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Abstract
Large language models (LLMs) are still strug-001
gling in aligning with human preference in com-002
plex tasks and scenarios. They are prone to003
overfit into the unexpected patterns or superfi-004
cial styles in the training data. We conduct an005
empirical study that only selects the top-10%006
most updated parameters in LLMs for align-007
ment training, and see improvements in the008
convergence process and final performance. It009
indicates the existence of redundant neurons in010
LLMs for alignment training. To reduce its in-011
fluence, we propose a low-redundant alignment012
method named ALLO, focusing on optimizing013
the most related neurons with the most useful014
supervised signals. Concretely, we first identify015
the neurons that are related to the human pref-016
erence data by a gradient-based strategy, then017
identify the alignment-related key tokens by018
reward models for computing loss. Besides, we019
also decompose the alignment process into the020
forgetting and learning stages, where we first021
forget the tokens with unaligned knowledge022
and then learn aligned knowledge, by updating023
different ratios of neurons, respectively. Exper-024
imental results on 10 datasets have shown the025
effectiveness of ALLO. Our code and data will026
be publicly released.027

1 Introduction028

Alignment with human preferences has become029

a desired property of LLMs (Askell et al., 2021;030

Ouyang et al., 2022), e.g., helpfulness, honesty,031

and harmlessness, and reinforcement learning from032

human feedback (RLHF) (Christiano et al., 2017;033

Zheng et al., 2023) is a crucial technique for achiev-034

ing it. Typically, RLHF aims to fine-tune LLMs on035

human preference data, to maximize and minimize036

the likelihood of generating the positive and nega-037

tive responses, respectively. After RLHF training038

on corresponding datasets, LLMs can better follow039

user instructions (Ouyang et al., 2022), solve com-040

plex problems (Wang et al., 2023), and generate041

unbiased responses (Bai et al., 2022a).042

Figure 1: The training loss curve and benchmark perfor-
mance of training different neurons in LLM on question-
answering data using DPO (Rafailov et al., 2023).

However, it is hard to train a well-aligned LLM 043

for complex tasks and scenarios (Feng et al., 2024; 044

Gekhman et al., 2024). The key issue is that LLMs 045

might overfit into the unexpected patterns or su- 046

perficial styles in the human preference data (Du 047

et al., 2024). It is the side effect of their power- 048

ful learning capability derived from the large-scale 049

trainable parameters (Song et al., 2024; Meng et al., 050

2024a). Recently, a surge of work (Frankle and 051

Carbin, 2019; Wang et al., 2024b) has found that 052

each neuron is relevant with special knowledge, 053

and the neurons in LLMs are generally sparsely 054

activated. Inspired by it, we consider if the full- 055

parameter trained LLMs might lead to redundant 056

updates on alignment-irrelevant neurons. Thus, 057

we conduct the empirical experiment using DPO 058

algorithm (Rafailov et al., 2023), where we only 059

update the top/last-10% neurons according to their 060

accumulated gradient values. As shown in Fig- 061

ure 1, with the top-10% trainable neurons, LLMs 062

can converge faster and achieve better performance 063

than optimizing all the neurons. It indicates the 064
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existence of redundant updates in DPO training,065

