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Abstract

Enhancing the understandability of Informa-001
tion Extraction (IE) outputs can improve its002
utility and adoption across critical sectors such003
as healthcare. Unlike comparable tasks like004
Question Answering (QA) and Summarization,005
IE remains largely understudied in this con-006
text. In this work, we introduce a method that007
incorporates evidentiality in the form of tex-008
tual snippets to substantiate the extracted IE009
outputs (i.e. concepts and relations). We pro-010
pose a prompt-then-tune pipeline that sequen-011
tially extracts IE outputs and corresponding012
evidence passages from unstructured electronic013
health records (EHRs). This pipeline supports014
an ensemble of large language models (LLMs),015
self-verification, and fine-tuning for generat-016
ing patient profiles from EHR notes. Beyond017
evidence-based enrichment, we advocate for018
semantic-alignment metrics over exact-match019
metrics, as the latter constrain LLM expres-020
siveness. Our evaluation on three EHR-derived021
datasets shows that a small-LLM ensemble out-022
performs stronger standalone LLMs by up to023
2.4% on average across IE tasks. Additionally,024
we find that iterative prompting and smaller025
batch sizes not only reduce the complexity of026
intermediate batch processing but also signifi-027
cantly improve multi-task performance. We fur-028
ther demonstrate that training on synthetic data029
helps mitigate data scarcity, narrowing, (and030
in some cases surpassing) the performance gap031
with larger models.032

1 Introduction033

Numerous efforts have aimed to enhance AI’s trust034

and transparency in healthcare (Saraswat et al.,035

2022; Srinivasu et al., 2022; Amann et al., 2020),036

however most of them precede the advent of gen-037

erative AI. Recent works have primarily focused038

on eliciting grounded explanations for answers in039

healthcare QA on social media crawled datasets040

that often contain biased or sentimental opinions041

(Yang et al., 2023; Chen et al., 2024; Zhu et al.,042

2024). Additionally, these studies predominantly 043

evaluate and emphasize strengths of proprietary 044

models with limited exploration of capabilities of 045

open-source LLMs (Qin et al., 2024; Vatsal and 046

Singh, 2024). Beyond clinical QA, clinical IE re- 047

mains relatively understudied despite its critical 048

role in accelerating access to key artifacts consid- 049

ered in clinical practice. We argue that, improving 050

the understandability of IE outputs, particularly for 051

open-source LLMs is essential moving forward. 052

To this end, we are motivated to further enhance 053

the intuitiveness and utility of IE outputs. Focusing 054

on Named Entity Recognition (NER) and Relation 055

Extraction (RE), we first propose a strategy that 056

enriches these outputs with contextually relevant 057

evidence (explanations) for better interpretation in 058

clinical settings. Combining these tasks, we intro- 059

duce EHR profiling, a task that leverages LLMs to 060

extract structured EHR profiles (characterized by 061

entities, relations and their corresponding evidence) 062

from real-world unstructured patient EHR records. 063

Unlike prior explanation generation works, EHR 064

profiling constrains evidence generation to the in- 065

put context text itself rather than relying on the 066

LLM’s pretrained knowledge, which ensures trace- 067

able context-aware justifications. Secondly, we 068

argue that benchmarking IE using exact-match met- 069

rics is poorly suited for LLMs, because they gen- 070

erate expressive and contextually varied responses. 071

To avoid discouraging their application in critical 072

tasks like clinical IE, we propose evaluation met- 073

rics that assess semantic correlation or alignment 074

to human annotations. 075

To tackle EHR profiling, we leverage prompt 076

augmentation (Munnangi et al., 2024), iterative 077

prompting (IP) and Instruction Tuning (IT) (Zhang 078

et al., 2023) to develop Generative Joint Entity, 079

Relation and Evidence Extraction - GenJERE, a 080

pipeline that decouples EHR profiling tasks to max- 081

imize compatibility of task-specific outputs while 082

reducing information loss and reasoning burden 083
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Figure 1: Prompt formulation for multi-task inference. Closed- differs from Open-ended by explicitly specifying
predefined target concepts and relations and their definitions. GenJERE additionally employs iterative prompting
querying an LLM with a single task on each turn. Red indicates false positive extracted profile elements.

