Under review as a conference paper at ICLR 2026

DIVIDE AND ABSTRACT: AUTOFORMALIZATION VIA
DECOMPOSITION AND ABSTRACTION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoformalization, the task of translating informal mathematics into formal
machine-verifiable languages, remains challenging due to three fundamental lim-
itations: bottleneck by existing abstractions, difficulty of complex statements, and
poor transferability across languages. Existing approaches rely heavily on pre-
defined libraries and expect LLMs to directly generate complete formalizations,
limiting their generalizability to complex statements and new formal languages.
We propose Divide and Abstract (DNA), a zero-training framework that addresses
these challenges through a two-phase approach. First, DNA extracts common
mathematical concepts from the entire corpus and formalizes them as reusable
abstractions, extending the target language’s capability. Second, DNA hierarchi-
cally decomposes each statement into structured informal clauses, translates each
clause using the learned abstractions, and composes them into complete formal-
izations. Our evaluation on the LeanEuclidPlus and ProofNet-Hard benchmarks
demonstrates consistent improvements across multiple model families, achiev-
ing up to 8.60x performance gains over baseline approaches. Notably, DNA
enables smaller models to match larger baseline models and shows particularly
strong performance on complex mathematical statements requiring nested reason-
ing. The framework requires no training on target languages, making it effective
for low-resource domain-specific languages. Our code is available at https:
//github.com/anonymousauthor567/DivdedAndAbstract.

1 INTRODUCTION

Autoformalization is the task of automatically translating informal mathematics into formal lan-
guages designed for theorem provers such as Lean (Moura & Ullrich, [2021)) and Z3 (De Moura &
Bjgrner, 2008), so that theorems and proofs written in natural languages can be mechanically ver-
ified. The success of autoformalization will significantly reduce the amount of labor from human
experts, and thus empower three transformative applications:

1. Synthesizing informal-formal parallel data for training neural theorem provers (Xin et al.| [2024)).
2. Grounding and guiding reasoning processes in natural lanaguages (Yang et al.| 2022).

3. Accelerating verification of important mathematical theorems (Gonthier et al.| 2013 [Hales et al.|
20135)) or engineering systems (Zhao et al.,|2012f Re1d et al.|[2016]) not only to identify potential gaps
and mistakes, but also to facilitate certified extensions and future theoretical discovery.

Inspired by the breakthrough of Large Language Models (LLMs) in machine translation between
natural languages, researchers have increasingly applied LLMs to autoformalization (Weng et al.,
2025)). Even though the ultimate vision is to automatically formalize entire theories that include
axioms, definitions, notations, theorems, and proofs, current LLMs struggle to even formalize an
individual statement (Murphy et al.,[2024; [Liu et al.;, 2025a).

Previous work in LLM-based statement autoformalization has explored in-context learning (Wu
et al.} 2022), fine-tuning specialized autoformalizer models (Jiang et al., [2023a)), invoking retrieval
before LLM inference (Liu et al.,|2025a), or employing post-inference techniques such as majority
voting and semantic consistency ranking by an embedding model (Li et al., [2024a). However, all
these approaches suffer from limited generalizability due to three fundamental challenges:

https://github.com/anonymousauthor567/DivdedAndAbstract
https://github.com/anonymousauthor567/DivdedAndAbstract

Under review as a conference paper at ICLR 2026

(a) Phase I: Language Extension via Abstraction Learning

Informal Statement

Common Math Concepts Filtered Common Concepts

Language Documentation Inside the triangle STQ, Line RUIREESO at
cZaUR

- Basic Geometric Sorts -

axiom Point : Typ:

axiom Line : Type

axiom Circle : Type

- Inductive Types for Geometric Entities -- +

Informal Statement “two distinct lines intersecting at a point" - "two distinct lines intersecting at a point

"three or more distinct points being
sequentially aligned on a line”

Lines UW and OX (GG at V. RT and QX
intersectat 5. The ponis X,
V.5, 3nd Q arofse s

R wo points lying on the same side of a line

two points lying on opposite sides of a line’

- Relations for Geometric Sorts - || ¥ Informal Statement

~ Geometri i Concept Concept
~ Geometric Relations - Line WY and SZ(ErSE)at X. TV and SZ ! "t - oppos wo sets of points on opposing sides
def distinctPointsOnLine (a b : Point) inersact i U Tho ponts 2. X, U, and S aro Extraction two sets of points lying on opposing sides Filtering o sets of points lying on opposing sides

. l g) Tand W s
(L: Line) -~ points a and b are . ofine SZ.Y and Y are on the oher side of Ine
sz

Given 2 W X Z and £ S U T are supplementary.

Compe e o v GITD)
CDG
Construction
Updated Documentation Refactored Formal Definitions New Formal Definitions Concept Dependency Graph
-- Basic Geometric Sorts - P def betweennessChain (pts : List Point) ints being
axiom Point Type A7 Brce e i oo afth ef allOnLine (pts : List Point) (L : Line)
axiom Line : Type A T |a:b:c:rest=>betweenabcA
axiom Circle : Type D betweennessChain (b : c : rest) def painwiseDistinct (pts : List Point)

- Inductive Types for Geometric Entities -- o |_=>True

def betweennessChain (pts : List Point) <

- Geometric Relations - - betweenness provides distinctness and

Doc collinearity for consecutive triples. -/ Formalization ‘(’Le' if:;‘)e";;‘;‘;’"_““"e“"" ine (pts : List Point Concept o ct lines intersecting at a poin!
def sequentiallyAligned (pts : List Point) - a def sequentiallyAligned (pts : List Point) : = | Correspondents:
list of points is sequentially aligned (ordered Update = Refactoring allonLine pts L A pairwiseDistinct pts A Formalization no ntor

betweennessChain pts

Prop
colinear chain) ff every betwes

ennessChain pts

Semi-Formalized Structure / Formalized Structure \
Informal Statement Formal Statement

{
“premises”: [

A "premises”: [
Line WY and SZ intersect at X, TV and = Q200N "W and Y are distinct points on line WY",

distinctPointsOnLine W Y WY, theorem theorem_1:V (WY SZTVX

SZ ntersect at U. The points S, U, X, Z A "$ and Z are distinct points on line SZ", “distinctPointsOnLine S Z SZ", U : Point) (WY SZ TV : Line),
are|collinear and ordered.|The points T, Y *T and V are distinct points on line TV", VY “distinctPointsOnLine T V TV". LY distinctPointsOnLine WY WY A
W are on one side of line SZ. The points. . The dsinc ines WY and SZ intersect “twoDistinetL §
V, Y are on the other side of line SZ. D aitinet lnes TV and SZ inersect WY SZ X, sequentiallyAligned [S U X Z] A

iti atpoint U". F N "twoDistinctl Ci Y twoSetsOpposingSidesOnLine
Given £ U X Wand 2 T U X are "The distinct points S, U, X, Z are collinear TVSZ U, [TWIVY]SZ A
supplementary. Complete the proof that and ordered in this sequence from S to 2", "sequentiallyAligned [S U X Z]', supplementaryAngles U XW T U X —
WYITV. "The points T and W are on the opposite oSeTsOppoSINGSidesOnlinG parallel WY TV :=

side of V and Y with respect to line SZ, WV YISz

“The angles 2 UXW and < TUX are
supplementary”

) h .
“conclusions”: [‘conclusions™: [

"The lines WY and TV are parallel" "parallel WY TV"
1 1

: N J Z3 /cvcs)

Phase II: Statement Formalization via Decomposition and Self-Refine

“supplementaryAngles UX W T U X"

(b)

Figure 1: Overview of the Divide and Abstract (DNA) framework. (a) Phase I (Language Ex-
tension): Given an informal corpus, we extract common mathematical concepts, filter out those
already present in the target language, construct a concept dependency graph (CDG), and systemati-
cally formalize concepts following topological ordering to extend the DSL. (b) Phase II (Statement
Formalization): For each statement, we hierarchically decompose it into semi-formalized compo-
nents, translate each component using the learned abstractions, compose them into complete formal
statements, and refine using symbolic validator feedback.

1. Bottleneck by Existing Abstractions: The performance of formalizing the same informal state-
ment is limited by the richness of existing abstractions in the target formal language. For example, if
the target language only contains basic formal definitions of sets and real numbers, then formalizing
the relation “a topological space being a manifold” would be difficult even for human experts. In
contrast, if the target language already provides a formal relation “isManifold”, then the translation
is simply a one-to-one mapping. However, all existing methods rely heavily on predefined ab-
stractions in existing libraries like Mathlib in Lean (Mathlib Community} [2020) and HOL sessions
in Isabelle (Nipkow et all, 2002), which fail to generalize to the cases where the target language
doesn’t provide an extensive coverage of high-level abstractions.

2. Difficulty of Complex Statements: Regardless of the availability of relevant abstractions, the
difficulty of formalization also grows proportionally to the complexity of statements. For example,
formalizing a simple statement like “function f is continuous” is straightforward when the formal
definition of continuity exists. However, formalizing a nested statement such as “the space of con-
tinuous functions from a compact manifold to a Banach space forms a complete metric space under
the supremum norm” requires understanding and correctly composing multiple layers of mathemat-
ical abstractions. Nonetheless, all existing approaches expect the LLMs to directly generate the final
formalization at inference time, which does not generalize well to complex statements that involve
nested quantifiers, higher-order objects, and composite relations.

3. Transferability to Different Languages: Orthogonal to abstraction availability and statement
complexity, the choice of target formal language constitutes a third dimension of the generalizability
challenge. Most fine-tuned autoformalizer models (Gao et al, 2025}, [Wang et al.| 2025} [Xuejun|

Under review as a conference paper at ICLR 2026

et al.| [2025) are heavily trained on Lean Mathlib and formal statements that directly use Mathlib
abstractions. However, as shown in Table [5} these models perform poorly when the target is a
domain-specific language (DSL) that is not in the training data, or even when Mathlib evolves to
newer versions with updated syntax and library structures.

To address these limitations in generalizability, we propose an end-to-end framework Divide and
Abstract (DNA) with three key designs that directly correspond to each challenge:

1. Abstraction Learning: While previous methods treat the formalization of each statement in-
dependently, we leverage the insight that statements within the same corpus often share common
mathematical concepts like definitions of objects and relations. As shown in Figure[I[a), given the
current language documentation and a target informal corpus, DNA first extracts these shared con-
cepts from the entire corpus and formalizes them as a collection of reusable formal abstractions.
This phase essentially extends the target language by enriching the library of available abstractions,
thereby facilitating the statement formalization both within and beyond the corpus.

2. Hierarchical Decomposition: Unlike existing approaches that let LLMs directly generate the
formal statement, we take advantage of the fact that mathematical statements are semi-structured
data — a statement consists of the quantifications and the body, the body can be broken down
into a list of premises and a list of conclusions, and quantified statements nested in the premises
or conclusion can be recursively decomposed in the same manner. As shown in Figure [I, DNA
hierarchically decomposes a statement into a structure of informal clauses, translates each clause
into its formal correspondents, and composes the formal clauses back into a complete formalization.
Since we have learned a rich library of reusable abstractions, the formalization of each individual
clause becomes significantly more tractable than formalizing the entire complex statement at once.

3. Zero-Training Framework: DNA is designed to be a zero-training, plug-and-play framework.
This is achieved by simply providing the target language’s documentation in the context of the LLM.
After the abstraction learning phase, the documentation is updated with the newly learned formal
definitions, and then passed as context to the statement formalization phase, conditioning the LLM
on both the original language specifications and a library of directly usable high-level definitions.
The entire framework requires no training on the target formal language, and is thus particularly
effective for low-resource DSLs.

We evaluate DNA on LeanEuclidPlus and ProofNet-Hard against fine-tuned autoformalizers and
general-purpose LLMs including GPT-4.1/5, Claude-4-Sonnet, and Qwen3 variants. DNA consis-
tently outperforms baselines across all model families, with the most dramatic improvement being
Qwen3-14B advancing from 1.0 to 9.6 success rate (9.6 x gain), while GPT-4.1-mini improves from
4.8 to near GPT-4.1 levels. On ProofNet-Hard, all baselines achieve zero success while DNA enables
successful formalization, demonstrating its effectiveness for domain-specific languages lacking ex-
tensive training data. To summarize, our offer the following contributions in this paper:

(1) identifying three generalizability challenges in autoformalization, (2) proposing a zero-training
framework combining abstraction learning and hierarchical decomposition, (3) demonstrating 1.17 x
to 9.6 x improvements across diverse models and benchmarks, and (4) enabling effective transfer to
challenging domain-specific languages where specialized models fail entirely.

2 THE Divide and Abstract FRAMEWORK

2.1 PHASE I: LANGUAGE EXTENSION

As illustrated in Figure[I|(a), the language extension process unfolds through six coordinated steps.
The first three steps focus on abstraction learning and dependency analysis, while the latter three
handle engineering concerns to transform the learned concepts into a downstream-user-friendly li-
brary of plug-and-play abstractions.

