Position: System-2 Al is about Complexity Out of Distribution

Anonymous Authors'

Abstract

This position paper argues that addressing the lim-
itations of the current ”System-1" paradigm in
deep learning, which struggles to generalize to
complex scenarios beyond training, necessitates
the introduction of a complementary ”System-
2” reasoning paradigm. We introduce the con-
cept of “complexity out-of-distribution,” which
highlights the obstacles in progressing toward
true artificial general intelligence (AGI). These
scenarios require more intricate representations
or computational paths than those encountered
during training. Our position is that achieving
effective solutions for such out-of-distribution
complexities calls for a shift towards System-2,
which frames problem-solving as a search over
sequences of semantic units with unbounded com-
plexity. This new paradigm seeks to discover
algorithms, leveraging System-1’s learned repre-
sentations and heuristics, to handle examples with
varying complexity akin to human reasoning abil-
ities. We assert that advancements necessitate the
development of tailored System-2 methods, in-
cluding complexity-focused tasks, benchmarks,
supervision paradigms, representations, metrics,
and inductive biases. By drawing on recent re-
search across multiple domains, we outline the
essential requirements and challenges in integrat-
ing the symbolic search process of System-2 with
neural network architectures.

1. Introduction

In recent years, the remarkable progress of artificial intel-
ligence has largely been fueled by the paradigm of pre-
training on massive datasets. This approach leverages abun-
dant data and trains very large networks on them (Achiam
et al., 2023; Radford et al., 2021; Ramesh et al., 2021).

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

However, just as fossil fuels are ultimately exhaustible,
the availability of fresh, high-quality data is not infinite;
we may soon face a point where there is no new data left
for further pre-training (Villalobos et al.; Shumailov et al.,
2024). Meanwhile, in many complex tasks, there remains
a significant performance gap between Al systems and hu-
mans—one that cannot be closed simply by providing more
data. The most prominent challenges in this regard are
commonly referred to as reasoning or “System-2” tasks. Un-
like “System-1,” which relies on rapid, intuitive processing,
System-2 problems require multi-step solutions where each
step may either represent part of the final answer or serve
as a pathway toward it (Kahneman, 2011). In reasoning
tasks, the need for data grows exponentially, and to improve
performance, we are compelled to scale data exponentially
(Zeng et al., 2024). This intensifies the challenge, highlight-
ing the limitations of relying solely on more data for Al
advancement

A major objective of Al is to achieve correct prediction and
generalization on unseen samples. Naturally, without certain
assumptions—often called inductive biases—it is impossi-
ble to guarantee correct predictions on out-of-distribution
(OoD) data (Mitchell, 1980; Baxter, 2000; Goyal & Bengio,
2022). Indeed, throughout the history of Al, every encounter
with novel or unexpected data distributions has spurred re-
searchers to identify and leverage new inductive biases. For
instance, convolutional architectures with pooling layers
embody the assumption of translational invariance, enabling
more robust performance on spatially transformed inputs.
However, this raises a key question regarding System-2
tasks: what kind of OoD challenge do such tasks pose?

The main characteristic of System-2 problems is that they
require multi-step solutions that involve the composition of
various subcomponents. We posit that the primary out-of-
distribution (OoD) issue related to System-2 problems
is complexity out-of-distribution. Achieving effective
solutions for such complexities requires a shift, which
approaches problem-solving as a search over sequences
of semantic units with unbounded complexity. Complex-
ity OoD refers to generalizing from a set of examples to
new instances that require more complex representations or
deeper computational paths. Crucially, no matter how large
a given training set might be, there are always examples
with higher complexity outside of it; as a result, even if



Submission and Formatting Instructions for ICML 2025

we had an infinite supply of data, simply scaling data size
would not ensure the ability to handle increased complexity.
This highlights a fundamental limitation of the “more data”
strategy: complexity can escalate in ways that pure data
scaling cannot accommodate

In this paper, we propose that System-2 problems should
be approached from the perspective of complexity out-of-
distribution and systematically analyzed under this frame-
work. An approach that allows all System-2 problems to be
examined within a unified framework.

In the following sections, we first define complexity. Then,
we examine the format and structure of solutions for System-
2 problems, explaining the concepts of atomic concepts
and programs. After elucidating these two concepts, we
discuss the connection and bridge between System-1 and
System-2, and how they can aid each other. Finally, we
address the research challenges in the area of System-2 and
offer suggestions for constructing tasks, benchmarks, and
establishing new supervisory paradigms.

2. Complexity Out of Distribution

As stated in the introduction, the primary characteristic of
System-2 problems is that they require multi-step solutions.
This multi-step nature of solutions is closely related to the
concept of complexity. Here, we intuitively define complex-
ity as the minimum number of sub-steps required to reach
the solution. A complexity OoD setting then arises when
test samples have a higher minimum number of sub-steps
than any of the training examples, forcing the model to
handle levels of complexity unaddressed by its prior experi-
ence. Examples that are less frequent or more complex are
typically represented or processed by synthesizing multiple
such atoms. This means that the more common cases are
essentially learned through a System-1 approach, while the
rarer or more complex cases require a System-2 solution
that involves composing multiple learned building blocks,
where each of these sub-steps is resolved as a System-1 task.

