
Revisiting Heterophily For Graph Neural Networks

Sitao Luan1,2, Chenqing Hua1,2, Qincheng Lu1, Jiaqi Zhu1, Mingde Zhao1,2, Shuyuan Zhang1,2,
Xiao-Wen Chang1, Doina Precup1,2,3

{sitao.luan@mail, chenqing.hua@mail, qincheng.lu@mail, jiaqi.zhu@mail, mingde.zhao@mail,
shuyuan.zhang@mail, chang@cs, dprecup@cs}.mcgill.ca

1McGill University; 2Mila; 3DeepMind

Abstract

Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using
graph structures based on the relational inductive bias (homophily assumption).
While GNNs have been commonly believed to outperform NNs in real-world tasks,
recent work has identified a non-trivial set of datasets where their performance
compared to NNs is not satisfactory. Heterophily has been considered as the main
cause of this empirical observation and numerous works have been put forward to
address it. In this paper, we first revisit the widely used homophily metrics and
point out that their consideration of only graph-label consistency is a shortcoming.
Then, we study heterophily from the perspective of post-aggregation node similarity
and define new homophily metrics, which are verified to be advantageous compared
to existing ones. Based on this investigation, we prove that some harmful cases of
heterophily can be effectively addressed by local diversification operation. Then,
we propose the Adaptive Channel Mixing (ACM), a framework to adaptively
exploit aggregation, diversification and identity channels node-wisely to extract
richer localized information for diverse node heterophily situations. ACM is more
powerful than the commonly used uni-channel framework for node classification
tasks on heterophilic graphs and is easy to be implemented in baseline GNN layers.
When evaluated on 10 benchmark node classification tasks, ACM-augmented
baselines consistently achieve significant performance gain, exceeding state-of-the-
art GNNs on most tasks without incurring significant computational burden. Code:
https://github.com/SitaoLuan/ACM-GNN

1 Introduction
Deep Neural Networks (NNs) [22] have revolutionized many machine learning areas, including
image recognition [21], speech recognition [13] and natural language processing [2], due to their
effectiveness in learning latent representations from Euclidean data. Recent research has shifted focus
on non-Euclidean data [6], e.g., relational data or graphs. Combining graph signal processing and
convolutional neural networks [23], numerous Graph Neural Network (GNN) architectures have been
proposed [39, 10, 15, 41, 19, 30], which empirically outperform traditional NNs on graph-based
machine learning tasks such as node classification, graph classification, link prediction and graph
generation, etc.GNNs are built on the homophily assumption [35]: connected nodes tend to share
similar attributes with each other [14], which offers additional information besides node features.
This relational inductive bias [3] is believed to be a key factor leading to GNNs’ superior performance
over NNs’ in many tasks.

However, growing empirical evidence suggests that GNNs are not always advantageous compared to
traditional NNs. In some cases, even simple Multi-Layer Perceptrons (MLPs) can outperform GNNs
by a large margin on relational data [46, 29, 32, 8]. An important reason for this is believed to be the
heterophily problem: the homophily assumption does not always hold, so connected nodes may in
fact have different attributes. Heterophily has received lots of attention recently and an increasing
number of models have been put forward to address this problem [46, 29, 32, 8, 45, 44, 33, 16, 24]. In

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/SitaoLuan/ACM-GNN

this paper, we first show that by only considering graph-label consistency, existing homophily metrics
are not able to describe the effect of some cases of heterophily on aggregation-based GNNs. We
propose a post-aggregation node similarity matrix, and based on it, we derive new homophily metrics,
whose advantages are illustrated on synthetic graphs (Sec. 3). Then, we prove that diversification
operation can help to address some harmful cases of heterophily (Sec. 4). Based on this, we propose
the Adaptive Channel Mixing (ACM) GNN framework which augments uni-channel baseline GNNs,
allowing them to exploit aggregation, diversification and identity channels adaptively, node-wisely
and locally in each layer. ACM significantly boosts the performance of 3 uni-channel baseline GNNs
by 2.04% ⇠ 27.5% for node classification tasks on 7 widely used benchmark heterophilic graphs,
exceeding SOTA models (Sec. 6) on all of them. For 3 homophilic graphs, ACM-augmented GNNs
can perform at least as well as the uni-channel baselines and are competitive compared with SOTA.
Contributions 1. To our knowledge, we are the first to analyze heterophily from post-aggregation
node similarity perspective. 2. The proposed ACM framework is highly different from adaptive
filterbank with multiple channels and existing GNNs for heterophily: 1) the traditional adaptive
filterbank channels [40] uses a scalar weight for each filter and this weight is shared by all nodes.
In contrast, ACM provides a mechanism so that different nodes can learn different weights to
utilize information from different channels to account for diverse local heterophily; 2) Unlike
existing methods that leverage the high-order filters and global property of high-frequency signals
[46, 29, 8, 16] which require more computational resources, ACM successfully addresses heterophily
by considering only the nodewise local information adaptively. 3. Unlike existing methods that try
to facilitate learning filters with high expressive power [46, 45, 8, 16], ACM aims that, when given a
filter with certain expressive power, we can extract richer information from additional channels in a
certain way to address heterophily. This makes ACM more flexible and easier to be implemented.

2 Preliminaries
In this section, we introduce notation and background knowledge. We use bold font for vectors
(e.g., v). Suppose we have an undirected connected graph G = (V, E , A), where V is the node set
with |V| = N ; E is the edge set without self-loops; A 2 RN⇥N is the symmetric adjacency matrix
with Ai,j = 1 if eij 2 E , otherwise Ai,j = 0. Let D denote the diagonal degree matrix of G, i.e.,
Di,i = di =

P
j Ai,j . Let Ni denote the neighborhood set of node i, i.e., Ni = {j : eij 2 E}. A

graph signal is a vector x 2 RN defined on V , where xi is associated with node i. We also have a
feature matrix X 2 RN⇥F , whose columns are graph signals and whose i-th row Xi,: is a feature
vector of node i. We use Z 2 RN⇥C to denote the label encoding matrix, whose i-th row Zi,: is the
one-hot encoding of the label of node i.