associated with batch multi-task prompting (Sanh084

et al., 2021). Since EHR profiling is multi-tasking,085

we investigate both multi-task prompting (MTP),086

where multiple sub-tasks are simultaneously han-087

dled in a single inference call, and multi-stage088

prompting (MSP) where sub-tasks are executed089

across a series of inference calls (Figure 1).090

Preempted by recent findings on LLM limita-091

tions in clinical IE such as sensitivity to instructions092

(Ceballos-Arroyo et al., 2024), GenJERE upgrades093

from an LLM to an LLM ensemble in order to094

leverage their collective strengths and maximise095

diversity (Figure 2). To mitigate error propagation,096

GenJERE uses IP which lessens the burden of rea-097

soning across multiple tasks in a single turn while098

enabling self-verification, and also incorporates a099

denoising LLM which extracts snippets of con-100

textual evidence to enhance output interpretability.101

This pipeline results in a collection of instruction-102

ehr-profile tuples which are subsequently used to103

fine-tune individual LLMs for EHR Profiling.104

Extensive evaluation on EHR data demonstrates105

GenJERE’s effectiveness in generating evidence-106

enriched outputs that exhibit stronger semantic107

alignment with human annotations compared to108

traditional multi-tasking for IE tasks. Our results109

show that a small-LLM ensemble can outperform110

powerful LLMs by up to 2.4% on average in IE111

tasks. Unlike traditional multi-tasking, GenJERE112

is able to consistently generate relevant and ex-113

pected target profile elements. Moreover, it allevi-114

ates the complex reasoning burden typically asso-115

ciated with batch prompting (Cheng et al., 2023).116

Finally, we demonstrate that a smaller LLM fine-117

tuned on synthetic instruction-response pairs can 118

narrow (and in some cases surpass) the perfor- 119

mance gap with larger LLMs. 120

2 Preliminaries 121

We formulate EHR profiling as three separate tasks, 122

1. Generative Entity Extraction (GEE): in 123

which an LLM is prompted to detect and clas- 124

sify clinical entity mentions in an ehr docu- 125

ment into a predefined set of entity types. 126

2. Generative Relation Extraction (GRE): in 127

which an LLM is prompted to classify an ex- 128

tracted entity pair into a predefined set of rela- 129

tion types given the ehr document. 130

3. Generative Evidence Extraction (GEvE): in 131

which an LLM is prompted to retrieve a pas- 132

sage from an ehr document to support exis- 133

tence of extracted entities and relations. 134

Method overview: We approach EHR profiling 135

using a two-stage pipeline as illustrated in Figure 2. 136

The initial stage leverages the an LLM ensemble to 137

generate EHR profiles, which are linearized into a 138

structured JSON format. This stage also incorpo- 139

rates an additional LLM (superior to any model in 140

the ensemble) to refine the EHR profiles and enrich 141

them with contextually relevant evidence textual 142

snippets. The second stage treats the refined EHR 143

profiles as labels at entity, relation and evidence 144

levels for training an LLM to generalizE across un- 145

seen EHR notes. We apply IT inorder to enhance 146

the multi-task learning of GEE, GRE and GEvE. 147
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Figure 2: GenJERE prompt-then-tune pipeline.

3 GenJERE Pipeline148

To implement GenJERE (Figure 2), we assume ac-149

cess to a dataset D of unstructured EHR notes, an150

ensemble of LLMs li∈{1,n} ∈ L, where n = num-151

ber of LLMs, a denoising and evidence generating152

LLM M superior to all li ∈ L.153

3.1 Stage 1: GEE, GRE and GEvE154

(a) GEE: In the first component, each li is in-155

structed to extract an entity list Ei (following156

GEE’s definition) resulting into n lists. The en-157

tity lists are then merged and processed into a sin-158

gle deduplicated entity list Ê. See App. A.2 for159

post-processing steps.160

(b) GEvE (Entity-level Denoiser): The next161

component iteratively prompts M with one entity162

e ∈ Ê at a time, instructing it to (1) predict a binary163

verdict (Yes or No) indicating whether the entity164

exists in the ehr and (2) extract an evidence snip-165

pet to justify e’s presence otherwise returning “No166

mention of entity”, The prompts with the heuristics167

for all sub-tasks is provided in the App. A.2.168

(c) Entity Pairing: The third component enumer-169

ates the list of evidenced entities Ê to create entity170

pairs. Using a set of heuristics, this component171

infers the directionality in the entity pair based on172

the relation type in a schema of predefined relation173

types R i.e. given a relation r ∈ R, it determines174

which entity constitutes a subject or an object. For175

example, for r = treatment_for, the subject en-176

tities will be of entity types [Treatments, Drugs]177

and the object entities are [Disease or condition,178

Signs or symptoms, Injury, Other medical problems,179

Mental or behavioural disorder]. See App. A.3.180

(d) GRE: The fourth component reintroduces the181

ensemble, where each li is iteratively prompted to182

process each entity pair (e1, e2) ∈ E × E one at a183

time, predicting which (if any) relations from R184

are expressed by the entity pair. Each li generates a 185

list of relation triples Ri, and the n relation lists are 186

merged into a single deduplicated list of predicted 187

relations R̂. Post-processing details in App. A.2. 188

(e) GEvE (Relation-level Denoiser): The penul- 189

timate component reintroduces M to denoise R̂ 190

and extract evidence snippets for r ∈ R̂, similar to 191

what was done at entity level (component (b)). 192

3.2 Stage 2: IT for EHR Profiling 193

We learn a model f(i; ehr) → y that generates an 194

EHR profile y given an input prompt text. 195

Prompt structure: We feed the LLM with an in- 196

stance [I; def ; c; ehr; profile], where ; indicates 197

concatenation, I denotes the main task instruction, 198

def denotes a schema of definitions of target EHR 199

profile elements i.e. clinical concepts and relations, 200

c implies the Chain-of-Thought (COT) steps to fol- 201

low, ehr denotes the EHR notes, and profile im- 202

plies profiles that would have been obtained from 203

stage 1 in previous section. 204

EHR profile structure: All elements of the out- 205

put y are best interpreted if structurally organised 206

rather than in an amorphous manner. We opt to 207

linearize responses into JSON sequences, as JSON 208

is a common format that most LLMs are likely to 209

have encountered more frequently (e.g. in code) 210

than BIO or YAML formats (Goel et al., 2023). 211

3.2.1 Long context Tuning 212

EHR notes can be extremely long, and combined 213

with the IT prompt context detailed earlier, some in- 214

stances exceed the maximum sequence lengths (8K 215

tokens) of some LLMs in the ensemble (Table 1). 216

However, we are also aware that when instruction- 217

tuned and exposed to long context (>8K), LLMs 218

have demonstrated not only an ability to preserve 219

their shorter context processing capabilities, but 220
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also rival larger LLMs (Li et al., 2023). We there-221