Examples of Complexity OoD: Consider the learning pro-
cess for Roman numerals, where numerals like I, V, and X
are frequently encountered and readily learned as discrete
elements. These numerals are simple enough for the model
to be processed straightforwardly through System-1, where
the recognition is fast and reflexive. However, recognizing
complex combinations or higher values like XXIV (24) or
LXXXIX (89) or even IX (9) demands a greater cognitive
integration of these simpler units, a task that calls upon
the functionalities of System-2 to systematically combine
these learned elements into a coherent understanding that
respects the rules of Roman numeral composition. Similarly,
for mathematical operations like multiplication, the model
may learn basic single-digit or small multi-digit multiplica-

tion as “atoms” through System-1. But multiplying much
larger numbers would necessitate combining these learned
building blocks in a productive, systematic manner, which
requires System-2 reasoning.

Complexity OoD vs. Compositional OoD: In the litera-
ture, two cases of compositional generalization are typically
referred to as systematicity and productivity, respectively
(Hupkes et al., 2020). The performance of models can be
evaluated on these two out-of-distribution scenarios (Lake
& Baroni, 2018; Hupkes et al., 2020; Loula et al., 2018).
Systematicity refers to the ability to generalize to new com-
binations of known components during testing, even though
those specific combinations were not present in the training
data (Hupkes et al., 2020). Productivity refers to the ability
to generalize to samples with greater length than those seen
during training (Hupkes et al., 2020). While complexity
OoD conceptually resembles compositional OoD, it differs
from compositional OoD and its subcategories, systematic-
ity and productivity. The distinction between the complexity
OoD perspective and systematicity lies in the degree of com-
plexity within the compositions. In systematicity, we seek
generalization over combinations with a bounded number
of components. In contrast, complexity OoD does not im-
pose any bound on the number of foundational factors. The
difference between the complexity perspective and produc-
tivity generalization lies in the focus area. In productivity
generalization, the length of the input or output sequence
is usually considered, whereas complexity OoD refers to a
broader concept. For instance, one input might be shorter in
length than another yet more complex, such as comparing
the square root of 3 to that of 16.

Representational and Computational OoD: Complexity
can be specified in two dimensions, representational and
computational. Representational complexity OoD refers to
samples that have more complexity than training samples.
In fact, these are examples that, in order to be reconstructed
or discriminated, require more detailed descriptions than
the training samples. Another dimension of complexity that
can be examined alongside representation is computational
complexity. It pertains to samples for which the model
needs additional processing steps to arrive at the correct
answer, compared to the training samples. Upon reflecting,
it becomes evident that the computational and representa-
tional dimensions are intertwined. Problems categorized
under representational complexity OoD and computational
complexity OoD are essentially two sides of the same coin,
each influencing the other. The challenge, therefore, is not
just to address these dimensions separately but to recognize
that any successful solution must effectively integrate both
aspects—representation and computation. It seems that to
achieve System-2 and handle the variable amount of com-
plexity in input samples, we need to solve both the problem
of unlimited-length representation and have a mechanism



Submission and Formatting Instructions for ICML 2025

for adaptable-length computation. Here, we present a frame-
work and worldview for a potential solution to System-2.

2.1. Program Synthesis Framework

We want a framework that is unbounded in its capacity to
represent increasingly intricate input data and perform pro-
gressively more elaborate computations if required. Draw-
ing from the ideas in the previous section, the more common
or frequent samples can be learned as individual “atoms”
through a System-1 approach during training. However, the
rarer or more complex cases require a System-2 solution that
involves systematically combining and reasoning with these
learned building blocks in a productive and generalizable
manner. Here, we aim to define what the solution format that
System-2 is seeking actually is. Let’s assume that we have a
set of foundational semantic atomic units: mq, ma, ..., My,.
These foundational semantic units can serve as representa-
tion units (similar to words) in representation, or they can
be basic functions (similar to basic mathematical operators)
in computation. In that case, the solution that System-2 is
seeking is finding the correct sequence of these foundational
units. In the world of representations, this sequence can be
likened to a sentence composed of words, while in the world
of computations, it can be interpreted as an equation involv-
ing basic operators. If we also have an oracle that, given
any sequence of units, performs the goal test and indicates
whether the sequence is correct or not, then we can view
the problem of finding the correct sequence as equivalent
to a search problem. Let’s introduce a familiar term for
this setting: we define any possible sequence of units as a
program. Programs can be correct or incorrect, and we are
looking to search for the correct programs that are as short
as possible.

2.2. Formal Definition of Complexity QoD

Below is a concise formalization of representational and
computational complexity in terms of Kolmogorov Com-
plexity (Kolmogorov, 1965; Li et al., 2008). Note that in
practice, Kolmogorov Complexity itself is uncomputable;
however, it serves as a useful theoretical lens for understand-
ing what “complexity” might entail in System-2 reasoning.

2.2.1. REPRESENTATIONAL COMPLEXITY O0OD

Let « be an input sample (e.g., an image, a sentence, or any
structured data). We define its representational complexity
using the notion of Kolmogorov Complexity, denoted by
K (x), which is the length of the shortest program (in a fixed
universal programming language) that outputs x. Formally:

K(x) = min{|p| : U(p) = z}, (1

where U (p) is the output of running program p on a univer-

sal Turing machine U, and [p| is the length (e.g., in bits)
of that program. Intuitively, K (z) measures how “compli-
cated” or “rich” the description of x is. When K (x) is large,
the sample x has a high degree of structural or informational
content, requiring more elaborate representation to describe
it.

In a representational Complexity OoD scenario, a model is
confronted during testing with samples x such that

K(xtest) > max K(xr.rain)a 2)

Ztrain € Dirain

where Dy, is the set of training samples, and “>" infor-
mally indicates “significantly greater than.” Thus, the rep-
resentational complexity of s exceeds any sample in the
training distribution, requiring more detailed or intricate
descriptions than the model has handled before.