2.1 Graph Laplacian, Affinity Matrix and Variants

The (combinatorial) graph Laplacian is defined as L = D � A, which is Symmetric Positive
Semi-Definite (SPSD) [9]. Its eigendecomposition is L = U⇤UT , where the columns ui of
U 2 RN⇥N are orthonormal eigenvectors, namely the graph Fourier basis, ⇤ = diag(�1, . . . ,�N)
with �1  · · ·  �N . These eigenvalues are also called frequencies.

In additional to L, some variants are also commonly used, e.g., the symmetric normalized Laplacian
Lsym = D

�1/2
LD

�1/2 = I �D
�1/2

AD
�1/2 and the random walk normalized Laplacian Lrw =

D
�1

L = I �D
�1

A. The graph Laplacian and its variants can be considered as high-pass filters
for graph signals. The affinity (transition) matrices can be derived from the Laplacians, e.g., Arw =
I � Lrw = D

�1
A, Asym = I � Lsym = D

�1/2
AD

�1/2 and are considered to be low-pass filters
[34]. Their eigenvalues satisfy �i(Arw) = �i(Asym) = 1 � �i(Lsym) = 1 � �i(Lrw) 2 (�1, 1].
Applying the renormalization trick [19] to affinity and Laplacian matrices respectively leads to
Âsym = D̃

�1/2
ÃD̃

�1/2 and L̂sym = I� Âsym, where Ã ⌘ A+ I and D̃ ⌘ D+ I . The renormalized
affinity matrix essentially adds a self-loop to each node in the graph, and is widely used in Graph
Convolutional Network (GCN) [19] as follows:

Y = softmax(Âsym ReLU(ÂsymXW0) W1) (1)

where W0 2 RF⇥F1 and W1 2 RF1⇥O are learnable parameter matrices. GCNs can be trained by
minimizing the following cross entropy loss

L = �trace(ZT log Y) (2)

2

where log(·) is a component-wise logarithm operation. The random walk renormalized matrix
Ârw = D̃

�1
Ã, which shares the same eigenvalues as Âsym, can also be applied in GCN. The

corresponding Laplacian is defined as L̂rw = I � Ârw. The matrix Ârw is essentially a random walk
matrix and behaves as a mean aggregator that is applied in spatial-based GNNs [15, 14]. To bridge
spectral and spatial methods, we use Ârw in this paper.

2.2 Metrics of Homophily

The homophily metrics are defined by considering different relations between node labels and graph
structures. There are three commonly used homophily metrics: edge homophily [1, 46], node
homophily [36] and class homophily [26] 1, defined as follows:

Hedge(G) =
��{euv | euv 2 E , Zu,: = Zv,:}

��
|E| , Hnode(G) =

1

|V|
X

v2V
H

v
node =

1

|V|
X

v2V

��{u | u 2 Nv, Zu,: = Zv,:}
��

dv
,

Hclass(G)=
1

C�1

CX

k=1


hk�

��{v |Zv,k=1}
��

N

�

+

, hk=

P
v2V

��{u |Zv,k=1, u 2 Nv, Zu,:=Zv,:}
��

P
v2{v|Zv,k=1} dv

(3)
where H

v
node is the local homophily value for node v; [a]+ = max(a, 0); hk is the class-wise

homophily metric [26]. All metrics are in the range of [0, 1]; a value close to 1 corresponds to strong
homophily, while a value close to 0 indicates strong heterophily. Hedge(G) measures the proportion
of edges that connect two nodes in the same class; Hnode(G) evaluates the average proportion of
edge-label consistency of all nodes; Hclass(G) tries to avoid sensitivity to imbalanced classes, which
can make Hedge(G) misleadingly large. The above definitions are all based on the linear feature-
independent graph-label consistency. The inconsistency relation is implied to have a negative
effect to the performance of GNNs. With this in mind, in the following section, we give an example
to illustrate the shortcomings of the above metrics and propose new feature-independent metrics that
are defined from post-aggregation node similarity perspective, which is novel.

3 Analysis of Heterophily
3.1 Motivation and Aggregation Homophily

After

Aggregation

1

3

2

4

5

6 6

5

4

3

2

1

Metrics:
H!"#!(G) = 0
H$%"!(G) = 0
H&'())(G) = 0
%agg(G) = 1
%agg* (G) = 1

Class 1

Class 2

Figure 1: Example of harmless heterophily

Heterophily is widely believed to be harmful
for message-passing based GNNs [46, 36, 8] be-
cause, intuitively, features of nodes in different
classes will be falsely mixed, leading nodes to
be indistinguishable [46]. Nevertheless, it is not
always the case, e.g., the bipartite graph2 shown
in Figure 1 is highly heterophilic according to
the existing homophily metrics in equation 3,
but after mean aggregation, the nodes in classes
1 and 2 just exchange colors and are still distin-
guishable3. This example tells us that, besides
graph-label consistency, we need to study the
relation between nodes after aggregation step.
To this end, we first define the post-aggregation node similarity matrix as follows:

S(Â,X) ⌘ ÂX(ÂX)T 2 RN⇥N (4)

where Â 2 RN⇥N denotes a general aggregation operator. S(Â,X) is essentially the gram matrix
that measures the similarity between each pair of aggregated node features.

Relationship Between S(Â,X) and Gradient of SGC SGC [42] is one of the most simple but
representative GNN models and its output can be written as:

Y = softmax(ÂXW) = softmax(Y 0) (5)
1[26] did not name this homophily metric. We named it class homophily based on its definition.
2[33] use the same example but not to demonstrate the deficiency of homophily metrics.
3[8] also point out the insufficiency of Hnode by examples to show that different graph typologies with the

same Hnode(G) can carry different label information.

3

With the loss function in equation 2, after each gradient descent step, we have �W = �
dL
dW , where �

is the learning rate. The update of Y 0 is (see Appendix E for derivation):

�Y
0 = ÂX�W = �ÂX

dL
dW

/ ÂX
dL
dW

= ÂXX
T
Â

T (Z � Y) = S(Â,X)(Z � Y) (6)

where Z � Y is the prediction error matrix. The update direction of the prediction for node i is
essentially a weighted sum of the prediction error, i.e., �(Y 0)i,: =

P
j2V

⇥
S(Â,X)

⇤
i,j
(Z � Y)j,:

and
⇥
S(Â,X)

⇤
i,j

can be considered as the weights. Intuitively, a high similarity value
⇥
S(Â,X)

⇤
i,j

means node i tends to be updated to the same class as node j. This indicates that S(Â,X) is closely
related to a single layer GNN model.

