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ABSTRACT

The optimization of expensive-to-evaluate black-box functions is prevalent in var-
ious scientific disciplines. Bayesian optimization is an automatic, general and
sample-efficient method to solve these problems with minimal knowledge of the
underlying function dynamics. However, the ability of Bayesian optimization
to incorporate prior knowledge or beliefs about the function at hand in order to
accelerate the optimization is limited, which reduces its appeal for knowledgeable
practitioners with tight budgets. To allow domain experts to customize the opti-
mization routine, we propose ColaBO, the first Bayesian-principled framework
for incorporating prior beliefs beyond the typical kernel structure, such as the likely
location of the optimizer or the optimal value. The generality of ColaBO makes
it applicable across different Monte Carlo acquisition functions and types of user
beliefs. We empirically demonstrate ColaBO’s ability to substantially accelerate
optimization when the prior information is accurate, and to retain approximately
default performance when it is misleading.

1 INTRODUCTION

Bayesian Optimization (BO) (Mockus et al., 1978; Jones et al., 1998; Snoek et al., 2012) is a well-
established methodology for the optimization of expensive-to-evaluate black-box functions. Known
for its sample efficiency, BO has been successfully applied to a variety of domains where laborious
system tuning is prominent, such as hyperparameter optimization (Snoek et al., 2012; Bergstra
et al., 2011b; Lindauer et al., 2022), neural architecture search (Ru et al., 2021; White et al., 2021),
robotics (Calandra et al., 2014; Mayr et al., 2022), hardware design (Nardi et al., 2019; Ejjeh et al.,
2022), and chemistry (Griffiths & Hernández-Lobato, 2020).

Typically employing a Gaussian Process (Rasmussen & Williams, 2006) (GP) surrogate model, BO
allows the user to specify a prior over functions ppfq via the Gaussian Process kernel, as well as
an optional prior over its hyperparameters. Within the framework of the prior, the user can specify
expected smoothness, output range and possible noise level of the function at hand, with the hopes
of accelerating the optimization if accurate. However, the prior beliefs that can be specified within
the framework of the kernel hyperparameters do not span the full range of beliefs that practitioners
may possess. For example, practitioners may know which parts of the input space tend to work
best (Oh et al., 2018; Perrone et al., 2019; Smith, 2018; Wang et al., 2019), know a range or upper
bound on the optimal output (Jeong & Kim, 2021; Nguyen & Osborne, 2020) such as a maximal
achievable accuracy of 100%, or other properties of the objective, such as preference relations
between configurations (Huang et al., 2022). The limited ability of practitioners to interact and
collaborate with the BO machinery (Kumar et al., 2022) thus runs the risk of failing to use valuable
domain expertise, or alienating knowledgeable practitioners altogether. While knowledge injection
beyond what is natively supported by the GP kernel is crucial to further increase the efficiency of
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Figure 1: Three different ColaBO priors: (left) Prior over the optimum x˚, and the induced changed in the
GP for an optimum located in the green region. (middle) Prior over optimal value, f˚

ă 0.8. (right) Prior over
preference relations fpxq1 ě fpx2q for five preferences (green arrows, e.g. fp0.0q ě fp0.1q ě fp0.2q.

Bayesian optimization, so far no current approach allows for the integration of arbitrary types of user
knowledge. To address this gap, we propose an intuitive framework that effectively allows the user to
reshape the Gaussian process at will to mimic their held beliefs.

Figure 1 illustrates how, for the three aforementioned priors, the GP is reshaped to faithfully represent
the belief held by the user - whether it be a prior over the optimum (left), optimal value (middle),
or preference relations between points (right). Our novel framework for Collaborative Bayesian
Optimization (ColaBO) diverges from the typical assumption of Gaussian posteriors, and is applicable
to any Monte Carlo acquisition function (Wilson et al., 2017; 2018; Balandat et al., 2020). Formally,
we make the following contributions:

1. We introduce ColaBO, a framework for incorporating user knowledge over the optimizer,
optimal value and preference relations into Bayesian optimization in the form of an additional
prior on the surrogate, orthogonal to the conventional prior on the kernel hyperparameters,

2. We demonstrate that the proposed framework is generally applicable to Monte Carlo acqui-
sition functions, inheriting MC acquisiiton function utility,

3. We empirically show that ColaBO accelerates optimization when injected with for priors
over optimal location and optimal value.

2 BACKGROUND

We outline Bayesian optimization, Gaussian Processes and Monte Carlo (MC) acquisition functions,
as well as the concept of a prior over the optimum.

2.1 BAYESIAN OPTIMIZATION

We consider the problem of optimizing a black-box function f across a set of feasible inputs X Ă Rd:

x˚ P argmax
xPX

fpxq. (1)

We assume that fpxq is expensive to evaluate and can potentially only be observed through a noise-
corrupted estimate, yx, where yx “ fpxq ` ϵ, ϵ „ N p0, σ2

ϵ q for some noise level σ2
ϵ . In this

setting, we wish to maximize f in an efficient manner. Bayesian optimization (BO) aims to globally
maximize f by an initial design and thereafter sequentially choosing new points xn for some iteration
n, creating the data Dn “ Dn´1 Y tpxn, ynqu (Brochu et al., 2010; Shahriari et al., 2016; Garnett,
2022). After each new observation, BO constructs a probabilistic surrogate model ppf |Dnq (Snoek
et al., 2012; Hutter et al., 2011; Bergstra et al., 2011a; Müller et al., 2023) and uses that surrogate to
build an acquisition function αpx;Dnq which selects the next query.
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2.2 GAUSSIAN PROCESSES