2.2.2. COMPUTATIONAL COMPLEXITY O0D

Let y be the “output” or “solution” corresponding to input
z. In System-2 tasks, x — y typically requires a multi-
step reasoning or computational procedure. We capture the
complexity of this procedure by the conditional Kolmogorov
Complexity K (y | x):

K(y | ) = min{|q| : U(z,q) =y}, 3)

where now we consider programs ¢ that take x as an input
(or have z hard-coded) and produce y as output. Here, |g|
is the length of the shortest such program. If K (y | x) is
large, it signifies that the process of deriving y from z is
inherently complex, involving many logical or algorithmic
steps.

In a computational Complexity OoD scenario, a test pair
(xlesh ytest) demands

K(ytest | xtest) > max K(ytrain | xuain)v “@

("L'lrain s Ytrain ) € Dirain

implying that the minimal program needed to compute the
solution from z is transcending (in terms of length or al-
gorithmic richness) the complexity observed for any training
example. This goes beyond simply having more elaborate
representations; it explicitly requires more computational
steps or more complex logic.

3. System-1 Facilitates Achieving Solutions
through System-2

From our definition, solving a problem with System-2 in-
volves two key steps: (1) identifying the basic building



Submission and Formatting Instructions for ICML 2025

blocks (atomic units) and (2) combining them to form a
valid solution. System-1 can offer valuable guidance for
both steps:

1. How can we identify suitable atomic units?

2. How can we learn a heuristic function h(p) or a pro-
gram generator module to help System-2 find the cor-
rect program?

In both cases, learning is central. Because System-1 can
learn to approximate virtually anything from experience,
System-2 can use System-1 to approximate both the building
blocks and the ways to combine them. This learning process
is iterative: as System-1 improves, System-2’s ability to
discover and combine units improves as well, and vice versa.

3.1. Learning Proper Atomic Units

As discussed, a System-2 solution can be represented as a
sequence (of non-fixed length) of semantic units. Each unit
may be adjusted, and these units must together meet two
conditions: 1) Sufficiency: any System-2 problem can be
solved by combining these units; 2) Minimal Redundancy:
no unit can itself be expressed as a program made of other
units.

The agent begins by tackling simple tasks—attempting so-
lutions with one-unit programs. A single unit (i.e., one-unit
program) can be optimized through backpropagation to ac-
complish the task. This stage provides an initial approxima-
tion of the basic units.

Next, the agent attempts two-unit programs. At this point,
either through searching over all two-unit combinations or
via a program generator module, the agent identifies promis-
ing pairs and fine-tunes them jointly. This exposes the units
to the ways in which they might collaborate. Notably, even
if a unit was not useful by itself (in a one-unit program),
it can become valuable when paired with others. This mu-
tual refinement continues in the presence of more complex
tasks and longer program lengths, ensuring that atomic units
evolve in tandem with how they are best combined.

3.2. Learning a Heuristic Function to Generate
Programs

Once we have established a suitable set of atomic units,
System-2 still needs to synthesize a program from these
units. One viable approach is to perform a search over
possible programs. In the most extreme case, this search
can be exhaustive, which will always find a correct solution
(akin to “systematic generalization”). However, the deeper
the correct program lies in the search tree, the longer this
process may take.

Because time or computational resources are seldom unlim-
ited, in practice both artificial agents and humans rely on
System-1 “shortcuts” for search. For example, consider a
scenario where a student is asked to prove a theorem in an
exam. In theory, if given infinite time, this student could
attempt every possible series of proof strategies—equivalent
to an exhaustive search—and eventually arrive at a valid
proof. However, during a timed exam, the student must rely
on the heuristics and intuitions that reside in System-1 to
efficiently narrow down potential approaches and arrive at a
solution more quickly. This reliance on heuristics speeds up
problem-solving but can also introduce errors or overfitting,
representing a trade-off between guaranteed thoroughness
and practical efficiency.

In human cognition, individuals with more sophisticated
“System-1” intuitions can more swiftly generate accurate,
innovative ideas, particularly in research or other creative
domains. Over time, experts develop stronger heuristics
in familiar problem spaces, reusing techniques in different
combinations. Analogously, an agent’s System-2 reasoning
ultimately leverages such heuristic support from its learned
System-1 modules. Thus, System-2’s ability to combine
atomic units effectively depends in large part on how well
System-1 can (1) represent the relevant tasks and (2) gen-
erate promising configurations (or heuristics) to reduce the
cost of search.

4. Some Shines of System-2 in Recent
Researches

In recent years, there have been works that had the flavor
or solution aligned with System-2 (as per our description).
Numerous research studies have been conducted on vari-
ous subproblems of System-2. These research efforts are
akin to elephants in a dark room; in fact, each of them has
touched upon a corner of the open issues for solving System-
2 and attempted to address it, but they have not provided
a comprehensive picture of the System-2 elephant. Here,
we discuss those works and their relationship with our de-
fined System-2, along with the necessary modifications for
further advancement. We intend to translate several promi-
nent works that have addressed each of the issues raised in
System-2 here, under the same lens as our view of System-2.