affecting the convergence and final performance.066

To reduce the influence of redundant updates,067

we focus on optimizing the most related neurons068

with the most useful supervised signals. Concretely,069

we first identify the neurons that are related to the070

human preference data, based on the accumula-071

tion values of gradients. Second, we identify the072

key tokens about human preference, and only com-073

pute loss on them for optimizing the alignment-074

related neurons. In this way, we perform a two-fold075

low-redundant optimization for aligning LLMs076

with humans, to reduce the redundancy of learning077

irrelevant tokens and training irrelevant neurons.078

Whereas, since the alignment training focuses on079

both removing the unaligned knowledge and learn-080

ing the aligned one, the involved neurons and to-081

kens are not always consistent for the two objec-082

tives. Therefore, we decompose the alignment pro-083

cess into the forgetting and learning stages, and084

adapt the low-redundant optimization strategy on085

them. For the forgetting stage, relatively fewer neu-086

rons are trained by unlearning algorithm (Zhang087

et al., 2024) to forget the unaligned knowledge,088

and we leverage a token-level reward model (Chen089

et al., 2024b) to identify the unaligned tokens re-090

quired to be focused. For the learning stage, we091

train more neurons using the DPO algorithm, and092

also utilize its reward score to select the key tokens.093

In this work, we proposed an ALignment method094

with Low-Redundant Optimization (ALLO) to fine-095

tune LLMs. In ALLO, we first identify the most im-096

portant neurons based on the accumulation of gra-097

dients from a reference model. Then, we design the098

forgetting and learning stages, where we adopt the099

token-level reward model and the DPO reward func-100

tion to select the key tokens, for computing loss101

to update different ratio of the important neurons102

(e.g., top-5% and 10%), respectively. In this way,103

we only perform optimization on sparse tokens and104

neurons, greatly reducing the redundancy during105

LLM alignment training. To comprehensively as-106

sess the effectiveness of ALLO, we conduct exten-107

sive experiments on three downstream scenarios,108

i.e., question answering, mathematical reasoning,109

and instruction following, totally 10 datasets. Ex-110

periment results have shown that ALLO mostly out-111

performs competitive human alignment methods112

(e.g., SFT (Ouyang et al., 2022), DPO (Rafailov113

et al., 2023), PPO (Schulman et al., 2017)).114

2 Related Work 115

Large Language Models. LLMs have shown re- 116

markable performance on various tasks (qwe, 2024; 117

Meta, 2024; Javaheripi et al., 2023). Generally, the 118

training process of LLMs includes three stages, 119

i.e., pre-training, supervised fine-tuning (SFT), and 120

alignment (Ouyang et al., 2022; Touvron et al., 121

2023). In the training process, previous work has 122

selected valuable data to train the LLMs via lever- 123

aging gradient (Xia et al., 2024) or perplexity (Lin 124

et al., 2024; Xie et al., 2023), Besides, synthetic 125

training data from powerful LLMs (e.g., GPT-4, 126

Claude 3) has been widely utilized for improv- 127

ing the weak LLMs (Xu et al., 2023; Ben Allal 128

et al., 2024; Liu et al., 2024), especially for spe- 129

cific scenarios (e.g., mathematical tasks or code 130

synthesis tasks) (Yue et al., 2023; Zhou et al., 2024; 131

Wei et al., 2023). However, given the large ex- 132

penses of the LLM training, existing work (Hu 133

et al., 2022; Li and Liang, 2021; Dettmers et al., 134

2023) has revealed that training only a small num- 135

ber of the parameters can achieve comparable per- 136

formance with whole-parameters training. In this 137

work, we focus on the alignment stage and lever- 138

age the low-redundant optimization to improve the 139

existing LLMs. 140

LLMs Alignment. RLHF is a critical algorithm 141

of LLM alignment (Christiano et al., 2017), usu- 142

ally leveraged to reduce hallucination (Chaudhari 143

et al., 2024) or further enhance the capacities of 144

LLMs (Chen et al., 2024b; Wang et al., 2023; 145

Luo et al., 2023). Typically, a reward model will 146

be trained on the preference data and leveraged 147

to guide the reinforcement learning (RL) proce- 148

dure (Ouyang et al., 2022; Touvron et al., 2023; 149

Zheng et al., 2023). Proximal policy optimization 150

(PPO) has been widely adopted in RLHF (Mnih 151

et al., 2016; Zheng et al., 2023). Given the effi- 152

ciency and expenses of the annotating process by 153

human labeler, previous work has utilized the feed- 154

back from LLMs to instruct the RL process, named 155

RLAIF (Bai et al., 2022b; Yuan et al., 2024). Fur- 156

thermore, to prevent the instability of RL, a series 157

of work (Park et al., 2024; Hong et al., 2024; Meng 158

et al., 2024b) utilized a similar objective function 159

with SFT to model human preference. Direct pref- 160

erence optimization (DPO) (Rafailov et al., 2023) 161

is representative work of non-RL alignment. In 162

this work, we consider about how to unleash the 163

potential of the non-RL method. 164
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Unlearning of LLMs. Machine unlearning (Cao165