When constructing the surrogate, the most common choice is a Gaussian process (GP) (Rasmussen
& Williams, 2006). The GP utilizes a covariance function k, which encodes a prior belief for the
smoothness of f , and determines how previous observations influence prediction. Given observations
Dn at iteration n, the Gaussian posterior ppf |Dnq over the objective is characterized by the posterior
mean µnpx,x1q and (co-)variance Σnpx,x1q of the GP:

µnpxq “ knpxqJpKn ` σ2
ϵ Iq

´1y, Σnpx,x1q “ kpx,x1q ´ knpxqJpK ` σ2
ϵ Iq

´1knpx1q,

where pKnqij “ kpxi,xjq, knpxq “ rkpx,x1q, . . . , kpx,xnqsJ and σ2
ϵ is the noise variance.

For applications in BO and beyond, samples from the posterior are required either directly for
optimization (Eriksson et al., 2019) through Thompson sampling (Thompson, 1933), or to estimate
auxiliary quantities of interest (Hernández-Lobato et al., 2015; Neiswanger et al., 2021; Hvarfner et al.,
2023). For a finite set of k query locations pX “ x1, . . . ,xkq, the classical method of generating
samples is via a location-scale transform of Gaussian random variables, fpXq “ µnpXq ` Lϵ,
where L is the Cholesky decomposition ofK and ϵ „ N p0, Iq. Unfortunately, the classic approach
is intrinsically non-scalable, incurring a Opk3q cost due to the aforementioned matrix decomposition.

2.3 DECOUPLED POSTERIOR SAMPLING

To remedy the issue of scalability in posterior sampling, Opkq weight-space approximations based on
Random Fourier Features (RFF) (Rahimi & Recht, 2007) obtain approximate (continuous) function
draws f̃pxq “

řm
i“1 wiϕipxq, where ϕipxq “ 2

ℓ pψJ
i x` biq. The random variables wi „ N p0, 1q,

bi „ Up0, 2πq, and ψi are sampled proportional to the spectral density of k.

While achieving scalability, the seminal RFF approach by Rahimi & Recht (2007) suffers from the
issue of variance starvation (Mutny & Krause, 2018; Wang et al., 2018; Wilson et al., 2020). As a
remedy, Wilson et al. (2020) decouple the draw of functions from the approximate posterior ppf̃ |Dq

into a more accurate draw from the prior ppf̃q, followed by a deterministic data-dependent update:

pf̃ |Dqpxq
d
“ f̃pxq

loomoon

draw from prior

` knpxqJpKn ` σ2
ϵ Iq

´1py ´ f̃pxq ´ ϵq
looooooooooooooooooooooomooooooooooooooooooooooon

deterministic update

(2)

Eq. 2 deviates from the distribution-first approach that is typically prevalent in GPs in favor of a
variable-first approach utilizing Matheron’s rule (Journel & Huijbregts, 1976).

2.4 MONTE CARLO ACQUISITION FUNCTIONS

Acquisition functions act on the surrogate model to quantify the utility of a point in the search space.
They encode a trade-off between exploration and exploitation, typically using a greedy heuristic to do
so. A simple and computationally cheap heuristic is Expected Improvement (EI) (Jones et al., 1998;
Bull, 2011). For a noiseless function and a current best observation y˚

n , the EI acquisition function is
αEIpxq “ Eyx rpy˚

n ´ yxq`s. For noisy problem settings, a noise-adapted variant of EI (Letham
et al., 2018) is frequently considered, where both the incumbent y˚

n and the upcoming query yx are
substituted for the non-observable noiseless incumbent f˚

n and noiseless upcoming query fx. Other
frequently used acquisition functions are the Upper Confidence Bound (UCB) (Srinivas et al., 2012),
Probability of Improvement (PI) (Kushner, 1964) and Knowledge Gradient (KG) (Frazier et al.,
2009). Information-theoretic acquisition functions consider the mutual information to select the
next query αMIpxq “ Ippx, yxq; ˚|Dnq, where ˚ can entail either the optimum x˚ as in (Predictive)
Entropy Search (ES/PES) (Hennig & Schuler, 2012; Hernández-Lobato et al., 2014), the optimal
value f˚ as in Max-value Entropy Search (MES) (Wang & Jegelka, 2017; Moss et al., 2021) or the
tuple px˚, f˚q for Joint Entropy Search (JES) (Hvarfner et al., 2022a; Tu et al., 2022).

All the aforementioned acquisition functions compute expectations Efx (or alternatively Eyx) over
some utility upfxq of the output (Wilson et al., 2017; 2018), which typically have simple, or even
closed-form, solutions for Gaussian posteriors. However, approximating the expectation through
Monte Carlo integration has proven useful in the context of batch optimization (Wilson et al., 2018),
efficient acquisition function approximation (Balandat et al., 2020), and non-Gaussian posteriors (As-
tudillo & Frazier, 2021). By sampling over possible outputs fx and utilizing the reparametrization
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trick (Kingma & Welling, 2014; Rezende et al., 2014), utilities u can be easily computed across a
larger set of applications and be optimized to greater accuracy.