fore explore IT where the pretrained context length222

is extended using LongLoRA1 (Chen et al., 2023).223

4 Experiments224

Data: We conduct experiments using n2c2 (Na-225

tional NLP Clinical Challenges) which contains de-226

identified EHR records from health facilities in the227

US2. We specifically use the datasets detailed be-228

low, because they’re annotated for IE tasks, hence229

making them suitable for evaluating our EHR Pro-230

filing tasks.231

• i2b2 2009 Medication Extraction Chal-232

lenge, which was annotated for the extraction233

of medication regimen (medications, dosages,234

modes, frequencies, durations) and reasons235

for starting medications (Uzuner et al., 2010).236

• i2b2 2010 Relations Challenge, which was237

annotated for extraction of (1) medical prob-238

lems, tests, treatments and assertions made239

on medical problems; and (2) relations across240

the aforementioned concepts (Uzuner et al.,241

2011). All relations listed in App. B.242

• 2018 Adverse Drug Events & Medication243

Extraction (ADE), which was annotated for244

extraction of medications and their relations245

to adverse events (Henry et al., 2020).246

Models: For our ensemble, we consider 2 instruc-247

tion tuned open-source LLMs and a chat model248

i.e. Llama-3.1-8B-Instruct, Mistral-7B-Instruct and249

claude-3-haiku respectively. For the denoiser, we250

explore Llama-3.1-405B-Instruct (L405) and GPT-251

4 (2024-08-06). We only consider zero-shot setting252

in our experiments because of (1) the context is al-253

ready substantively long (as discussed in 3.2.1) and254

we set the maximum number of tokens to generate255

>8k

Llama Tokenizer 51
Mistral Tokenizer 93

Table 1: Number of instances in 2010 Relations Chal-
lenge dataset whose sequence length is above the trained
context window (8192 tokens).

1LongLoRA for Long context fine-tuning
2This data is collected from Partners Healthcare, Beth

Israel Deaconess Medical Center, and the University of Pitts-
burgh Medical Center. About n2c2

to 2048 for MTP and 1024 for GenJERE prompting 256

and (2) we hypothesize that the embedded defini- 257

tions contain good signals that would guide the 258

LLM during inference. 259

4.1 Implementation 260

Prompting: We design task-specific prompts 261

with plain text instructions and COT. We further 262

augment them with definitions of the entity types 263

(for GEE) and relation types (for GRE). Definition 264

augmentation (DA) has enhanced instruction-only 265

prompting in the past (Munnangi et al., 2024). 266

Inference and Fine-tuning: We deploy 2 work- 267

ers each with 4 × A100 GPUs cluster and use 268

a learning rate of 2 × 10−5 and keep the rest of 269

the training and evaluation setting to their defaults 270

from the pretrained versions of the models. To opti- 271

mize inference, we implement Langchain’s prompt 272

templating3 and use VLLM’s4 efficient batching 273

capability for inference on large datasets. 274

Metrics: Exact-match metrics may discourage 275

adoption of LLMs for clinical IE due to their rigid 276

requirement of exactly matching reference annota- 277

tions. However, this fails to reflect the true capabili- 278

ties of LLMs, which despite producing open-ended 279

and expressive responses, can still generate outputs 280

that are semantically accurate, understandable and 281

task-relevant (Es et al., 2024; Liu et al., 2023). Mo- 282

tivated by this, we advocate for evaluation of the 283

semantic alignment of the outputs in this work. For 284

the GEE, we propose a Semantic Coverage (SC) 285

score, to evaluate how comprehensively the gen- 286

erated entities cover the information in the source 287

text. For each ground truth entity e ∈ E, we use 288

cosine similarity (cos) to search for the most seman- 289

tically similar entity from the predicted entity set 290

P. If the similarity between e and the best matched 291

p ∈ P exceeds a predefind threshold ϕ, we con- 292

sider e to be successfully matched, otherwise not. 293

We set ϕ = 0.95 and compute SC as, 294

SC =
1

|E|
∑
e∈E

1

(
max
p∈P

(sim(e,p)) ≥ ϕ

)
(1) 295

where 1 is an indicator function and 1(..) = 296

{1, 0}. 297

For GRE, we adopt Jiang et al. (2024)’s multi- 298

aspect evaluation framework (GenRES), which em- 299

phasizes semantic similarity. We compute a) Top- 300

3Langchain prompt templates
4VLLM for fast inference and serving

4

https://github.com/dvlab-research/LongLoRA
https://n2c2.dbmi.hms.harvard.edu/about-n2c2
https://python.langchain.com/docs/concepts/prompt_templates
https://docs.vllm.ai/en/latest/index.html


2010 Relations Challenge 2018 ADE 2009 Medical
Challenge

GEE GRE GEvE GEE GRE GEvE GEE GEvE

SC TS GS FS US CS EP SC TS GS FS US CS EP SC EP

Ground Truth 100 43.0 94.3 91.5 99.6 100 _ 100 41.5 94.7 92.0 99.2 100 _ 100 _
Multi-task prompting