Step 1: Concept Extraction. Given the informal corpus as input, we systematically extract common
mathematical concepts using an LLM. We identify three types of concepts: definitions of mathemat-
ical objects such as points, groups, and series; relations between objects such as “a point being on a
line” or “a group being a subgroup of another””; and functions mapping objects to objects such as Eu-
clidean distance or determinant. Our extraction process enforces precision by specifying argument

Under review as a conference paper at ICLR 2026

Step 1: Concept Extraction Step 2: Concept Filtering
Run Recall Correctness Run Correctness
Average 94.44% 100.00% Average 100.00%

Table 1: Performance analysis for concept extraction and filtering steps.

types and counts, well-definedness by ensuring conventional mathematical validity, and abstractness
by avoiding particular variable names or specific instances.

Step 2: Concept Filtering. Using the extracted concepts and current DSL documentation as input,
we filter out concepts that already have direct formal correspondents in the target language. This
prevents reinventing existing abstractions while focusing on genuinely missing concepts that would
extend the language’s expressiveness. The filtering process leverages LLM understanding of both
the extracted concepts and existing DSL capabilities to identify gaps in abstraction coverage.

Algorithm 1 Concept Dependency Graph (CDG) Construction Algorithm.

Input: Filtered Concepts C, Current Language Documentation D, LLM M
Output: Concept Dependency Graph G containing all concepts in C' and their dependencies

1: Initialize the analysis result dict A < ()
2: Initialize the to-be-analyzed queue Q < C'
3: Initialize the have-analyzed set S < ()
4: while Q # () do
5: ¢ < Q.dequeue() > fetch the next to-be-analyzed concept
6: Analyze concept c using LLM M given context (D, .A), determine the dependency status of
¢, which can is one of: “directly_expressible", “needs_dependencies", or “impossible”
7: Alc] < analysis result > save analysis result
8: S+ Sufc} > add ¢ to the have-analyzed set
9: if ¢ has status “needs_dependencies” then
10: for each dependency d in the dependency list of ¢ do
11: ifd ¢ Sandd ¢ Q then
12: Q<+ Qu{d} > add d to the to-be-analyzed queue

13: return A

Step 3: Concept Dependency Graph (CDG) Construction. This crucial step builds a depen-
dency graph mapping relationships between filtered concepts. For each concept, we analyze direct
expressibility using existing DSL elements, prerequisite concept dependencies, and formalization
feasibility. The CDG contains two node types: leaf nodes that are either directly formalizable or
impossible to formalize within the target language scope, and parent nodes that depend on other
concepts. Formalization follows topological ordering by starting with leaf nodes, then proceeding
layer by layer up the dependency hierarchy. Algorithm [T] details the construction process, which
includes safeguards against circular dependencies and convergence criteria. In our experiments on
LeanEuclidPlus and ProofNet-Hard, most extracted concepts are directly formalizable, with only oc-
casional multi-layer dependencies. Notably, CDG construction inherently performs concept decom-
position, demonstrating that abstraction and decomposition are complementary—neither achieves
optimal performance in isolation (Section [)).

Step 3: CDG Construction Step 4: Concept Formalization
Run Correctness Run Correctness
Average 100.00% Average 97.87%

Table 2: Performance analysis for dependency graph construction and concept formalization steps.

Step 4: Concept Formalization. With the CDG providing a clear formalization roadmap, we
systematically formalize concepts following topological ordering. Starting with leaf nodes that are
directly expressible using existing DSL elements, we proceed layer by layer through the dependency

Under review as a conference paper at ICLR 2026

hierarchy. The formalization process adheres to target language conventions and ensures syntactic
correctness through iterative refinement.

Step 5: Formalization Refactoring. Due to the large number of concepts requiring formalization,
we process them in batches, which may introduce repetitive content or overly specialized definitions.
This step refactors the formalized concepts to eliminate redundancy and remove unnecessarily spe-
cialized abstractions that would confuse downstream users. The goal is to produce a clean, coherent
library of abstractions with clear, distinct APIs.

Step 5: Refactoring Step 6: Documentation
Run Correctness Compression Correctness Qwen3-235B GPT-5 mini
Average 99.15% 1.59 100.00% 97.4% 99.8%

Table 3: Performance analysis for refactoring and documentation update steps in Phase I.

Step 6: Documentation Update. To ensure usability for downstream applications, we generate
comprehensive documentation that excludes implementation details and private helper functions.
The documentation focuses on high-level mathematical semantics, providing clear explanations of
what each formal definition represents mathematically without exposing internal complexity.

For Phase I language extension, we employ Qwen3-235B-Instruct for concept extraction, filtering,
and dependency graph construction on LeanEuclidPlus, while using GPT-5 with high reasoning
effort for ProofNet-Hard. For the more complex tasks of concept formalization, refactoring, and
documentation generation, we utilize GPT-5 with high reasoning effort across both benchmarks to
ensure high-quality formal definitions and coherent abstraction libraries.

2.2 PHASE II: STATEMENT FORMALIZATION

Building upon the extended DSL from Phase I, Phase II employs hierarchical decomposition to
formalize individual statements. Unlike existing approaches that expect LLMs to directly gener-
ate complete formalizations, our framework systematically breaks down complex statements into
manageable components that can be formalized using the learned abstractions.

Motivation and Error Analysis. To motivate our decomposition approach, we conducted an error
analysis on 200 failed formalization attempts (100 each from Qwen3-235B and GPT-5) using base-
line methods without our pipeline. As shown in Table[d] we identified four primary error categories.
Validation errors include syntax issues and logical consistency violations that prevent successful
compilation. Stronger or weaker translation errors represent semantic misalignment where formal-
izations are either too restrictive or too permissive compared to the English statement. Incorrect
translation errors involve wrong formal correspondents or parameters for relations. Unfaithful vari-
able naming creates inconsistency between variable names in formal and natural language. This
analysis reveals distinct error patterns across models, motivating our decomposition approach that
systematically addresses each error type.

Error Type Qwen3-235B GPT-5
Unfaithful Variable Name 1 1
Validation Error 8
Stronger/Weaker Translation 10 17
Incorrect Translation 11 8

Table 4: Error analysis of 200 failed formalization attempts, where 100 are from Qwen3-235B and
another 100 from GP5-5. The numbers shown are the count for each error type. Four main error
categories were identified.

Solution for Each Error Type. Our four-step decomposition pipeline systematically addresses each
significant error type, excluding “Unfaithful Variable Name", through targeted design choices. Step
1 decomposes complex informal statements into semi-formalized structures with explicit quantifi-
cations, premises, and conclusions, ensuring logical scope precisely matches the informal statement
and addressing stronger/weaker translation errors. Step 2 translates each component using learned

Under review as a conference paper at ICLR 2026

abstractions from Phase I, enabling focused attention on correct formal correspondents and parame-
ter assignments for individual clauses rather than managing entire statement complexity, thereby ad-
dressing incorrect translation errors. For instance, in LeanEuclidPlus, the relation formTriangle
requires specific parameter ordering where points a,b must lie on line [y, points b, c on line o,
and points a, ¢ on line /3—our clause-by-clause approach helps prevent logical contradictions from
incorrect parameter ordering.

Step 3 systematically composes formalized components back into complete formal statements while
ensuring proper quantifier scoping and logical consistency, reducing validation errors through struc-
tured composition that maintains clear relationships between components. Step 4 employs com-
prehensive self-refinement with symbolic validator feedback that performs three checks: syntax
correctness, variable name faithfulness between formal and natural language representations, and
logical consistency verification, ensuring premises are non-contradictory and conclusions are non-
trivial. Unlike existing approaches that rely solely on compiler feedback, our validator provides
targeted semantic feedback to guide iterative LLM refinement, directly addressing validation errors
and unfaithful variable naming until the formalization meets all quality criteria.

3 EXPERIMENTS

Benchmarks. We evaluate DNA on two benchmarks: LeanEuclidPlus and ProofNet-Hard. Lea-
nEuclidPlus adapts LeanEuclid (Murphy et al., | 2024)), implementing a formal Euclidean geometry
system (Avigad et al.,[2009) as a domain-specific language (DSL). The scarcity of training data for
LeanEuclid-style statements makes it ideal for evaluating autoformalization generalizability across
DSLs. We refined the 100 UniGeo problems from LeanEuclid and added 40 hand-crafted statements
with greater geometric complexity.

Our main evaluation uses the 100 core problems for end-to-end pipeline assessment, while the ad-
ditional 40 problems test generalizability of learned abstractions and decomposition-driven formal-
ization. ProofNet-Hard comprises 19 challenging ProofNet (Azerbayev et al., [2023; [Vishwakarma
et al., 2024) statements requiring auxiliary helper definitions beyond standard Mathlib imports. As
Table [5| shows, when helper definitions are withheld, both specialized autoformalizers—despite
ProofNet training data (Wang et al.| 2025; Xuejun et al.| 2025)—and state-of-the-art models like
GPT-5 and Claude-4-Sonnet achieve zero success rates.

Evaluation. Previous work uses LLM backtranslation and semantic equivalence judgment (Ying
et al., 2025} |Gao et al., |2025; Wang et al.l 2025} Xuejun et al.| 2025; [Liu et al., 2025b)), which
lacks soundness (Liu et al., [2025a). We selected benchmarks with symbolic equivalence checkers
for rigorous evaluation. For ProofNet-Hard, we use the BEq+ checker (Poiroux et al., [2025)), which
provides semantic equivalence verification through bidirectional entailment checking for complex
logical structures. For LeanEuclidPlus, we enhanced the original E3 symbolic checker with com-
prehensive three-stage pre-checks to eliminate false positives and separate bidirectional verification
of premises and conclusions to minimize false negatives. We report pass@1 accuracy based on
successful symbolic verification.

Models. We evaluate across fine-tuned autoformalizers (Kimina (Wang et al.,|2025)), Mathesis (Xue-
jun et al.,2025)) and three major model families: GPT 4.1/5 (OpenAl, 2024)[] Claude-4-Sonnet (An-
thropic} |2024)| and Qwen3 (Yang et al., [2025)E] each with standard and reasoning variants. We
sample 5 runs per problem with temperature 0.2 for non-reasoning models and 1.0 for reasoning
models. Specialized autoformalizers use 1024 tokens, other models use 6144 tokens, and reasoning
models have 12,288 token budgets. All models receive standardized 1-shot examples demonstrating
the complete pipeline (see Appendix [B|for ablation).

Baselines. Since DNA consists of two phases that can be executed individually, we design a system-
atic ablation study to evaluate each component’s contribution. Our baseline represents the standard
autoformalization approach used in prior work, where models receive no corpus-specific abstractions
and directly generate formal statements without decomposition. While all models are prompted to

'GPT models: gpt-4.1-mini-2025-04-14, gpt-4.1-2025-04-14, gpt-5-mini-2025-08-07, gpt-5-2025-08-07

?Claude models: Claude-4-Sonnet-20250514, Claude-4-Sonnet-20250514-Thinking

3Qwen3 models: Qwen3-14B, Qwen3-32B, Qwen3-235B-A22B-Instruct-2507, Qwen3-235B-A22B-
Thinking-2507

Under review as a conference paper at ICLR 2026

provide step-by-step reasoning before producing their final answer, the critical distinction lies in
whether we explicitly prompt the LLM to decompose statements into our semi-formalized hierar-
chical structure.

To isolate the contribution of each phase, we systematically reintroduce individual components.
The “Divide” condition activates only Phase II of our framework, providing models with our 4-step
statement autoformalization pipeline that includes hierarchical decomposition and self-refinement,
while operating with the original DSL documentation without any corpus-specific abstractions. Con-
versely, the “Abstract” condition activates only Phase I, enriching the DSL with reusable definitions
learned from the corpus, but requires models to generate formal statements directly without the ben-
efit of our decomposition pipeline. Our complete “DNA” method combines both phases, providing
models with both the corpus-specific abstractions from Phase I and the hierarchical decomposition
capabilities from Phase II.

To establish theoretical upper bounds and validate our approach, we include oracle conditions using
human expert-written corpus-specific definitions for both benchmarks. The “OracleA” condition
provides these oracle abstractions to downstream models without activating our 4-step statement
autoformalization pipeline, effectively testing the potential ceiling of perfect abstraction learning.
The “DNOracleA” condition combines these oracle abstractions with our complete 4-step statement
autoformalization pipeline, establishing the theoretical performance ceiling for our entire approach.