2.5 PRIOR OVER THE OPTIMUM

A prior over the optimum (Souza et al., 2021; Hvarfner et al., 2022b; Mallik et al., 2023) is a
user-specified belief π : X Ñ R of the subjective likelihood that a given x is optimal. Formally,

πpxq “ P
ˆ

x “ argmax
x1

fpx1q

˙

. (3)

This prior is generally considered to be independent of observed data, but rather a result of previous
experimentation or anecdotal evidence. Regions that the user expects to contain the optimum will
typically have a high value, but this does not exclude the chance of the user belief πpxq to be
inaccurate, or even misleading. Lastly, we require π to be strictly positive in all of X , which suggests
that any point included in the search space may be optimal.

3 METHODOLOGY

We now introduce ColaBO, the first Bayesian-principled BO framework that flexibly allows users to
collaborate with the optimizer by injecting prior knowledge about the objective that substantially
exceeds the type of prior knowledge natively supported by GPs. In Sec. 3.1, we introduce and derive
a novel prior over function properties, which yields a surrogate model conditioned on the user belief.
Thereafter, in Sec. 3.2, we demonstrate how the hierarchical prior integrates with MC acquisition
functions. Lastly, in Sec. 3.3, we state practical considerations to assure the performance of ColaBO.

3.1 PRIOR OVER FUNCTION PROPERTIES

We consider the typical GP prior over functions ppfq “ GPpµ,Σq, where the characteristics of f ,
such as smoothness and output magnitude, are fully defined by the kernel k (and its associated hyper-
parameters θ, which are omitted for brevity). We seek to inject an additional, user-defined prior belief
over f into the GP, such as the prior over the optimum in Sec. 2.5, πpxq “ P px “ argmaxx1 fpx1qq.
By postulating that π is accurate, we wish to form a belief-weighted prior - a prior over functions
where the distribution over the optimum is exactly πpxq. We start by considering the user belief
π : X ÝÑ R from Eq. (3), and extend the definition to involve the integration over f , similarly to the
Thompson sampling definition of Kandasamy et al. (2018). Formally,

πpxq “ P
ˆ

x “ argmax
x1

fpx1q

˙

“

ż

f

πpδ˚px|fqqppfqdf (4)

where δ˚px|fq “ 1, if x “ argmaxx1PX fpx1q, and zero otherwise. As such, δ˚px|fq maps a
function fi „ ppfq to its argmax, and evaluates whether this argmax is equal to x.

However, a belief over the optimum, or any other property, of a function f is implicitly a belief
over the function f itself. As such, a non-uniform πpxq should reasonably induce a change in the
prior ppfq to reflect the non-uniform optimum. To this end, we introduce an augmented user belief
over the optimum ρ˚

x „ P˚
x , where P˚

x is the prior over possible user beliefs, and draws are random
functions ρ˚

x : X Ñ R` which themselves take a function f as input, and output a positive real
number quantifying the likelihood of a sample fi under πpxq. Formally, we define ρ˚

x as

ρ˚
xpfq “ P

ˆ

x “ argmax
x1

fpx1q

˙

“
1

Zρ˚
x

ż

X
δ˚px|fqπpxqdx (5)

where the intractible normalizing constant Zρ˚
x

arises from the fact that the integrated density πpxq

acts on a finite-dimensional property of f , and not f itself. Under ρ˚
xpfq, functions whose argmax

lies in a high-density region under π will be assigned a higher probability. Notably, the definition in 5
can extend to other properties of f as well: a user belief pf˚

over the optimal value f˚ analogously
yields a belief over functions ρ˚

fx
pfq:

ρ˚
fx

pfq “ P
´

x “ max
x1

fpx1q

¯

“
1

Zρ˚
fx

ż

fx

δ˚px|fqpf˚ pyqdfx. (6)
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It is worthwhile to reflect on the meaning of ρpfq, and how beliefs over function properties propagate
to ppfq. Concretely, if the user belief ρ˚

fx
pfq asserts that the maximal value lies within C1 ă

max f ă C2, the resulting distribution over f should only contain functions whose max falls within
this range. Using rejection sampling, functions which disobey this criterion are filtered out, which
yields the posterior ppf |ρq. Having defined and exemplified how user beliefs impact the prior over
functions ppfq, the role of ρ as a likelihood should be apparent: given a prior over functions ppfq and
a user belief over functions ρpfq which places a probability on all possible draws fi ppfq, we can
form a belief-weighted prior ppf |ρq9ppfqρpfq. Thus, we introduce the formal definition of a user
belief over a function property:

Definition 3.1 (User Belief over Functions). The user belief over functions ρpfq9
ppf |ρq

ppfq
.

As the subsequent derived methodology applies independently of the specific property of f that a
prior is placed on, we will henceforth consider a belief over a general function property ρ. Having
defined the role of ρ and the posterior over functions it produces, a natural question arises: How is
ppf |ρq updated once observations D are obtained?