and Yang, 2015; Bourtoule et al., 2019; Wang et al.,166

2024a; Chen et al., 2024a) is an important tech-167

nique for artificial intelligence systems to remove168

the knowledge about the restricted data (e.g., unau-169

thorized books), while keeping other knowledge170

and abilities of the systems. To perform unlearning171

of LLMs, research has proposed several methods172

(e.g., Gradient Ascent (Yao et al., 2023; Maini et al.,173

2024) and NPO (Zhang et al., 2024)), directly train-174

ing LLMs on the invalid dataset to make LLMs175

forget relative knowledge. Following the unlearn-176

ing mechanism, in this work, we utilize an unlearn-177

ing algorithm to correct the unaligned knowledge178

stored in the neurons of LLMs.179

3 Preliminary180

LLMs alignment refers to aligning the behaviors of181

LLMs to human preference, e.g., helpfulness, hon-182

esty, and harmlessness (Askell et al., 2021). Exist-183

ing work typically utilizes RLHF methods (Chris-184

tiano et al., 2017) to fine-tune LLMs using human185

preference data, for improving alignment. For-186

mally, the human preference data is composed by187

input prompts, positive responses, and negative re-188

sponses, denoted as D = {⟨𝑥𝑖 , 𝑦+𝑖 , 𝑦−𝑖 ⟩}𝑛𝑖=1. The189

input prompt or response consists of a series of190

natural language tokens {𝑡1, 𝑡2, . . . , 𝑡𝑙}. Given the191

input prompt 𝑥, we aim to train LLMs that tend192

to generate the well-aligned positive response 𝑦+,193

while avoiding generating the unaligned negative194

one 𝑦−. In this work, we focus on devising an ef-195

fective training algorithm to improve the alignment196

of LLMs, which can be utilized to satisfy the di-197

verse requirements in real world (e.g., instruction198

following and question answering).199

According to our empirical study in Figure 1,200

updating only top-10% trainable neurons would201

achieve better performance than full-parameter tun-202

ing for alignment training. It indicates that there203

are redundant updates in the training process of204

LLMs, which may affect the alignment perfor-205

mance. To address it, in this work, we aim to per-206

form parameter-efficient fine-tuning for reducing207

the redundant updates on unrelated neurons, to im-208

prove the alignment of LLMs. Given the training209

data, we first identify the highly-relevant neurons210

N = {𝜃𝑖1 , . . . , 𝜃𝑖𝑘 } in the parameter matrices of211

LLMs, and perform low-redundant optimization on212

the LLM as: 213

𝜃𝑡+1𝑖 =

{
Optimizer(𝜃𝑡

𝑗
,∇𝜃𝑡

𝑗
), 𝜃 𝑗 ∈ N

𝜃𝑡
𝑗
, 𝜃 𝑗 ∉ N

, (1) 214

where 𝜃𝑡
𝑗

means the value of 𝑗-th neuron at the 𝑡- 215

th step of training process, ∇𝜃 𝑗 is the calculated 216

gradient of 𝑗-th neuron for update. 217

4 Approach 218

In this section, we introduce our proposed method 219

ALLO, a low-redundant alignment method for fine- 220

tuning LLMs. In ALLO, we compute loss on se- 221

lected key tokens, and perform sparse neuron op- 222

timization. Concretely, we first train a reference 223

model to locate the important neurons through gra- 224

dient. Then, we identify the key tokens related to 225

unaligned knowledge, and utilize the unlearning al- 226

gorithm to update few neurons for forgetting them. 227

Next, we leverage DPO algorithm to improve the 228

alignment of the LLM, where the DPO reward is 229

used for selecting the key tokens. The framework 230

of ALLO is presented in Figure 2. 231

4.1 Locating Key Neurons 232

We compute the importance of all the neurons for 233

the human preference data to locate the related key 234

neurons. We first train a reference model on the 235

given data using DPO algorithm, and then design 236

an efficient approximate estimation of the neuron 237

importance based on its updated weights. 238

Training Reference Model. We train the reference 239

model on the human preference data, to obtain 240

the updated values of all neurons for importance 241

estimation. Thus, we select the same LLM as the 242

backbone, and perform full-parameter fine-tuning 243

using DPO algorithm on the entire dataset for one 244

epoch. The training objective is: 245

L(𝑑𝑖) = − log𝜎
(
𝛽 log

𝑃(𝑦+
𝑖
|𝑥𝑖)

𝑃ref (𝑦+𝑖 |𝑥𝑖)
− 𝛽 log

𝑃(𝑦−
𝑖
|𝑥𝑖)

𝑃ref (𝑦−𝑖 |𝑥𝑖)

)
,

(2) 246

where 𝛽 is a hyper-parameter, and 𝑑𝑖 = ⟨𝑥𝑖 , 𝑦+𝑖 , 𝑦−𝑖 ⟩ 247

is a training instance. For the scenarios that only 248

one human feedback is provided, we regard it as the 249

positive one, and leverage the response generated 250

from LLM as the negative one. 251

Neurons Importance Estimation. We aim to esti- 252

mate the importance of each neuron for the given 253

human preference dataset D. As LLMs are gen- 254

erally trained by gradient descent algorithm, the 255
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NPO Training

DPO Training

Neg: sold 24/2 = 12 clips ...

Problem: Natalia sold clips to 48 of her friends in April ... Natalia sell altogether in April and May?
Reference: ... Natalia sold 48+24 = 72 clips altogether in April and May ...
Positive Response (Pos): ... She sold 24 + 48 = 72 clips in April and May ...
Negative Respones (Neg): ... She sold 24/2 = 12 clips in April ...

Positive 
Response

Negative 
Response

1. Locating

2. Forgetting

3. Improving

Vanilla DPO Training Key Neurons Locating

Rewritten Response: sold 48 clips ...

ChatGPT 4.0 Response
Rewriting Neg: sold 24/2 = 12 clips ...

Unaligned Token Identification

Neg: sold 24/2 = 12 clips ...

Pos: sold 24 + 48 = 72 clips ...

Neg: sold 24/2 = 12 clips ...

Pos: sold 24 + 48 = 72 clips ...

Small 
LLM

Noisy Tokens Identification

Figure 2: The framework of our proposed alignment method ALLO. We first locate the key neurons in LLMs
by computing the weight changes of the reference model.Then, based on the selected key neurons, we perform a
fine-grained unlearning using NPO to help LLMs forget unaligned knowledge, and fine-grained learning using DPO
to further align LLMs to human preference.