Based on the above definition and observation, we define the aggregation similarity score as follows.
Definition 1. The aggregation similarity score is:

Sagg
�
S(Â,X)

�

=
1

|V|

���
n
v
��Meanu

�
{S(Â,X)v,u|Zu,: = Zv,:}

�
� Meanu

�
{S(Â,X)v,u|Zu,: 6= Zv,:}

�o���
(7)

where Meanu ({·}) takes the average over u of a given multiset of values or variables.

Sagg(S(Â,X)) measures the proportion of nodes v 2 V as which the average weights on the set of
nodes in the same class (including v) is larger than that in other classes. In practice, we observe
that in most datasets, we will have Sagg(S(Â,X)) � 0.5 4. To make the metric range in [0,1], like
existing metrics, we rescale equation 7 to the following modified aggregation similarity,

S
M
agg

�
S(Â,X)

�
=

⇥
2Sagg

�
S(Â,X)

�
� 1

⇤
+

(8)

In order to measure the consistency between labels and graph structures without considering node
features and to make a fair comparison with the existing homophily metrics in equation 3, we define
the graph (G) aggregation (Â) homophily and its modified version 5 as:

Hagg(G) = Sagg
�
S(Â, Z)

�
, H

M
agg(G) = S

M
agg

�
S(Â, Z)

�
(9)

As the example shown in Figure 1, when Â = Ârw, it is easy to see that Hagg(G) = H
M
agg(G) = 1

and other metrics are 0. Thus, this new metric reflects the fact that nodes in classes 1 and 2 are still
highly distinguishable after aggregation, while other metrics mentioned before fail to capture such
information and misleadingly give value 0. This shows the advantage of Hagg(G) and H

M
agg(G), which

additionally exploit information from aggregation operator Â and the similarity matrix.

To comprehensively compare H
M
agg(G) with the existing metrics on their ability to elucidate the

influence of graph structure on GNN performance, we generate synthetic graphs with different
homophily levels and evaluate SGC [42] and GCN [19] on them in the next subsection.

(a) Hedge(G) (b) Hnode(G) (c) Hclass(G) (d) HM

agg(G)

Figure 2: Comparison of baseline performance under different homophily metrics.

4See Appendix F.1 for an intuitive explanation under certain conditions.
5In practice, we will only check Hagg(G) when H

M

agg(G) = 0.

4

4

5

6

7

! = Z
1: [1,0]
2: [1,0]
3: [1,0]
4: [0,1]
5: [0,1]
6: [0,1]
7: [0,1]

Large positive weighs in
inter-class block for node 1,3.

Positive weights in intra-class blocks,
Non-negative weights in cross-class
blocks.

Class 1 Class 2

1

3

2

$%!!!$%
.50
.50
.50
.50
.50
.50
.50

		

.50
1.0
.33
.20
.25
.25
.25

		

.50

.33

.56

.60

.58

.60

.58

		

.50

.20

.60

.68

.65

.68

.65

			

.50

.25

.58

.65

.63

.65

.63

			

.50

.20

.60

.68

.65

.68

.65

			

.50

.25

.58

.65

.63

.65

.63

& − $% XXT(I − $%)
	.50
	.00
	.67
-.20
-.25
-.20
-.25

		

.00

.00

.00

.00

.00

.00

.00

		

	.67
	.00
	.89
-.27
-.33
-.27
-.33

		

-.20
	.00
-.27
		.08
		.10
		.08
		.10

			

-.25
		.00
-.33
	.10
	.13
	.10
	.13

			

-.20
	.00
-.27
	.08
	.10
	.08
	.10

			

-.25
	.00
-.33
	.10
	.13
	.10
	.13

Figure 3: Example of how diversification can address harmful heterophily

3.2 Empirical Evaluation and Comparison on Synthetic Graphs

In this subsection, we conduct experiments on synthetic graphs generated with different levels of
H

M
edge(G) to assess the output of HM

agg(G) in comparison with existing metrics.

Data Generation & Experimental Setup We first generated 10 graphs for each of 28 edge ho-
mophily levels, from 0.005 to 0.95, for a total of 280 graphs. In every generated graph, we had 5
classes, with 400 nodes in each class. For nodes in each class, we randomly generated 800 intra-class
edges and [800

Hedge(G)�800] inter-class edges. The features of nodes in each class are sampled from node
features in the corresponding class of 6 base datasets (Cora, CiteSeer, PubMed, Chameleon, Squirrel,
Film). Nodes were randomly split into train/validation/test sets, in proportion of 60%/20%/20%. We
trained 1-hop SGC (sgc-1) [42] and GCN [19] on the synthetic graphs 6. For each value of Hedge(G),
we take the average test accuracy and standard deviation of runs over the 10 generated graphs with
that value. For each generated graph, we also calculate Hnode(G), Hclass(G) and H

M
agg(G). Model

performance with respect to different homophily values is shown in Figure 2.

Comparison of Homophily Metrics The performance of SGC-1 and GCN is expected to be
monotonically increasing if the homophily metric is informative. However, Figure 2(a)(b)(c) show
that the performance curves under Hedge(G), Hnode(G) and Hclass(G) are U -shaped 7, while Figure
2(d) reveals a nearly monotonic curve with a little numerical perturbation around 1. This indicates that
H

M
agg(G) provides a better indication of the way in which the graph structure affects the performance

of SGC-1 and GCN than existing metrics. (See more discussion on aggregation homophily and
theoretical results for regular graphs in Appendix D.)