Since the data D is independent of the prior (the data generation process is intrinsically unaffected by
the belief held by the user), application of Bayes’ rule yields the following posterior ppf |D, ρ),

ppf |D, ρq “
ppD, ρ|fqppfq

ppD, ρq
“

ppD|fqppρ|fqppfq

ppDqppρq
“

ppf |ρq

ppfq
ppf |Dq 9 ρpfqppf |Dq, (7)

where the right side of the proportionality in Eq. 7 suggests an intuitive generation process for samples
pf |D, ρq to approximate the density ppf |D, ρq. Utilizing the pathwise update from Eq. 2, we note that
given an approximate draw f̃ from the prior, the subsequent data-dependent update is deterministic.
Recalling Eq. 2 and assuming independence between ρ and D, ρ only affects the draw from the prior,
whereas D only affects the update. Consequently, we obtain

pf̃ |D, ρqpxq
d
“ pf̃ |ρqpxq

looomooon

draw from prior

` knpxqJpKn ` σ2
ϵ Iq

´1py ´ pf̃ |ρqpxq ´ ϵq
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

deterministic update

, (8)

where pf̃ |ρq „ ppfqρpf̃q are once again obtained using rejection sampling on draws from ppf̃q.
Figure 2 displays this in detail: given the typical GP prior over functions and a user belief over
the optimum, we obtain a distribution over functions ppf̃ |ρ˚

xq before having observed any data (top
right). Samples from the approximate prior ppf̃q (light blue) are re-sampled proportionally to their
probability of occurring under the prior ρ˚

xpf̃q in green, leaving samples pf̃ |ρ˚
xq in navy blue, which

are highly probable under ρ˚
x. Once data is obtained, these samples are updates according to Eq. 8,

which preserves the shape of the samples far away from observed data and yields the desired posterior.

3.2 PRIOR-WEIGHTED MONTE CARLO ACQUISITION FUNCTIONS
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Figure 3: (Top) Draws from ppf |Dq (light blue)
and ppf |ρ,Dq with a prior ρ located in the green
region. (Bottom) Vanilla MC-EI and ColaBO
MC-EI, resulting from computing the acquisition
function from sample draws from ppf |ρ,Dq.

Naturally, neither the belief-weighted prior ppf |ρq nor
the belief-weighted posterior ppf |D, ρq have a closed-
form expression. Both are inherently non-Gaussian for
non-uniform beliefs. As such, we resort to MC acqui-
sition functions to compute utilities that are amenable
to BO. In the subsequent section, we focus on the
prevalent acquisition functions EI, and MES.

Expected Improvement The computation of the
MC-EI within the ColaBO framework requires only
minor adaptations of the original MC acquisition
function. By definition, MC-EI assigns utility u as
uEIpfpxqq “ maxpf˚

n ´ fpxq, 0q, which yields

αEIpx;Dq “ Efx|DruEIpfxqs « (9)
ÿ

ℓ

maxpf˚
n ´ f pℓq

x , 0q, f pℓq
x „ ppfpxq|Dq. (10)
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Figure 2: (Top left) Draws from the prior ppfq (light blue) and the belief-weighted prior ppf |ρq whose members
are likely to have their optimum within the green region. (Top right) Pathwise updated draws based on observed
data. As the green region is distant from the observed data, samples are almost unaffected by the data in this
region. (Bottom left) Exact mean and standard deviation (µx, σx) of ppfq and estimated mean and standard
deviation of ppf |ρq. (Bottom right) Exact ppf |Dq and estimated ppf |ρ,Dq. As ppf |ρq constitutes of functions
whose optimum is located within the green region the resulting model has a higher mean and lower variance
within this region. Moreover, ppf |ρq globally displays lower upside variance compared to the vanilla GP.

Utilizing rejection sampling, we can compute the MC-EI under the ColaBO posterior accordingly,

αEIpx;D, ρq “ Efx|D,ρruEIpfxqs9 (11)
ż

f

uEIpfxqρpfqppf |Dqdf «
ÿ

ℓ

ρpf pℓqqmaxpf˚
n ´ f pℓq

x , 0q, f pℓq
x „ ppfpxq|Dq, (12)

wherein samples in Eq. 12 are drawn from the prior, retained with probability ρpf pℓqq{max ρ, and
pathwise updated. In Figure 3, we demonstrate how ColaBO-EI differs from MC-EI for an identical
posterior as in Figure 2. By computing αEI from samples biased by ρ, ColaBO substantially directs
the search towards good regions under ρ. Derivations for PI and KG are analogous to that of EI.

Max-Value Entropy Search We derive a ColaBO-MES acquisition function by first considering
the definition of the entropy, Hrppyx|Dqs “ Eyx|Dr´ log ppyx|Dqs. When considering the belief-
weighted posterior, we further condition the posterior on ρ and obtain

αMESpxq “ Ef˚|D,ρ

“

Eyx|D,ρ,f˚
rlog ppyx|D, ρ, f˚qs

‰

´ Eyx|D,ρrlog ppyx|D, ρqs (13)

9 Ef˚|D,ρ

“

Efx|D,ρrEyx|fxrlog ppyx|fx, ρ, f˚qss
‰

´ Efx|D,ρrEyx|fxrlog ppyx|fx, ρqss (14)

«
1

ZJ

J
ÿ

j“1

L
ÿ

ℓ“1

K
ÿ

k“1

log ppypkq
x |f pℓq

x , f
pjq
˚ qρpf pℓqqρpf pjqq ´

L
ÿ

ℓ“1

K
ÿ

k“1

log ppypkq
x |f pℓq

x qρpf pℓqq, (15)

where ZJ is a normalizing constant
ř

J ρpf pjqq brought on by sampling optimal values, yx|fx can
trivially be obtained by sampling Gaussian noise ε „ N p0, σ2

εq to a noiseless observation fx|D in
the innermost expectation, and fx and f˚ are obtained through the pathwise sampling procedure
outlined in Eq. 8. The samples are evaluated on pppyx|fxq,pyx|fx, f˚qq. As evident by Eq. 15, ρ
affects the posterior distribution of both the observations yx and the optimal values f˚. PES and
JES are derived analogously. However, these acquisition function require conditioning on additional,
simulated data and consequently, additional pathwise updates, to compute.