4.1. Variable-length representation.

Object-Centric Representation Learning: While neural
networks and common computer vision architectures per-
form reasonably well on regular images and tasks like image
classification, they face challenges when dealing with im-
ages of complex scenes (Brady et al., 2023). In fact, as the
number of details and objects in the scene increases, the
representations provided by these networks become more
flawed. In such complex scenarios, the phenomenon known



Submission and Formatting Instructions for ICML 2025

as the “’superposition catastrophe” can occur (Von Der Mals-
burg, 1986; Greff et al., 2020). The superposition catastro-
phe refers to the issue where the representations learned by
these networks fail to disentangle and separately encode the
entities present in a complex scene. Superposition occurs
in network representations because they have a fixed and
limited length. The network must represent its understand-
ing of the input image, whether simple or complex, within
this fixed capacity. In recent years, researchers have increas-
ingly focused on object-centric and structured representa-
tion learning, with “’Slot Attention” being a notable method
(Locatello et al., 2020). Slot Attention introduces an archi-
tecture that interacts with perceptual representations, like
those from convolutional neural networks, to create abstract,
adaptable slots. These slots can bind to any object in the
input scene through a competitive attention mechanism. A
key feature is that the number of output slots can be variable
during inference, allowing for more slots as image com-
plexity increases, thereby preventing superposition. Despite
recent advances in object-centric representation learning,
this field is still evolving and is struggling to address the
challenge of obtaining more causal and compositional rep-
resentations with less supervision (Didolkar et al., 2024;
Mansouri et al.).

Emergent Languages: Language is one of the extraordi-
nary skills of humans, through which they can communicate
with other humans, have internal thoughts, and engage in rea-
soning. One of the branches of research in artificial intelli-
gence is the field of Emergent Language (Havrylov & Titov,
2017; Lazaridou et al., 2022; 2018). In this branch, efforts
are made to create conditions through games among multi-
ple agents and enabling the exchange of messages between
them, so that agents autonomously develop a constructed
language. And then, after the emergence of the language,
examine the compositional and linguistic characteristics of
this newly created language (Lowe et al., 2019; Chaabouni
et al., 2020). Some characteristics of the emerged language
include its discrete words and also the non-fixed length of
the transmitted messages. In fact, an agent for describing an
input could generate a message with variable length (Ueda
& Washio, 2021). This is related to one of the System-2
capabilities of humans. We can describe an image, no mat-
ter how complex it is, with more words as necessary. The
discrete and variable-length nature of these messages as a
representation closely corresponds to the view of program
generation from learnable basic semantic units.

4.2. Variable-length computation

Adaptive Computation Time: One of the fundamental dif-
ferences between humans and machine learning models is
that the human response time to a problem can be a function
of the difficulty of that problem, whereas, in machine learn-
ing models, the response time solely depends on the model

architecture or the size of the input. For example, the longer
the input sequence to a recurrent neural network (RNN), the
longer it takes for the network to produce the final output.
In other words, the human mind can devote more focus and
attention to solving a problem with a more challenging in-
put, something that traditional machine learning models are
not capable of. To tackle this issue, Adaptive Computation
Time (ACT), a mechanism embedding a halting unit within
the RNN architecture, was introduced (Graves, 2016). This
unit dynamically decides the number of computational steps
for each time step by outputting a halting probability, allow-
ing the RNN to either continue processing or move to the
next step. This enhancement led to improved performance
in tasks like binary vector parity, integer addition, and real
number sorting. The concept of a halting mechanism was
extended to the transformer architecture, resulting in the
Universal Transformer, which improved performance and
accuracy on various algorithmic and language understand-
ing tasks (Dehghani et al., 2019).

Learning to Program: Symbolic regression is a problem in
machine learning that aims to discover the underlying math-
ematical expressions or symbolic equations that describe
a given dataset. Unlike traditional regression methods that
rely on predefined functional forms (based on neural net-
work architecture), symbolic regression attempts to find
the symbolic expressions directly from the data. Symbolic
regression has a close relationship with variable-length com-
putation. This relationship arises from the fact that the
mathematical expressions discovered by symbolic regres-
sion can have varying lengths and complexities, depending
on the nature of the underlying relationship in the data (Big-
gio et al., 2021; Kamienny et al., 2022). This core idea was
later more prominently implemented in the DreamCoder
paper (Ellis et al., 2021) . Notably, in DreamCoder, subpro-
grams that frequently co-occurred could be combined and
refactored, simplifying the search process across different
programs. Recently, during the 2024 Arc Challenge, a sig-
nificant number of top-ranked solutions used the Program
Generation approach (Chollet et al., 2024; Li et al., 2024b;
Bonnet & Macfarlane, 2024; Ouellette, 2024).

4.3. Very recent advances based on Large Language
Models (LLMs)

Another prominent place where the idea of program gener-
ation (mentioned in the above subsection) can be recently
seen is in LLMs. Interestingly, an LLM can be seen as a
program generator model that generates a step-by-step solu-
tion when given a problem as input. This program consists
of tokens generated by the language model, which are, in a
sense, executed by the model itself.

Chain of Thought (CoT): For reasoning tasks, LLMs can
be asked to write the solution step-by-step before providing



Submission and Formatting Instructions for ICML 2025

the final answer (Wei et al., 2022) . This can enable the lan-
guage model to generate longer solutions for more complex
problems by generating tokens sequentially. The CoT idea
helped significantly improve the performance of language
models on some reasoning tasks. However, since LLMs
are still confined to left-to-right decision-making processes
(without backtracking) during inference, they can fall short
in System-2 tasks that require exploration, strategic looka-
head, or where initial decisions play a pivotal role. This
means that for certain reasoning tasks, LLMs still faced
challenges.