gradient value of a training instance 𝑑 𝑗 on the neu-256

ron 𝜃𝑖 can reflect its influence on the neuron (Pruthi257

et al., 2020; Xia et al., 2024), denoted as:258

Influence(𝑑 𝑗 , 𝜃𝑖) ∝ ∇𝜃𝑖L(𝑑 𝑗) (3)259

For human alignment, we use the DPO training loss260

in Eq. 2 for influence estimation. In this way, we261

can accumulate the gradients for all the instances262

from the human preference dataset, to estimate the263

influence of the dataset on the neuron. Actually,264

the influence value also reflects the importance of265

the neuron for learning the dataset, as a large ac-266

cumulated gradient value can denote more focus267

on training the neuron (Pruthi et al., 2020). As we268

adopt the gradient descent algorithm, the gradients269

for all the instances have been computed and sub-270

tracted in the one-epoch training process. Thus,271

the difference between the neuron in the reference272

model 𝜃′
𝑖

and original model 𝜃𝑖 can be regarded as273

the approximate value of the estimated importance274

score:275

I(D, 𝜃𝑖) =
|D |∑︁
𝑗=1
∇𝜃𝑖L(𝑑 𝑗) ≈

𝜃′
𝑖
− 𝜃𝑖
𝛼

, (4)276

where 𝛼 is the learning rate during DPO training. 277

Based on the estimated importance score, we can 278

rank all the neurons and select the most important 279

ones for training. 280

4.2 Unaligned Knowledge Forgetting 281

For the forgetting stage, we utilize a token-level 282

reward model that guides LLMs to focus on the 283

tokens related to unaligned knowledge, and adopt 284

a machine unlearning algorithm, i.e., NPO (Zhang 285

et al., 2024) that learns to forget them. 286

Unalignment-Related Tokens Identification. We 287

train a token-level reward model to score tokens 288

in the negative responses, according to their effect 289

on unalignment. Following existing work (Chen 290

et al., 2024b), we distill the capability of a strong 291

LLM (i.e., GPT-4 (OpenAI, 2023)) to revise the un- 292

aligned response (to a well-aligned one) with mini- 293

mum editing constraint, into a small LLM. Then, 294

we can utilize its output revision probability for 295

each token, to compute the reward score as: 296

𝑟𝑖, 𝑗 =

{
1, 𝑃𝑟𝑒 (𝑦𝑖, 𝑗 |𝑝𝑖 , 𝑥𝑖 , 𝑦+𝑖 , 𝑦−𝑖,< 𝑗

) < 𝑢

0, others
, (5) 297
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where 𝑝𝑖 is the prompt to guide the reward model,298

𝑦𝑖, 𝑗 is the 𝑗-th token in the negative response 𝑦−
𝑖

,299

𝑢 is a hyper-parameter to control the threshold. In300

this way, we can select the key tokens about the301

unalignment according to the 0-1 reward score.302

Fine-grained Unlearning with NPO. Based on303

the selected unalignment-related key tokens, we304

perform unlearning to remove the unaligned knowl-305

edge in the LLM and unleash the potential of learn-306

ing aligned knowledge. Concretely, we utilize the307

NPO method, which is the revision based on DPO308

and only focuses on minimizing the likelihood of309

generating negative responses. The objective func-310

tion of NPO is as follows,311

L𝑁𝑃𝑂 (𝜃) = log𝜎
(
−𝛽 log

𝑃(𝑦−
𝑖
|𝑥𝑖)

𝑃ref(𝑦−𝑖 |𝑥𝑖)

)
. (6)312

Whereas, the NPO loss would also punish the to-313

kens that are irrelevant to the unalignment but exist314

in the negative response. To address it, we con-315

strain that only the key tokens are involved into316

loss computation, to avoid unlearning the irrelevant317

tokens. Formally, we decompose the objective into318

the token level, and add the 0-1 reward score as319

the token weights. Thus, the objective function can320

be revised as follows, and we only optimize the321

top-𝑘1% most important neurons, denoted as N1,322

L𝑁 (N1) = −
𝑙𝑖∑︁
𝑗=1

log𝜎

(
−𝛽 log

𝑃(𝑦−
𝑖, 𝑗
|𝑥𝑖 , 𝑦−𝑖,< 𝑗

)
𝑃ref (𝑦−𝑖, 𝑗 |𝑥𝑖 , 𝑦

−
𝑖,< 𝑗
) × 𝑟𝑖, 𝑗

)
.

(7)323

4.3 Alignment Improving324

For the learning stage, we further improve the align-325

ment of the LLM that has unlearned the unaligned326

knowledge. We adopt DPO (Rafailov et al., 2023)327

algorithm for training, and also leverage its com-328

puted reward score to distinguish the key tokens329

and noisy ones.330

Noisy Tokens Identification. We also identify the331

noisy tokens in the negative responses using the332

reward score in DPO, for reducing their harmful333

influence on learning other key tokens. As DPO334

requires to compare the token probabilities of the335

current-step LLM and its original probability, the336

reward of the key tokens initially own small values337

and increase smoothly. However, the noisy ones338

typically lead to large reward values, and shock the339

training process (Chen et al., 2019). Therefore, we340

can utilize the reward scores dynamically computed341

Task Train / Test Dataset Num. Data

Math

Train MetaMathQA 40,000

Test

GSM8k 1,319
MATH 5,000

MAWPS 2,065
TabMWP 1,000

QA

Train ECQA 7,598
QASC 8,134

Test

ECQA 2,194
QASC 926
OBQA 500

StrategyQA 687

IF
Train UltraFeedback 23,976

Test AlpacaEval 2.0 805
Arena-Hard 500

Table 1: Statistics of the used datasets. “IF” denotes the
instruction following tasks.

in the DPO process, to distinguish the key and noisy 342

tokens, denoted as: 343

𝑞𝑖, 𝑗 =

{
0, 𝑟′

𝑖, 𝑗
∈ top 𝑣%

1, others
, 𝑟′𝑖, 𝑗 =

𝑃(𝑦−
𝑖, 𝑗
|𝑥𝑖 , 𝑦−𝑖,< 𝑗

)
𝑃ref (𝑦−𝑖, 𝑗 |𝑥𝑖 , 𝑦

−
𝑖,< 𝑗
) ,

(8) 344

where 𝑣% is the hyper-parameter to control the 345

threshold. In this way, we can identify the noisy 346

tokens causing abnormal large rewards with weight 347

0, and key tokens with weight 1. 348

Fine-grained Learning with DPO. After obtain- 349

ing the token weights, we also decompose the ob- 350

jective function of DPO into the token level, and 351

add weights into the tokens from the negative re- 352

sponse to provide fine-grained supervision. For- 353

mally, the revised objective function is as follows: 354

L𝐷 (N2) = − log𝜎(𝛽
𝑙+
𝑖∑︁

𝑗=1
log

𝑃(𝑦+
𝑖, 𝑗
|𝑥𝑖 , 𝑦+𝑖,< 𝑗

)
𝑃ref (𝑦+𝑖, 𝑗 |𝑥𝑖 , 𝑦

+
𝑖,< 𝑗
)