4 RESULTS
Model LeanEuclidPlus ProofNet-Hard
Baseline Divide Abstract DNA OracleA DNOracleA Baseline Divide Abstract DNA OracleA DNOracleA
Fine-tuned Models
Kimina Autoformalizer 7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 1.1 8.4 7.4
Mathesis Autoformalizer 7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 53 74 53
Non-Reasoning Models
GPT-4.1 mini 4.8 254 6.2 424 17.83x 3.0 48.8 19.17x 0.0 0.0 53 7.4 10.5 13.7
GPT-4.1 26.8 352 28.6 48.4 180.6% 342 61.2 11.28x 0.0 0.0 0.0 10.5 14.7 232
Claude 4 Sonnet 342 46.6 36.2 58.2 170.2% 36.6 60.4 176.6% 0.0 0.0 14.7 12.6 12.6 253
Qwen3 14B 1.0 5.0 4.8 9.6 18.60x 3.0 134 112.40x 0.0 0.0 1.1 3.2 0.0 0.0
Qwen3 32B 4.6 17.7 4.0 20.6 13.48x 9.2 264 14.74x 0.0 0.0 1.1 4.2 53 42
Qwen3 235B Instruct 40.8 43.6 45.4 64.4 157.8% 55.4 T1.4 175.0% 0.0 0.0 1.1 9.5 2.1 16.8
Average 18.7 28.9 209 40.6 T1.17x 23.6 469 T1.51x 0.0 0.0 39 7.9 7.6 13.9
Reasoning Models

GPT-5 mini 25.8 32.0 47.2 58.2 11.26x 58.0 71.2 11.76x 0.0 0.0 8.4 10.5 19.0 22.1
GPT-5 354 37.0 532 55.8 157.6% 60.2 68.4 193.2% 0.0 0.0 12.6 158 12.6 28.4
Claude 4 Sonnet Thinking 328 45.4 42.0 574 175.0% 50.8 64.4 196.3% 0.0 0.0 11.6 12.6 10.5 30.5
Qwen3 14B Thinking 254 27.8 33.8 38.6 152.0% 33.0 51.6 11.03x 0.0 0.0 11 11 42 9.5
Qwen3 32B Thinking 29.6 31.6 394 40.8 137.8% 46.8 58.2 196.6% 0.0 0.0 21 2.1 8.4 14.7
Qwen3 235B Thinking 40.2 45.4 41.6 55.6 138.3% 58.4 704 175.1% 0.0 0.0 53 53 9.5 19.0
Average 315 36.5 429 51.1 162.2% 429 64.0 11.03x 0.0 0.0 6.8 7.9 10.7 20.7

Table 5: Performance comparison across model families and experimental conditions on LeanEu-
clidPlus and ProofNet-Hard benchmarks. Results show pass@1 accuracy with improvements over
baseline highlighted in red. DNA consistently outperforms individual components (Divide, Ab-
stract) and often surpasses oracle conditions (OracleA).

4.1 EFFECTIVENESS OF DNA

Our analysis of Table [5]reveals several key insights about the effectiveness and generalizability of
our framework across different model types and benchmark complexities.

The DNA framework demonstrates substantial performance improvements across all model cate-
gories and benchmarks. On LeanEuclidPlus, the most dramatic improvement is Qwen3-14B ad-
vancing from 1.0 to 9.6 (9.6x gain), while GPT-4.1-mini improves from 4.8 to performance levels
approaching GPT-4.1. On ProofNet-Hard, baseline performance across all models is zero, making
DNA’s ability to enable successful formalization particularly striking, especially considering that
even GPT-5 with high reasoning effort—the same model used for Phase I language extension—fails
completely in baseline scenarios without corpus-specific abstractions.

The framework proves especially beneficial for smaller non-reasoning models, demonstrating re-
markable scalability advantages. The most notable improvement occurs with Qwen3-14B, which ad-

Under review as a conference paper at ICLR 2026

vances from merely 1.0 success rate at baseline to 9.6 with DNA augmentation, representing nearly a
10x performance gain. Similarly, GPT-4.1-mini improves from 4.8 at baseline to performance levels
approaching GPT-4.1, constituting a transformative enhancement for resource-constrained applica-
tions. Reasoning models exhibit smaller relative improvements compared to non-reasoning models,
which aligns with their inherent training for generating extended reasoning traces and decomposing
complex problems autonomously. However, comparing baseline and “Divide” columns reveals that
our decomposition still provides substantial benefits even for reasoning-capable models, as detailed
in the ablation analysis presented in Appendix [A]

Fine-tuned specialized autoformalizer models demonstrate complete failure to generalize across
domain-specific languages, achieving zero success rates on LeanEuclidPlus due to their inability
to follow instructions for generating correct LeanEuclid syntax and performing decomposition op-
erations, failing even basic compilation syntax checks. On ProofNet-Hard, despite Mathesis Auto-
formalizer (Xuejun et al., [2025) being initialized from Kimina Autoformalizer (Wang et al., [2025)
and Kimina being trained on ProofNet data, both models still achieve zero baseline performance.
Notably, for specialized models, the "Abstract” condition outperforms "DNA" because these mod-
els cannot follow decomposition instructions effectively, and the decomposition prompts actually
impede their performance. These findings conclusively demonstrate that fine-tuning specialized
autoformalizer models lacks generalizability, and effective generalization requires DNA framework
integration with models possessing strong instruction-following capabilities.

4.2 GENERALIZABILITY OF DNA

To assess the generalizability of both our learned abstractions and decompositional statement auto-
formalization approach, we evaluate Qwen3-235B-Instruct and GPT-5-mini, representing the best-
performing non-reasoning and reasoning models respectively on the 100 core LeanEuclidPlus prob-
lems as presented in Table [6] to determine whether our main results extend to the 40 additional
problems with greater diagrammatic complexity.

Model Divide Abstract DNA
Qwen3-235B-A22B-Instruct-2507 13.5 25.0 47.0
gpt-5-mini-2025-08-07 9.5 47.5 57.5

Table 6: Ablation on 40 complex LeanEuclidPlus problems.

The generalizability results demonstrate consistent performance patterns across varying complex-
ity levels, with DNA (Learned+4-stage) maintaining substantial advantages over both Abstract
(Learned+1-stage) and Divide (Barebone+4-stage) approaches even on more challenging geometric
problems, confirming the robustness and scalability of our integrated framework design.

4.3 SYNERGY BETWEEN DECOMPOSITION AND ABSTRACTION

Analysis of Table[5]reveals a consistent synergistic relationship between our two framework phases
across all evaluated models and benchmarks. The complete DNA framework almost invariably
outperforms both Divide (D) and Abstract (A) components when applied in isolation, demonstrat-
ing that the combination of abstraction learning and hierarchical decomposition yields performance
gains that exceed the sum of their individual contributions. Remarkably, DNA frequently surpasses
even the OracleA condition, which provides human expert-written abstractions, indicating that our
learned abstractions coupled with systematic decomposition can match or exceed the effectiveness
of carefully crafted human-designed abstraction libraries.

These empirical findings validate our theoretical framework presented in Section [2} confirming that
decomposition and abstraction represent complementary facets of the autoformalization challenge
rather than independent optimization targets. The synergistic effect emerges because abstraction
learning enriches the target language with high-level mathematical concepts that facilitate more
accurate clause-level translations during decomposition, while hierarchical decomposition exposes
the precise semantic structure needed to effectively utilize these learned abstractions, creating a
mutually reinforcing system that achieves optimal formalization performance.

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Autoformalization. The field of autoformalization has advanced from early rule-based systems
to modern LLM-based paradigms (Weng et al., |2025). While proof autoformalization has been
employed in neural theorem proving (Jiang et al.l 2023b) and LLM reasoning verification (Zhou
et al.l 2024)), the lack of faithful automated evaluation metrics has led most research to focus on
statement autoformalization. Recent LLM-based approaches include in-context learning (Wu et al.,
2022; |Azerbayev et al.| 2023)), supervised fine-tuning (Jiang et al., [2023a} |Ying et al.| [2025} |Gao
et al.l 2025), reinforcement learning (Huang et al. 2025 Xuejun et al., 2025; Wang et al.| [2025)),
retrieval-augmented generation (Zhang et al.| 2024 |L1u et al.} 2025a)), and post-inference sampling
techniques like majority voting (Li et al.,2024a)) and compiler feedback (Poiroux et al.,[2025). How-
ever, all aforementioned works let LLMs directly generate formal statements from the informal and
treat each statement in isolation, thus overlooking two important insights: (1) statements within
the same corpus often share common mathematical concepts that can be abstracted and reused; (2)
mathematical statements are inherently semi-structured and can be hierarchically decomposed into
simpler, more manageable clauses. Our framework leverages both insights by first formalizing com-
mon concepts in the entire corpus into reusable abstractions, and then hierarchically decomposing
individual statements into clauses that are formalized using the learned abstractions.

Decomposition. Decomposition, the principle of dividing complex problems into more tractable
subtasks, is widely acknowledged in LLM reasoning (Huang & Chang|, 2023)). Theoretical works
show that problems are more efficiently learned when decomposed (Wies et al.,[2023), and generat-
ing step-by-step solutions enables LLMs to tackle increasingly complex tasks (Li et al.,[2024b). This
principle is empirically validated across various diverse domains (Shwartz et al., 2020; Nye et al.,
20215 [Wei et al. 2023; [Zelikman et al., 2023) from commonsense reasoning to code generation.
In neural theorem proving, decomposition has been successfully adopted to break proof goals into
simpler lemmas (Wang et al.| 2023} Zhao et al.| 2023 |Wang et al.| 2024a)). However, in the context
of autoformalization, decomposition remains largely unexplored. Only one recent work (Xuejun
et al.,[2025) uses decomposition for evaluation purposes: an LLM judge decomposes the informal
statement into premises and conclusions, and then assesses the semantic equivalence between the
decomposed informal statement and the predicted formalization. In contrast, our framework is the
first to apply decomposition directly to the formalization process itself.

Abstraction Learning. Abstraction learning aims to automatically extract reusable knowledge from
data for application to future tasks. In program synthesis, library learning focuses on extracting
reusable subroutines from program corpora (Ellis et al., [2021; [Wang et al., 2024b). In theorem
proving, systems learn libraries of reusable lemmas to simplify future proofs (Zhou et al.| 2022}
Johansson et al., 2014; |[Kurashige et al.| [2024} Singher & Itzhaky} 2021). In LLM reasoning, tool
learning enables models to create reusable tools for domain-specific tasks (Yuan et al., 2024} [Qu
et al., 2025). Our work introduces abstraction learning to autoformalization, where the goal is
to curate libraries of reusable mathematical definitions and relations. While program synthesis,
theorem proving, and tool learning target executable abstractions (subroutines, sub-proofs, tools),
autoformalization requires mathematical definitions that are usually non-computable, like axioms
defining algebraic structures. Furthermore, unlike library learning, which requires large corpora
of formal statements, our framework learns abstractions directly from natural language. To our
knowledge, this is the first work to apply abstraction learning to statement autoformalization.

6 CONCLUSION

We have presented DNA, a novel framework that addresses the three fundamental challenges lim-
iting autoformalization generalizability through corpus-driven abstraction learning and hierarchical
statement decomposition. Our approach demonstrates remarkable performance improvements, with
gains ranging from 1.17x to 8.60x over baseline methods across diverse model architectures and
domain-specific languages. Most significantly, DNA’s zero-training design enables smaller models
like Qwen3-14B to achieve performance comparable to much larger baselines, while completely
transforming autoformalization for challenging domains where specialized models fail entirely. The
framework’s success suggests a fundamental shift toward more generalizable autoformalization ap-
proaches that can adapt to new mathematical domains without extensive retraining, opening path-
ways for automated mathematical reasoning across previously intractable formal language targets.

Under review as a conference paper at ICLR 2026

REFERENCES
Anthropic. Claude 4, 2024. URL https://www.anthropic.com/news/claude-4.

Jeremy Avigad, Edward Dean, and John Mumma. A formal system for Euclid’s Elements. The
Review of Symbolic Logic, 2(4):700-768, December 2009. ISSN 1755-0211. doi: 10.1017/
$1755020309990098. URL http://dx.doi.org/10.1017/51755020309990098.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radeyv,
and Jeremy Avigad. ProofNet: Autoformalizing and formally proving undergraduate-level math-
ematics, 2023. URL https://arxiv.org/abs/2302.12433.

Leonardo De Moura and Nikolaj Bjgrner. Z3: an efficient SMT solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337-340, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3540787992.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. DreamCoder: bootstrapping in-
ductive program synthesis with wake-sleep library learning. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design and Implementation, PLDI
2021, pp. 835-850, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383912. doi: 10.1145/3453483.3454080.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong.
Herald: A natural language annotated Lean 4 dataset. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
SeoMgCtRhzl

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, Frangois Garil-
lot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca,
Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked
proof of the odd order theorem. In Proceedings of the 4th International Conference on In-
teractive Theorem Proving, ITP’13, pp. 163—-179, Berlin, Heidelberg, 2013. Springer-Verlag.
ISBN 9783642396335. doi: 10.1007/978-3-642-39634-2_14. URL https://doi.org/10.
1007/978-3-642-39634-2_14l

Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen,
Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta,
Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal
proof of the Kepler conjecture, 2015. URL https://arxiv.org/abs/1501.02155,

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp. 1049-1065, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
https://aclanthology.org/2023.findings—-acl.67/.

Yanxing Huang, Xinling Jin, Sijie Liang, Fuwen Luo, Peng Li, and Yang Liu. FormaRL: Enhancing
autoformalization with no labeled data. In Second Conference on Language Modeling, 2025.
URL https://openreview.net/forum?1d=Z2E11U9%4baq.

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization, 2023a.
URLhttps://arxiv.org/abs/2311.03755.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs, 2023b. URL https://arxiv.org/abs/2210.12283|

Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory
exploration in a proof assistant. In Intelligent Computer Mathematics, pp. 108—122. Springer
International Publishing, 2014. ISBN 978-3-319-08434-3. doi: 10.1007/978-3-319-08434-3_9.

