotes the r-th order derivative with respect to xd.

B. Nakanishi-Fuji-Todo (NFT) Algorithm (Nakanishi et al., 2020) and Bayesian NFT
Let {ed}Dd=1 be the standard basis. NFT is initialized with a random point x̂0 with a first observation ŷ0 = f∗(x̂0) + ε0,
and iterates the following procedure: for each iteration step t,

1. Select an axis d ∈ {1, . . . , D} sequentially and observe the objective y ∈ R2Vd at 2Vd pointsX = (x1, . . . ,x2Vd
) =

{x̂t−1 + αwed}2Vd
w=1 ∈ RD×2Vd along the axis d.4 Here α ∈ [0, 2π)2Vd is such that αw ̸= 0, αw′ ̸= αw, for all w and

w′ ̸= w.

2. Apply the 1D trigonometric polynomial regression f̃(θ) = b̃
⊤
ψ1(θ) to the 2Vd new observations y, together with

the previous best estimated score ŷt−1, and analytically compute the new optimum x̂t = x̂t−1 + θ̂ed, where
θ̂ = argminθ f̃(θ).

3. Update the best score by ŷt = f̃(θ̂).

Note that if the observation noise is negligible, i.e., y ≈ f∗(x), each step of NFT reaches the global optimum in the 1D
subspace along the chosen axis d for any choice ofα, and thus performs SMO exactly. Otherwise, errors can be accumulated

4With slight abuse of notation, we use the set notation to specify the column vectors of a matrix, i.e., (x1, . . . ,xN ) = {xn}Nn=1.
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Figure 6. Comparison between NFT (Nakanishi et al., 2020) and Bayes-NFT for the Ising Hamiltonian with an (L = 3)-layered (Q = 5)-
qubits quantum circuit. The energy (left) and fidelity (right), in the forms of Eqs.(26) and (27), respectively, are plotted as functions of the
cumulative Nshots, i.e., the total number of measurement shots. The number of shots per observation is set to Nshots = 128 (blue), 256
(green), 512 (orange), and 1024 (purple).

in the best score ŷt, and therefore an additional measurement may need to be performed at x̂t after a certain iteration
interval.

Bayesian NFT (Bayes-NFT) performs the 1D trigonometric polynomial regression and optimization in Step 2 with GP with
the VQE kernel (15), where all previous observations are used for training. Using previous observations allows prediction
with smaller uncertainty and thus more accurate subspace optimization. Figure 6 compares the original NFT and Bayesian
NFT on the Ising Hamiltonian with an (L = 3)-layered (Q = 5)-qubits quantum circuit with different number of shots per
observation. We observe that using GP generally accelerates the optimization process.

C. Proofs
Here, we give proofs of theorems in Section 3, and numerically validate them.

C.1. Proof of Theorem 3.1

We start from a more general theorem than Theorem 3.1, which is proven in Appendix C.3.
Theorem C.1. Assume that, for any given point x̂ ∈ [0, 2π)D, we have observations y = (y0, . . . , y2Vd−1)

⊤ ∈ R2Vd at
2Vd equidistant training points X = (x0, . . . ,x2Vd−1) ∈ RD×2Vd for xw = x̂ + 2w+1

2Vd
πed with homoschedastic noise

σ = σ2 · 12Vd
∈ R2Vd . Then, the mean and variance of the derivative ∂df(x′) prediction at x′ = x̂ + α′ed for any

d = 1, . . . , D and α′ ∈ [0, 2π) are given as

µ̃
(d)
[X,y,σ](x

′) =

∑2Vd−1
w=0 (−1)wyw

(
cos(Vdα

′)

2 sin2
(

(2w+1)π
4Vd

−α′/2
) +

Vd sin(
(2w+1)π

4Vd
−(Vd+1/2)α′)

sin(
(2w+1)π

4Vd
−α′/2)

− 4V 2
d cosVdα

′

(γ2+2Vd)σ2/σ2
0+4Vd

)
(γ2 + 2Vd)σ2/σ2

0 + 2Vd
, (31)

s̃
(d)
[X,σ](x

′,x′) = σ2

(
Vd(Vd + 1)(2Vd + 1)

3((γ2 + 2Vd)σ2/σ2
0 + 2Vd)

− 4V 3
d cos (2Vdα

′)

((γ2 + 2Vd)σ2/σ2
0 + 2Vd)((γ2 + 2Vd)σ2/σ2

0 + 4Vd)