1. Mistral 7b Instruct 84.7 39.3 48.7 58.1 83.5 28.4 48.9 84.5 29.7 44.5 61.3 88.4 36.5 51.9 82.4 64.6
2. Llama 3.18B Instruct 82.5 38.6 58.5 56.5 83.3 33.9 50.7 83.3 32.5 49.8 60.7 86.5 34.4 49.7 82.4 66.4
3. Claude 3 Haiku 83.4 39.7 64.5 47.3 88.4 37.2 59.9 89.8 41.5 57.8 64.7 89.4 39.2 53.2 86.9 69.8
Ensemble [1:2:3] 85.4 41.7 61.5 61.3 89.7 36.6 62.0 91.2 39.5 58.3 64.9 90.4 41.4 53.3 87.7 70.1

GenJERE Prompting
4. Mistral 7b Instruct 87.9 46.3 67.5 71.5 99.7 39.7 69.9 89.1 44.5 59.4 73.1 99.1 45.6 63.9 86.8 73.9
5. Llama 3.18B Instruct 86.5 45.6 62.5 69.8 99.5 41.0 68.5 88.9 48.9 67.2 73.8 98.3 49.4 60.5 85.8 74.5
6. Claude 3 Haiku 88.5 48.7 72.5 77.5 99.4 42.2 77.1 91.0 52.3 68.0 75.4 99.4 51.4 66.1 87.9 77.9
Ensemble [4:5:6] 89.1 55.2 79.1 80.3 99.8 44.9 81.4 93.4 56.7 69.4 79.6 99.8 51.9 69.4 91.4 79.4

+Denoiser (L405) 90.7 58.8 81.3 80.7 99.9 51.9 85.3 95.6 59.9 71.1 80.4 99.9 54.2 71.1 93.3 80.9
+Denoiser (GPT-4) 93.4 60.4 85.2 84.2 99.9 50.1 88.7 96.3 62.8 73.3 82.1 99.9 56.1 70.7 94.9 80.7

Table 2: Evaluation of closed- Multi-task and GenJERE prompting for GEE, GRE and GEvE. Ensemble [x:y:z]
indicates a score of aggregated (union) outputs of the models x,y and z. With 4-6, the respective LLMs are used for
denoising whereas with +Denoiser(m), m handles the denoising as described in section 3. Best scores are in bold.

ical Similarity Score (TS): which measures the301

information abundance of extracted triples com-302

pared to the source text, b) Granularity Score303

(GS): measures the level of detail (granularity) of304

extracted triples from source text, c) Factualness305

Score (FS): quantifies the extent of alignment of306

extracted triples with source text information5 and307

d) Uniqueness Score (US): assess the diversity of308

the extracted triples, e) Completeness Score (CS):309

How comprehensively the extracted triples cover310

the information present in the source text.311

For GEvE, we consider using a prompt-based312

evaluator to evaluate whether the extracted evi-313

dence passage supports existence of the clinical en-314

tity (for GEE) or the extracted relation (for GRE).5315

Given an evidence passage 1) prompt an LLM to316

either support or refute the claim in evidence pas-317

sage respectively returning "True" or "False". We318

compute an Evidence Precision (EP) score as,319

EP =
1

N

N∑
i=1

1(passage supports claimi)
i∈entities,relations

(2)320

where N is the total number of extracted entities321

and relations (combined) and 1(..) = {1, 0}.322

4.2 Results323

We evaluate both stages of the GenJERE described324

in section 3. For stage 1, we evaluated the indi-325

vidual models, the ensemble, and the ensemble326

augmented with the denoiser and evidence genera-327

tor (denoted as “+Denoiser”) on GEE, GRE, and328

GEvE. The ensemble aggregates model outputs329

5GPT3.5-Turbo-Instruct is employed as a fact-checker
(FS), Granularity-checker (GS) and evidence-checker (EP).

by taking the union of predictions across all mod- 330

els, while “+Denoiser” further refines the ensemble 331

outputs via an LLM-based denoising mechanism 332

described in section 3.1. Since stage 1 is mainly 333

In Context Learning (ICL), we combine the train 334

and test sets provided for the datasets and for the 335

second stage, we finetune Llama-3.8B-Ins on the 336

instruction-ehr-profile tuples (from 3.2, shown in 337

App 13) using the train set and evaluate on the test 338

sets. 339

4.2.1 Multi-task Vs GenJERE prompting 340

Despite their strong capabilities in following mul- 341

tiple instructions simultaneously, our experiments 342

revealed their struggles in MTP for IE tasks, espe- 343

cially for GRE. With the exception of GEE, models 344

prompted via GenJERE consistently outperform 345

their MTP variants by a range of 4-21% across 346

GRE and GEvE. We attribute the struggles of MTP 347

to (1) Complexity of intermediate batch processing 348

across chained tasks i.e. as task-specific outputs 349

are being transferred from one task to another, (2) 350

the nature of EHR notes demands sophisticated 351

domain understanding which even SOTA LLMs 352

GEE GRE GEvE

SC TS GS FS US CS EP

Multi-task Prompting
L405 89.3 55.9 79.4 74.5 99.9 44.3 79.4
GPT-4 91.2 56.8 85.1 84.9 99.9 46.9 86.0