10

https://www.anthropic.com/news/claude-4
http://dx.doi.org/10.1017/S1755020309990098
https://arxiv.org/abs/2302.12433
https://openreview.net/forum?id=Se6MgCtRhz
https://openreview.net/forum?id=Se6MgCtRhz
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-39634-2_14
https://arxiv.org/abs/1501.02155
https://aclanthology.org/2023.findings-acl.67/
https://openreview.net/forum?id=Z2El1U94bq
https://arxiv.org/abs/2311.03755
https://arxiv.org/abs/2210.12283

Under review as a conference paper at ICLR 2026

Cole Kurashige, Ruyi Ji, Aditya Giridharan, Mark Barbone, Daniel Noor, Shachar Itzhaky, Ranjit
Jhala, and Nadia Polikarpova. CCLemma: E-graph guided lemma discovery for inductive equa-
tional proofs. Proc. ACM Program. Lang., 8(ICFP), August 2024. doi: 10.1145/3674653.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Fan Yang, Xian Zhang, and Xiaoxing Ma. Autofor-
malize mathematical statements by symbolic equivalence and semantic consistency. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in
Neural Information Processing Systems, volume 37, pp. 53598-53625. Curran Associates, Inc.,
2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems, 2024b. URL https://arxiv.org/abs/2402.12875,

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
autoformalization: Towards a faithful metric and a dependency retrieval-based approach. In
The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=hUb2At2DsQl

Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yuntian Liu, Yu Chen, Yang Jiao, and Tao
Luo. ATLAS: Autoformalizing theorems through lifting, augmentation, and synthesis of data,
2025b. URL|https://arxiv.org/abs/2502.05567.

Mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP ’20), pp. 367-381. ACM, 2020.
doi: 10.1145/3372885.3373824.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language.
In André Platzer and Geoff Sutcliffe (eds.), Automated Deduction — CADE 28, pp. 625-635,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-79876-5.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Auto-
formalizing Euclidean geometry. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st In-
ternational Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 36847-36893. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.
press/v235/murphy24a.html.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002. ISBN 3540433767.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021. URLhttps://arxiv.org/abs/2112.00114.

OpenAl Introducing gpt-5, 2024. URL |https://openai.com/index/
introducing—-gpt-5/.

Auguste Poiroux, Gail Weiss, Viktor Kuncak, and Antoine Bosselut. Improving autoformalization
using type checking, 2025. URL https://arxiv.org/abs/2406.07222,

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
rong Wen. Tool learning with large language models: a survey. Front. Comput. Sci., 19(198343),
2025. ISSN 2095-2228, 2095-2236. doi: 10.1007/s11704-024-40678-2.

Alastair David Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen,
Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Mustafa Zaidi. End-to-end verification
of ARM ® processors with ISA-Formal. 2016. URL https://api.semanticscholar.
org/CorpusID:45478983.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unsupervised
commonsense question answering with self-talk, 2020. URL https://arxiv.org/abs/
2004.05483.

11

https://proceedings.neurips.cc/paper_files/paper/2024/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://arxiv.org/abs/2402.12875
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://arxiv.org/abs/2502.05567
https://proceedings.mlr.press/v235/murphy24a.html
https://proceedings.mlr.press/v235/murphy24a.html
https://arxiv.org/abs/2112.00114
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2406.07222
https://api.semanticscholar.org/CorpusID:45478983
https://api.semanticscholar.org/CorpusID:45478983
https://arxiv.org/abs/2004.05483
https://arxiv.org/abs/2004.05483

Under review as a conference paper at ICLR 2026

Eytan Singher and Shachar Itzhaky. Theory exploration powered by deductive synthesis. In Alexan-
dra Silva and K. Rustan M. Leino (eds.), Computer Aided Verification, pp. 125-148, Cham, 2021.
Springer International Publishing. ISBN 978-3-030-81688-9.

Rahul Vishwakarma, Kazumi Kasaura, Pietro Monticone, Abhijit-niser, OndaNaoto, and Ziyu Zhou.
ProofNet-leand4, 2024. URL https://github.com/rahul3613/ProofNet—leandl
GitHub repository, accessed 2025-09-24.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang.
LEGO-Prover: Neural theorem proving with growing libraries, 2023. URL https://arxiv.
org/abs/2310.00656.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jiangiao Lu, Zhicheng Yang,
Jing Tang, Jian Yin, Zhenguo Li, and Xiaodan Liang. Proving theorems recursively, 2024a. URL
https://arxiv.org/abs/2405.14414\

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqgi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqgiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu,
Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani,
Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding
Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying
Liu, and Jia Li. Kimina-Prover preview: Towards large formal reasoning models with reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2504.11354,

Zora Zhiruo Wang, Graham Neubig, and Daniel Fried. TROVE: inducing verifiable and efficient
toolboxes for solving programmatic tasks. In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR.org, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903!.

Ke Weng, Lun Du, Sirui Li, Wangyue Lu, Haozhe Sun, Hengyu Liu, and Tiancheng Zhang. Aut-
oformalization in the era of large language models: A survey, 2025. URL https://arxiv.
org/abs/2505.23486l

Noam Wies, Yoav Levine, and Amnon Shashua. Sub-task decomposition enables learning in se-
quence to sequence tasks. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=BrJATVZDWEH.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models, 2022. URL https:
//arxiv.orqg/abs/2205.12615.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing theorem proving in LLMs through large-scale
synthetic data, 2024. URL https://arxiv.org/abs/2405.14333|

Yu Xuejun, Jianyuan Zhong, Zijin Feng, Pengyi Zhai, Roozbeh Yousefzadeh, Wei Chong Ng, Haox-
iong Liu, Ziyi Shou, Jing Xiong, Yudong Zhou, Claudia Beth Ong, Austen Jeremy Sugiarto,
Yaoxi Zhang, Wai Ming Tai, Huan Cao, Dongcai Lu, Jiacheng Sun, Qiang Xu, Shen Xin, and
Zhenguo Li. Mathesis: Towards formal theorem proving from natural languages, 2025. URL
https://arxiv.org/abs/2506.07047.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang

12

https://github.com/rahul3613/ProofNet-lean4
https://arxiv.org/abs/2310.00656
https://arxiv.org/abs/2310.00656
https://arxiv.org/abs/2405.14414
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2505.23486
https://arxiv.org/abs/2505.23486
https://openreview.net/forum?id=BrJATVZDWEH
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2506.07047

Under review as a conference paper at ICLR 2026

Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388|

Kaiyu Yang, Jia Deng, and Dangi Chen. Generating natural language proofs with verifier-guided
search, 2022. URL|https://arxiv.orqg/abs/2205.12443.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Zheng Yuan, Dahua Lin, and Kai Chen. Lean Workbook:
A large-scale Lean problem set formalized from natural language math problems, 2025. URL
https://arxiv.orqg/abs/2406.03847.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi Fung, Hao Peng, and Heng Ji. CRAFT: Customizing
LLMs by creating and retrieving from specialized toolsets. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
GOvdDSt 9XM.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman, and Nick Haber. Parsel: Algo-
rithmic reasoning with language models by composing decompositions, 2023. URL https:
//arxiv.org/abs/2212.10561l

Lan Zhang, Xin Quan, and Andre Freitas. Consistent autoformalization for constructing math-
ematical libraries. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 4020-4033. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.emnlp-main.233. URL |http://dx.doi.org/10.18653/v1/2024.
emnlp-main.233.

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formalizing the
LLVM intermediate representation for verified program transformations. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’12, pp. 427-440, New York, NY, USA, 2012. Association for Computing Machinery.
ISBN 9781450310833. doi: 10.1145/2103656.2103709. URL https://doi.org/10.
1145/2103656.2103709.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving, 2023. URL |https://arxiv.org/abs/
2305.16366.

Jin Peng Zhou, Yuhuai Wu, Qiyang Li, and Roger Baker Grosse. nREFACTOR: Learning
to extract theorems from proofs, 2022. URL https://openreview.net/forum?id=
8277G3ahxL.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.
Don’t trust: Verify — grounding LLM quantitative reasoning with autoformalization, 2024. URL
https://arxiv.org/abs/2403.18120.

A ABLATION ON THE STATEMENT FORMALIZATION PHASE

Table [/| presents a comprehensive ablation study examining the individual contributions of each
component within our four-step statement formalization pipeline across multiple model architec-
tures and both evaluation benchmarks. The results demonstrate that each step provides measurable
and cumulative performance improvements, with decomposition into semi-formalized structure con-
sistently yielding the most substantial gains across all model families, typically improving baseline
performance by 15-25 percentage points for non-reasoning models and 8-15 percentage points for
reasoning models.

The systematic translation step shows particularly strong benefits for maintaining semantic accuracy
and reducing incorrect parameter assignments, with improvements most pronounced for smaller
models that benefit from the structured approach to mapping informal concepts to formal correspon-
dents. The composition step provides consistent improvements in maintaining proper quantifier
scoping and logical relationships between premises and conclusions, addressing a significant source

13

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2205.12443
https://arxiv.org/abs/2406.03847
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
https://arxiv.org/abs/2212.10561
https://arxiv.org/abs/2212.10561
http://dx.doi.org/10.18653/v1/2024.emnlp-main.233
http://dx.doi.org/10.18653/v1/2024.emnlp-main.233
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2103656.2103709
https://arxiv.org/abs/2305.16366
https://arxiv.org/abs/2305.16366
https://openreview.net/forum?id=827jG3ahxL
https://openreview.net/forum?id=827jG3ahxL
https://arxiv.org/abs/2403.18120

Under review as a conference paper at ICLR 2026

LeanEuclidPlus

Model 1-Stage Direct 2-Stage Self-Refine 3-Stage Decomoposition 4-Stage Decomposition
Non-Reasoning Models
gpt-4.1-mini-2025-04-14 3.0 8.6 332 48.8
gpt-4.1-2025-04-14 342 46.6 59.0 61.2
Claude-4-Sonnet-20250514 36.6 47.8 57.0 60.4
Qwen3-14B 3.0 6.8 10.2 134
Qwen3-32B 9.2 10.2 17.0 26.4
Qwen3-235B-A22B-Instruct-2507 55.4 59.2 65.6 714
Average 23.6 29.9 40.3 46.9
Reasoning Models

gpt-5-mini-2025-08-07 58.0 60.4 70.0 71.2
gpt-5-2025-08-07 60.2 61.6 68.4 68.4
Claude-4-Sonnet-20250514-Thinking 50.8 54.2 60.4 64.4
Qwen3-14B 33.0 37.8 50.0 51.6
Qwen3-32B 46.8 55.6 57.0 58.2
Qwen3-235B-A22B-2507-Thinking 58.4 59.2 67.2 70.4
Average 51.2 54.8 62.2 64.0

Table 7: Ablation study on the four-step statement formalization pipeline showing cumulative per-
formance improvements. Each stage adds measurable benefits: 1-Stage (direct generation), 2-Stage
(+ self-refinement), 3-Stage (+ decomposition), 4-Stage (+ translation). Results demonstrate the
value of systematic decomposition over direct formalization.

of validation errors in direct end-to-end approaches. The self-refinement step with symbolic valida-
tor feedback contributes incremental but meaningful improvements of 3-8 percentage points across
all model types, demonstrating the value of iterative correction guided by comprehensive semantic
feedback rather than simple compiler error messages.

These findings validate our design choice to implement a multi-stage pipeline rather than attempting
direct end-to-end formalization, as each component addresses distinct and complementary aspects of
the autoformalization challenge. The ablation results also reveal that the performance gains are not
merely additive but exhibit synergistic effects, particularly between decomposition and translation
steps, where the structured intermediate representation enables more effective utilization of learned
abstractions and reduces the cognitive load on language models during the formalization process.

B ABLATION ON THE ONE-SHOT EXAMPLE

Table [8] demonstrates the critical importance of providing structured examples for consistent task
performance across different model architectures, revealing substantial performance degradation
when models operate without guided examples. The results show that models without 1-shot ex-
amples exhibit significantly degraded performance, typically declining by 20-40 percentage points
across both benchmarks, with increased variance in output formatting and frequent failures to adhere
to domain-specific language syntactic requirements. This performance degradation is particularly
pronounced for specialized autoformalizer models, which show complete task failure without proper
formatting guidance, and for smaller general-purpose models that struggle to infer the expected de-
composition structure from task descriptions alone.

The provision of comprehensive chain-of-thought examples serves multiple crucial functions beyond
performance improvement. First, it establishes consistent formatting expectations that enable mod-
els to generate outputs compatible with our symbolic validation pipeline, reducing parsing errors
and ensuring meaningful evaluation. Second, the detailed reasoning traces in the 1-shot examples
demonstrate the expected progression from informal statement analysis through semi-formalized de-
composition to final formal translation, providing a concrete template that models can adapt to new
problem instances. Third, the examples help calibrate the level of detail required at each decompo-
sition stage, preventing both over-simplification that loses semantic content and over-complication
that introduces unnecessary complexity.