LLMs and Search: Since the trained LLMs by a System-1
approach can not guarantee to solve all reasoning problems
naively by the CoT approach as discussed above, some
approaches that need to explore during the test time in order
to find the output have been introduced. Ideas such as Tree
of Thought (ToT) and Graph of Thought (GoT) allow LLM
to branch and generate the solution step-by-step through a
search process during the inference time (Yao et al., 2024;
Besta et al., 2023). ToT allows LLMs to perform deliberate
decision-making by considering multiple different reasoning
paths and self-evaluating choices to decide the next course
of action, as well as looking ahead or backtracking when
necessary to make global choices. In case of failure, it
has the ability to backtrack and construct a new program.
This concept is clearly analogous to the concept of learn-to-
search.

LLMs and repeated sampling: LLMs, as probabilistic
generative models, offer the capability to generate a di-
verse range of step-by-step solutions (or programs). LLMs
achieve this through repeated sampling, a technique that in-
creases the likelihood of generating an optimal response (Li
et al., 2022; Roziere et al., 2023). Common sampling strate-
gies in LLM inference include top-p (Nucleus Sampling)
and top-k sampling, which enable the parallel generation
of multiple candidate outputs. By leveraging repeated sam-
pling, LLMs enhance their chances of producing accurate
and high-quality responses, akin to how algorithm designers
iteratively refine their solutions to improve computational ef-
ficiency. Self-correction is a test-time computation method
that allows LLMs to iteratively revise and refine generated
results using external or internal feedback (Shinn et al.,
2023; Ye & Ng, 2024). A critical aspect of this iterative
process is the implementation of evaluation and verifica-
tion strategies, which ensure the effectiveness of repeated
sampling and contribute to the overall reliability of the gen-
erated outputs. Selecting the most frequent answer as a
verification strategy can enhance accuracy, particularly in
approaches like self-consistency Chain of Thought (CoT),
which improves mathematical reasoning accuracy by 18%
compared to vanilla CoT (Wang et al., 2022; Li et al., 2024a;
Lin et al., 2023) .

LLMs and Reward Models: Reward models are primarily
categorized into two types: Outcome-based Reward Models
(ORMs) and Process-based Reward Models (PRMs). ORMs
utilize the accuracy of the final Chain of Thought output as
feedback for training or verification (Cobbe et al., 2021). In
contrast, PRMs are trained using feedback obtained from
each individual reasoning step (Uesato et al., 2022; Light-
man et al.). Some studies like (Lightman et al.) indicate that
PRM:s significantly outperform ORMs due to their more
precise feedback which localizes any errors that occur. It
is evident that PRMs require high-quality data and human
feedback for each reasoning step during training (Lightman
et al.). To tackle this problem, (Wang et al., 2024) proposes
an automatic process annotation framework based on Monte
Carlo Tree Search (MCTS). Reward models can essentially
act as heuristic function to aid in the search among various
step-by-step solutions which be viewed similar to the neural
guided searches in program generation modules that have
been introduced in Section 3.2. These models can be em-
ployed to discriminate between desirable and undesirable
outputs when LLMs along with repeated sampling are used
(to enhance search via rejection sampling). On the other
hand, reward models can be employed in a Reinforcement
Learning (RL) pipeline too.

LLMs and RL: A recent approach proposed in several stud-
ies (Wang et al., 2024; Setlur et al., 2024) is fine-tuning
LLMs by an RL approach using the CoTs generated by
the LLMs themselves and evaluated by verifiers or reward
models (mentioned above) which provide supervision feed-
back. Unlike Supervised Fine Tunning (SFT) which tends
to overfit to training data and struggles with generaliza-
tion to out-of-distribution scenarios(Chu et al., 2025), RL
generalizes to unseen situations more effectively. Despite
the current community’s preference for PRM-based verifier
methods, especially following the success of the ol model,
a novel intuitive approach has recently been introduced in
the DeepSeek R1 model (Guo et al., 2025). This approach
eliminates the concept of verifiers entirely. Instead, dur-
ing training, the model learns reasoning and step-by-step
thinking through pure reinforcement learning (Guo et al.,
2025; Wang et al., 2024). In fact, during the training phase,
this model is trained using only two types of rewards: the
correctness of the final answer and another that incentivizes
structuring the reasoning process in a specific format. Re-
markably, it achieves performance that is competitive with,
and comparable to, the ol model. This methodology demon-
strates how RL can effectively facilitate program synthesis,
significantly reducing or even eliminating the reliance on
extensive search processes.



Submission and Formatting Instructions for ICML 2025

5. Constructing the Foundations of System-2
Learning Research

It should be noted that the explanations provided so far
were merely in the context of formulating a new framework
for System-2 and specifying its relationship with System-1.
However, they are not sufficient for taking practical steps
in the realm of System-2. To practically advance research
in System-2, we need to establish practical foundations for
it. These practical foundations are similar to everything that
System-1 has traversed over the years: from fundamental
elements such as tasks and datasets to benchmarks, as well
as paradigms and more specific issues that build upon these
foundations. Next, we aim to provide a general overview of
what needs to be done for practical research in System-2. It
should be reiterated that since we view System-2 in the con-
text of the other side of the complexity out-of-distribution
generalization coin, the general framework we observe is
heavily based on this particular type of generalization and
its associated challenges.