GenJERE Prompting
Ensemble 89.1 55.2 79.1 80.3 99.8 44.9 81.4

+Denoiser (L405) 90.7 58.8 81.3 80.7 99.9 51.9 85.3
+Denoiser (GPT-4) 93.4 60.4 85.2 84.2 99.9 50.1 88.7

Table 3: Comparing the ensemble to the superior LLMs
(closed MTP) on the 2010 Relations Challenge dataset.
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struggle with (Liu et al., 2024), (3) the long in-353

put sequences comprising instruction, COT, EHR,354

and definitions which exceeds context window on355

some data points Table 1. In contrast, with Gen-356

JERE, models process relatively shorter prompts357

and additionally benefit from IP (which allows self-358

verification) and intermediate post processing such359

as deduplication of extractions.360

4.2.2 LLM Ensemble superiority361

We observed significant performance gains made362

by the ensemble over all the individual models363

across all metrics, thereby demonstrating the syner-364

gistic effects of combining multiple LLMS for IE.365

We also saw further gains with the incorporation of366

denoisers particularly GPT-4, which achieved most367

of the overall best scores across all datasets. This368

demonstrates the benefit of LLM-based denois-369

ing/error correction mechanism in mitigating error370

propagation as outputs are transferred from one371

sub-task to another through the GenJERE pipeline.372

Ensemble vs Stand alone Denoiser: We sepa-373

rately investigate each of the denoisers for their374

stand-alone performance on the EHR profiling375

tasks and discover that, the ensemble on its own is376

still very competitive, and when augmented with377

a denoiser GPT-4 performs best (Table 3). Stan-378

dalone GPT-4 is dominant in FS and GS which we379

hypothesize arises from employing a similar fabric380

LLM (GPT-3.5-Turbo-Instruct) in evaluation, thus381

likely to skew towards GPT-4 generations.382

5 Analysis and Discussion383

To assess the quality of the LLM’s extractions in384

terms of their consistency and interpretability, we385

investigate two key aspects, (1) the semantic align-386

ment between their outputs and the annotations,387

and (2) the ratio of relevant to irrelevant extrac-388

tions. For (1), we compute the overall distance389

between the embeddings of annotations and the390

extractions6. For GEE, we compute an average391

embedding per document for both annotations and392

extractions, then compute their L2 norms across393

the dataset. The document-level L2 norms are then394

averaged across the dataset for both annotations395

and extractions. GRE follows a similar process,396

except that relation triple embedding are obtained397

via element-wise addition of the subject, object398

and predicte embeddings. For (2), we set up an399

6Using Openai’s text-embedding-3-small to obtain their
respective embeddings

additional experiment, Open ended MTP, which 400

excludes the target concepts, relations and their 401

definitions from the prompt (Figure 1). From this 402

point, Ens-L405 and Ens-GPT-4 refer to the ensem- 403

ble combined with denoisers, respectively. 404

5.1 Semantic alignment to annotations 405

As shown in Figure 3. GEE distances are generally 406

shorter than GRE, suggesting a stronger seman- 407

tic alignment for entities. Notably, the ensemble 408

consistently yields the smallest distances, suggest- 409

ing that the aggregated outputs are more semanti- 410

cally faithful to human annotations than individual 411

models and the standalone denoisers. To further 412

contextualize the idealness of semantic alignment 413

evaluation, Figure 4 illustrates that despite not gen- 414

erating exact matching spans, LLM extractions are 415

semantically relevant and would be understood if 416

manually verified. 417

5.2 Relevant Vs Irrelevant Extractions 418

Open ended MTP performs poorly, often gener- 419

ating significantly more irrelevant profile items 420

than the compared methods. We attribute this to 421

the lack of guiding context in prompt (i.e. target 422

words). This supports findings by Webson and 423

Pavlick (2022), which highlight the importance of 424

specifying target/expected words in the prompt that 425

can substantively override the misleading prompt 426

semantics. Even with context (target concepts, re- 427

lations and their corresponding definitions), some 428

models generate slightly more irrelevant items in 429

closed MTP compared to Closed GenJERE prompt- 430

ing. As earlier noted, we attribute this to complex- 431

ity of intermediate batch processing when handling 432

multiple tasks simultaneously. 433

Varying In-context batch prompting: To anal- 434

yse the impact of intermediate batch prompting or 435

Figure 3: Distance between overall L2 norms of the
embeddings of the annotations (left) and the extractions
(left). Larger distances depict lower semantic alignment.

6
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Figure 4: Analysing semantic similarity between ground truth and extractions for the best ensemble model using
cos scores. Even when exact span matches (scores=1.0) are not achieved, partial matches still yield meaningful and
understandable scores, e.g. for annotated span, "a desaturation", the closest match "desaturation" achieves score 0.9,
which would have otherwise been Precision=0, Recall=0 and a micro F1=0 for traditional metrrics.

processing, we utilize GenJERE’s entity pairing436

component to create entity pairs exclusively from437

GEE outputs of the closed MTP (ignoring GEE438

and GEvE outputs). We then query the LLMs (via439

closed MTP) with varying batch sizes [20, 15, 10,440

5] of entity pairs for GRE and GEvE tasks. We only441

investigate the non-proprietary models and report442

the average score across all five GRE scores. We443

observe the performance progressively declining444

as batch size increases (Figure 6). Notably, there445

is a consistent performance improvement over the446

original MTP results for the respective models as447

reported in Table 2. These findings substantiate our448

hypothesis that LLMs struggle with intermediate449

batch processing during multi-tasking operations450

on a single turn.451

Figure 5: Percentage distribution of the relevant and
irrelevant features (entity classifications combined with
relation classifications). Full list of Irrelevant and rele-
vant concepts and relations are included in the App. B.