)
− σ2

0

8V 4
d (cos (2Vdα

′)− 1)

(γ2 + 2Vd)((γ2 + 2Vd)σ2/σ2
0 + 2Vd)((γ2 + 2Vd)σ2/σ2

0 + 4Vd)
. (32)

Regardless of the observations, the predictive uncertainty (32) is periodic with respective to α′ with the period of π/Vd. We
can easily get the following corollaries.
Corollary C.2. For the test point at x′ = x̂, i.e., α′ = 0, the mean of the derivative GP prediction is

µ̃
(d)
[X,y,σ](x

′) =

∑2Vd−1
w=0 (−1)wyw

(
1

2 sin2
(

(2w+1)π
4Vd

) +
Vd(γ

2+2Vd)σ
2/σ2

0

(γ2+2Vd)σ2/σ2
0+4Vd

)
(γ2 + 2Vd)σ2/σ2

0 + 2Vd
, (33)

11
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Figure 7. Numerical validation of Theorem C.1 under two parameter settings (see above each panel). Given the 2Vd equidistant
observations (magenta crosses), the derivative GP prediction (blue curve) with uncertainty (blue shades) is compared to their analytic
forms (31) and (32), i.e., the mean function (red curve) and the variance function (red shades), respectively. We observe that our theory
perfectly matches the numerical computation. The green cross shows the prediction by the general PSR (12), which almost coincides with
Bayesian PSR prediction when σ2/σ2

0 = 0.01 (left panel), while a significant difference is observed when σ2/σ2
0 = 0.1 (right panel).

Corollary C.3. For the test point at x′ = x̂ + α′ed,∀α′ = 0, π/Vd, 2π/Vd, . . . , (2Vd − 1)π/Vd, the variance of the
derivative GP prediction is

s̃
(d)
[X,σ](x

′,x′) = σ2

(
Vd(Vd + 1)(2Vd + 1)

3((γ2 + 2Vd)σ2/σ2
0 + 2Vd)

− 4V 3
d

((γ2 + 2Vd)σ2/σ2
0 + 2Vd)((γ2 + 2Vd)σ2/σ2

0 + 4Vd)

)
. (34)

Ignoring high order terms with respect to σ2/σ2
0 in Eqs.(33) and (34) gives Theorem 3.1. □

Figure 7 shows numerical validation of Theorem C.1, where the derivative GP prediction (blue curve) with uncertainty
(blue shades) is compared to their analytic forms, i.e., the mean function (31) (red curve) and the variance function (32)
(red shades), respectively, under two settings of noise and kernel parameters. We observe that our theory perfectly matches
the numerical computation. When σ2/σ2

0 = 0.01 (left panel), the regularization is small enough and the Bayesian PSR
prediction (red curve) almost coincides with the general PSR prediction (green cross). On the other hand, when σ2/σ2

0 = 0.1
(right panel), the Bayesian PSR prediction (red) does not match the general PSR prediction (green cross), because of the
regularization.

C.2. Mathematical Preparations

Before proving Theorem C.1, we give some mathematical identities on the trigonometric functions.

C.2.1. ROOT OF UNITY

For a natural number N ∈ {1, 2, . . .}, let us define a root of unity ρN = e2πi/N such that ρNN = 1. Then, the following hold:

N−1∑
n=0

ρnkN =
1− ρkNN
1− ρkN

= 0 for k = 1, . . . , N − 1, (35)

N−1∑
n=0

ρ
(n+ϕ)k
N = ρkϕN

N−1∑
n=0

ρnkN = ρkϕN
1− ρkNN
1− ρkN

= 0 for k = 1, . . . , N − 1, (36)

It also holds for even N that

N−1∑
n=0

ρ
(n+1/2)k+nN/2
N = ρ

k/2
N

N−1∑
n=0

ρ
n(k+N/2)
N = ρ

k/2
N

1− ρ
(k+N/2)N
N

1− ρ
(k+N/2)
N

= 0 for k = 1, . . . , N/2− 1. (37)

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Bayesian Parameter Shift Rules in Variational Quantum Eigensolvers

C.2.2. PROPERTIES OF DIRICHLET KERNEL

The summation in the Dirichlet kernel can be analytically performed as

1 + 2

N∑
n=1

cos (nx) = 1 + 2

N∑
n=1

einx + e−inx

2
=

N∑
n=−N

einx

= e−iNx 1− ei(2N+1)x

1− eix

=
e−i(N+1/2)x − ei(N+1/2)x

e−ix/2 − eix/2

=
sin((N + 1/2)x)

sin(x/2)
. (38)