4 Adaptive Channel Mixing (ACM)
In prior work [32, 8, 4], it has been shown that high-frequency graph signals, which can be extracted
by a high-pass filter (HP), is empirically useful for addressing heterophily. In this section, based on
the similarity matrix in equation 6, we theoretically prove that a diversification operation, i.e., HP
filter, can address some cases of harmful heterophily locally. Besides, a node-wise analysis shows
that different nodes may need different filters to process their neighborhood information. Based on
the above analysis, in Sec. 4.2 we propose Adaptive Channel Mixing (ACM), a 3-channel architecture
which can adaptively exploit local and node-wise information from aggregation, diversification and
identity channels.

4.1 Diversification Helps with Harmful Heterophily
We first consider the example shown in Figure 3. From S(Â,X), we can see that nodes {1, 3} assign
relatively large positive weights to nodes in class 2 after aggregation, which will make nodes {1, 3}
hard to be distinguished from nodes in class 2. However, we can still distinguish nodes {1, 3} and
{4, 5, 6, 7} by considering their neighborhood differences: nodes {1, 3} are different from most of
their neighbors while nodes {4, 5, 6, 7} are similar to most of their neighbors. This indicates that

6See Appendix C.1 for a description of the hyperparameter searching range and Appendix D for more a
detailed description of the data generation process

7A similar J-shaped curve for Hedge(G) is found in [46], though using different data generation processes.
The authors do not mention the insufficiency of edge homophily.

5

although some nodes become similar after aggregation, they are still distinguishable through their
local surrounding dissimilarities.

This observation leads us to introduce the diversification operation, i.e., HP filter I � Â [11] to
extract information regarding neighborhood differences, thereby addressing harmful heterophily. As
S(I � Â,X) in Fig. 3 shows, nodes {1, 3} will assign negative weights to nodes {4, 5, 6, 7} after
the diversification operation, i.e., nodes 1,3 treat nodes 4,5,6,7 as negative samples and will move
away from them during backpropagation. This example reveals that there are cases in which the
diversification operation is helpful to handle heterophily, while the aggregation operation is not.
Based on this observation, we first define the diversification distinguishability of a node and the
graph diversification distinguishability value, which measures the proportion of nodes for which the
diversification operation is potentially helpful.

Definition 2 (Diversification Distinguishability (DD) based on S(I � Â,X)). Given S(I � Â,X), a
node v is diversification distinguishable if the following two conditions are satisfied at the same time,

1. Meanu
⇣
{S(I � Â,X)v,u|u 2 V ^ Zu,: = Zv,:}

⌘
� 0;

2. Meanu
⇣
{S(I � Â,X)v,u|u 2 V ^ Zu,: 6= Zv,:}

⌘
 0

(10)

Then, graph diversification distinguishability value is defined as

DDÂ,X(G) = 1

|V|

���{v|v 2 V ^ v is diversification distinguishable}
��� (11)

We can see that DDÂ,X(G) 2 [0, 1]. Based on Def. 2, the effectiveness of diversification in addressing
heterophily can be theoretically proved under certain conditions:

Theorem 1. (See Appendix G for proof). For C = 2, suppose X = Z, Â = Ârw. Then for any
I � Ârw, all nodes are diversification distinguishable and DDÂ,Z(G) = 1.

With the above results for HP filters, we will now introduce the concept of filterbank which combines
both LP (aggregation) and HP (diversification) filters and can potentially handle various local
heterophily cases. We then develop ACM framework in the following subsection.

4.2 Filterbank and Adaptive Channel Mixing (ACM) Framework

Figure 4: Hv
node distributions

Filterbank For the graph signal x defined on G, a 2-channel linear
(analysis) filterbank [11] 8 includes a pair of filters HLP, HHP, which
retain the low-frequency and high-frequency content of x, respec-
tively. Most existing GNNs use a uni-channel filtering architecture
[19, 41, 15] with either LP or HP channel, which only partially pre-
serves the input information. Unlike the uni-channel architecture,
filterbanks with HLP +HHP = I do not lose any information from
the input signal, which is called the perfect reconstruction property
[11]. Generally, the Laplacian matrices (Lsym, Lrw, L̂sym, L̂rw) can
be regarded as HP filters [11] and affinity matrices (Asym, Arw, Âsym,
Ârw) can be treated as LP filters [34, 14]. Moreover, we extend
the concept of filterbank and view MLPs as using the identity (full-
pass) filterbank with HLP = I and HHP = 0, which also satisfies
HLP +HHP = I + 0 = I .

Node-wise Channel Mixing for Diverse Local Homophily The example in Figure 3 also shows
that different nodes may need the local information extracted from different channels, e.g., nodes
{1, 3} demand information from the HP channel while node 2 only needs information from the LP
channel. Figure 4 reveals that nodes have diverse distributions of node local homophily H

v
node across

different datasets. In order to adaptively leverage the LP, HP and identity channels in GNNs to deal
with the diverse local heterophily situations, we will now describe our proposed Adaptive Channel
Mixing (ACM) framework.

8In graph signal processing, an additional synthesis filter [11] is required to form the 2-channel filterbank.
But a synthesis filter is not needed in our framework.

6

Adaptive Channel Mixing (ACM) We will use GCN 9 as an example to introduce the ACM
framework in matrix form, but the framework can be combined in a similar manner to many different
GNNs. The ACM framework includes the following steps:
Step 1. Feature Extraction for Each Channel:
Option 1: H l

L = ReLU
�
HLPH

l�1
W

l�1
L

�
, H

l
H = ReLU

�
HHPH

l�1
W

l�1
H

�
, H

l
I = ReLU

�
IH

l�1
W

l�1
I

�
;

Option 2: H l
L = HLPReLU

�
H

l�1
W

l�1
L

�
, H

l
H = HHPReLU

�
H

l�1
W

l�1
H

�
, H

l
I = I ReLU

�
H

l�1
W

l�1
I

�
;

H
0 = X 2 RN⇥F0 , W

l�1
L , W

l�1
H , W

l�1
I 2 RFl�1⇥Fl , l = 1, . . . , L;

Step 2. Row-wise Feature-based Weight Learning:

↵̃
l
L = Sigmoid

⇣
H

l
LW̃

l
L

⌘
, ↵̃

l
H = Sigmoid

⇣
H

l
HW̃

l
H

⌘
, ↵̃

l
I = Sigmoid

⇣
H

l
IW̃

l
I

⌘
, W̃

l�1
L , W̃

l�1
H , W̃

l�1
I 2 RFl⇥1

⇥
↵
l
L,↵

l
H ,↵

l
I

⇤
= Softmax

�
(
⇥
↵̃
l
L, ↵̃

l
H , ↵̃

l
I

⇤
/T)W l

Mix
�
2 RN⇥3

, T 2 R temperature, W l
Mix 2 R3⇥3;

Step 3. Node-wise Adaptive Channel Mixing:
H

l = ReLU
�
diag(↵l

L)H
l
L + diag(↵l

H)H l
H + diag(↵l

I)H
l
I

�

We will refer to the instantiation which uses option 1 in step 1 as ACM and to the one using option 2
as ACMII 10. In step 1, ACM(II)-GCN implement different feature extractions for 3 channels using
a set of filterbanks. Three filtered components, H l

L, H
l
H , H

l
I , are obtained. To adaptively exploit

information from each channel, ACM(II)-GCN first extract nonlinear information from the filtered
signals, then use W

l
Mix to learn which channel is important for each node, leading to the row-wise

weight vectors ↵l
L,↵

l
H ,↵

l
I 2 RN⇥1 whose i-th elements are the weights for node i

11. These three
vectors are then used as weights in defining the updated H

l in step 3.

Complexity The number of learnable parameters in layer l of ACM(II)-GCN is 3Fl�1(Fl +1)+ 9,
compared to Fl�1Fl in GCN. The computation of steps 1-3 takes NFl(8+6Fl�1)+2Fl(nnz(HLP)+
nnz(HHP))+18N flops, while the GCN layer takes 2NFl�1Fl+2Fl(nnz(HLP)) flops, where nnz(·)
is the number of non-zero elements. An ablation study and a detailed comparison on running time are
conducted in Sec. 6.1.

Limitations of Diversification Like any other method, there exists some cases of harmful het-
erophily that diversification operation cannot work well. For example, suppose we have an imbalanced
dataset where several small clusters with distinctive labels are densely connected to a large cluster. In
this case, the surrounding differences of nodes in small clusters are similar, i.e., the neighborhood
differences mainly come from their connections to the same large cluster, and this can lead to the
diversification operation failing to discriminate them. See Appendix H for a more detailed discussion.

5 Related Work
We now discuss relevant work on addressing heterophily in GNNs. [1] acknowledges the difficulty of
learning on graphs with weak homophily and propose MixHop to extract features from multi-hop
neighborhoods to get more information. [17] propose measurements based on feature smoothness
and label smoothness that are potentially helpful to guide GNNs when dealing with heterophilic
graphs. Geom-GCN [36] precomputes unsupervised node embeddings and uses the graph structure
defined by geometric relationships in the embedding space to define the bi-level aggregation process
to handle heterophily. H2GCN [46] combines 3 key designs to address heterophily: (1) ego- and
neighbor-embedding separation; (2) higher-order neighborhoods; (3) combination of intermediate
representations. CPGNN [45] models label correlations through a compatibility matrix, which is
beneficial for heterophilic graphs, and propagates a prior belief estimation into the GNN by using the
compatibility matrix. Non-local GNNs [28] propose a simple and effective non-local aggregation
framework with an efficient attention-guided sorting for GNNs. FAGCN [4] learns edge-level
aggregation weights as GAT [41] but allows the weights to be negative, which enables the network
to capture high-frequency components in the graph signals. GPRGNN [8] uses learnable weights
that can be both positive and negative for feature propagation. This allows GPRGNN to adapt to
heterophilic graphs and to handle both high- and low-frequency parts of the graph signals (See
Appendix J for a more comprehensive comparison between ACM-GNNs, ACMII-GNNs and FAGCN,

9See more variants in Appendix B.
10See Appendix B.1 for the reasons of having 2 options for ACM-GNNs.
11See Appendix A.4 and A.5 for more discussion of the components in ACM architecture.

7

GPRGNN). BernNet [16] designs a scheme to learn arbitrary graph spectral filters with Bernstein
polynomial to address heterophily. [33] points out that homophily is not necessary for GNNs and
characterizes conditions that GNNs can perform well on heterophilic graphs.

6 Empirical Evaluation
In this section, we evaluate the proposed ACM and ACMII framework on real-world datasets
(see Appendix D.2 for a performance comparison with basline models on synthetic datasets). We
first conduct ablation studies in Sec. 6.1 to validate the effectiveness and efficiency of different
components of ACM and ACMII. Then, we compare with state-of-the-art (SOTA) models in Sec. 6.2.
The hyperparameter searching range and computing resources are described in Appendix C.

(a) Input Feature (b) GCN Output (c) ACM-GCN Output

(d) Low-pass Channel (e) High-pass Channel (f) Identity Channel (g) Learned Weights ↵

Figure 5: t-SNE visualization of the output layer of ACM-GCN and GCN trained on Squirrel

6.1 Ablation Study & Efficiency

We will now investigate the effectiveness and efficiency of adding HP, identity channels and the
adaptive mixing mechanism in the proposed framework by performing an ablation study. Specifically,
we apply the components of ACM to SGC-1 [42] 12 and the components of ACM and ACMII to
GCN [19] separately. We run 10 times on each of the 9 benchmark datatsets, Cornell, Wisconsin,
Texas, Film, Chameleon, Squirrel, Cora, Citeseer and Pubmed used in [37, 36], with the same
60%/20%/20% random splits for train/validation/test used in [8] and report the average test accuracy
as well as the standard deviation. We also record the average running time per epoch (in milliseconds)
to compare the computational efficiency. We set the temperature T in equation 4.2 to be 3, which is
the number of channels.

The results in Table 1 show that on most datasets, the additional HP and identity channels are helpful,
even for strong homophily datasets such as Cora, CiteSeer and PubMed. The adaptive mixing
mechanism also has an advantage over directly adding the three channels together. This illustrates
the necessity of learning to customize the channel usage adaptively for different nodes. The t-SNE
visualization in Figure 5 demonstrates that the high-pass channel(e) and identity channel(f) can
extract meaningful patterns, which the low-pass channel(d) is not able to capture. The output of ACM-

12We only test ACM-SGC-1 because SGC-1 does not contain any non-linearity which makes ACM-SGC-1
and ACMII-SGC-1 exactly the same.