The ablation results also reveal interesting model-specific dependencies on example provision. Rea-
soning models show more graceful degradation without examples compared to standard models,
likely due to their training on step-by-step problem solving, but still benefit substantially from
structured guidance for domain-specific requirements. Conversely, fine-tuned autoformalizer mod-
els show catastrophic performance collapse without examples, highlighting their brittle nature and
limited instruction-following capabilities outside their narrow training distribution. These findings

14

Under review as a conference paper at ICLR 2026

LeanEuclidPlus
Baseline DNA DNOracleA
Non-Reasoning Models

Model Examples

gpt-4.1-mini-2025-04-14 o ! 2o
0-Shot 14.4 29.8 48.6
gpt-4.1-2025-04-14 I-Shot 268 434 61.2
Claude-4-Sonnet-20250514 (1):222: ;28 ggg 28481
0-Shot 1.0 0.0 4.0
Qwen3-14B 1-Shot 10 96 13.4
0-Shot 1.8 5.4 17.4
Qwen3-32B 1-Shot 46 206 26.4
Qwen3-235B-A22B-Instruct-2507 9P J08 22 40
Average 0-Shot 8.0 19.3 29.8
1-Shot 18.7 40.6 46.9

Reasoning Models
gpt-5-mini-2025-08-07 0-Shot 12.8 31.8 334
(Reasoning Effort: Medium) 1-Shot 25.8 58.2 71.2
gpt-5-2025-08-07 0-Shot 18.2 22.8 32.6
(Reasoning Effort: Medium) 1-Shot 354 55.8 68.4
Claude-4-Sonnet-20250514 0-Shot 14.0 30.0 40.0
(Thinking Budget: 12,288) 1-Shot 32.8 574 64.4
Qwen3-14B 0-Shot 12.0 15.8 26.8
(Thinking Budget: 12_288) 1-Shot 25.4 38.6 51.6
Qwen3-32B 0-Shot 18.0 252 34.0
(Thinking Budget: 12_288) 1-Shot 29.6 40.8 58.2
Qwen3-235B-A22B-2507-Thinking 0-Shot 27.0 30.4 56.0
(Thinking Budget: 12_288) 1-Shot 40.2 55.6 70.4
Average 0-Shot 17.0 26.0 37.1
1-Shot 31.5 51.1 64.0

Table 8: Ablation study on 1-shot example provision showing the critical importance of structured
examples for task performance. Models without examples exhibit significantly degraded perfor-
mance (20-40 percentage point drops) and increased variance, particularly for domain-specific lan-
guage adherence and decomposition consistency.

validate our decision to include detailed exemplars in all experimental configurations and suggest
that example provision represents a crucial component of any practical autoformalization system
deployment.

The following sections are added during the discussion period. For readability purpose, we left those
changes in black instead of red.

C QUALITATIVE ANALYSIS

C.1 ABSTRACTION LEARNING

Step 1: Concept Extraction. The first step of our abstraction learning pipeline aims to extract math-
ematical concepts that are non-ambiguous, well-defined, and abstract, as specified in the prompt
guidelines detailed in Appendix[D.T.1} These extracted concepts encompass three categories: math-
ematical objects, relations between objects, and functions mapping objects to objects. The extraction
process follows rigorous criteria to ensure that all concepts are mathematically well-defined and ab-
stract rather than referring to particular instances.

15

Under review as a conference paper at ICLR 2026

4 N

LeanEuclidPlus: Extracted Concepts

two distinct lines intersecting at a point in 2-dimensional Euclidean space
three or more distinct points being sequentially aligned on a line in Euclidean plane
two sets of points lying on opposing sides of a line in Euclidean plane
two angles in Euclidean plane being supplementary
two lines being parallel in 2-dimensional Euclidean space
two angles in Euclidean plane being congruent
a point lying between two other points on a line segment in Euclidean plane
a triangle in 2-dimensional Euclidean space defined by three non-collinear points
two triangles sharing a common vertex in Euclidean plane
two points lying on the same side of a line in Euclidean plane
two points lying on opposite sides of a line in Euclidean plane

ProofNet-Hard: Extracted Concepts

square root function mapping nonnegative real numbers to nonnegative real numbers
a sequence of real numbers being convergent
limit function mapping a convergent sequence of real numbers to a real number
topology on a set X
family of topologies on a fixed set X
intersection of a family of topologies on X being a topology on X
union of a family of topologies on X not necessarily being a topology on X
one topology on X being finer than another topology on X (inclusion of collections)

two topologies on the same set being comparable under inclusion

two topologies on the same set being not comparable under inclusion

basis for a topology on a set
topology on R generated by the basis of intervals with rational endpoints

S y

Figure 2: Example result from Step 1 Concept Extraction.

To illustrate the types of concepts extracted, we examine representative examples from both bench-
marks shown in Figure [2] For LeanEuclidPlus, the extracted concepts include objects such as non-
degenerate triangles in 2-dimensional Euclidean space, relations such as two distinct points being on
a line, and various geometric functions. For ProofNetHard, which addresses more advanced math-
ematical domains, the extracted concepts span a broader range: objects include topologies on a set
X, families of topologies on a set X, and bases for topologies on a set X; relations include predicates
such as a sequence of real numbers being convergent and the intersection of a family of topologies
on X being a topology on X; functions include the square root function mapping nonnegative real
numbers to nonnegative real numbers and the limit function mapping a convergent sequence of real
numbers to a real number.

We evaluate the quality of this extraction step using two metrics reported in Table[I] both averaged
across 5 runs. The correctness metric measures what percentage of the extracted concepts are indeed
non-ambiguous, well-defined, and abstract out of all extracted concepts. The recall metric quanti-
tatively analyzes how many concepts from the oracle abstractions written by human experts are
successfully identified and extracted by our system. Both metrics are evaluated manually because
the output of this step consists of freeform natural language descriptions, and no reliable automated

16

Under review as a conference paper at ICLR 2026

/ LeanEuclidPlus: Filtered Out Concepts \

a point lying between two other points on a line segment in Euclidean plane
two points lying on the same side of a line in Euclidean plane
two points lying on opposite sides of a line in Euclidean plane
the measure of an angljle in Euclidean plane mapping an angle to a real number in degrees
a convex quadrilateral in 2-dimensional Euclidean space being a parallelogram

LeanEuclidPlus: Kept Concepts

two distinct lines intersecting at a point in 2-dimensional Euclidean space
three or more distinct points being sequentially aligned on a line in Euclidean plane
two sets of points lying on opposing sides of a line in Euclidean plane
two angles in Euclidean plane being supplementary
two lines being parallel in 2-dimensional Euclidean space
two angles in Euclidean plane being congruent
two triangles sharing a common vertex in Euclidean plane

\ an angle at a vertex of a triangle in Euclidean plane /

ProofNet-Hard: Filtered Out Concpets

square root function mapping nonnegative real numbers to nonnegative real numbers
a sequence of real numbers being convergent
limit function mapping a convergent sequence of real numbers to a real number
family of topologies on a fixed set X
intersection of a family of topologies on X being a topology on X
union of a family of topologies on X not necessarily being a topology on X
basis for a topology on a set X
connected topological space (no separation into two disjoint nonempty open sets)
Stone—Cech compactification X of a completely regular space X

ProofNet-Hard: Kept Concepts

sequence of real numbers defined by a_i = sqrt(i + 1) — sqrt(i) for i in the natural numbers
subbasis for a topology on a set X
lower limit topology R_I on the real line (topology with basis of half-open intervals [a,b))
K-topology R_K on the real line

topology on R generated by the basis of intervals with rational endpoints
sequence of functions f_n: [0,1] — R defined by f_n(x) = x"n

pointwise limit function g: [0,1] — R with g(x) =0forO<x<1and g(1) =1

limit point compactness (every infinite subset of X has a limit point in X)

uniform topology on [0,1]*w induced by the supremum metric

Figure 3: Example result from Step 2 Concept Filtering.

evaluation alternative exists for assessing the semantic correctness and completeness of concept
extraction at this level.

Step 2: Concept Filtering. The second step of our abstraction learning pipeline performs concept
filtering to remove duplicates and concepts already formalized in the target language, as specified
by the guidelines in Appendix The filtering behavior and results vary significantly between
our two benchmarks due to differences in the richness of their underlying formal libraries.

For LeanEuclidPlus, shown in Figure[3] the minimal nature of the target DSL results in relatively few
concepts being filtered out. Representative examples include the concept of a point lying between
two other points on a line segment in Euclidean space, which is filtered because it corresponds
to the primitive relation between axiomatized in the target DSL. Similarly, the concept of two
points lying on the same side of a line is filtered because it corresponds to the primitive relation

17

Under review as a conference paper at ICLR 2026

Point.sameSide. The relation describing two points being on opposite sides of a line is also
filtered because it already exists in the target DSL as an abbreviation expressed as - a.onLine
1 AN = b.onLine 1 A = sameSide a b 1.

In contrast, ProofNetHard exhibits substantially more filtering activity due to the exten-
sive coverage of Lean Mathlib, as illustrated in Figure Concepts such as a sequence
of real numbers being convergent are filtered because they have direct formal correspon-
dents in Mathlib, specifically the filter limit Filter.Tendsto f atTop (nhds 1) de-
fined in Mathlib/Topology/Instances/Real. The concept of a family of topologies
on a set X is filtered because it is already represented as Set (TopologicalSpace X)
or as an indexed family ¢+ —> TopologicalSpace X with complete lattice operations in
Mathlib/Topology/Basic. Even sophisticated mathematical concepts such as the Stone-
Cech compactification of a completely regular space X are filtered because Mathlib provides com-
prehensive support through StoneCech X along with the unit map stoneCechUnit and exten-
sion operation stoneCechExtendinMathlib/Topology/StoneCech.

We evaluate this filtering step using the correctness (precision) metric reported in Table [] for the
filtering step, which measures what percentage of filtered-out concepts are indeed duplicates or
already-formalized out of all filtered-out concepts, averaged across 5 runs. We deliberately focus on
precision rather than recall for two important reasons. First, in the abstraction learning phase, our
priority is to formalize reusable abstractions without missing potentially useful concepts, making
filtering precision naturally more important than recall. Second, borderline cases exist where a natu-
ral language concept does not directly correspond to exactly one formal definition but can be easily
formalized by slightly adapting an existing definition. For instance, the concept of two triangles
sharing a common vertex in Euclidean space has no direct corresponding formal definition, but it
can be straightforwardly expressed by specifying the three vertices of each triangle. We design the
filtering step to remove only those cases that are absolutely obvious duplicates or already-formalized
concepts, erring on the side of caution to preserve potentially useful abstractions. The correctness
metric is evaluated manually for the same reason as Step 1, since the output consists of freeform
natural language and no reliable automated evaluation alternative exists.

Step 3: Concept Dependency Graph (CDG) Construction. The third step of our abstraction
learning pipeline constructs concept dependency graphs that analyze how each extracted concept
can be formalized using existing formal definitions and other concepts, following the guidelines in
Appendix [D.1.3] The depth and complexity of these dependency graphs vary across benchmarks
and concepts.

For LeanEuclidPlus, Figure {4 presents an example of a depth-3 CDG where the target concept to
be formalized depends on both already-available formal definitions in the target language, such as
Triangle.ofPoints and Line.intersectsLine, as well as other concepts that do not yet
have single direct formal correspondents and must themselves be formalized first. An illustrative
example of the nuanced dependency analysis performed in this step involves the concept of a point
lying on a line segment including endpoints in the Euclidean plane. This concept is superficially
similar to the previously filtered concept of a point lying between two other points on a line segment
in Euclidean space, which was removed because it has a direct formal correspondent in the primitive
relation between. However, these concepts are semantically distinct: the former permits the point
to be an endpoint of the line segment, while the latter does not. Consequently, the former concept is
retained and can be formalized using between, logical disjunction, and equality. The dependency
analysis also correctly identifies that the concept of the line through two distinct points in Euclidean
plane is directly expressible using Point . onLine, inequality, and existential quantification. The
concept dependency for a line intersecting two sides of a triangle in Euclidean plane is similarly
constructed correctly with appropriate dependencies identified.

For ProofNetHard, Figure] shows a simpler depth-2 CDG. The example concept of the lower limit
topology on the real line, which is the topology with a basis of half-open intervals [a, b), demon-
strates correct dependency construction. The analysis correctly identifies that this concept is di-
rectly expressible using the following formal correspondents: Set (Set R), Ico : R ->
R —> Set R representing half-open intervals [a,b), TopologicalSpace.GenerateFrom

Set (Set R) -> TopologicalSpace R, existential quantification, conjunction, and
equality to describe the generating family. This concept dependency is correctly constructed and

18

Under review as a conference paper at ICLR 2026

LeanEuclidPlus: Concept Dependency Graph (CDG)

Concept

a line intersecting two sides of a
triangle in Euclidean plane

\ 4
Concept [Directly Expressible]

Concept [Directly Expressible]
a point lying on a line segment
(including endpoints) in Euclidean
plane

the line through two distinct points in
Euclidean plane

Formal Correspondent Formal Correspondent Formal Correspondent

Triangle.ofPoints between Point.onLine

Formal Correspondent Formal Correspondent

Formal Correspondent

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o e -,

Line.intersectsLine \%
\ ,l
Formal Correspondent Formal Correspondent
\\ . e e e e e e - -, ’ \\ -
ProofNet-Hard: Concept Dependency Graph (CDG) \

Concept [Directly Expressible]

lower limit topology R_| on the real
line (topology with basis of half-open
intervals [a,b))

I
v v

Formal Correspondent Formal Correspondent

Set (Set R) TopologicalSpace.GenerateFrom :
Set (Set R) — TopologicalSpace R

Formal Correspondent Formal Correspondent

. Exists (3), conjunction (A), and
Ezelil = & = SR (il equality (=) to describe the

FIEET TR [2) generating family /

Figure 4: Example result from Step 3 CDG Construction.

precisely matches the oracle definition of the lower limit topology written by human experts, vali-
dating the accuracy of our dependency analysis.