Therefore, it also holds that

2

N∑
n=1

n sin (nx) = −
Vd∑
v=1

∂

∂x
(1/Vd + 2 cos (nx))

= − ∂

∂x

(
1 + 2

Vd∑
v=1

cos (nx)

)

= −
(N + 1/2) cos((N + 1/2)x) sin(x/2)− 1

2 sin((N + 1/2)x) cos(x/2)

sin2(x/2)

= −
N cos((N + 1/2)x) sin(x/2)− 1

2 sin(Nx)

sin2(x/2)

=
sin(Nx)

2 sin2(x/2)
− N cos((N + 1/2)x)

sin(x/2)
. (39)

C.3. Proof of Theorem C.1

For derivative predictions ∂df(x′), ∂df(x
′′), the test kernels should be modified as Eqs.(6) and (7). For the VQE kernel

(15), they are

k̃(x,x′) = ∂x′
d
k(x,x′) = σ2

0

(
2
∑Vd

v=1 v sin (v(xd − x′d))

γ2 + 2Vd

) ∏
d′ ̸=d

(
γ2 + 2

∑Vd′
v=1 cos (v(xd′ − x′d′))

γ2 + 2Vd′

)
, (40)

k̃(x′,x′′) = ∂x′
d
∂x′′

d
k(x′,x′′) = σ2

0

(
2
∑Vd

v=1 v
2 cos (v(x′d − x′′d))

γ2 + 2Vd

) ∏
d′ ̸=d

(
γ2 + 2

∑Vd′
v=1 cos (v(x

′
d′ − x′′d′))

γ2 + 2Vd′

)
. (41)

The training kernel matrix for {xw = x̂+ 2w+1
2Vd

πed}2Vd−1
w=0 is Toeplitz as

K = σ2
0



τ0 τ1 τ2 · · · τ2Vd−2 τ2Vd−1

τ1 τ0 τ1

τ2 τ1 τ0
...

...
. . .

τ2Vd−2 τ0 τ1
τ2Vd−1 · · · τ1 τ0


∈ R2Vd×2Vd ,

where

τw =
γ2 + 2

∑Vd

v=1 cos
(

vw
2Vd

2π
)

γ2 + 2Vd
. (42)

13
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For a test point at x′ = x̂+ α′ed, the test kernel components are

k̃
′
= σ2

0


κ0
κ1
...

κ2Vd−1

 ,

k̃′′ = σ2
0 ,

where

κw =
2
∑Vd

v=1 v sin
(
v
(

2w+1
2Vd

π − α′
))

γ2 + 2Vd
. (43)

The first identity (35) for the root of unity implies that

2Vd−1∑
v=0

e
vw 2πi

2Vd = 0 for w = 1, . . . , 2Vd − 1,

and therefore

2Vd−1∑
v=0

cos

(
vw

2π

2Vd

)
=

{
2Vd for w = 0, 2Vd,

0 for w = 1, . . . , 2Vd − 1,
(44)

2Vd−1∑
v=0

sin

(
vw

2π

2Vd

)
= 0 for w = 0, . . . , 2Vd. (45)

The second identity (36) for the root of unity gives

2Vd−1∑
v=0

e
(v+1/2)w 2πi

2Vd =

2Vd−1∑
v=0

e
(2v+1)w πi

2Vd = 0 for w = 1, . . . , 2Vd − 1,

and therefore

2Vd−1∑
v=0

cos

(
(2v + 1)w

π

2Vd

)
=


2Vd for w = 0,

−2Vd for w = 2Vd,

0 for w = 1, . . . , 2Vd − 1,

(46)

2Vd−1∑
v=0

sin

(
(2v + 1)w

π

2Vd

)
= 0 for w = 0, . . . , 2Vd. (47)

The third identity (37) for the root of unity gives

2Vd−1∑
v=0

e
((v+1/2)w+vVd)

2πi
2Vd =

2Vd−1∑
v=0

evπie
(2v+1)w πi

2Vd =

2Vd−1∑
v=0

(−1)ve
(2v+1)w πi

2Vd = 0 for w = 1, . . . , Vd − 1,

and therefore

2Vd−1∑
v=0

(−1)v cos

(
(2v + 1)w

π

2Vd

)
= 0 for w = 0, . . . , Vd, (48)