8

Ablation Study on Different Components in ACM-SGC and ACM-GCN (%)

Baseline Model Components Cornell Wisconsin Texas Film Chameleon Squirrel Cora CiteSeer PubMed
Rank

Models LP HP Identity Mixing Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std

ACM-SGC-1 w/

X 70.98 ± 8.39 70.38 ± 2.85 83.28 ± 5.43 25.26 ± 1.18 64.86 ± 1.81 47.62 ± 1.27 85.12 ± 1.64 79.66 ± 0.75 85.5 ± 0.76 12.89
X X X 83.28 ± 5.81 91.88 ± 1.61 90.98 ± 2.46 36.76 ± 1.01 65.27 ± 1.9 47.27 ± 1.37 86.8 ± 1.08 80.98 ± 1.68 87.21 ± 0.42 10.44
X X X 93.93 ± 3.6 95.25 ± 1.84 93.93 ± 2.54 38.38 ± 1.13 63.83 ± 2.07 46.79 ± 0.75 86.73 ± 1.28 80.57 ± 0.99 87.8 ± 0.58 9.44
X X X 88.2 ± 4.39 93.5 ± 2.95 92.95 ± 2.94 37.19 ± 0.87 62.82 ± 1.84 44.94 ± 0.93 85.22 ± 1.35 80.75 ± 1.68 88.11 ± 0.21 11.00
X X X X 93.77 ± 1.91 93.25 ± 2.92 93.61 ± 1.55 39.33 ± 1.25 63.68 ± 1.62 46.4 ± 1.13 86.63 ± 1.13 80.96 ± 0.93 87.75 ± 0.88 10.00

ACM-GCN w/

X 82.46 ± 3.11 75.5 ± 2.92 83.11 ± 3.2 35.51 ± 0.99 64.18 ± 2.62 44.76 ± 1.39 87.78 ± 0.96 81.39 ± 1.23 88.9 ± 0.32 11.44
X X X 82.13 ± 2.59 86.62 ± 4.61 89.19 ± 3.04 38.06 ± 1.35 69.21 ± 1.68 57.2 ± 1.01 88.93 ± 1.55 81.96 ± 0.91 90.01 ± 0.8 7.22
X X X 94.26 ± 2.23 96.13 ± 2.2 94.1 ± 2.95 41.51 ± 0.99 67.44 ± 2.14 53.97 ± 1.39 88.95 ± 0.9 81.72 ± 1.22 90.88 ± 0.55 4.44
X X X 91.64 ± 2 95.37 ± 3.31 95.25 ± 2.37 40.47 ± 1.49 68.93 ± 2.04 54.78 ± 1.27 89.13 ± 1.77 81.96 ± 2.03 91.01 ± 0.7 3.11
X X X X 94.75 ± 2.62 96.75 ± 1.6 95.08 ± 3.2 41.62 ± 1.15 69.04 ± 1.74 58.02 ± 1.86 88.95 ± 1.3 81.80 ± 1.26 90.69 ± 0.53 2.78

ACMII-GCN w/

X X X 82.46 ± 3.03 91.00 ± 1.75 90.33 ± 2.69 38.39 ± 0.75 67.59 ± 2.14 53.67 ± 1.71 89.13 ± 1.14 81.75 ± 0.85 89.87 ± 0.39 7.44
X X X 94.26 ± 2.57 96.00 ± 2.15 94.26 ± 2.96 40.96 ± 1.2 66.35 ± 1.76 50.78 ± 2.07 89.06 ± 1.07 81.86 ± 1.22 90.71 ± 0.67 4.67
X X X 91.48 ± 1.43 96.25 ± 2.09 93.77 ± 2.91 40.27 ± 1.07 66.52 ± 2.65 52.9 ± 1.64 88.83 ± 1.16 81.54 ± 0.95 90.6 ± 0.47 6.67
X X X X 95.9 ± 1.83 96.62 ± 2.44 95.25 ± 3.15 41.84 ± 1.15 68.38 ± 1.36 54.53 ± 2.09 89.00 ± 0.72 81.79 ± 0.95 90.74 ± 0.5 2.78

Comparison of Average Running Time Per Epoch(ms)

ACM-SGC-1 w/

X 2.53 2.83 2.5 3.18 3.48 4.65 3.47 3.43 4.04
X X X 4.01 4.57 4.24 4.55 4.76 5.09 5.39 4.69 4.75
X X X 3.88 4.01 4.04 4.43 4.06 4.5 4.38 3.82 4.16
X X X 3.31 3.49 3.18 3.7 3.53 4.83 3.92 3.87 4.24
X X X X 5.53 5.96 5.43 5.21 5.41 6.96 6 5.9 6.04

ACM-GCN w/

X 3.67 3.74 3.59 4.86 4.96 6.41 4.24 4.18 5.08
X X X 6.63 8.06 7.89 8.11 7.8 9.39 7.82 7.38 8.74
X X X 5.73 5.91 5.93 6.86 6.35 7.15 7.34 6.65 6.8
X X X 5.16 5.25 5.2 5.93 5.64 8.02 5.73 5.65 6.16
X X X X 8.25 8.11 7.89 7.97 8.41 11.9 8.84 8.38 8.63

ACMII-GCN w/

X X X 6.62 7.35 7.39 7.62 7.33 9.69 7.49 7.58 7.97
X X X 6.3 6.05 6.26 6.87 6.44 6.5 6.14 7.21 6.6
X X X 5.24 5.27 5.46 5.72 5.65 7.87 5.48 5.65 6.33
X X X X 7.59 8.28 8.06 8.85 8 10 8.27 8.5 8.68

Table 1: Ablation study on 9 real-world datasets [36]. Cell with Xmeans the component is applied to
the baseline model. The best test results are highlighted.

GCN(c) shows clearer boundaries among classes than GCN(b). The running time is approximately
doubled in the ACM and ACMII framework compared to the original models.