5.1. Tasks and Benchmarks

System-1 neural network architectures have existed for
years, but the rapid evolution of deep learning began with
the introduction of the ImageNet dataset in 2012. The event
referred to as the ImageNet moment made the ImageNet
dataset gain significant attention as the first large-scale
dataset for benchmarking deep-learning vision networks.
We believe that to ignite the progress of System-2, there
must be a spark in creating tasks and benchmarks specifi-
cally tailored for it. In other words, System-2 needs its own
version of the ImageNet moment. One example of such a
benchmark is the ARC (Abstraction and Reasoning Corpus)
Challenge proposed by Frangois Chollet, which consists of
tasks designed to evaluate more advanced reasoning capabil-
ities beyond pattern recognition (Chollet, 2019). Of course,
defining a foundational task with maximum inclusivity for
System-2 is a non-trivial and complex matter, requiring
extensive investigation. Nevertheless, alongside this main
path, a parallel path can be pursued where tasks and bench-
marks of System-1 are addressed using an approach inspired
by System-2. For example, consider image classifiers that,
upon receiving an image, attempt to generate the output over
a variable number of steps depending on the complexity of
the image.

5.2. Supervision Paradigms

Just like System-1, which includes supervised, unsupervised,
and self-supervised learning, System-2 can also be catego-
rized similarly. In System-1, supervision is based on the
relationship between labels and features. In System-2, super-
vision involves both labels and programs. Essentially, while
System-1 has a single network generating labels from fea-

tures, System-2 includes an additional program generation
network. This network can be supervised or unsupervised
regarding the presence of a program. It’s natural that having
supervision on programs helps us train the program gen-
eration module more efficiently (For example, consider a
scenario where instead of showing examples to children
for them to learn an algorithm, we directly teach them the
algorithm or program itself). However, it’s clear that not
having supervision on programs is a scenario closer to real-
ity. Therefore, we need a method for learning unsupervised
programs as well.

Another promising direction for learning programs is to take
a multitask learning and meta-learning approach. By expos-
ing the system to a diverse set of tasks, it can potentially
learn to discover the atomic units and compositional rules
required for constructing programs. This process of learn-
ing to learn programs can be facilitated by meta-learning
techniques that aim to acquire general program induction
capabilities across a wide range of tasks. Such an approach
aligns with the way humans learn to program by being
exposed to various problem-solving scenarios, gradually
developing an understanding of the fundamental building
blocks and how to compose them to solve new tasks.

From here, we can follow a similar approach to System-1
for the program generation part (which is itself a System-1
module) and explore concepts like self-supervised learn-
ing for programs. Just like in System-1, we had different
learning methods like supervised, unsupervised, and self-
supervised learning, we can apply those same concepts to
the program generation module in System-2. For example,
we can explore self-supervised learning techniques specifi-
cally for learning programs without full supervision. This
would be similar to how self-supervised learning was used
in System-1 to learn representations from unlabeled data.
The key point is that the program generation component
itself can be treated as a System-1 module, and we can lever-
age the paradigms and methods developed for System-1 to
improve how this component learns to generate programs.

5.3. Basic concepts need redefinition, such as
representations and metrics

When defining System-2 by out-of-distribution complexity
and foundational units for representation and computation,
two challenges arise due to variable program lengths: suit-
able program representations and similarity metrics. Pro-
grams can vary greatly in length, making it crucial to design
representations that capture their essence while accommo-
dating this variability. After establishing appropriate pro-
gram representations, the next challenge is defining a metric
for program similarity. Traditional metrics like cosine simi-
larity may not work due to programs’ unique structures. A
specific metric learning approach, such as using a Siamese



Submission and Formatting Instructions for ICML 2025

network or triplet loss, can train a model to minimize dis-
tances between similar programs and maximize those be-
tween dissimilar ones. Incorporating domain-specific knowl-
edge—Ilike structural similarity, function compositionality,
or common substructures—can further refine program simi-
larity assessments.

5.4. Other concepts that come into play again ...

When we built System-2 upon the foundation of System-1,
the issues and challenges that System-1 faced are gradually
reappearing with the development of System-2, albeit with
a different appearance this time. For example, consider the
problem of spurious correlation and shortcut learning (Ar-
jovsky et al., 2019; Geirhos et al., 2020). In System-1, the
situation was such that we encountered a problem in clas-
sification with input patterns having spurious correlations
with labels. However, in System-2, we may face spurious
correlation at two other reasoning levels: learning atomic
elements and learning program generation. For example,
consider a student facing a myriad of problems where ad-
dition is initially used to solve them. Now, the student may
think that for every problem, the first step is to perform
an addition operation. If the student encounters a problem
that does not require addition, they may fall into the trap of
spurious correlation and mistakenly perform addition.

5.5. And the biggest question: How can we include
System-2 (include search) in neural networks?

A key challenge is integrating System-2 architectures with
neural networks. Since the human brain integrates symbolic
processing and search mechanisms with neural networks,
these processes must also be grounded in neural networks
for effective emulation. The reference to the brain being
wired with neural networks implies that, in the human brain,
both symbolic and intuitive processing are seamlessly inte-
grated. If we aim to emulate similar capabilities in artificial
systems, we must find ways to ground symbolic operations
onto neural network structures. To address this issue, fur-
ther studies in the field of neurocognitive science may be
required.

6. Alternative Views

While the paper presents a compelling argument for inte-
grating System-1 and System-2 paradigms to address com-
plexity out-of-distribution (OoD) challenges, an alternative
perspective is to consider learning and reasoning as largely
independent processes, or at least as processes with minimal
interaction. This view posits that the challenges associated
with System-2 tasks should not necessarily be framed within
the context of OoD complexity, nor should they be seen as
an extension of System-1 capabilities.