2Vd−1∑
v=0

(−1)v sin

(
(2v + 1)w

π

2Vd

)
=

{
2Vd for w = Vd,

0 for w = 0, . . . , Vd − 1.
(49)

14
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From the symmetry of the trigonometric functions, it holds that

Vd∑
v=1

cos

(
vw

2π

2Vd

)
=

{
−1 for w = 1, 3, 5, . . . , 2Vd − 1,

0 for w = 2, 4, 6, . . . , 2Vd,
(50)

Vd∑
v=1

sin

(
vw

2π

2Vd

)
= −

2Vd∑
v=Vd+1

sin

(
vw

2π

2Vd

)
. (51)

Note that the factor −1 in the odd w case in Eq. (50) is because the summand is −1 for v = Vd, while the summands for the
other v are canceled each other.

By using Eq. (50), Eq. (42) can be written as

τw =
γ2 + 2

∑Vd

v=1 cos
(

vw
2Vd

2π
)

γ2 + 2Vd
=


1 for w = 0,
γ2−2

γ2+2Vd
for w = 1, 3, 5, . . . , 2Vd − 1,

γ2

γ2+2Vd
for w = 2, 4, 6, . . . , 2Vd − 2,

and therefore

K =
σ2
0

γ2 + 2Vd

(
2VdI2Vd

+ (γ2 − 1)11⊤ + cc⊤
)

=
σ2
0

γ2 + 2Vd

(
2VdI2Vd

+
(
1 c

)(γ2 − 1 0
0 1

)(
1 c

)⊤)
, (52)

where

c =



1
−1
1
−1

...
1
−1


∈ R2Vd .

With the training kernel expression (52), the matrix inversion lemma gives

(
K + σ2I2Vd

)−1
=
γ2 + 2Vd

σ2
0

((
γ2 + 2Vd)(σ

2/σ2
0 + 2Vd

)
I2Vd

+
(
1 c

)(γ2 − 1 0
0 1

)(
1 c

)⊤)−1

=
γ2 + 2Vd

σ2
0

1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd(

I2Vd
+

1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd

(
1 c

)(γ2 − 1 0
0 1

)(
1 c

)⊤)−1

=
γ2 + 2Vd

σ2
0

1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd{

I2Vd
− 1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd

(
1 c

)(γ2 − 1 0
0 1

)
(
I2 +

(
1 c

)⊤ 1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd

(
1 c

)(γ2 − 1 0
0 1

))−1 (
1 c

)⊤}

=
γ2 + 2Vd

σ2
0

1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd{

I2Vd
− 1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd

(
1 c

)(γ2 − 1 0
0 1

)
15
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I2 +

1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd

(
2Vd(γ

2 − 1) 0
0 2Vd

))−1 (
1 c

)⊤}

=
γ2 + 2Vd

σ2
0

1

(γ2 + 2Vd)σ2/σ2
0 + 2Vd{

I2Vd
−
(
1 c

)(γ2 − 1 0
0 1

)
(
(γ2 + 2Vd)σ

2/σ2
0 + 2Vdγ

2 0
0 (γ2 + 2Vd)σ

2/σ2
0 + 4Vd

)−1 (
1 c

)⊤}

=
1

σ2
0

a(I2Vd
+ b11⊤ + ccc⊤),

where

a =
γ2 + 2Vd

(γ2 + 2Vd)σ2/σ2
0 + 2Vd

,

b = − γ2 − 1

(γ2 + 2Vd)σ2/σ2
0 + 2Vdγ2

,

c = − 1

(γ2 + 2Vd)σ2/σ2
0 + 4Vd

.

For the test kernels

k̃
′
= σ2

0


κ0
κ1
...

κ2Vd−1

 ,

k̃′′ = σ2
0

(
2
∑Vd′

v=1 v
2

γ2 + 2Vd

)
=
σ2
0Vd(Vd + 1)(2Vd + 1)

3(γ2 + 2Vd)
,

with

κw =
2
∑Vd

v=1 v sin
(
v
(

(2w+1)π
2Vd

− α′
))

γ2 + 2Vd
,

(53)

we have

∥k̃
′
∥2 = σ4

0

2Vd−1∑
w=0

2
∑Vd

v=1 v sin
(
v
(

(2w+1)π
2Vd

− α′
))

γ2 + 2Vd

2

=
σ4
0

(γ2 + 2Vd)2

2Vd−1∑
w=0

{
4

Vd∑
v=1

Vd∑
v′=1

vv′ sin

(
v

(
(2w + 1)π

2Vd
− α′

))
sin

(
v′
(
(2w + 1)π

2Vd
− α′

))}

=
σ4
0

(γ2 + 2Vd)2

2Vd−1∑
w=0

{
2

Vd∑
v=1

Vd∑
v′=1

vv′
(
cos

(
(v − v′)