6.2 Comparison with Baseline and SOTA Models
Datasets & Experimental Setup In this section, we evaluate SGC [42] with 1 hop and 2 hops
(SGC-1, SGC-2), GCNII [7], GCNII⇤ [7], GCN [19] and snowball networks [30] with 2 and 3 layers
(snowball-2, snowball-3) and combine them with the ACM or ACMII framework13. We use Ârw as
the LP filter and the corresponding HP filter is I � Ârw

14. Both filters are deterministic. We compare
these approaches with several baselines and SOTA GNN models: MLP with 2 layers (MLP-2),
GAT [41], APPNP [20], GPRGNN [8], H2GCN [46], MixHop [1], GCN+JK [19, 43, 26], GAT+JK
[41, 43, 26], FAGCN [4], GraphSAGE [15], Geom-GCN [36] and BernNet [16]. In addition to the 9
benchmark datasets used in section 6.1, we further test the above models on a new benchmark dataset,
Deezer-Europe [38]15.

On each dataset used in [37, 36], we test the models 10 times following the same early stopping
strategy, the same 60%/20%/20% random data split 16 and Adam [18] optimizer as used in GPRGNN
[8]. For Deezer-Europe, we test the above models 5 times with the same early stopping strategy, the
same fixed splits and Adam used in [26].
Structure information channel and residual connection Besides the filtered features, some
recent SOTA models additionally use graph structure information, i.e., MLP✓(A), and residual
connection to address heterophily problem, e.g., LINKX [25] and GloGNN [24]. MLP✓(A) and
residual connection can be directly incorporated into ACM and ACMII framework, which leads us to
ACM(II)-GCN+ and ACM(II)-GCN++. See the details of implementation in Appendix B.

13GCNII and GCNII⇤ are hard to implement with the ACMII framework. See Appendix B for explanation.
14See Appendix A.3 for the comparison of Ârw and Âsym.
15We choose Deezer-Europe because MLP outperforms GCN on it [26].
16See table 3 in Appendix A.2 for the performance comparison with several SOTA models, e.g., LINKX [25]

and GloGNN [24], on the fixed 48%/32%/20% splits provided by [36].

9

(a) " 10.16 % ⇠ 13.44 % (b) " 20.25 % ⇠ 27.50 % (c) " 11.64 % ⇠ 13.45 %

(d) " 2.04 % ⇠ 11.90 % (e) " 4.31 % ⇠ 6.35 % (f) " 4.06 % ⇠ 25.22 %

Figure 6: Comparison of baseline GNNs (red), ACM-GNNs (green), ACMII-GNNs (blue) with SOTA
(magenta line) models on 6 selected datasets. The black lines indicate the standard deviation. The
symbol “"” shows the range of performance improvement (%) of ACM-GNNs and ACMII-GNNs
over baseline GNNs. See Appendix I for a detailed discussion of the relation between H

M
agg and GNN

performance.

To visualize the performance, in Fig. 6, we plot the bar charts of the test accuracy of SOTA models,
three selected baselines (GCN, snowball-2, snowball-3), their ACM(II) augmented models, ACM(II)-
GCN+ and ACM(II)-GCN++ on the 6 most commonly used benchmark heterophily datasets (See
Table 2 in Appendix A.1 for the full results, comparison and ranking). From Fig. 6, we can see that
(1) after being combined with the ACM or ACMII framework, the performance of the three baseline
models is significantly boosted, by 2.04%⇠27.50% on all the 6 tasks. The ACM and ACMII in
fact achieve SOTA performance. (2) On Cornell, Wisconsin, Texas, Chameleon and Squirrel, the
augmented baseline models significantly outperform the current SOTA models. Overall, these
results suggest that the proposed approach can help GNNs to generalize better on node classification
tasks on heterophilic graphs, without adding too much computational cost.

7 Conclusions and Limitations
We have presented an analysis of existing homophily metrics and proposed new metrics which are
more informative in terms of correlating with GNN performance. To our knowledge, this is the first
work analyzing heterophily from the perspective of post-aggregation node similarity. The similarity
matrix and the new metrics we defined mainly capture linear feature-independent relationships of each
node. This might be insufficient when nonlinearity and feature-dependent information is important
for classification. In the future, it would be useful to investigate if a similarity matrix could be defined
which is capable of capturing nonlinear and feature-dependent relations between aggregated node.

We have also proposed a multi-channel mixing mechanism which leverages the intuitions gained in
the first part of the paper and can be combined with different GNN architectures, enabling adaptive
filtering (high-pass, low-pass or identity) at different nodes. Empirically, this approach shows very
promising results, improving the performance of the base GNNs with which it is combined and
achieving SOTA results at the cost of a reasonable increase in computation time. As discussed in
Sec. 4.2, however, the filterbank method cannot properly handle all cases of harmful heterophily, and
alternative ideas should be explored as well in the future.

8 Acknowledge
The authors would like to give very special thanks to William L. Hamilton for valuable discussion
and advice. The project was partially supported by DeepMind and NSERC.

10

References
[1] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,

G. Ver Steeg, and A. Galstyan. Mixhop: Higher-order graph convolutional architectures
via sparsified neighborhood mixing. In international conference on machine learning, pages
21–29. PMLR, 2019.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

[3] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[4] D. Bo, X. Wang, C. Shi, and H. Shen. Beyond low-frequency information in graph convolutional
networks. arXiv preprint arXiv:2101.00797, 2021.

[5] C. Bodnar, F. Di Giovanni, B. P. Chamberlain, P. Liò, and M. M. Bronstein. Neural sheaf
diffusion: A topological perspective on heterophily and oversmoothing in gnns. arXiv preprint
arXiv:2202.04579, 2022.

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond euclidean data. arXiv, abs/1611.08097, 2016.

[7] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph convolutional networks.
In International Conference on Machine Learning, pages 1725–1735. PMLR, 2020.

[8] E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph
neural network. In International Conference on Learning Representations. https://openreview.
net/forum, 2021.

[9] F. R. Chung and F. C. Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. arXiv, abs/1606.09375, 2016.

[11] V. N. Ekambaram. Graph structured data viewed through a fourier lens. University of California,
Berkeley, 2014.

[12] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

[13] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on acoustics, speech and signal processing,
pages 6645–6649. Ieee, 2013.