3.3 PRACTICAL CONSIDERATIONS

ColaBO introduces additional flexibility to MC-based BO acquisition functions. The ColaBO
framework deviates from vanilla (q-)MC acquisition functions (Wilson et al., 2017; Balandat et al.,
2020) by utilizing approximate sample functions from the posterior, as opposed to pointwise draws
from the posterior predictive and the reparametrization trick (Kingma & Welling, 2014; Rezende
et al., 2014). ColaBO holds three shortcomings not prevalent in vanilla MC acquisition functions:
(1) it cannot utilize Quasi-MC in the draws from the predictive posterior (only in the RFF weights),
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Algorithm 1 ColaBO iteration

1: Input: User prior ρ, number of function samples L, current data D
2: Output: Next query location x1.
3: for ℓ P t1, . . . , Lu do
4: ρpℓq “ ρpf̃ pℓq;nq, f̃ pℓq „ ppf̃q Ź Sample functions and evaluate on π

5: pf̃ pℓq
|Dq “ PathwiseUpdatepf̃ pℓq,Dq Ź Per-sample update as in Eq. 8

6: end for
7: ppf̃ |D, ρq «

ř

ℓ ρ
pℓq

pf̃ pℓq
|Dq Ź Form MC estimate of posterior

8: x1
“ argmaxxPX Eppf̃ |D,ρqrupf̃xqs Ź Maximize MC acquisition

(2) it cannot fix the base samples (Balandat et al., 2020) drawn from the posterior for acquisition
function consistency across the search space, and (3) the RFF approximation of ppfq introduces bias.
This approximation error is substantially more pronounced for the Matérn 5/2-kernel than the squared
exponential, leaving ColaBO best suited for the latter. In Sec. 4.1, we empirically display the impact
of these shortcomings. While acquisition function optimization no longer enjoys improved accuracy
resulting from reparametrization, the acquisition function can still benefit from the fact that ColaBO
backpropagates through quantities computed as sums of smooth functions.

4 RESULTS

We evaluate the performance of ColaBO on various tasks, using priors over the optimum πx˚

obtained from known optima on synthetic tasks, as well as from prior work (Mallik et al., 2023)
on realistic tasks. We consider two variants of ColaBO: one using LogEI (Ament et al., 2023), a
numerically stable, smoothed logsumexp transformation of EI with analogous derivation, and one
variant using MES. We benchmark against the vanilla variants of each acquisition function, as well as
πBO (Hvarfner et al., 2022b) and decoupled Thompson sampling Thompson (1933); Wilson et al.
(2020). All acquisition functions are implemented in BoTorch (Balandat et al., 2020) using a squared
exponential kernel and MAP hyperparameter estimation. We present experiments with a Matérn-
5/2 (Matérn, 1960) kernel in App. C.1. Unless stated otherwise, all methods are initialized with the
mode of the prior followed by 2 Sobol samples. The experimental setup is outlined in Appendix B,
and our code is publicly available at https://github.com/hvarfner/colabo.

4.1 APPROXIMATION QUALITY OF THE COLABO FRAMEWORK
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Firstly, we demonstrate the approximation quality of
ColaBO without user priors to assert its accuracy compared
to a vanilla MC acquisition function. To facilitate compar-
ison, we randomly sample 10 points on the Hartmann (3D)
function, and optimize LogEI with a large budget. We
subsequently optimize ColaBO-LogEI on the same set of
points and compare the argmax to the solution found by
the gold standard. Figure 4 displays the (log10) Euclidian
distance between the argmax of LogEI and its ColaBO
variant. We note that, for small amounts (ď 256q of poste-
rior samples, the error induced by RFF bias is relatively low,
which is evidenced by all RFF variants being roughly equal
in distance to the true acquisition function optimizer.

4.2 SYNTHETIC FUNCTIONS WITH KNOWN PRIORS

We adapt a similar evaluation protocol to Hvarfner et al. (2022b), and evaluate ColaBO for two types
of user beliefs for synthetic tasks: well-located and poorly located priors over the optimal location,
designed to emulate a well-informed and poorly-informed practitioner, respectively. The well-located
prior is offset by a small (10%) amount from the optimum, and the poorly located prior is maximally
offset, while retaining its mode inside the search space. Complete details on the priors can be found
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Figure 5: Performance on synthetic functions with well-located priors. Both ColaBO-LogEI and ColaBO-
MES offer drastic speed-ups over their vanilla variants, and offer similar performance to πBO. The ranking
of ColaBO acquisition functions are generally consistent with their respective vanilla variants. This is most
prominent on Rosenbrock (6D), where ColaBO-MES struggles similarly to vanilla MES.
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Figure 6: Performance on poorly located priors. ColaBO acquisition functions are more robust than πBO, as
it frequently recovers the performance of the vanilla acquisition function before the total budget is depleted.
ColaBO-LogEI struggles marginally on Hartmann (6D). ColaBO-MES recovers the baseline on all tasks.

in Appendix B.3. On well-located priors, both ColaBO-LogEI and ColaBO-MES demonstrate
substantially improved performance relative to their vanilla counterparts, comparable to πBO on all
benchmarks. On poorly located priors, ColaBO demonstrates superior robustness, recovering the
performance of the vanilla acquisition function within the maximal budget of 20D iterations and
clearly outperforming πBO, which more frequently misled by the poor prior. In Appendix C.2, we
also demonstrate ColaBO utilizing (accurate) beliefs over the optimal value: similarly to Figure 5,
ColaBO yields increased efficiency relative to baselines, albeit not as substantial. Moreover, we
demonstrate its usage with batch evaluations on well-located priors in Sec. C.3, showing that the drop
in performance from batching evaluations is marginal at worst.