(
(2w + 1)π

2Vd
− α′

))
− cos

(
(v + v′)

(
(2w + 1)π

2Vd
− α′

)))}

=
σ4
0

(γ2 + 2Vd)2

{
2

Vd∑
v=1

Vd∑
v′=1

vv′
2Vd−1∑
w=0

(
cos

(
(v − v′)

(
(2w + 1)π

2Vd
− α′

))
− cos

(
(v + v′)

(
(2w + 1)π

2Vd
− α′

)))}

=
σ4
0

(γ2 + 2Vd)2

{

16
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2

Vd∑
v=1

Vd∑
v′=1

vv′
2Vd−1∑
w=0

(
cos

(2w + 1)(v − v′)π

2Vd
cos ((v − v′)α′) + sin

(2w + 1)(v − v′)π

2Vd
sin ((v − v′)α′)

− cos
(2w + 1)(v + v′)π

2Vd
cos ((v + v′)α′)− sin

(2w + 1)(v + v′)π

2Vd
sin ((v + v′)α′)

)}
(54)

=
σ4
0

(γ2 + 2Vd)2

{
2

Vd∑
v=1

Vd∑
v′=1

vv′
2Vd−1∑
w=0

(
cos

(2w + 1)(v − v′)π

2Vd
cos ((v − v′)α′)

− cos
(2w + 1)(v + v′)π

2Vd
cos ((v + v′)α′)

)}
(55)

=
σ4
0

(γ2 + 2Vd)2
2(2Vd)

((
Vd∑
v=1

v2

)
+ V 2

d cos (2Vdα
′)

)
(56)

=
σ4
0

(γ2 + 2Vd)2
2(2Vd)

(
Vd(Vd + 1)(2Vd + 1)

6
+ V 2

d cos (2Vdα
′)

)

= σ4
0

4V 2
d

(γ2 + 2Vd)2

(
(Vd + 1)(2Vd + 1)

6
+ Vd cos (2Vdα

′)

)
.

Here we used Eqs.(46) and (47) to obtain Eqs.(55) and (56) from Eq. (54).

We also have

∥k̃
′
∥1 = k̃

′⊤
12Vd

= σ2
0

2Vd−1∑
w=0

2
∑Vd

v=1 v sin
(
v
(

(2w+1)π
2Vd

− α′
))

γ2 + 2Vd

= σ2
0

2
∑Vd

v=1 v
∑2Vd−1

w=0 sin
(
v
(

(2w+1)π
2Vd

− α′
))

γ2 + 2Vd

= σ2
0

2
∑Vd

v=1 v
∑2Vd−1

w=0

(
sin (2w+1)vπ

2Vd
cos vα′ − cos (2w+1)vπ

2Vd
sin vα′

)
γ2 + 2Vd

= 0,

and

k̃
′⊤
c = σ2

0

2Vd−1∑
w=0

(−1)w
2
∑Vd

v=1 v sin
(
v
(

(2w+1)π
2Vd

− α′
))

γ2 + 2Vd

= σ2
0

2
∑Vd

v=1 v
∑2Vd−1

w=0 (−1)w sin
(
v
(

(2w+1)π
2Vd

− α′
))

γ2 + 2Vd

= σ2
0

2
∑Vd

v=1 v
∑2Vd−1

w=0 (−1)w
(
sin (2w+1)vπ

2Vd
cos vα′ − cos (2w+1)vπ

2Vd
sin vα′

)
γ2 + 2Vd

= σ2
0

2Vd2Vd cosVdα
′

γ2 + 2Vd

= σ2
0

4V 2
d cosVdα

′

γ2 + 2Vd
.

Here, we used Eqs.(48) and (49) in the second last equation. Therefore, the mean of the derivative is

µ̃
(d)
[X,y,σ](x

′) = k̃
′⊤ (

K + σ2I2Vd

)−1
y

= k̃
′⊤ a

σ2
0

(
I2Vd

+ b12Vd
1⊤
2Vd

+ ccc⊤
)
y
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=
a

σ2
0

(
k̃
′⊤
y + bk̃

′⊤
12Vd

1⊤
2Vd
y + ck̃

′⊤
cc⊤y

)
= a

2Vd−1∑
w=0

yw
2
∑Vd
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v
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))}
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′
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0 + 2Vd
. (57)

Eq. (39) implies that, for w = 0, 1, . . . , 2Vd − 1, it holds that

2

Vd∑
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v sin
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(
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2Vd
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=
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(
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(
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(
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(
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(58)

Substituting Eq. (58) into Eq. (57) gives Eq. (31).