[14] W. L. Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

[15] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs.
arXiv, abs/1706.02216, 2017.

[16] M. He, Z. Wei, H. Xu, et al. Bernnet: Learning arbitrary graph spectral filters via bernstein
approximation. Advances in Neural Information Processing Systems, 34, 2021.

[17] Y. Hou, J. Zhang, J. Cheng, K. Ma, R. T. Ma, H. Chen, and M.-C. Yang. Measuring and
improving the use of graph information in graph neural networks. In International Conference
on Learning Representations, 2019.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv, abs/1609.02907, 2016.

[20] J. Klicpera, A. Bojchevski, and S. Günnemann. Predict then propagate: Graph neural networks
meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

11

[22] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.
[23] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[24] X. Li, R. Zhu, Y. Cheng, C. Shan, S. Luo, D. Li, and W. Qian. Finding global homophily in

graph neural networks when meeting heterophily. arXiv preprint arXiv:2205.07308, 2022.
[25] D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and S. N. Lim. Large scale

learning on non-homophilous graphs: New benchmarks and strong simple methods. Advances
in Neural Information Processing Systems, 34:20887–20902, 2021.

[26] D. Lim, X. Li, F. Hohne, and S.-N. Lim. New benchmarks for learning on non-homophilous
graphs. arXiv preprint arXiv:2104.01404, 2021.

[27] V. Lingam, R. Ragesh, A. Iyer, and S. Sellamanickam. Simple truncated svd based model for
node classification on heterophilic graphs. arXiv preprint arXiv:2106.12807, 2021.

[28] M. Liu, Z. Wang, and S. Ji. Non-local graph neural networks. arXiv preprint arXiv:2005.14612,
2020.

[29] M. Liu, Z. Wang, and S. Ji. Non-local graph neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[30] S. Luan, M. Zhao, X.-W. Chang, and D. Precup. Break the ceiling: Stronger multi-scale deep
graph convolutional networks. arXiv preprint arXiv:1906.02174, 2019.

[31] S. Luan, M. Zhao, X.-W. Chang, and D. Precup. Training matters: Unlocking potentials of
deeper graph convolutional neural networks. arXiv preprint arXiv:2008.08838, 2020.

[32] S. Luan, M. Zhao, C. Hua, X.-W. Chang, and D. Precup. Complete the missing half: Augmenting
aggregation filtering with diversification for graph convolutional networks. arXiv preprint
arXiv:2008.08844, 2020.

[33] Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessity for graph neural networks? arXiv
preprint arXiv:2106.06134, 2021.

[34] T. Maehara. Revisiting graph neural networks: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550, 2019.

[35] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

[36] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional
networks. arXiv preprint arXiv:2002.05287, 2020.

[37] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-Scale Attributed Node Embedding. Journal of
Complex Networks, 9(2), 2021.

[38] B. Rozemberczki and R. Sarkar. Characteristic Functions on Graphs: Birds of a Feather, from
Statistical Descriptors to Parametric Models. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM ’20), page 1325–1334. ACM,
2020.

[39] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[40] P. Vary. An adaptive filter-bank equalizer for speech enhancement. Signal Processing,
86(6):1206–1214, 2006.

[41] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv, abs/1710.10903, 2017.

[42] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger. Simplifying graph
convolutional networks. arXiv preprint arXiv:1902.07153, 2019.

[43] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka. Representation learning
on graphs with jumping knowledge networks. In J. Dy and A. Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5453–5462. PMLR, 10–15 Jul 2018.

[44] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra. Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks. arXiv preprint
arXiv:2102.06462, 2021.

12

[45] J. Zhu, R. A. Rossi, A. Rao, T. Mai, N. Lipka, N. K. Ahmed, and D. Koutra. Graph neural
networks with heterophily. arXiv preprint arXiv:2009.13566, 2020.

[46] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in graph
neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33, 2020.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Preliminaries
	Graph Laplacian, Affinity Matrix and Variants
	Metrics of Homophily

	Analysis of Heterophily
	Motivation and Aggregation Homophily
	Empirical Evaluation and Comparison on Synthetic Graphs

	Adaptive Channel Mixing (ACM)
	Diversification Helps with Harmful Heterophily
	Filterbank and Adaptive Channel Mixing (ACM) Framework

	Related Work
	Empirical Evaluation
	Ablation Study & Efficiency
	Comparison with Baseline and SOTA Models

	Conclusions and Limitations
	Acknowledge
	More Experimental Results
	Comparison with SOTA Models on 60%/20%/20% Random Splits
	Comparison with SOTA Models on Fixed 48%/32%/20% Splits
	Discussion of Random Walk and Symmetric Renormalized Filters
	Ablation Study of Wmix
	Learn Weights with Raw Features v.s. Combined Features
	Hnodev Distributions of Different Datasets
	Distributions of Learned L, H, I in the Hidden and Output Layers of ACN-GCN

	Details of the Implementation
	Why Do We Need 2 Options for ACM-GNNs
	Implementation of ACM-GCMII
	Implementation of ACM(II)-GCN+ and ACM(II)-GCN++

	Hyperparameter Searching Range & Optimal Hyperparameters
	Hyperparameter Searching Range for Synthetic Experiments
	Hyperparameter Searching Range for Ablation Study
	Hyperparameter Searching Range for GNNs on Real-world Datasets
	Searched Optimal Hyperparameters for Baselines and ACM(II)-GNNs on Real-world Tasks

	Experimental Setup and Further Discussion on Synthetic Graphs
	Detailed Description of Data Generation Process
	Model Comparison on Synthetic Graphs
	Further Discussion of Aggregation Homophily on Regular Graphs

	Details of Gradient Calculation in equation 6
	Derivation in Matrix Form
	Component-wise Derivation

	Proof of Proposition 1
	An Extension of Proposition 1

	Proof of Theorem 1
	Discussion of the Limitations of Diversification Operation
	The Similarity, Homophily and DD,X(G) Metrics and Their Estimations
	A Detailed Explanation of the Differences Between ACM(II)-GNNs and GPRGNN, FAGCN
	On Expressive Power and Frequency Analysis