−𝛽
𝑙−
𝑖∑︁
𝑗=1

log
𝑃(𝑦−

𝑖, 𝑗
|𝑥𝑖 , 𝑦−𝑖,< 𝑗

)
𝑃ref (𝑦−𝑖, 𝑗 |𝑥𝑖 , 𝑦

−
𝑖,< 𝑗
) × 𝑞𝑖, 𝑗 ),

(9) 355

where we only optimize the top-𝑘2% most impor- 356

tant neurons, denoted as N2. 357

5 Experiment 358

5.1 Experimental Settings 359

In this section, we introduce the details of our evalu- 360

ation process, including downstream datasets, base- 361

lines in the evaluation, and the implementation de- 362

tails of our proposed method. 363

Datasets. We conduct the three downstream scenar- 364

ios for the comprehensive evaluation, i.e., question- 365
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Methods
Question-Answering Tasks Mathematical Reasoning Tasks

ECQA QASC OBQA StrategyQA Avg. GSM8k MATH MAWPS TabMWP Avg.

SFT LLM 69.92 55.51 52.60 55.75 58.45 55.9 11.8 79.9 56.7 51.1

+ SFT 69.14 55.40 49.80 59.24 58.40 56.2 11.8 80.0 57.4 51.4
+ RFT 71.15 57.24 54.40 56.33 59.78 54.7 12.0 80.2 55.2 50.5

+ DPO 75.07 60.37 57.00 59.53 62.99 56.6 12.2 81.7 57.3 52.0
+ R-DPO 75.52 61.56 58.40 59.83 63.83 56.9 12.3 82.3 57.2 52.2
+ IPO 47.86 43.20 41.80 43.38 44.06 58.0 12.9 82.4 55.5 52.2
+ BCO 68.87 55.18 45.40 57.21 56.67 57.2 12.4 81.8 56.3 51.9
+ SimPO 62.76 52.27 46.80 53.71 53.89 57.9 12.8 82.1 56.7 52.4
+ NPO 70.56 56.59 52.80 56.04 59.00 56.4 12.3 80.1 56.5 51.3

+ Vanilla PPO 70.65 55.29 53.40 56.33 58.92 55.2 11.6 79.4 56.5 50.7
+ PPO A2C 71.06 55.18 53.00 58.37 59.40 55.2 11.7 82.1 55.8 51.2

+ ALLO 75.93 62.31 59.60 60.84 64.67 56.6 13.0 82.5 58.1 52.6

Table 2: Experimental results on question answering tasks and mathematical reasoning tasks. Avg. is the average
accuracy of all sub-tasks. The best is denoted in bold and the second best is underlined.

Methods
Instruction Following Tasks

AlpacalEval 2.0 Arena-Hard Avg.

SFT LLM 50.00 50.00 50.00

+ SFT 49.44 61.50 55.47
+ RFT 50.06 53.70 51.88

+ DPO 53.80 68.30 61.05
+ R-DPO 54.00 72.20 63.10
+ IPO 56.35 71.00 63.68
+ BCO 54.79 71.80 63.30
+ SimPO 54.92 69.30 62.11
+ NPO 50.06 51.10 50.58

+ Vanilla PPO 48.75 48.20 48.48
+ PPO A2C 53.50 57.80 55.65

+ ALLO 55.78 74.90 65.34

Table 3: Experimental results on instruction following
tasks. Avg. is the average win rate of all sub-tasks.
The best are denoted in bold and the second-best are
underlined.