5.3 Ablation 452

We then probe the relevance of the DA and IP. We 453

set up two sets of experiments 1) Without defini- 454

tions, in which the target concepts and relations 455

are eliminated from the prompts and 2) Without 456

IP, in which, we batch prompt the LLM with all 457

extracted entities and their classifications and all re- 458

lation triples (during denoising for GEE and GRE) 459

in a single turn. 460

Multi-tasking without definitions: As shown 461

in Figure 7, we observe a significant performance 462

decline when definitions are eliminated from the 463

prompts for all tested models. We also notice that 464

the ensemble variants suffer more than the stand 465

alone denoisers, which we attribute to the robust- 466

Figure 6: Investigating the average GRE scores over 5
runs for different batch sizes.
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GEE GRE GEvE

SC TS GS FS US CS EP

L405 88.7 53.5 77.7 75.5 99.1 48.3 79.2
GPT-4 91.4 56.8 80.1 81.9 99.9 52.1 81.8
L3.1-8B-Ins+ 92.0 58.1 76.9 71.7 99.5 49.9 59.5
L3.1-8B-Ins++ 92.8 58.1 78.1 71.7 99.5 53.2 60.1

Table 4: Evaluation performance on the synthetically
generated instruction-ehr-profile triples on the 2010_Re-
lations_Challenge dataset. “+” is standard LoRA tuning
and “++” is LongLoRA tuning.

ness of the denoisers, and their supreme ability to467

contextualize the EHR with respect to instructions.468

Mult-tasking without IP: We further noticed in469

Figure 7, an even worse performance decline when470

IP was eliminated. This is especially seen with471

GRE, where there are several multi-labeled rela-472

tion triples, which create ambiguity that obscures473

subtle differences between the different relations474

for the same entity pair. In summary, these results475

highlight 1) LLM batch prompting limitations on a476

single turn and 2) the critical contribution of both477

DA and IP for the overall LLM performance in478

multi-tasking such as EHR profiling.479

6 GenJERE Tuning480

We use LoRA to adapt Llama-3.18B-Instruction481

to the instruction-ehr-profile tuples generated in482

Stage 1 of the GenJERE pipeline. Preliminary483

analysis revealed that many input sequences (in-484

struction + EHR record + profile) exceed Llama-485

3.18B’s context window (8192 tokens), see Table 4.486

Figure 7: Probing relevance of DA and IP. Metrics plot-
ted are SC for GEE, Average GRE for GEE and EP for
GEvE, where “w”. - with, and “w/o” - without.

We observed that the fine-tuned model performs 487

competitively with the standalone denoisers, even 488

outperforming them on GEE and the CS score for 489

GRE. However, the denoisers still significantly out- 490

perform the fine-tuned model on GEvE. We also 491

notice that LongLoRA enhances the performance 492

of LoRA highlighting the benefit of long context 493

tuning for long sequences such as EHRs. 494

7 Related work 495

Efforts to enhance interpretability of LLM predic- 496

tions in healthcare have mainly concentrated on QA 497

and Text Summarization, inadvertently neglecting 498

other essential tasks such as Clinical IE (Vatsal and 499

Singh, 2024; Zhu et al., 2024; Qin et al., 2024). 500

COT prompting has been predominantly adopted 501

for eliciting grounded explanations for LLM out- 502

puts to enhance interpretability of critical health- 503

care aspects like mental health (Qin et al., 2024; 504

Yang et al., 2023). Our work mostly aligns with Qin 505

et al. (2024) as they also leverage IP and compute 506

a weighted average of results from iterations and 507

Chen et al. (2024), because they finetune an LLM 508

for explanation generation. Besides redirecting at- 509

tention to IE, our work distinguishes itself in three 510

ways, 1) we consider enhancing understandability 511

when handling multiple tasks and 2) we interrogate 512

the capabilities of smaller LLMs that have largely 513

been underexplored in this regard and 3) we evalu- 514

ate on real world EHR data rather than social media 515

data in order to focus on more objective opinions 516

and evidence-based decisions. 517

8 Conclusion 518

We proposed GenJERE, a prompt-then-tune 519

pipeline that leverages a small-LLM ensemble, 520

IP and DA to improve generative IE performance 521

while enhancing understandability. Across EHR 522

datasets, the small-LLM ensemble outperformed 523

larger models in generating semantically faithful 524

and relevant outputs. We compared single-turn 525

MTP and multi-turn (GenJERE) prompting, discov- 526

ering that, LLMs struggle with simultaneous multi- 527

task inference in IE on complex EHR data, largely 528

due to intermediate batch processing complexity 529

as outputs are transferred across sub-tasks. Our ex- 530

periments show that IP and smaller batch sizes can 531

mitigate this challenge, enhancing the MTP perfor- 532

mance. Furthermore, fine-tuning a small LLM on 533

synthetic data improved performance and outper- 534

formed stronger LLMs in some IE tasks. 535
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Limitations536