The posterior variance can be computed as

s̃
(d)
[X,σ](x

′,x′) = k̃
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6
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− σ2
0
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4V 3

d cos (2Vdα
′)
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8V 4
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, (59)

which gives Eq. (32). □

C.4. Proof of Theorem 3.2

In the first order case with Vd = 1,∀d = 1, . . . , D, the test VQE kernels for predicting derivatives ∂df(x′), ∂df(x
′′) are

k̃(x,x′) =
∂

∂x′d
k(x,x′) = σ2

0

(
2 sin (xd − x′d)
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) ∏
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)
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′′
d
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γ2 + 2
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(
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)
.

Then, the kernels with the two training pointsX = (x′ − αed,x
′ + αed) and the one test point x′ are
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′
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With these kernels, the posterior mean is
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The posterior variance is
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=
2σ2

0

γ2 + 2

(
(γ2 + 2)σ2/σ2

0

(γ2 + 2)σ2/σ2
0 + 4 sin2 α

)
=

σ2

(γ2/2 + 1)σ2/σ2
0 + 2 sin2 α

.

Thus we obtained Eqs.(19) and (20). □
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D. Algorithm Details
D.1. GradCoRe Pseudo-Code

Algorithm 1 describes SGD-GradCoRe in detail. SGD-GradCoRe uses the GradCoRe measurement selection subroutine
described in Algorithm 2, which selects measurement points and respective minimum required number of shots to estimate
the quantum circuit parameter derivative required for the SGD.

Algorithm 1 (SGD-GradCoRe) Improved SGD algorithm using a VQE-derivative kernel GP with the GradCoRe
measurement selection subroutine, as described in Algorithm 2. The algorithm finds the minimum number of shots
required to estimate the gradient wrt. parameter configurations x̂ of the quantum circuit to optimize with SGD.
The optimization stops when the total number of measurement shots reaches the maximum number of observation
shots allowed, i.e., Ntot−shots. To avoid cluttering notation, the algorithm is restricted to the case where Vd = 1.
Generalization to an arbitrary Vd is straightforward.
Input :

• x̂0: initial starting point (best point)
Parameters :

• Vd = 1
• D : number of parameters to optimize, i.e., x̂ ∈ RD .
• Ntot-shots : Total # of shots, i.e., maximum allowed quantum computing budget.
• σ∗2

1 : measurement variance using a single shot.
• κ0 : Initial GradCoRe threshold at step t = 0.
• Tinitial : Number of steps in beginning to use initial GradCoRe threshold κ0.
• c0 : smallest allowed GradCoRe threshold
• c1 : GradCoRe threshold scaling parameter

Output :
• x̂∗ : optimal choice of parameters for the quantum circuit.

1 n← 0 /* initialize consumed shot budget */
2 t← 0 /* initialize optimization step */

3 κ0 ← 1Dκ0 /* initial κ0 to use for Tinitial steps */
4 X0, y0, σ0 ← (), (), () /* initialize empty Gaussian process */

5 while n < Ntot-shots do
6 /* choose measurement points & number of shots s.t. x̂t is in the GradCoRe of κt

*/

7 X̆, ν̃ ← gradcore measurements(Xt, yt, σt, x̂t, κt) /* (Algorithm 2) */

8 for i ∈ {1, ..., |X̆|} do
9 y̆i ← quantum circuit(parameters=X̆i, shots=ν̃i)/* measure chosen points */

10 σ̆i ← σ∗2
1
ν̃i

11 end
12 y̆ , σ̆ ← (y̆1, ..., y̆|X̆|) , (σ̆1, ..., σ̆|X̆|) /* concatenate observed values & noise */

13 Xt+1, yt+1, σt+1 ← (Xt , X̆), (yt , y̆), (σt , σ̆) /* add new observations to Gaussian process */

14 x̂t+1 ← x̂t − ρ µ̃[Xt+1,σt+1,yt+1](x̂
t) /* SGD (or variant) step using GP derivative */

15 if t ≥ Tintial then

16 κt+1 ← 1D max

[
c0,

c1
D

∑D
d=1

(
µ̃
(d)