We evaluate this CDG construction step using the correctness metric reported in Table 2} which
measures what percentage of the dependency analyses for each concept are correctly constructed out
of all dependency analyses, averaged across 5 runs. The correctness metric is evaluated manually for

19

Under review as a conference paper at ICLR 2026

LeanEuclidPlus: Formalized Concepts

[simp]
def distinctFromList (x : Point) (ys : List Point) : Prop :=
match ys with
[=>True
y ii1ys =>x # y A distinctFromList x ys

@[simp] .
def pairwiseDistinct (pts : List Point) : Prop :=
match pts with
1 => True
x :: xs => distinctFromList x xs A pairwiseDistinct xs

@%sim]
def allOnLine (pts : List Point) (L : Line) : Prop :
match pts with
1 => True
X i xs =>x.onLine L A allOnLine xs L

@[simp] , .
def betweennessChain (pts : List Point) : Prop :
match pts with
| a:b:icirest =1? between a b ¢ A betweennessChain (b :: ¢ :: rest)
=> True

@[simp]
def sequentiallyAlignedOnLine (pts : List Point) (L : Line) : Prop :=
allOnLine pts L A pairwiseDistinct pts A betweennessChain pts

ProofNet-Hard: Formalized Concepts

@[simp]
def TopologicalSpace.comparable {a : Type*} (t u : TopologicalSpace a) : Prop :=
t<suvust

@[simp]
def TopologicalSpace.notComparable {a : Type*} (t u : TopologicalSpace a) : Prop :=
- TopologicalSpace.comparable t u

@[simp]
def IsSubbasisFor {X : Type*} (S : Set (Set X)) (t : TopologicalSpace X) : Prop :=
t = TopologicalSpace.generateFrom S

@[simp]
def lowerLimitGeneratingSets : Set (Set R) :=
{U|3ab:R,a<bAU-=Setlcoab}

@[simp] |
def realLowerLimitTopology : TopologicalSpace R :=
TopologicalSpace.generateFrom lowerLimitGeneratingSets

Figure 5: Example result from Step 4 Concept Formalization.

20

Under review as a conference paper at ICLR 2026

/ LeanEuclidPlus: Refactored Formalization \
@[simp]

def betweennessChain (pts : List Point) : Prop :=
match pts with
| a:: b:c::rest =>between a b c A betweennessChain (b :: c :: rest)
_ =>True
@[simpl o
def sequentiallyAligned (pts : List Point) : Prop :=
betweennessChain pts

/ ProofNet-Hard: Refactored Formalization \

[simp]
ef TopologiesComparable {a : Type*} (t u : TopologicalSpace a) : Prop :=
t<suvust

[simp]
ef IsSubbasisFor {X : Type*} (S : Set (Set X)) (t : TopologicalSpace X) : Prop :=
t = TopologicalSpace.generateFrom S

[simp]
ef LowerLimitSubbasis : Set (Set R) :=
{U|3ab:R,a<bAU-=Set.lcoab}

[simp]
?ef sorgenfreyTopology : TopologicalSpace R ;=
TopologicalSpace.generateFrom LowerLimitSubbasis

/

Figure 6: Example result from Step 5 Formalization Refactoring.

the same reason as Steps 1 and 2, since the output of this step consists of freeform natural language
descriptions of dependencies and formal correspondents.

Step 4: Concept Formalization. The fourth step of our abstraction learning pipeline translates the
concepts identified in the CDG into actual formal definitions in the target language, following the
guidelines in Appendix [D.T.4] This step involves generating both the main target definitions and any
necessary helper definitions to support them.

For LeanEuclidPlus, Figure [3 illustrates the formalization of the concept of three or more distinct
points being sequentially aligned on a line in Euclidean plane, along with several helper definitions.
The natural language description of this concept encompasses multiple sub-concepts: mutually dis-
tinct points, collinear points, and points aligned in sequential order. The language model correctly
decomposes the formalization task by first formalizing each of these sub-concepts as helper defi-
nitions, then composing them to formalize the target concept. While this approach is correct and
faithful to the original natural language concept, it introduces some redundancy that will be ad-
dressed in the subsequent refactoring phase.

For ProofNetHard, Figure [5] demonstrates the formalization of concepts with their helper def-
inition dependencies. The formalization of TopologicalSpace.notComparable de-
pends on and utilizes TopologicalSpace.Comparable as a helper definition. Similarly,
reallowerLimitTopology depends on and uses lowerLimitGeneratingSets as a
helper definition. Both the main concepts and their helper definitions are correctly formalized,
demonstrating the system’s ability to manage dependencies during formalization.

21

Under review as a conference paper at ICLR 2026

We evaluate this formalization step using the correctness metric reported in Table[2] which measures
what percentage of formal definitions are correct out of all formal definitions, with helper definitions
counted separately (essentially counting the number of function definitions), averaged across 5 runs.
Importantly, concepts do not need to be formalized by strictly following the previously analyzed
concept dependency graph; a formalization is considered correct as long as it can be interpreted
as faithful to the original natural language concept. The correctness metric is evaluated manually
despite the output being in formal language because the same natural language concept can be for-
malized in multiple ways that are all acceptable to human experts. These alternative formalizations
may be non-definitionally equivalent or may not be recognized as equivalent by any existing auto-
mated checker. As discussed in Section 3] no symbolic equivalence checker is complete, and some
are not even sound, necessitating manual evaluation by human experts to assess faithfulness.

Step 5: Formalization Refactoring. The fifth step of our abstraction learning pipeline performs
formalization refactoring to eliminate redundant definitions and extract common helper definitions,
thereby creating a more concise and general library of learned abstractions that downstream users,
whether human or language models, can better understand and employ. This refactoring process
follows the guidelines specified in Appendix [D.1.5]

For LeanEuclidPlus, Figure [6] demonstrates significant refactoring opportunities. As shown in the
initial formalization in Figure [5] the concept was implemented using multiple helper definitions
for mutually distinct points, collinear points, and sequential alignment. However, careful analysis
reveals that the chain of betweenness relations already guarantees that the list of points must lie
on the same line and must be mutually distinct by virtue of the between relation’s semantics.
Consequently, the two separate helper definitions for collinearity and mutual distinctness can be
eliminated as redundant. The refactored version shown in Figure [6] consolidates these concepts
by retaining only the essential bet weennessChain definition, with sequentiallyAligned
serving as a more intuitive alias for the same concept.

For ProofNetHard, Figure [6] shows more conservative refactoring activity. The definition
TopologicalSpace.notComparable is removed because it is simply the logical negation
concatenated with TopologicalSpace.Comparable, making a separate API unnecessary and
potentially confusing. The refactoring also includes two renamings that improve domain speci-
ficity and clarity: LowerLimitGeneratingSets is renamed to LowerLimitSubbasis
to better reflect its mathematical role, and reallLowerLimitTopology is renamed to
sorgenfreyTopology using the conventional mathematical terminology. While these refac-
torings are not strictly necessary for correctness, they enhance readability and align with domain
conventions, and we therefore consider them correct refactorings.

We evaluate this refactoring step using two metrics reported in Table [3] The correctness metric
measures what percentage of refactored formal definitions are correct out of all definitions that were
refactored, with helper definitions counted separately (essentially counting the number of function
definitions), averaged across 5 runs. Additionally, we quantitatively analyze the compression ratio,
which is the ratio of the number of formal definitions before refactoring to the number after refac-
toring, averaged across 5 runs. This compression ratio metric is important because it indicates how
effectively common helper functions are reused and how many unnecessary formal definitions are
eliminated. A high compression ratio facilitates better understanding and utilization of the learned
abstractions by both humans and language models, as it reduces cognitive load and clarifies the es-
sential conceptual structure. The correctness metric is evaluated manually for the same reason as
Step 4, since multiple semantically equivalent refactorings may be acceptable to human experts.

Step 6: Documentation Update. The sixth and final step of our abstraction learning pipeline
generates clear and concise natural language documentation for the learned abstractions, abstracted
away from low-level implementation details such as internal helper definitions, to serve both human
and language model users. This step is critical because excessive definitions in the documentation
would inevitably confuse both language models as the context grows and human users attempting
to understand and use the learned abstractions. The documentation generation process follows the

guidelines specified in Appendix

For LeanEuclidPlus, Figure [/| illustrates the selective documentation approach employed by
this step. The internal helper definition betweennessChain is not directly exposed in
the documentation; instead, its more intuitively-named alias sequentiallyAligned is pre-

22

Under review as a conference paper at ICLR 2026

LeanEuclidPlus: Updated Documentation

def twoDistinctLinesIntersectAtPoint (L M : Line) (i : Point) --
two distinct lines L and M intersect at point i, i.e. L # M,

i lies on both L and M, and "L.intersectsLine M".

The syntax is “twoDistinctLinesIntersectAtPoint L M i,

def sequentiallyAligned (pts : List Point) --

a list of points is sequentially aligned (ordered collinear chain) iff every consecutive
triple (pi, pi-1, piz) satisfies “between pi pi-1 piz'.

No extra line or global distinctness is required beyond betweenness.

The syntax is “sequentiallyAligned [po, p1, P2, ...] .

def sequentiallyAlignedThreeOrMore (pts : List Point) --
like “sequentiallyAligned’, additionally requiring the list to contain at least three points.
The syntax is “sequentiallyAlignedThreeOrMore [po, p1, P2, ...] .

def twoSetsOpposingSidesOnLine (xs ys : List Point) (L : Line) --

two lists of points lie on opposite sides of line L: (1) no point from either list is on L;
(2) every cross-pair (x € xs, y € ys) is on opposing sides of L.

The syntax is "twoSetsOpposingSidesOnLine [xi, Xz, ...] [y1, Y2, ...] L .

def supplementaryAngles (ab c d e f: Point) --
angles « a:b:c and « d:e:f are supplementary iff (2 a:b:c) + (2 diexf) = L + L.
The syntax is “supplementaryAnglesabcdef.

Figure 7: Example result from Step 6 Documentation Update.

sented to users. The natural language description correctly captures the formal semantics of
sequentiallyAligned, attending to subtle but important details such as the fact that the points
are mutually distinct. This demonstrates the system’s ability to abstract away implementation details
while preserving semantic precision in user-facing documentation.

For ProofNetHard, we adopt a different approach due to the scale of the original Lean Mathlib
documentation, which exceeds far beyond the context limit of any current LLMs. Instead, we skip
the documentation update step and directly use the compact refactored code (comprising just 21
formal definitions) as documentation for downstream tasks in the decomposition phase.

We evaluate the documentation update step using quantitative metrics reported in Table[3] The cor-
rectness metric measures what percentage of documented formal definitions correctly convey the
meaning of the definition without missing any essential details or introducing ambiguity, out of all
documented definitions, averaged across 5 runs. To quantitatively validate the quality of the gener-
ated documentation, we also evaluate downstream task performance on LeanEuclidPlus using two
strong models, Qwen3-235B and GPT-5, with our four-stage hierarchical decomposition pipeline.
Under the hypothesis that good documentation should enable strong models to generate syntacti-
cally correct formalizations with high reliability, we report the compilation rate of the two models
averaged across 5 runs. To further demonstrate the stability and robustness of the documentation
produced in Step 6, we also report detailed statistics across runs: for Qwen3-235B, the maximum
compilation rate is 98.2%, minimum is 96.8%, mean is 97.4%, and standard deviation is 0.47%;
for GPT-5, the maximum is 100.0%, minimum is 99.0%, mean is 99.8%, and standard deviation is
0.45%. These consistently high compilation rates with low variance validate the quality and stability
of the generated documentation. The correctness metric is evaluated manually for the same reason
as Steps 1, 2, and 3, since the output consists of freeform natural language descriptions. The down-
stream task performance metrics are evaluated automatically using the same evaluation pipeline as
the main experiments on LeanEuclidPlus.

23

Under review as a conference paper at ICLR 2026

C.2 COMPARISION BETWEEN LEARNED AND ORACLE ABSTRACTIONS

We present a qualitative comparison between the abstractions learned by our system and the ora-
cle abstractions hand-crafted by human experts. Figure [§]illustrates representative examples from
LeanEuclidPlus, and Figure [9] presents corresponding examples from ProofNet-Hard. Our analysis
reveals three distinct categories of learned abstractions.

Correct Overlapping Abstractions. The first category comprises abstractions where both the
learned and oracle definitions capture semantically equivalent concepts, albeit with different naming
conventions or slightly different formulations.