1. Independence of Learning and Reasoning: In this
view, learning (System-1) and reasoning (System-2)
are distinct cognitive processes that operate indepen-
dently. Learning is primarily about pattern recognition
and the assimilation of information from data, while
reasoning involves logical deduction and problem-
solving that may not directly rely on learned patterns.
This separation suggests that the development of rea-
soning capabilities does not need to be constrained by
the limitations or structures of learning systems. In-
stead, reasoning can be approached as a standalone
process, potentially leveraging symbolic logic, rule-
based systems, or other non-neural methodologies that
do not depend on the data-driven paradigms of System-
1.

2. Distinctness of System 2 and Complexity OoD: The
paper frames System-2 challenges as issues of com-
plexity OoD, implying that reasoning tasks are fun-
damentally about handling more complex versions of
learned tasks. However, reasoning can be seen as a
fundamentally different type of cognitive activity that
does not necessarily align with the OoD framework.
Reasoning might involve abstract thinking, hypotheti-
cal scenarios, and counterfactual reasoning that do not
fit neatly into the complexity OoD paradigm. These
tasks may require entirely different approaches, such as
symbolic reasoning engines or logic-based Al, which
do not rely on the same principles as those used to
address

7. Conclusion

Achieving artificial general intelligence (AGI) requires sys-
tems that can generalize to vastly more complex scenarios
than those encountered in training. We introduce the con-
cept of “complexity out-of-distribution” to characterize this
challenge. We argue that scaling current deep learning ap-
proaches (’System-1”) is insufficient. Instead, we propose
a complementary ”System-2” framework inspired by hu-
man reasoning, which frames problem-solving as a search
over sequences of semantic units to represent solutions of
unbounded complexity. Realizing this perspective requires
developing System-2 components grounded in complex-
ity considerations, including new benchmarks, supervision
paradigms, representations, and inductive biases. While
recent work shows progress towards System-2 aspects, key
challenges remain in formalizing the complexity of out-of-
distribution setting, developing effective System-2 learning
methods, and integrating symbolic search with neural ar-
chitectures. This System-1 and System-2 perspective may
provide a unifying framework for transcending current Al
limitations. We call for future work to translate these ideas
into concrete models, advancing towards AGI.



Submission and Formatting Instructions for ICML 2025

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Arjovsky, M., Bottou, L., Gulrajani, 1., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Baxter, J. A model of inductive bias learning. Journal of
artificial intelligence research, 12:149-198, 2000.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Gi-
aninazzi, L., Gajda, J., Lehmann, T., Podstawski, M.,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
arXiv preprint arXiv:2308.09687, 2023.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural symbolic regression that scales. In
International Conference on Machine Learning, pp. 936—
945. Pmlr, 2021.

Bonnet, C. and Macfarlane, M. V. Searching latent program
spaces. arXiv preprint arXiv:2411.08706, 2024.

Brady, J., Zimmermann, R. S., Sharma, Y., Scholkopf, B.,
Von Kiigelgen, J., and Brendel, W. Provably learning
object-centric representations. In International Confer-
ence on Machine Learning, pp. 3038-3062. PMLR, 2023.

Chaabouni, R., Kharitonov, E., Bouchacourt, D., Dupoux,
E., and Baroni, M. Compositionality and generalization
in emergent languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 4427-4442, 2020.

Chollet, F. On the measure of intelligence. arXiv preprint
arXiv:1911.01547, 2019.

Chollet, F., Knoop, M., Kamradt, G., and Landers, B.
Arc prize 2024: Technical report. arXiv preprint
arXiv:2412.04604, 2024.

Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuur-
mans, D., Le, Q. V., Levine, S., and Ma, Y. Sft mem-
orizes, rl generalizes: A comparative study of founda-

tion model post-training, 2025. URL https://arxiv.

org/abs/2501.17161.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J.,
and Kaiser, L. Universal transformers. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HyzdRiR9Y7.

Didolkar, A., Zadaianchuk, A., Goyal, A., Mozer, M.,
Bengio, Y., Martius, G., and Seitzer, M. Zero-shot
object-centric representation learning. arXiv preprint
arXiv:2408.09162, 2024.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
Hewitt, L., Cary, L., Solar-Lezama, A., and Tenenbaum,
J. B. Dreamcoder: Bootstrapping inductive program
synthesis with wake-sleep library learning. In Proceed-
ings of the 42nd acm sigplan international conference on
programming language design and implementation, pp.
835-850, 2021.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2(11):665-673, 2020.

Goyal, A. and Bengio, Y. Inductive biases for deep learn-
ing of higher-level cognition. Proceedings of the Royal
Society A, 478(2266):20210068, 2022.

Graves, A. Adaptive computation time for re-
current neural networks. ArXiv, abs/1603.08983,
2016. URL https://api.semanticscholar.
org/CorpusID:8224916.

Greff, K., Van Steenkiste, S., and Schmidhuber, J. On
the binding problem in artificial neural networks. arXiv
preprint arXiv:2012.05208, 2020.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Havrylov, S. and Titov, I. Emergence of language with multi-
agent games: Learning to communicate with sequences
of symbols. Advances in neural information processing
systems, 30, 2017.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. Compo-
sitionality decomposed: How do neural networks gen-
eralise? Journal of Artificial Intelligence Research, 67:
757795, 2020.

Kahneman, D. Thinking, Fast and Slow. Farrar, Straus and
Giroux, New York, 2011. ISBN 978-0-374-27563-1.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton,
F. End-to-end symbolic regression with transformers.