4.3 HYPERPARAMETER TUNING TASKS

Lastly, we evaluate ColaBO on three 4D deep learning HPO tasks from the PD1 (Wang et al.,
2023) benchmarking suite. While the optima for these tasks are ultimately unknown, we utilize the
priors provided in MF-Prior-Bench 1 (Mallik et al., 2023), which are intended to provide a good
starting point for further optimization. To emulate a realistic HPO setting, we consider a smaller
optimization budget of 10D iterations, and initalize all methods that utilize user beliefs with only
one initial sample, that being the mode of the prior. The two ColaBO variants perform best in this
evaluation, producing the best terminal performance on two tasks (CIFAR, LM1B), with all methods
being tied on the third (CIFAR). ColaBO demonstrates consistent speed-ups compared to its vanilla
counterparts, surpassing the terminal performance of the baseline within a third of the budget on
CIFAR and LM1B. In App. A, we benchmark on 5 tasks from LBBench (Zimmer et al., 2020),
displaying similar performance.

5 RELATED WORK

In BO, auxiliary prior information can be conveyed in multiple ways. We outline meta learning/trans-
fer learning for BO based on data from previous experiments, and data-less approaches.

Learning from Previous Experiments Transfer learning and meta learning for BO aims to
automatically extract and use knowledge from prior executions of BO by pre-training the model on

1https://github.com/automl/mf-prior-bench
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Figure 7: Performance on the 4D PD1 hyperparameter tuning tasks of various deep learning pipelines. ColaBO
drastically accelerates optimization initially, finding configurations with close to terminal performance quickly.
πBO offers competitive performance, but lacks the rapid initial progress of ColaBO on CIFAR and LM1B.

data acquired from previous executions (Swersky et al., 2013; Wistuba et al., 2015; Perrone et al.,
2019; Feurer et al., 2015; 2018; Rothfuss et al., 2021a;b; Wistuba & Grabocka, 2021; Feurer et al.,
2022). Typically, meta- and transfer learning exploit relevant previous data for training the GP for the
current task while retaining predictive uncertainty to account for imperfect task correlation.

Expert Priors over Function Optimum Few previous works have proposed to inject explicit prior
distributions over the location of an optimum into BO. In these cases, users explicitly define a prior
that encodes their beliefs on where the optimum is more likely to be located. Bergstra et al. (2011a)
suggest an approach that supports prior beliefs from a fixed set of distributions, which affects the very
initial stage of optimization. However, this approach cannot be combined with standard acquisition
functions. BOPrO (Souza et al., 2021) employs a similar structure that combines the user-provided
prior distribution with a data-driven model into a pseudo-posterior. From the pseudo-posterior,
configurations are selected using the EI acquisition function, using the formulation in Bergstra et al.
(2011a). πBO (Hvarfner et al., 2022b) suggests a general-purpose prior-weighted acquisition function,
where the influence of the prior decreases over time. They provide convergence guarantees for when
the framework is applied to the EI acquisition function. While effective, none of these approaches act
on the surrogate model in a Bayesian-principled fashion, but strictly as heuristics. Moreover, they
solely focus on priors over optimal inputs, thus offering less utility than ColaBO.

Priors over Optimal Value Similarly few works have addressed the issue of auxilliary knowledge
of the optimal value. Both Jeong & Kim (2021) and Nguyen & Osborne (2020) propose altering the
GP and accompanying it with tailored acquisition functions. Jeong & Kim (2021) employ variational
inference, proposing distinct variational families depending on the type of knowledge pertaining to
the optimal value. Nguyen & Osborne (2020) use a parabolic transformation of the output space to
ensure an upper bound is preserved. Unlike ColaBO, neither of these methods is general enough to
accompany arbitrary user priors to guide the optimization.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

We presented ColaBO, a flexible BO framework that allows practitioners to inject beliefs over
function properties in a Bayesian-principled manner, allowing for increased efficiency in the BO
procedure. ColaBO works across a collection of MC acquisition functions, inheriting their flexibility
in batch optimization and ability to work with non-Gaussian posteriors. It demonstrates competitive
performance for well-located priors, using them to substantially accelerate optimization. Moreover,
it retains approximately baseline performance when applied to detrimental priors, demonstrating
greater robustness than πBO. ColaBO crucially relies on multiple steps of MC. While flexible, this
approach drives computational expense in order to assert sufficient accuracy, requiring tens of seconds
per evaluation to achieve desired accuracy, depending on the size of the benchmark. Moreover,
obtaining draws from ρ˚

x scales exponentially in the dimensionality of the prior. While practitioners
are unlikely to specify priors over more than a handful of variables, ColaBO may become impractical
when priors of higher dimensionality are employed. Paths for future work could involve more
accurate and efficient sampling procedures (Lin et al., 2023) from the belief-weighted prior, as well
as variational (Titsias, 2009) or pre-trained Müller et al. (2022); Müller et al. (2023) approaches to
obtain a representative belief-biased model with an analytical posterior. This would likely bring down
the runtime of ColaBO and broaden its potential use. Lastly, applying ColaBO to multi-fidelity
optimization (Kandasamy et al., 2016; Mallik et al., 2023) offers an additional avenue for increased
efficiency which would further increase its viability on costly deep learning pipelines.
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Research Foundation (DFG) through grant no INST 39/963-1 FUGG, and by the European Research
Council (ERC) Consolidator Grant “Deep Learning 2.0” (grant no. 101045765). The computations
were also enabled by resources provided by the Swedish National Infrastructure for Computing
(SNIC) at LUNARC partially funded by the Swedish Research Council through grant agreement no.
2018-05973. Funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the ERC. Neither the
European Union nor the ERC can be held responsible for them.