answering (QA), mathematical reasoning, and in-366

struction following. The statistics information of367

each task is presented in Table 1.368

• QA tasks require LLMs to perform multi-step369

reasoning to solve problems. We adopt ECQA (Ag-370

garwal et al., 2021), QASC (Khot et al., 2020),371

OpenbookQA (Mihaylov et al., 2018), and Strate-372

gyQA (Geva et al., 2021) as the evaluation tasks.373

LLMs are fine-tuned on the training set of ECQA374

and QASC to adapt to the QA tasks.375

•Mathematica reasoning tasks include four chal-376

lenge tasks, i.e., GSM8k (Cobbe et al., 2021),377

MATH (Hendrycks et al., 2021), MAWPS (Koncel-378

Kedziorski et al., 2016), and TabMWP (Lu et al.,379

2023), containing problems with different levels380

of difficulty. To complete the mathematical knowl- 381

edge and ability of LLMs, MetaMathQA (Yu et al., 382

2023) has been utilized to fine-tune the LLMs. 383

• Instruction following tasks assess the capacity 384

of LLMs to follow human instructions. AlpacaEval 385

2.0 (Li et al., 2023) and Arena-Hard (Tianle Li*, 386

2024) are considered as the downstream tasks. 387

We adopt the alpaca dataset (Taori et al., 2023) 388

to fine-tune the base LLMs and UltraFeedback 389

dataset (Cui et al., 2023) for the further training 390

process (e.g.,, DPO, ALLO). 391

For QA tasks and mathematical tasks, accu- 392

racy has been adopted as the evaluation metric. 393

For the instruction following tasks, we employ 394

gpt-3.5-turbo as the judge model and report the 395

win rate over the backbone model (i.e., SFT LLM). 396

Baselines. We incorporate three categories of 397

methods in the evaluation, including supervised 398

fine-tuning (i.e., SFT (Ouyang et al., 2022) and 399

RFT (Liu et al., 2023)), reinforcement learning 400

(i.e., Vanilla PPO (Schulman et al., 2017) and PPO 401

A2C (Mnih et al., 2016)), and alignment without 402

RL (i.e., DPO (Rafailov et al., 2023), R-DPO (Park 403

et al., 2024), IPO (Azar et al., 2024), BCO (Jung 404

et al., 2024), SimPO (Meng et al., 2024b), and 405

NPO (Zhang et al., 2024)). 406

Implementation Details. In the experiment, we 407

fine-tune LLaMA 2 7B (Touvron et al., 2023) on in- 408

struction datasets corresponding to the downstream 409

scenarios to obtain the backbone model (i.e., SFT 410

LLM), and conduct further training processes based 411

on this model in the evaluation. The details of 412

hyper-parameters are presented in Table 5. 413
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Forgetting Stage Learning Stage QASC OBQA MATH MAWPS AlpaceEval 2.0 Arena-Hard

TLR Mask TLR Mask Acc. (%) Acc. (%) Acc. (%) Acc. (%) WR (%) WR (%)

✔ Top-k ✔ Top-k 62.31 59.60 13.0 82.5 55.78 74.90

✔ Top-k ✗ Top-k 62.42 59.00 12.4 82.5 55.60 75.10
✗ Top-k ✔ Top-k 61.56 58.20 12.7 82.3 55.47 73.20

✔ ✗ ✔ Top-k 61.77 58.80 13.1 82.4 55.22 73.20
✔ Top-k ✔ ✗ 61.66 58.20 12.7 81.7 53.98 69.70
✔ Last-k ✔ Top-k 62.20 59.40 12.5 82.5 55.29 70.80
✔ Top-k ✔ Last-k 61.77 59.00 10.2 70.9 51.74 61.20

- - ✔ Top-k 62.20 59.20 12.3 82.2 55.60 72.60
✔ Top-k - - 56.16 53.20 11.8 79.9 51.37 50.20

Table 4: The results of ablation study. “Acc.” and “WR” denote accuracy and win rate, respectively. “TLR” denotes
the whether adopting token-level rewards in each stage. “Mask” indicates the neuron masking mechanism.

5.2 Main Results414

The results of ALLO and baseline approaches in415

our evaluation are presented in Table 2 and Table 3.416

According to the evaluation, we can observe that417

ALLO outperforms other baselines in almost all418

downstream scenarios and makes a great improve-419

ment over NPO and DPO, which are the backbone420

methods of ALLO. That is because ALLO makes421

great efforts to reduce the redundant elements in422

the alignment process, including neurons in LLMs423

and tokens in training data. Experimental results424

have shown the effectiveness of ALLO.425

Besides, comparing the performance between426

the algorithm with fine-grained supervision signals427

(e.g., ALLO, PPO A2C) and the algorithm without428

them (e.g., DPO, Vanilla PPO), the effectiveness429

of the fine-grained supervision signals has been430

verified. Specifically, PPO A2C has achieved a431

55.65% average win rate in instruction following432

tasks, while Vanilla PPO only achieved 48.48%.433

Instance-level supervision cannot focus on the de-434

tails in the training data, which will optimize the435

erroneous parts and hurt the performance of the436

training methods. In contrast, token-level supervi-437

sion signals can better identify whether the token438

is worthy to be learned, which reduces the redun-439

dancy of training content.440

Moreover, the improvement brought by the un-441

learning method (i.e., NPO) has demonstrated that442

aligned and unaligned knowledge are both stored in443

LLMs. In the training process of NPO, the LLMs444

are not exposed to new knowledge and new capac-445

ities, and only are guided to forget the unaligned446

knowledge. This phenomenon further verifies the447

importance of the unlearning stage and the exis-448

tence of redundant neurons in LLMs. Without the449

Figure 3: The experimental results of the influence of
different warm-up methods on downstream tasks.

redundant neurons, is difficult of LLMs to learn 450

both aligned and unaligned knowledge simultane- 451

ously. 452

Finally, we can observe that ALLO outperforms 453

DPO and its various (e.g., R-DPO, SimPO) in all 454

downstream scenarios, especially in the instruction 455

following tasks. This is because DPO and its vari- 456

ous guide LLMs to learn the positive and negative 457

instances simultaneously, which will make LLMs 458

confused about the aligned components in the neg- 459

ative instances. In contrast, ALLO first utilizes 460

the unlearning process to lose the probability dis- 461

tribution in LLMs and leverage the fine-grained 462

supervision signals to indicate the redundant to- 463

kens in the training data, to enhance the training 464

efficiency. 465

5.3 Detailed Analysis 466

To further analyze our proposed ALLO, we conduct 467

the ablation study, and analyze the influence of 468

different warm-up methods and neuron mask ratio. 469

Besides, we present a case study in Appendix D. 470

Ablation Study. To assess the effectiveness of 471

each module in ALLO, we conduct the ablation 472

study and present the evaluation results in Table 4. 473
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Figure 4: The experimental results of the different neu-
ron mask ratios on ECQA and AlpaceEval 2.0, reporting
the accuracy and win rate respectively. In the evaluation,
we keep the mask ratio of one stage frozen and change
the ratio of another stage.