We introduce GenJERE, a pipeline that employs a537

small-LLM ensemble and MSP to execute multi-538

ple tasks sequentially, thereby alleviating the batch539

processing complexities during MTP. Despite Gen-540

JERE strong performance, some of its limitations541

should be noted as discussed below.542

Implementing GenJERE end-to-end can be com-543

putationally expensive because 1) it processes544

one extraction at a time during self- or external-545

verification in its denoising mechanism and 2) it546

uses a brute-force approach by enumerating all pos-547

sible entity pairs when inferring relations and 3)548

optionally facilitates for denoising using propri-549

etary models which comes at a cost. Re-purposing550

an open-source LLM ensemble can be a potential551

alternative for denoising in future research endeav-552

ors especially when handling IE at scale.553

Clinical IE is language agnostic and applicable554

to clinical notes regardless of the language. How-555

ever, our empirical evaluation is limited to clini-556

cal notes prepared in english, so we can therefore557

only theorize its potential on corpora in other lan-558

guages, especially those whose linguistic patterns559

deviate from english enormously. Moreover, the560

writing styles for clinicians can vary across coun-561

tries, which can also affect model perplexity, and562

subsequently model performance on downstream563

tasks such as IE.564

We do not assess the quality of the extracted evi-565

dence passages accompanying extracted concepts566

and relations, mainly because, there was no corre-567

sponding ground truth annotations.568

Adopting LLM-based evaluators (like we do569

on some GRE and GEvE metrics) can minimize570

reliance on expertly curated data, however, it al-571

ways raises concerns about potential biases favor-572

ing LLM generated text over human annotations.573

This concern has been well documented in the NLP574

community. Furthermore, although semantic align-575

ment offers a more accurate reflection of LLM ca-576

pabilities as we extensively demonstrate, there is a577

need for a well thought through trade-off between578

exact-match and semantic alignment in order to579

establish an adequate and robust evaluation sys-580

tem for generative IE. Our work will trigger future581

endeavors in searching for metrics to effectively as-582

sess LLM outputs (at any scale) for clinical utility.583
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Appendices 709

A GenJERE pipeline 710

A.1 Prompts 711

For the GenJERE setup, we design task specific 712

prompts for GEE, GRE and GEvE and for the MTP 713

setup, we enclose the task specific instruction in 714

a single prompt (Figure 11). As seen in each of 715

task-specific prompts in Figure 8, Figure 9 and 716

Figure 10, we embedd definitions of the target con- 717

cepts and relations denoted by “{Entity definitions 718

Schema}”, and “{Relations definitions Schema}” 719

respectively. 720

A.2 Post-processing 721

As earlier indicated in section 4.1, LLMs are typ- 722

ically elaborative and expressive, and they quite 723

often return erroneous responses especially when 724

forced to follow specific structures or formats. We 725

focus on both the syntactic and semantic errors 726

made during post-processing in order to parse their 727

outputs into the desired format as they are being 728

transferred from one sub-task to another as shown 729

in 1. For the syntactic parsing, three steps are fol- 730

lowed, (1) using langchains inbuilt output parsers 731

“OutputFixingParser” (line 8) which can pass the 732

misformatted output, along with the formatted in- 733

structions, to the model and ask it to fix it, (2) Use 734

the PydanticParser (line 9) which follows the de- 735

fined schema and extracts only specified objects 736

(concepts or relations) and (3) searches and re- 737

moves unwanted patterns (lines 12-21) in outputs 738

and finally retain a unique list of elements, For 739

the semantic parsing, we initialise a transformer 740

model microsoft/deberta-xlarge-mnli via sentence 741

transformers, use it to compute pair-wise similarity 742
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Figure 8: GEE Prompt

Figure 9: GRE prompt

Figure 10: GEvE, Entity denoiser

across the entity list and then eliminate one of each 743

pair when their similarity exceed a threshold of 744

0.99 (lines 25 - 34). After these two stages we re- 745

tain deduplicated list of entities. A similar process 746

is followed for relations. 747

A.3 Entity pairing 748

Following the 2010 Relations Challenge Dataset 749

annotation guidelines, we retain only entity pairs el- 750

igible for the relation prediction task preserving di- 751

rectionality. For example, the “Treatment improves 752

medical problem” relation annotated as “TrIP” id 753
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Figure 11: Closed MTP prompt

defined to include mentions where a treatment im-754

proves or cures the problem. This suggests that con-755

cept classifications that constitute treatments would756

be subjects e.g. drugs, and those that constitute757

medical problems would be objects e.g. Disease758

or conditions. Table 5 summarises the relations,759

subjects and corresponding objects based on the760

annotation heuristics.761

Algorithm 1 Deduplication and output parsing

1: Input: LLM Results, Output: Deduplicated
results

2: Initialise: Langchain’s OutputFixingParser,
PydanticOutputParser

3: Initialise: sim_model
4: Initialise: null_set = ["none", "notindicated",

"not", "notprovided", "null", "unknown"]
5: Initialise: un_wanted_patterns = [’“‘json|“‘’]
6: Initialise: dedup_results = {}
7: for (client, patient_profile) in results do
8: results = OutputFixingParser(results)
9: results = PydanticParser(results)