For LeanEuclidPlus, the Ilearned abstraction betweennessChain and its alias
sequentiallyAligned correspond directly to the oracle’s sequentiallyAlignedList,
both encoding the property that consecutive points in a list satisfy the betweenness re-
lation. Similarly, twoDistinctLinesIntersectAtPoint mirrors the oracle’s
twoLinesIntersectAtPoint, and the learned parallel and perpendicularAt
definitions align precisely with their oracle counterparts. The learned trianglesSimilar
captures the same geometric concept as the oracle’s similar abbreviation, encompassing both
angle equality and proportional side lengths.

For ProofNet-Hard, the learned sqgrtSuccDiff exactly matches the oracle’s func-
tion g, both computing the difference between consecutive square roots. The learned
LowerLimitSubbasis, sorgenfreyTopology, KNatRecip, KTopologySubbasis,
and kTopology correspond semantically to the oracle’s lower_limit_topology, K, and
K_topology.

These examples demonstrate that our abstraction learning phase is able to recover most of the com-
mon mathematical concepts identified by human experts, validating the effectiveness of our auto-
mated approach for discovering domain-specific abstractions without manual intervention.

Correct Non-Overlapping Abstractions. The second category consists of abstractions that are
correct formalizations of the natural language concepts but do not overlap with the oracle.

For LeanEuclidPlus, the learned abstractions include noneOnLine, which recursively veri-
fies that no point in a list lies on a given line, and allOpposingSidesToPoint, which
checks whether all points in a list are on opposite sides of a line relative to a reference
point. The learned pairwiseAcrossOpposing and twoSetsOpposingSidesOnLine
provide compositional predicates for reasoning about point configurations across lines, while
lineCutsTriangleOnABandACAt encapsulates the specific geometric configuration where
a line intersects two sides of a triangle. In contrast, the oracle for LeanEuclidPlus contains dif-
ferent abstractions such as pointDistinctFromList, mutuallyDistinctPointsList,
sameSidelList, and sameSideDistinctList, which focus on distinctness and same-side
predicates over point lists.

For ProofNet-Hard, the Ilearned abstractions include StrictlyBoundedAboveBy, a
generic predicate for sequences bounded by a constant, TopologiesComparable
for comparing topologies, and NestedClosedNonempty along with
NestedClosedNonemptyInterNonempty for reasoning about nested sequences of closed
sets. The oracle involves different abstractions such as 1 s_topology, a first-principles definition
of topological structure, and countably_compact, which directly encodes the definition of
countable compactness.

These non-overlapping abstractions illustrate that concept extraction by humans and LLMs from
the same natural language corpus can be complementary: each identifies valid abstractions that
the other may overlook, suggesting that combining both approaches could yield richer and more
comprehensive libraries of reusable abstractions.

Correct Learned Abstractions, Wrong Oracle. The third category, observed exclusively in
ProofNet-Hard, consists of cases where the learned abstractions are correct while the oracle ab-
stractions contain semantic errors. The learned IsLimitPoint correctly defines a limit point
(accumulation point) of a set A as a point = for which every neighborhood intersects A \ {z}, and
LimitPointCompact correctly states that every infinite subset has such a limit point. However,

24

Under review as a conference paper at ICLR 2026

LeanEuclidPlus: Correct Overlapping Abstractions

Learned Abstractions

?;ﬁimpl .
ef betweennessChain (pts : List Point) : Prop :=
match pts with
|a::b::c:rest =>between a b c A betweennessChain (b :: c :: rest)
_ =>True
@[simp]
def sequentiallyAligned (pts : List Point) : Prop :=
betweennessChain pts

@Isimp] . ,
def twoDistinctLinesIntersectAtPoint (L M : Line)
(i : Point) : Prop :=
L#M AionLine L Ai.onLine M A L.intersectsLine M

[simp]
def parallel (L M : Line) : Prop :=
L #M A - L.intersectsLine M

@Isimp] o ,
def perpendicularAt (L M : Line) (i a ¢ : Point) : Prop :=
L.intersectsLine M A formRectilinearAngle aic L M A (2 aii:c) = L

@[simp]

bcdef:Point): Prop :=

Oracle Abstractions

?%simp] o . .
ef sequentiallyAlignedList (point_list : List Point) : Prop :=
match point_list with
1=>True
_1=>True
|[_ _1=>True
| a:b::c:rest => sequentiallyAligned ab ¢ A
sequentiallyAlignedList (b :: ¢ :: rest)

@l[simp) .
abbrev twoLinesIntersectAtPoint (L1 L2 : Line)
(i: Point) : Prop :=
L1.intersectsLine L2 Ai.onLine L1 Ai.onLine L2 A L1 # L2

@[simp] ,
abbrev parallel (L1 L2 : Line) : Prop :=
- L1.intersectsLine L2

@l[simp]
abbrev perpendicular (L1 L2 : Line)
(p1 p2i: Point) : Prop :=
twoLineslntersectAtPoint L1 L2 i A p1.onLine L1 A p2.onLine L2
APT#iApP2#iAcplip2=L

@[simp]

abbrev similar : Triangle — Triangle — Prop

| (Triangle.ofPoints A B C) ,(Triangle.ofPoints D E F) =>
(I(A=B)I / |(D=E)[= |(B=C)| / |(E=F)| A
|(B=C)| / |(E=F)| = [(C=A)| / |(F=D)| A
|(C=A)| / |(F=D)| = |(A=B)| / |(D—E)| A
2AB:C=2D:EFALACB=2D:FEA2£BAC=£ED:F)

N\

Learned Abstractions

@[simp]

def noneOnLine (pts : List Point) (L : Line) : Prop :=
match pts with
] =>True
| x :: xs => = x.onLine L A noneOnLine xs L

@Isimp]
def allOpposingSidesToPoint (x : Point) (ys : List Point)
(L: Line): Prop :=

match ys with

|0 =>True

| y i1 ys => x.opposingSides y L A allOpposingSidesToPoint x ys L

@[simp]

def pairwiseAcrossOpposing (xs ys : List Point) (L : Line) : Prop :=
match xs with
|0 =>True
| x :: xs => allOpposingSidesToPoint x ys L

A pairwiseAcrossOpposing xs ys L

@l[simp]
def twoSetsOpposingSidesOnLine (xs ys : List Point)
(L:Line): Prop :=
noneOnLine xs L A noneOnLine ys L
A pairwiseAcrossOpposing xs ys L

@[simp)
def lineCutsTriangleOnABandACAt
(abcpaq:Point) (ABBC CAL: Line): Prop :=
formTriangle a b c AB BC CA A between a p b A betweenc g a
A p.onLine L A g.onLine L

LeanEuclidPlus: Correct Non-Overlapping Abstractions

Oracle Abstractions

/

simp]
?e; poﬁthistinctFromList (a : Point) (point_list : List Point) : Prop :=
match point_list with
E =>True
;i rest => a # b A pointDistinctFromList a rest

simp]
ga; mutuallyDistinctPointsList (point_list : List Point) : Prop :=
match point_list with
] => True
=>True
a :: rest => pointDistinctFromList a rest
A mutuallyDistinctPointsList rest

g@%simp]
ef sameSideList (point_list : List Point) (L : Line) : Prop :=

match point_list with

] =>True
=>True
a, b] => a.sameSide b L
a:b:c:rest=>asameSide b L A sameSideList (b :: ¢ :: rest) L
@%simp} .)
abbrev sargeSldeDlstmctLlst (point_list : List Point)

(L : Line) : Prop :=
sameSideList point_list L A mutuallyDistinctPointsList point_list

Figure 8: Comparision between Learned and Oracle Abstractions for LeanEuclidPlus.

25

Under review as a conference paper at ICLR 2026

ProofNet-Hard: Correct Overlapping Abstractions

/ Learned Abstractions
@[simp]

defsqrtSuchlf'f(N):R:=
Real.sqrt ((n :))Realsqrt(R)

@[simp]
def LowerLimitSubbasis : Set (Set k) :=
{U|3ab:R a<bAU=Setlcoab}

@[simp]
def sorgenfreyTopology : TopologicalSpace F :=
TopologicalSpace.generateFrom LowerLimitSubbasis

@[simp]
def KNatRecip : Set R :=
{X|3n:PNat,x=(1:R)/((n:N):

@l[simp]

def KTopologySubbasis : Set (Set R) :=
{U|3ab:2 a<bA(U=Setlooab

v U = Set.loo a b \ KNatRecip)}

@[simp] _

def kTopology : TopologicalSpace E :=
VOpologicaISpace.generateFrom KTopoIogySubbasy

~

2

Oracle Abstractions

@[simp]
defg(n:N):

@[simp]

def lower_limit_topology (X : Type) [Preorder X] :=
TopologicalSpace.generateFrom {S : Set X |

Jab,a<bAS=Setlcoab}

R

:éet R={r|3n:N,r=1/n}
?%smp]

K topolog :
Togo"lo icalSpace.generateFrom

S:Setk |E|ab,a<b/\S=Set.Iooab%U
:Set%|3ab,a<b/\S=Set.Iooab K})

R:=sqrt(n+1)-sqrtn

\

ProofNet-Hard: Correct Non-Overlapping Abstractions

Learned Abstractions \
@[simp]
def StrictlyBoundedAboveBy {a : Type*} [LT a]
(s:N—a)(c:a):Prop:=

vnsn<c

@[simp]

def TopologiesComparable {a : Type*}

(t u : TopologicalSpace a) : Prop :=
tsuvust

@[simp]
def NestedClosedNonempty {X : Type*}
[TopologicalSpace X] (C: N — SetX): Prop :=
Ant|tone C A (¥ n:1, IsClosed (C n))
A(Vn:N,(Cn). Nonempty)

@[simp]
def NestedClosedNonemptyInterNonempty {X : Type*}
[TopologicalSpace X] : Prop :=
Vv (C: N — SetX),
Antitone C —
(V n:N, IsClosed (C n)) — /

(V n: N, (Cn).Nonempty) —
(Nn,C n) Nonempty

Oracle Abstractions

mp]
?; is_topolos y(X Type*) (T : Set (Set X)) :=
Set.univ €
g\-/st SET‘PtETHSntET)/\
Vs, (Vtes, teT)— SetsUnions €T)

@[simp]
v U:N— SetX,

(v i, IsOpen (Ui)) A ((Set.univ: SetX)c Ui, Ui) —
(3 t:Finset 1V, (Set.univ: SetX)c Uiet Ui)

N

~

def countably_compact (X : Type*) [TopologicalSpace X] :=

/

\

/

ProofNet-Hard: Correct Learned Abstractions, Wrong Oracle

Learned Abstractions

%f IsleltPomt Type*) [TopologicalSpace X]

X
(A:SetX)(x: X}J Pro
v U € nhds x, ((A\ {x})) Nonempty

simp]
ef LimitPointCompact {X : Type* ?[TopologlcalSpace X] : Prop :=
Vv A: Set X, A.Infinite — 3 x: X, IsLimitPoint A x

//ﬁ)

Oracle Abstractions

pl
?%Ilmn _point_compact (X : Type*

pologicalSpace X]
v U: SetX, Infinite U—>3x€eU,

ngsterPt x (P U)

)

Figure 9: Comparision between Learned and Oracle Abstractions for ProofNet-Hard.

26

Under review as a conference paper at ICLR 2026

the oracle’s 1imit_point_compact incorrectly uses ClusterPt x (P U), conflating the
notions of cluster point and accumulation point.

In Mathlib, ClusterPt x F isdefined as NeBot (N x M F), which for a principal filter P U
reduces to checking whether = € U. Crucially, since any point z € U trivially satisfies ClusterPt
x (P U) (every neighborhood of z contains x itself and hence meets U), the oracle’s definition
degenerates to merely asserting that U is nonempty—a property that holds vacuously for any infinite
set. This renders the oracle definition trivially true in every topological space, including infinite
discrete spaces where the correct limit-point compactness property provably fails.

This example demonstrates that automated abstraction learning by LLMs can sometimes produce
more reliable results than manually constructed oracles, particularly in domains where the formal-
izations contain subtle semantic distinctions that may escape human review.

C.3 HIERARCHICAL DECOMPOSITION

We present a qualitative analysis demonstrating the effectiveness of our hierarchical decomposi-
tion approach (Section [2.2) for autoformalization. Using Qwen3-235B-A22B-Instruct-2507 with
learned abstractions on LeanEuclidPlus, we compare direct formalization (Abstract column in Ta-
ble 3) against our four-stage decomposition pipeline (DNA column in Table [5) on a representative
problem.

Informal Statement. The English statement describes two triangles TUW and VSW sharing vertex
W, with lines SU and TV intersecting at W. Given that W lies between S and U, and between T

and V, along with the premises angle TUW angle UTWand SV || TU, the goalis to prove
angle V = angle S.
U
w
T v
5

Figure 10: Diagram for Parallel-17 in LeanEuclidPlus.

The following is the complete reasoning trace produced by Qwen3-235B when formalizing directly
without hierarchical decomposition:

We are given an English statement involving two triangles, TUW and VSW, sharing a point W. The lines SU and TV
intersect at W, and W lies between S and U, and also between T and V. We are given that \\angle TUW =
\\angle UTW (i.e., two angles in triangle TUW are congruent), and that SV is parallel to TU. We are to
prove that \\angle V = \\angle S.