According to the results, we can observe that re-474

moving any component of ALLO will hurt the475

performance, which has verified each module in476

ALLO is necessary and contributes to the final re-477

sults of ALLO. Besides, in QA tasks, the results of478

removing the neuron mask and adopting the Last-k479

neuron mask indicate the existence of redundant480

neurons in LLMs, which is the same as our empir-481

ical study. For details, even adopting the Last-k482

neuron mask in Stage 2 (e.g., 59.00% accuracy of483

OBQA) outperforms the variant without neuron484

masking (e.g., 58.20% accuracy of OBQA). That is485

because training the whole neurons in LLMs will486

decrease the training efficiency, and redundant up-487

dates affect the performance of downstream tasks.488

Moreover, without the forgetting stage, ALLO still489

performs better than DPO in most tasks. The rea-490

son is that the token-level reward and the neuron491

masking mechanism reduce the redundancy and492

make the training process focus on effective details493

in the training instances, making better utilization494

of the information in the dataset.495

Influence of Different Warm-up Methods. To496

assess the influence of different warm-up meth-497

ods (i.e., DPO, SFT, and NPO), we conduct the498

relative experiment and present the results in Fig-499

ure 3. In all of the evaluation tasks, leveraging500

DPO to warm up LLMs and select important neu-501

rons has achieved the best performance that other502

warm-up methods. Whether SFT or NPO, these503

training methods only utilize a single part of the504

training dataset, i.e., the positive responses or the505

negative responses, respectively. However, posi-506

tive responses indicate the knowledge that LLMs507

should possess, and negative responses can locate508

unaligned knowledge stored in LLMs. These re-509

sponses are both important and necessary in select-510

ing the key neurons for the corresponding scenario.511

DPO can leverage the information in this data and512

guide LLMs to learn the aligned knowledge and 513

eliminate unaligned one. In this warm-up process, 514

the neurons related to downstream tasks will be 515

modified largely, causing the large value of the 516

gradient, which can more precisely locate the im- 517

portant neurons for the following training process. 518

Analysis the Ratio of Neuron Mask. We present 519

the results of different ratios of neuron masks on 520

the QA task (i.e., ECQA) and the instruction fol- 521

lowing task (i.e., AlpaceEval 2.0) in Figure 4. Ac- 522

cording to the evaluation results, we can observe 523

that the performance first increases and then de- 524

creases, with the change of the neuron mask ra- 525

tio. Concretely, for the ECQA task, selecting 10% 526

neurons in the learning stage achieves the best per- 527

formance, while selecting fewer or more neurons 528

will hurt the accuracy of LLMs on downstream 529

tasks. The increasing stage indicates that there are 530

still several important neurons not been selected, 531

which affects LLMs learning task-specific knowl- 532

edge and abilities. After the increasing stage, the 533

selected neurons set N contains more and more 534

redundant neurons, interfering the learning process 535

of other neurons and hurting the performance of 536

the LLMs. The evaluation results have verified the 537

existence of redundant updates in LLM alignment 538

and shown that training an appropriate amount of 539

neurons can reduce the redundancy and enhance 540

the performance of LLMs. 541

6 Conclusion 542

In this paper, we proposed ALLO, an alignment 543

method with low-redundant optimization, to train 544

the most related neurons with the most useful su- 545

pervised signals. In ALLO, we first estimated 546

the importance of neurons in the LLM based on 547

the weight changes of a reference model, and lo- 548

cated the most related neurons for optimization. 549

Then, we decomposed the alignment process into 550

the forgetting and learning stages, where we lever- 551

aged token-level reward and DPO reward scores 552

to identify the key tokens, and computing loss on 553

them for training. Experimental results on question- 554

answering tasks, mathematical reasoning tasks, and 555

instruction following tasks have shown the effec- 556

tiveness of ALLO. 557

As future work, we will consider leveraging 558

ALLO on other important scenarios, e.g., reduc- 559

ing hallucination. Besides, we will also implement 560

ALLO in larger LLMs and multimodal LLMs to 561

validate its effectiveness. 562
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Limitations563

In this section, we discuss the limitations of our564

work. First, we only conduct the experiment of565

ALLO on 7B LLMs, with the evaluation of the566

LLMs with larger scaling of parameters, because567

of the limitation of computation resources. Actu-568

ally, we comprehensively assess the performance569

of ALLO and the existing competitive baseline570

methods in various downstream tasks, and the ex-571

periment results have verified the effectiveness of572

our proposed methods. Second, we adopt com-573

plex reasoning and human alignment tasks in our574

evaluation, which mainly assess the helpfulness of575

LLMs. The performance of ALLO on other as-576

pects, e.g., reducing hallucination and generating577

harmless response, has not been verified in this578

work. We leave it as future work. Finally, we do579

not consider the potential risk of ethics risk during580

LLM deployment and will investigate this issue in581

the future.582
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Algorithm 1: The ALLO algorithm.
Input :Training set D = {⟨𝑥𝑖 , 𝑦+𝑖 , 𝑦

−
𝑖
⟩}𝑛

𝑖=1, the
teacher model (GPT-4o), and the SFT model
𝜃SFT.

Output :A well-aligned model 𝜃.