[Xt+1,yt+1,σt+1]
(x̂t)

)2
]
/* adapt GradCoRe threshold */

17 end
18 t← t+ 1 /* update the step */
19 n← n+

∑
d ν̃d /* update the consumed shot budget */

20 end
21 return x̂∗
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Algorithm 2 (GradCoRe measurement selection subroutine) Select the points to measure and respective minimum
number of required shots such that when updating the GP with these new measurements, the GP’s derivative uncertainty
at the current best point is smaller than the threshold κ, i.e., the current point is within the GradCoRe.
Input :

• X,y,σ : Gaussian process at current step
• x̂ : current best point
• κ = (κ2

1, . . . , κ
2
D) : GradCoRe thresholds at current step

Parameters :
• Vd = 1
• σ∗2

1 : measurement variance using a single shot.
• α̂ : shift from best point at the previous step (default to α̂ = π

2
)

Output :
• X̆ : points which should be measured and added to the GP to compute the derivative.
• ν̃ : number of shots for the measured points.

1 begin
2 for d ∈ {1, ..., D} do
3 X̆d ← (x̂− α̂ · ed, x̂+ α̂ · ed) /* choose points to measure along d */

4 σ̆± ← κd /* initialize measurement noise to minimum (most expensive, κd ≪ σ∗
1) */

5 for σ̃ ∈ [σ∗
1 , κd] do

6 /* create temporary GP copies, add points with σ̃ observation noise */

7 X ′, y′, σ′ ← (X , X̆d), (y , 0, 0), (σ , σ̃, σ̃)

8 /* find largest observation noise for which x̂ is in the GradCoRe */
9 if (s̃[X′,σ′](x̂, x̂) ≤ κ2

d) ∧ (σ̆± > σ̃) then
10 σ̆± ← σ̃
11 end
12 end
13 ν̃d ←

(
σ∗2
1

σ̆±
,
σ∗2
1

σ̆±

)
/* compute shots from variance through single shot variance σ∗2

1 */

14 end
15 X̆←

(
X̆1, . . . , X̆D

)
/* concatenate points to measure */

16 ν̃ ← (ν̃1, . . . , ν̃D) /* concatenate shots to measure per point */

17 return X̆, ν̃t+1
d

18 end

D.2. Parameter Setting

Every algorithm used in our benchmarking analysis has several hyperparameters to be set. For transparency and to allow the
reproduction of our experiments, we detail the choice of parameters for EMICoRe, SubsCoRe and GradCoRe in Table 1.
The SGLBO results were obtained using the original code from Tamiya & Yamasaki (2022) and we used the default setting
from the original paper. For NFT, Bayes-NFT and Bayes-SGD runs, we used the default parameters specified in Table 2.
For algorithmic efficiency, all Bayesian-SMO methods use the inducer option introduced in Nicoli et al. (2023a), retaining
only the last R · 2Vd ·D − 1 = 399 measured points once more than R · 2Vd ·D − 1 +D = 439 points were stored in the
GP, where we chose R = 5. Since the discarded points are replaced with a single point predicted from them, the number of
the traininig points for the GP is kept constant at R · 2Vd ·D = 400. On the other hand, Bayesian-SGD methods measure
(at most, in the SGD-GradCoRe case) 2VdD = 80 points per SGD step, and we retain R · 2Vd ·D = 400 points after more
than (R+ 1) · 2Vd ·D = 480 points are measured. Unlike the Bayesian-SMO methods, we do not add additional inducer
based on the prediction from the discarded points, and therefore the number of the training points for the GP is kept constant
at R · 2Vd ·D = 400.

5a.k.a., “readout” in Nicoli et al. (2023a).
6All hyperparameters not specified in the table are set to the default in Nicoli et al. (2023a).
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Table 1. Algorithm specific parameter choice for EMICoRe, SubsCoRe and GradCoRe for all experiments (unless specified otherwise).