REFERENCES

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
expected improvements to expected improvement for bayesian optimization. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=1vyAG6j9PE.

Raul Astudillo and Peter Frazier. Bayesian optimization of function networks. Advances in neural
information processing systems, 34:14463–14475, 2021.

M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. Botorch:
A framework for efficient monte-carlo bayesian optimization. In Advances in Neural Information
Processing Systems, 2020. URL http://arxiv.org/abs/1910.06403.
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Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1–9,
2022. URL http://jmlr.org/papers/v23/21-0888.html.

Neeratyoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer,
Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of
deep learning. arXiv preprint 2306.12370, 2023.

B. Matérn. Spatial variation. Meddelanden fran Statens Skogsforskningsinstitut, 1960.

Matthias Mayr, Carl Hvarfner, Konstantinos Chatzilygeroudis, Luigi Nardi, and Volker Krueger.
Learning skill-based industrial robot tasks with user priors. IEEE 18th International Conference
on Automation Science and Engineering, 2022. URL https://arxiv.org/abs/2208.
01605.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum.
Towards Global Optimization, 2(117-129):2, 1978.

Henry B. Moss, David S. Leslie, Javier Gonzalez, and Paul Rayson. Gibbon: General-purpose
information-based bayesian optimisation. Journal of Machine Learning Research, 22(235):1–49,
2021. URL http://jmlr.org/papers/v22/21-0120.html.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KSugKcbNf9.

12

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper_files/paper/2022/file/6751611b394a3464cea53eed91cf163c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6751611b394a3464cea53eed91cf163c-Paper-Conference.pdf
https://doi.org/10.1115/1.3653121
https://openreview.net/forum?id=Sf9goJtTCE
http://jmlr.org/papers/v23/21-0888.html
https://arxiv.org/abs/2208.01605
https://arxiv.org/abs/2208.01605
http://jmlr.org/papers/v22/21-0120.html
https://openreview.net/forum?id=KSugKcbNf9


Published as a conference paper at ICLR 2024

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. PFNs4BO: In-context learning
for Bayesian optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
25444–25470. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
muller23a.html.

Mojmir Mutny and Andreas Krause. Efficient high dimensional bayesian optimization with additivity
and quadrature fourier features. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/4e5046fc8d6a97d18a5f54beaed54dea-Paper.pdf.

L. Nardi, D. Koeplinger, and K. Olukotun. Practical design space exploration. In 2019 IEEE 27th
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), pp. 347–358. IEEE, 2019.

Willie Neiswanger, Ke Alexander Wang, and Stefano Ermon. Bayesian algorithm execution: Esti-
mating computable properties of black-box functions using mutual information. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 8005–8015. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/neiswanger21a.html.

Vu Nguyen and Michael A. Osborne. Knowing the what but not the where in Bayesian optimization. In
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Figure 8: Performance on the 6D LCBench hyperparameter tuning tasks of various deep learning pipelines.
ColaBO substantially improves on the non-prior baselines for 3 out of five tasks. πBO performs best on
aggregate, and achieves the best acceleration in performance at early iterations.

A LCBENCH BENCHMARKING

We evaluate all methods on five deep learning tasks (6D) from the LCBench (Zimmer et al., 2020)
suite, utilizing priors from MF-Prior-Bench. The chosen tasks were the five tasks with available
priors of the best (good) strength, as per the benchmark suite. Figure 8 shows the performance of all
methods on the LCBench tasks. ColaBO improves substantially on the baseline approaches for 3 out
of 5 tasks. πBO is the overall best-performing method, followed by ColaBO-LogEI.

B EXPERIMENTAL SETUP

B.1 MODEL

We outline the model used and the budget allocated to the various MC approximations involved
with ColaBO. For all experiments, we utilize MAP estimation of the hyperparameters, and update
the hyperparameters at every iteration of BO. All hyperparameters - lengthscale, outputscale and
observation noise (θ “ tℓ, σ2

ε , σ
2
fuq are given conventional LN p0, 1q prior, applied on normalized

inputs and standardized outputs. Furthermore, we fit the constant c of the mean function, assigning it
a N p0, 1q prior as well. In Tab. 1, we display the parameters of the MC approximations for various
tasks. No. f is the maximal number of functions used in the MC computation of the acquisition
function. No. Reamples is the number of initial posterior draws maximally used for the re-sampling
of functions from the posterior ppf |ρq. Lastly, . No. f˚ is the number of optimal values used in the
computation of ColaBO-MES.

Task No. f No. RFFs No. Resamples No. f˚

Synthetic Good 768 2048 1.5 ˚ 105 32
Synthetic Bad 768 2048 1.5 ˚ 105 32

PD1 512 4096 2 ˚ 105 32
Appendix 512 1024 105 32

Table 1: Budget-related parameters of the Monte Carlo approximations for all tasks.