10: Initialise dedup_entity_list = {}
11: for element in results do
12: for pattern in un_wanted_patterns do
13: element = remove(pattern, element)
14: end for
15: if element exists then
16: if lowerCase(element) /∈ null_set then
17: closeoffunclosedquots(element)
18: remove_large_spaces(element)
19: if element /∈ dedup_entity_list then
20: dedup_entity_list.add(element)
21: end if
22: end if
23: end if
24: end for
25: Compute elem_embeddings = sim_model-
26: .encode(dedup_entity_list)
27: Compute similarity_matrix = sim_model-
28: .similarity(elem_embeddings)
29: for (i, sim_row) in enumer-

ate(similarity_matrix) do
30: for (j, sim) in enumerate(sim_row) do
31: if sim > 0.99 then
32: Print similar concepts information
33: else
34: deduplicated_entity_list.remove(ele-

35: ment @ j)
36: end if
37: end for
38: end for
39: deduplicated_results[client] = dedupli-

cated_entity_list
40: end for
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Relations Subject Object

associated_with

Disease or condition,
Signs or Symptoms,
Injury,
Other medical problems
Mental or behavioral,
disorder

Disease or condition,
Signs or Symptoms,
Injury,
Other medical problems,
Mental or behavioral
disorder

treatment_for,
treatment_causes
treatment_improves,
treatment_worsens,
treatment_not_-
administered

Drug,
Biological substances
Other treatments

Disease or condition,
Signs or Symptoms,
Injury,
Other medical problems,
Mental or behavioral
disorder

test_investigates,
test_reveals

Test or procedure

Disease or condition,
Signs or symptoms,
Injury,
Other medical problems,
Mental or behavioural
disorder

Table 5: Heuristics for entity pairing

B Relevant and Irrelevant Entity and762

Relations Types763

We performed qualitative analysis of the LLM’s ex-764

tractions during the comparison between MTP and765

GenJERE PTP. We observed that, In Open-ended766

MTP, where the target concept classifications and767

relations are not specified and to a lesser extent,768

in closed MTP, the LLMs often classified the ex-769

tracted entities and relations with arbitrary concept770

and relation classification/types as shown in Fig-771

ure 5. The list of these irrelevant classification772

generated is provided in Table 6.773

Relevant Irrelevant

GEE

Medication Regimen [drug,
dosage, frequency,
duration, route],
Disease or condition,
Signs or symptoms,
Injury,
Other medical problems,
Mental or behavioural disorder,
Test or procedure, Measurement
tool or devices
biological substances

Admission date,
Discharge date,
Demographics,
Chief complaint,
Allergies,
Physical examination,
Lab results,
Family history,
Immunization,
Social history,
Imaging results,
Care coordination,
Medical service

GRE

associated_with, treatment_for,
treatment_improves, treatment_worsens,
treatment_not_administered, test_reveals,
test_investigates

has_Diagnosis, has_SideEffects,
performed_on, ordered_for,
associated_with, riskfactor_for,
measured_on

Table 6: List of relevant or expected concepts (GEE)
and relations (GRE) and the irrelevant or unexpected
concepts and relations.

C Context Length 774

To further contextualize the length of the context 775

in the prompts, and thereby assess the need for 776

extending the pretrained context length during fine- 777

tuning was necessary, we calculated the average 778

prompt length measured in words (Table 7) and 779

tokens (Table 8). As seen in Table 8, while many 780

instances fell within the trained context window, a 781

substantial portion exceeded this window i.e. 32% 782

and 40% based on LLama and Mistral Tokenizers 783

respectively. 784

Multi-task Prompting GenJERE Prompting

Avg. Len Avg. Len
Instruction Context Instruction Context

2010 Relations Challenge 365 2391.8 121.9 1377.5
2010 ADE 348 3612.7 124.2 1398.2
2009 Medical Challenge 119 2019.5 98.5 1289.9

Table 7: Average length (measured in number of words)
of Instructions (task query + CoT steps) and Con-
text (EHR + definitions) for Multi-task and GenJERE
Prompting. Multi-task Instructions combine GEE-Ins,
GRE-Ins, and GEv-Ins, whereas GenJERE Instructions
are calculated as (GEE-Ins + GRE-Ins + GEv-Ins) / 3

<8k >8k

Llama Tokenizer 179 (78%) 51 (32%)
Mistral Tokenizer 137 (60%) 93 (40%)

Table 8: Number of instances in 2010 Relations Chal-
lenge dataset whose total length is above the trained
context window (8192 tokens) using different Tokeniz-
ers.

D Semantic alignment to annotations 785

Figure 12 shows more examples how semantic 786

alignment enhances the interpretation of LLM 787

IE outputs, while also minimising the effect of 788

errors in ground truth or annotations. In some 789

cases where, no exact matching span was iden- 790

tified within the extractions, our proposed metric 791

assigned semantically similar matches a similarity 792

score (cos) > 0, which would have otherwise been 793

a precision=0 and recall=0 in traditional metrics. 794

Examples of such cases include the following (for- 795

matted as (ground truth, llm extraction) for GEE, 796

("the hypotension", "hypotension"), ("your aspirin", 797

"aspirin") ("low dose spironolactone", "spirono- 798

lactone") and for GRE ("cardiac catheterization, 799

test_investigates, her aortic stenosis"),("cardiac 800

catheterization, test_investigates, aortic stenosis"). 801
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Figure 12: Analysing semantic similarity between ground truth and extractions for the best ensemble model using
cos scores.
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Figure 13: Sample Instructions, EHR and profile
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