Algorithmic specific parameters

--acq-params EMICoRe params as in Nicoli et al. (2023a)

func ei Base acq. func. type
optim emicore Optimizer type
pairsize (JSG) 20 # of candidate points
gridsize (JOG) 100 # of evaluation points
corethresh-strategy grad Gradient strategy for κ
pnorm 2 Order of gradient norm
corethresh (κ) 256 CoRe threshold κ
corethresh_width (Tinitial) 40 # initial steps with fixed κ
coremin_scale (C0) 2048 Coefficient C0 for updating κ
corethresh_scale (C1) 1.0 Coefficient C1 for updating κ
stabilize_interval 41 Stabilization interval in SMO steps
samplesize (NMC) 100 # of MC samples
smo-steps (TNFT) 0 # of initial NFT steps
smo-axis True Sequential direction choice

--acq-params SubsCoRe params as in Anders et al. (2024)

optim subscore5 Optimizer type
readout-strategy center Alg type SubsCoRe
corethresh-strategy grad Gradient strategy for κ
pnorm 2 Order of gradient norm
corethresh (κ) 256 Initial Nshots for CoRe
corethresh_width (Tinitial) 40 # initial steps with fixed κ
coremin_scale (C0) 2048 Coefficient C0 for updating κ
corethresh_scale (C1) 1.0 Coefficient C1 for updating κ
stabilize_interval 41 Stabilization interval in SMO steps
coremetric readout Metric to set CoRe

--acq-params GradCoRe params this paper6

optim gradcore Optimizer type
corethresh-strategy grad Gradient strategy for κ
pnorm 2 Order of gradient norm
corethresh (κ) 256 Initial Nshots for CoRe
corethresh_width (Tinitial) 40 # initial steps with fixed κ
coremin_scale (C0) 2048 Coefficient C0 for updating κ
corethresh_scale (C1) 1.2 Coefficient C1 for updating κ
coremetric readout Metric to set CoRe
lr 0.05 learning rate for SGD
gdoptim adam Optimizer for SGD
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Table 2. Default choice of circuit parameters and kernel hyperparameters for all experiments (unless specified otherwise).

Deafult params

--n-qbits 5 # of qubits
--n-layers 3 # of circuit layers
--circuit esu2 Circuit name
--pbc False Open Boundary Conditions
--n-iter 1*10**7 # max number of readouts
--kernel vqe Name of the kernel

--kernel-params Bayes-NFT EmiCoRe SubsCoRe GradCore Bayes-SGD

gamma 3 3 3 3 1
sigma_0 10 10 10 10 10

E. Experimental Details
As discussed in the main text, our experiments focus on the same experimental setup as in Nicoli et al. (2023a) and Anders
et al. (2024). Specifically, starting from the quantum Heisenberg Hamiltonian, we reduce it to the special case of the Ising
Hamiltonian at the critical point by choosing the suitable couplings, namely

Ising Hamiltonian at criticality: J = (−1.0, 0.0, 0.0); h = (0.0, 0.0, −1.0).

It is important to note that due to the finite size of the system at hand, this choice of parameters does not imply criticality but
already represents a challenging setup, as discussed in Sec. I.2 in Nicoli et al. (2023a). We stop the optimization when a
maximum number of cumulative shots (total measurement budget on the quantum computer) is reached; unless specified
otherwise, we set this cutoff to Nmax

shots = 1 · 107.

Our implementation of GradCoRe can be found in the supplementary zip file and will be made available on Github upon
acceptance. In our experiments, the kernel parameters σ0 and γ are fixed to the values in Table 2. Furthermore, NFT,
Bayes-NFT, Bayes-SGD, SubsCoRe and GradCoRe require fixed shifts for the points to measure at each iteration. In our
experiments, we always used α = 2π

3 for SMO based methods (as this makes the uncertainty uniform in the 1D-subspace,
as discussed in Anders et al. (2024)), and α = π

2 for SGD based methods (as this minimizes the uncertainty in the noisy
case, as discussed in Section 3), unless explicitly stated otherwise.

Each experiment shown in the paper was repeated 50 times (trials) with differently seeded starting points. We aggregated
the statistics from these independent trials and presented them in our plots. We used the same starting point for every
algorithm in each trial to ensure a fair comparison between all approaches. Note that SGD-based methods do not require
measurements at the starting point, but SMO-based methods do. Therefore, each starting point is further paired with a fixed
initial measurement.

All experiments were conducted on Intel Xeon Silver 4316 @ 2.30GHz CPUs.
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F. Detailed behavior of GradCoRe
Figure 8 shows the behavior of the GradCoRe threshold κ(t) (left), and the number ν(t) of measurement shots (left) that
GradCoRe used in each SGD iteration.
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Figure 8. The GradCoRe threshold κ(t) (left), set according to Eq. (24), and the number of measurement shots (right) per SGD iteration
used by GradCoRe. As expected, the number of shots gradually increases as the GradCoRe threshold decreases, reflecting the flatness of
the objective function via the gradient norm estimation.
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