Advances in Neural Information Processing Systems, 35:
10269-10281, 2022.


https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://api.semanticscholar.org/CorpusID:8224916
https://api.semanticscholar.org/CorpusID:8224916

Submission and Formatting Instructions for ICML 2025

Kolmogorov, A. N. Three approaches to the quantitative
definition ofinformation’. Problems of information trans-
mission, 1(1):1-7, 1965.

Lake, B. and Baroni, M. Generalization without systematic-
ity: On the compositional skills of sequence-to-sequence
recurrent networks. In International conference on ma-
chine learning, pp. 2873-2882. PMLR, 2018.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lazaridou, A., Hermann, K. M., Tuyls, K., and Clark, S.
Emergence of linguistic communication from referential
games with symbolic and pixel input. In International
Conference on Learning Representations, 2018.

Lazaridou, A., Peysakhovich, A., and Baroni, M. Multi-
agent cooperation and the emergence of (natural) lan-
guage. In International Conference on Learning Repre-
sentations, 2022.

Li, J., Zhang, Q., Yu, Y., Fu, Q., and Ye, D. More agents is
all you need. ArXiv, abs/2402.05120, 2024a.

Li, M., Vitanyi, P, et al. An introduction to Kolmogorov com-
plexity and its applications, volume 3. Springer, 2008.

Li, W.-D., Hu, K., Larsen, C., Wu, Y., Alford, S., Woo, C.,
Dunn, S. M., Tang, H., Naim, M., Nguyen, D., et al. Com-
bining induction and transduction for abstract reasoning.
arXiv preprint arXiv:2411.02272, 2024b.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Tom, Eccles, Keeling, J., Gimeno, F.,
Lago, A. D., Hubert, T., Choy, P, de, C., d’ Autume, M.,
Babuschkin, 1., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Alexey, Cherepanov, Molloy, J., Mankowitz, D. J.,
Robson, E. S., Kohli, P,, de, N., Freitas, Kavukcuoglu, K.,
and Vinyals, O. Competition-level code generation with
alphacode. Science, 378:1092 — 1097, 2022.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations.

Lin, L., Fu, J., Liu, P, Li, Q., Gong, Y., Wan, J., Zhang,
F., Wang, Z., Zhang, D., and Gai, K. Just ask one more
time! self-agreement improves reasoning of language
models in (almost) all scenarios. In Annual Meeting of
the Association for Computational Linguistics, 2023.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention. Advances

10

in Neural Information Processing Systems, 33:11525-
11538, 2020.

Loula, J., Baroni, M., and Lake, B. M. Rearranging the fa-
miliar: Testing compositional generalization in recurrent
networks. arXiv preprint arXiv:1807.07545, 2018.

Lowe, R., Foerster, J., Boureau, Y.-L., Pineau, J., and
Dauphin, Y. On the pitfalls of measuring emergent com-
munication. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Sys-
tems, pp. 693-701, 2019.

Mansouri, A., Hartford, J., Zhang, Y., and Bengio, Y. Object
centric architectures enable efficient causal representation
learning. In The Twelfth International Conference on
Learning Representations.

Mitchell, T. M. The need for biases in learning generaliza-
tions. 1980.

Ouellette, S. Towards efficient neurally-guided program
induction for arc-agi. arXiv preprint arXiv:2411.17708,
2024.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural

language supervision. In International conference on
machine learning, pp. 8748-8763. PMLR, 2021.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. In International conference on ma-
chine learning, pp. 8821-8831. Pmlr, 2021.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, 1., Bitton, J., Bhatt, M. P., Ferrer, C. C.,
Grattafiori, A., Xiong, W., D’efossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T., and
Synnaeve, G. Code llama: Open foundation models for
code. ArXiv, abs/2308.12950, 2023.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
Ilm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: language agents
with verbal reinforcement learning. In Neural Informa-
tion Processing Systems, 2023.

Shumailov, L., Shumaylov, Z., Zhao, Y., Papernot, N., Ander-
son, R., and Gal, Y. Ai models collapse when trained on
recursively generated data. Nature, 631(8022):755-759,
2024.



Submission and Formatting Instructions for ICML 2025

Ueda, R. and Washio, K. On the relationship between zipf’s
law of abbreviation and interfering noise in emergent lan-
guages. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing: Student Research Workshop, pp. 60-70, 2021.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Villalobos, P., Ho, A., Sevilla, J., Besiroglu, T., Heim, L.,
and Hobbhahn, M. Position: Will we run out of data?
limits of 1lm scaling based on human-generated data. In
Forty-first International Conference on Machine Learn-
ing.

Von Der Malsburg, C. Am i thinking assemblies? In Brain
Theory: Proceedings of the First Trieste Meeting on Brain
Theory, October 14, 1984, pp. 161-176. Springer, 1986.

Wang, P, Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-shepherd: Verify and reinforce
llms step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
9426-9439, 2024.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E. H., and
Zhou, D. Self-consistency improves chain of thought
reasoning in language models. International Conference
on Learning Representations, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in

neural information processing systems, 35:24824-24837,
2022.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Ye, H. and Ng, H. T. Preference-guided reflective sampling
for aligning language models. In Conference on Empiri-
cal Methods in Natural Language Processing, 2024.

Zeng, L., Zhong, L., Zhao, L., Wei, T., Yang, L., He, J.,
Cheng, C., Hu, R, Liu, Y., Yan, S., et al. Skywork-
math: Data scaling laws for mathematical reasoning in

large language models—the story goes on. arXiv preprint
arXiv:2407.08348, 2024.

11