B.2 BENCHMARKS

We outline the benchmarks used, their search spaces and the amount of synthetic noise added. When
adding noise, we intend for the ratio of noise variance to total output range to be approximately equal
across benchmarks.

B.3 PRIORS

For synthetic benchmarks, the approximate optima of all included functions can be obtained in
advance. Thus, the correctness of the prior is ultimately known in advance. For a function of
dimensionality d with optimum at x˚, the well-located prior is constructed by sampling an offset
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Task Dimensionality σϵ Search space
Hartmann (4D) 4 0.25 r0, 1sD

Levy (5D) 5 0.5 r´5, 5sD

Hartmann (6D) 6 0.25 r0, 1sD

Rosenbrock (6D) 6 5 r´2.048, 2.048sD

Stybtang (7D) 7 1 r´4, 4sD

Table 2: Benchmarks used for the Bayesian optimization experiments.

direction ϵ and scaling the offset by a dimensionality- and quality-specific term cpd, qq “ q
?
d. For

the well-located prior on synthetic tasks, we use q “ 0.1, which implies that the optimum is located
10% of the distance across the search space away from the optimum, and construct a Gaussian prior
as

πx˚
pxq „ N px˚ ` cdϵ{||ϵ||, σsq, ϵ „ N p0, Iq. (16)

with σs “ 25% for all tasks and prior qualities. For our 20 runs of the well-located prior, this
procedure yields us 20 unique priors per quality type, with identical offsets from the true optimum.
No priors with a mode outside the search space were allowed, such priors were simply replaced.
For the misinformed priors, we set q “ 1, guaranteeing that the mode of the prior will be outside
of the search space, and subsequently relocating to the edge of the search space by its shortest
path. Priors for all tasks are displayed in Tab. 3. For the PD1 tasks, the location for the priors
were obtained from MF-Prior-Bench( https://github.com/automl/mf-prior-bench).
However, these priors require offsetting in order to not be too strong, thus making subsequent BO
obsolete. PD1 priors are provided in r0, 1s-normalized space for simplicity.

Task Location Offset, good Offset, bad σs

Hartmann (4D) r0.19, 0.19, 0.56, 0.26s 0.1
?
D max 0.25

Levy (5D) r1sD 1
?
D max 2.5

Hartmann (6D) r0.20, 0.15, 0.48, 0.28, 0.31, 0.66s 0.1
?
D max 0.25

Rosenbrock (6D) r1sD 0.4096
?
D max 1.024

Stybtang (7D) r´2.9sD 0.8
?
D max 2

PD1-WMT r0.90, 0.69, 0.02, 0.97s 0.05
?
D N/A 0.25

PD1-CIFAR r1, 0.80, 0.0, 0.0s 0.05
?
D N/A 0.25

PD1-LM1B r0.91, 0.67, 0.36, 0.85s 0.05
?
D N/A 0.25

Table 3: πx˚ for synthetic BO tasks of both prior qualities and PD1.

C ADDITIONAL EXPERIMENTS

We provide complementary experiments to those introduced in the main paper. Firstly, we display
results when ColaBO is used with a prior πf˚

over the optimal value in Sec. C.2. In Sec. C.3, we
demonstrate ColaBO:s extensibility to batch evaluations, seamlessly extending the work of (Wilson
et al., 2017).

C.1 SYNTHETIC MATERN KERNEL EXPERIMENTS

We evaluate ColaBOand all baselines on the synthetic tasks with a Matern-5/2 kernel and the good
user belief over the optimum. We note that roughly half of all πBO runs struggle with numerical
instability from iteration 60 onwards, which produces stagnation in performance and infrequent gains.

C.2 MAX-VALUE PRIORS

We evaluate ColaBO with priors over the optimal value πf˚
in Figure 10. For each task, we place a

Gaussian prior over the optimal value, centering it exactly at the optimal value. Notably, such a prior
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Figure 9: ColaBO on the synthetic tasks with a Matern kernel. Due to the difficulty of the RFF approximation,
ColaBO-LogEI struggles on Hartmann (6D), and ColaBO performance is marginally worse on aggregate.
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Figure 10: ColaBO with priors over the optimal value. Terminal performance substantially increases on 3 out of
5 benchmarks (Levy, Hartmann (6D), Stybtang), and is approximately preserved on the final two. ColaBO-MES
improves marginally more than ColaBO-LogEI when utilizing a prior πf˚ over the optimal value.

substantially influences the exploration-exploitiation trade-off; if the prior suggests that the incumbent
has a value close to the optimal one, we are encouraged to exploit as samples with well-above-optimal
values in exploratory will be discarded. Conversely, we are heavily encouraged to explore if the
current best observation holds a value that we believe is far from optimal. On Hartmann (6D), we can
see this behavior at play. Initial performance is poorer for ColaBO than their respective baselines,
presumably due to above-average exploration, but terminal performance is better.

C.3 BATCH EVALUATIONS

We evaluate ColaBO on batch evaluations, utilizing the sequential greedy technique for MC ac-
quisition functions from Wilson et al. (2018). Drop-off from sequential to batch evaluations is not
evident from the plots, as ordering between sequential and batch varies with the benchmark. While
unpredictable, we speculate that the altered exploration-exploitation trade-off provided by the batched
acquisition function is occasionally beneficial in the presence of auxilliary user beliefs πx˚

.
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Figure 11: q “ 1 (sequential) and q “ 3 batch evaluation on a subset of synthetic functions with well-located
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batched variants, leaving them with the same number of total function evaluations.
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