// 1. Locating Key Neurons
𝜃′ ← 𝐷𝑃𝑂 (𝜃𝑆𝐹𝑇 );
for each neuron 𝜃𝑖 in warmed up model 𝜃′ do

Calculate the importance of 𝜃𝑖 using Eq. 4;

Sort the importance of each neuron;
Select the top-k relative neurons into N ;

// 2. Unaligned Knowledge Forgetting
for each instance ⟨𝑥𝑖 , 𝑦+𝑖 , 𝑦

−
𝑖
⟩ in D do

if the data is sampled then
The teacher model rewrites the negative

response 𝑦−
𝑖

;

Leverage the rewritten response to fine-tune the small
LLM to obtain the 𝜃𝑟𝑚;

for each instance ⟨𝑥𝑖 , 𝑦+𝑖 , 𝑦
−
𝑖
⟩ in D do

Identify the unaligned token using Eq. 5;
Optimize the neurons in N using Eq. 7;

Obtain the model 𝜃forget forgetting unaligned
knowledge;

// 3. Alignment Improving
for each instance ⟨𝑥𝑖 , 𝑦+𝑖 , 𝑦

−
𝑖
⟩ in D do

Identify the noise token using Eq. 8;
Optimize the neurons in N using Eq. 9;

Obtained the well-aligned model 𝜃;

A Algorithm of ALLO963

We present the pipeline of ALLO in Algorithm 1.964

The process of ALLO includes three stages, i.e.,965

locating key neurons, unaligned knowledge forget-966

ting, and alignment improving.967

B Details of Hyper-Parameters968

To better understand and reproduce our proposed969

ALLO, we presented the hyper-parameters in970

ALLO in Table 5. The hyper-parameters are a971

little different between different downstream tasks,972

that is because these tasks are in different difficulty973

levels and require different abilities of LLMs. It974

should be noted that, to conduct a fair comparison,975

the hyper-parameters of baseline methods are also976

adjusted to adapt to the corresponding tasks for977

better performance.978

C Prompt Templates of ALLO979

In ALLO, we utilize prompts to guide the teacher980

model to rewrite the generated response from stu-981

dent models and induce the student model to solve982

the downstream tasks. The templates of the prompt983

in ALLO are presented in Table 6. For the solution984

rewriting process, we feed the problem, ground- 985

truth reference, and generated response into the 986

teacher model, with the instruction of rewriting in 987

the prefix. Besides, for the downstream tasks, the 988

instruction prefix and problem will be given into 989

LLMs. 990

D Case Study 991

To better demonstrate our proposed ALLO, we 992

present the case study on QA task (i.e., ECQA) 993

in Table 7. In this case, we can observe that LLM 994

after DPO training still cannot catch the relation 995

between “tickets” and the destination John needed 996

to go to, and focus on the relation between “cross 997

country” and “race track”. This phenomenon has 998

shown that unaligned knowledge is not eliminated 999

and still exists in LLMs after DPO training. In con- 1000

trast, after ALLO training, LLM can correctly seize 1001

on the key elements of the problem (i.e., “ticket”) 1002

and perform reasoning along the correct direction. 1003

That is because low-redundant optimization can 1004

reduce the redundant updates in the alignment pro- 1005

cess and make LLMs focus on the key knowledge 1006

and information. 1007
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Stage Hyper-Parameter Question-Answering Mathematical Reasoning Human Alignment

Stage 1

Learning Rate 1 × 10−7 5 × 10−8 1 × 10−7

Batch Size 32 512 128
Selected Neuron Ratio 5% 5% 10%

Threshold 𝑢 0.95 0.95 0.95
𝛽 in NPO 0.1 0.1 0.1

Stage 2

Learning Rate 5 × 10−6 1 × 10−6 5 × 10−6

Batch Size 32 512 128
Selected Neuron Ratio 10% 20% 15%

Threshold 𝑣 20% 50% 20%
𝛽 in DPO 0.1 0.1 0.1

Table 5: The details of hyper-parameters in the evaluation.

Distillation
for Solution
Rewriting

Given the problem and the correct solution, you need to correct the mistakes in the prediction to get
the correct answer. You should write down the correct prediction and use “The answer is: ” (without
quotation mark) to identify the final answer. You should make minimal modifications. You should not
copy the problem.

### Problem:
{Problem}

### Correct solution:
{Ground-Truth Reference}

### Prediction:
{Generated Response from LLM}

### Correct prediction:

Prompt
for Down-
stream
Tasks

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{Problem to be solved}

### Response: Let’s think step by step.

Table 6: The template of prompt in ALLO.

Problem

John needed to go across the country so he ordered tickets online and got into his car. Where might he
be going?
Options:
train station
opera
car rental shop
show
race track

Ground-
Truth
Solution

He was going to train station so he got into his car.
John needed to go across the country by train so he ordered tickets online.
The answer is train station

Generated
Solution
Before
Training

Race tracks are in the outskirts of the city
One can go to a race track by car
Race tracks are in the country side.
The answer is race track

Generated
Solution
After DPO

A person may go to another place by car
When someone orders ticket online, it means that he is going to travel
When someone goes from one place to another by car, he crosses the country
When someone crosses the country, he might be going to the other end of the country.
The answer is race track

Generated
Solution Af-
ter ALLO

John might be going to the train station as he ordered tickets online and got into his car.
John needs to go across the country so he might be going to the train station.
The answer is train station

Table 7: The case study for question-answering tasks.
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