Let's break this down step by step.

Step 1: Identify all points, lines, and geometric entities

Points mentioned:

- T, U, W-- form triangle TUW
-V, S, W-- form triangle VSW
- W is the shared point

- Lines: SU and TV intersect at W

- W lies between S and U -> between S W U
- W lies between T and V -> between T W V
Lines to define:

- For triangle TUW: sides TU, UW, WT

For triangle VSW: sides VS, SW, WV

Line SU: contains S and U

Line TV: contains T and V

27

Under review as a conference paper at ICLR 2026

We are given:
1. \\angle TUW = \\angle UTW
- \\angle TUW is the angle at U in triangle TUW: \\angle T:U:W
- \\angle UTW is the angle at T in triangle TUW: \\angle U:T:W
- So: (\\angle T:U:W) = (\\angle U:T:W)
2. SV || TU
- SV is the line through S and V
- TU is the line through T and U
- So: parallel (line SV) (line TU)
3. We are to prove: \\angle V = \\angle S
- \\angle V likely means the angle at V in triangle VSW: \\angle S:V:W or \\angle W:V:S?
- \\angle S likely means the angle at S in triangle VSW: \\angle V:S:W or \\angle W:S:V?

But note: triangle VSW has vertices V,
- \\angle V in triangle VSW is \\angle
- \\angle S in triangle VSW is \\angle

So we are to prove: (\\angle S:V:W) = (\\angle V:S:W)
But wait -- is that necessarily true? Let's see.

Alternatively, could \\angle V and \\angle S refer to angles in different triangles? But the only triangles
are TUW and VSW.

Given that SV || TU, and lines SU and TV intersect at W, this looks like a configuration where two lines cross
at W, and we have a pair of parallel lines cutting across them -- possibly forming similar triangles or
using properties of parallel lines and transversals.

But the conclusion is \\angle V = \\angle S -- i.e., two angles at V and S, likely in triangle VSW.

Wait -—- 1if SV || TU, and TV and SU are transversals intersecting at W, then we might use alternate interior
angles or corresponding angles.

But \\angle V and \\angle S are both in triangle VSW -- if \\angle S:V:W = \\angle V:S:W, that would mean
triangle VSW is isosceles at W.

But let's reexamine.

Alternatively, could \\angle V mean \\angle WVS and \\angle S mean \\angle WSV? Yes -- that's the same as
above.

So the conclusion is: in triangle VSW, \\angle at V equals \\angle at S -> triangle VSW is isosceles with |
SW| = |VW|?

But the conclusion is just \\angle V = \\angle S, i.e., angle equality.
So we are to prove: (\\angle S:V:W) = (\\angle V:S:W)
But we are given:
- \\angle T:U:W = \\angle U:T:W -> triangle TUW is isosceles at W? Let's see:
- \\angle at U: \\angle T:U:W
- \\angle at T: \\angle U:T:W
- If these are equal, then in triangle TUW, angles at T and U are equal -> so sides opposite are equal -> |
TW| = |UW| -> isosceles at W.
Also given: SV || TU

Lines SU and TV intersect at W, with W between S and U, and between T and V.

So the configuration is: two lines (SU and TV) intersect at W, forming an "X", and two segments: TU and SV are
parallel, with T,U on one side, S,V on the other.

This is a classic setup for similar triangles or using parallel line angle properties.

Now, since SV || TU, and TV is a transversal (from T to V, passing through W), then:
- \\angle UTW and \\angle VSW might be alternate interior angles? Let's see.

Wait -- transversal TV crosses parallel lines TU and SV.
But TU and SV are the parallel lines.
Transversal TV: intersects TU at T, and SV at V.

So at point T: angle between TU and TV -> \\angle U:T:W (since W is on TV beyond T? Wait -- W is between T and
V, so from T to V: T-W-V.

So line TV: T -- W -- V

Similarly, SU: S —— W ——= U

So TU is from T to U, SV is from S to V.

Given SV || TU.

Now, transversal TV crosses TU at T and SV at V.

So the angle at T between TU and TV (i.e., \\angle between TU and TW) is \\angle U:T:W
At V, the angle between SV and TV (i.e., between SV and VW) -- but direction matters.

Since SV || TU, and TV is a transversal, then:

28

Under review as a conference paper at ICLR 2026

- \\angle UTIW (at T) and \\angle SVW (at V) are corresponding angles? Or alternate?
Let's define directions.
Assume standard configuration: lines TU and SV are parallel, transversal TV goes from T to V, crossing both.

Then \\angle between TU and TV at T, and \\angle between SV and TV at V -- if both are on the same side,
they are corresponding.

But we need to relate to the angles.

Alternatively, transversal SU: from S to U, crosses SV at S and TU at U.

So at U: angle between TU and SU -> \\angle T:U:W (since W is on SU beyond U? No -- W is between S and U, so
from S to U: S —— W —- U

So at U: line TU and line SU meet at U -- angle \\angle T:U:W

At S: line SV and line SU meet at S -- angle \\angle V:S:W

Since SV || TU, and SU is a transversal, then:

- \\angle T:U:W and \\angle V:S:W are corresponding angles -> so they are equal.
So: \\angle T:U:W = \\angle V:S:W

But we are given: \\angle T:U:W = \\angle U:T:W

So: \\angle U:T:W = \\angle V:S:W

Now, look at transversal TV: from T to V, crosses TU at T and SV at V.

At T: angle between TU and TV is \\angle U:T:W

At V: angle between SV and TV -- now, depending on direction.
Since SV || TU, and TV is transversal, then \\angle U:T:W and \\angle S:V:W are alternate interior angles? Or
corresponding?

Let's suppose the lines are oriented so that TU and SV are horizontal, TU above, SV below, TV going down from

T to V.
Then at T: angle between TU (left-right) and TV (down) -- say, lower right angle.
At V: angle between SV (left-right) and TV (up) -- upper right angle.

These are alternate interior angles -> equal.

So \\angle U:T:W = \\angle S:V:W

Therefore: \\angle S:V:W = \\angle U:T:W = \\angle T:U:W = \\angle V:S:W

So \\angle S:V:W = \\angle V:S:W

Thus, in triangle VSW, angles at V and S are equal -> \\angle V = \\angle S
So the conclusion is: (\\angle S:V:W) = (\\angle V:S:W)

Now we formalize.

Step 2: Declare all variables

Points: T, U, W, V, S

Lines:

— For triangle TUW: TU, UW, WT
- For triangle VSW: VS, SW, WV
- Line SU: contains S and U

- Line TV: contains T and V

We need to define lines:
— TU: line through T and
- UW: line through U
- WT: line through W
- VS: line through V
- SW: line through S and
- WV: line through W
- SU: line through S
- TV: line through T

<ac< s wnAa=a

But note: SU and TV are already mentioned.

We also need to express:

- formTriangle T U W TU UW WT

- formTriangle V S W VS SW WV

- twoDistinctLinesIntersectAtPoint SU TV W -> but SU and TV intersect at W, and are distinct
- between S W U

- between T W V

- \\angle T:U:W = \\angle U:T:W -> (\\angle T:U:W) = (\\angle U:T:W)
- SV || TU -> parallel (line through S and V) (line through T and U)
- Conclusion: (\\angle S:V:W) = (\\angle V:S:W)

29

Under review as a conference paper at ICLR 2026

But we must define the lines.

Let's assign:
- (T UWV S : Point)
(TU UW WT : Line) for triangle TUW
- (VS SW WV : Line) for triangle VSW
(SU TV : Line) for the intersecting lines

But note: SU must be the line through S and U -- but we also have SW and WU? Not necessarily.

We need to ensure that S, W, U are collinear on SU, and T, W, V are collinear on TV.

But we are given that SU and TV intersect at W, and W is between S and U, and between T and V.

So we can define:

— SU: line through S and U -- and W is on it

— TV: line through T and V -- and W is on it

But in the triangle definitions:

— For triangle TUW: we need lines TU, UW, WT

- But UW is part of SU? Not necessarily -- unless U, W, S are collinear, which they are -- since W is on SU
and between S and U.

So points S, W, U are collinear on line SU.

Similarly, T, W, V are collinear on line TV.

So we can define:

— Line TU: through T and U

— Line UW: but U and W are on SU -> so UW is part of SU? But we need a line for side UW of triangle TUW.

But in “formTriangle™, we need three distinct lines: AB, BC, CA.

So for triangle TUW:

- side TU: line TU

- side UW: line UW -- but U and W are on SU -> so line UW must be the same as line SU? Only if S, U, W are
collinear -- which they are.

But we cannot assume that line UW is the same as SU unless we define it.

But in formalization, we can let:

- line UW be the same as line SU? But SU contains S, W, U -- so yes, line through U and W is the same as line
SU.
But in Lean, lines are extensional -- if two lines have two points in common, they are the same.

But in our formal system, we are assigning labels.

So to avoid confusion, we should define:
- Let line SU be the line containing S and U -- and since W is between S and U, W is on SU.
- Then for triangle TUW, side UW is on line SU -- so we can use SU as the line for UW? But in ~formTriangle T
U W TU UW WT", we need:
T and U on TU
- U and W on UW
W and T on WT

So UW must be a line containing U and W -- which SU does.

Similarly, for triangle VSW:
- V and S on VS
- S and W on SW -- again, S and W are on SU? No -- S and W are on SU, but W and S are on SU.

But VS is a different line.

Wait -- triangle VSW:
- V. and S on line Vs
— S and W on line SW —— but S and W are on SU -> so line SW is part of SU
- W and V on line WV

So line SW can be taken as SU? But only if we are allowed to reuse.

But in the formal system, we can have multiple names for the same line, but in "~formTriangle”, we need to
assign specific lines.

So to be safe, we define:

— Line SU: contains S, W, U

- Line TV: contains T, W, V

— Line TU: contains T, U

- Line VS: contains V, S

- Line WT: contains W, T -- but W and T are on TV -> so WT is part of TV
- Line WV: contains W, V -- also on TV

So for triangle TUW:

- TU: line TU

- UW: line SU (since U and W on SU)
- WT: line TV (since W and T on TV)

Similarly, for triangle VSW:
- VS: line VS

- SW: line SU (S and W on SU)
- WV: line TV (W and V on TV)

30

Under review as a conference paper at ICLR 2026

So we can reuse lines SU and TV in both triangles.
Now, we must ensure that the lines are distinct in each triangle.

For triangle TUW: lines TU, SU, TV -- must be distinct
For triangle VSW: lines VS, SU, TV -- must be distinct

We are not told they are distinct, but in a typical configuration they are.
But the “formTriangle ™ predicate requires the three lines to be distinct.
So we must assume that.

Similarly, “twoDistinctLinesIntersectAtPoint SU TV W~ requires SU != TV.

Now, let's write the formal statement.

Step 3: List all premises
We need:

1. formTriangle T U W TU UW WT
But UW is SU, WT is TV -> so:
-> formTriangle T U W TU SU TV
But the arguments are: a b ¢ AB BC CA
So: T, U, W, TU, SU, TV
Meaning:
- T and U on TU
- U and W on SU
- Wand T on TV
And TU, SU, TV distinct.

2. formTriangle V S W VS SW WV
But SW is SU, WV is TV -> so:
-> formTriangle V S W VS SU TV
Arguments: V, S, W, VS, SU, TV
Meaning:
- V and S on VS
- S and W on SU
- W and V on TV
And VS, SU, TV distinct.

3. distinctPointsOnLine S U SU -- to ensure S and U are distinct and on SU
But ~formTriangle® already requires distinctPointsOnLine for each side?
Looking back: "“formTriangle”™ requires distinct points on each line:

— distinctPointsOnLine a b AB
- distinctPointsOnLine b c BC
— distinctPointsOnLine a c CA

So in formTriangle T U W TU SU TV:
- distinctPointsOnLine T U TU
- distinctPointsOnLine U W SU
- distinctPointsOnLine W T TV

Similarly for V S W VS SU TV:
- distinctPointsOnLine V S VS
- distinctPointsOnLine S W SU
- distinctPointsOnLine W V TV
So we get distinctness of points on lines.

But we also need that W is between S and U, and between T and V.

So:

ES

between S W U
5. between T W V

6. twoDistinctLinesIntersectAtPoint SU TV W
This gives:
- SU != TV
- W on SU, W on TV
- SU intersects TV at W

But ~formTriangle® already requires W on SU and W on TV?

Yes —-- from distinctPointsOnlLine U W SU and W T TV, etc.

But “twoDistinctLinesIntersectAtPoint”™ also gives that they are distinct and intersect at W -- which we
need.

But is it redundant? Possibly, but we need to ensure SU != TV, which might not be implied otherwise.

So include it.

7. \\angle T:U:W = \\angle U:T:W
-> (\\angle T:U:W) = (\\angle U:T:W)

8. SV || TU

But SV is the line VS (same line), TU is line TU
—-> parallel VS TU

31

Under review as a conference paper at ICLR 2026

Conclusion: \\angle S:V:W = \\angle V:S:W

-> (\Mangle S:V:W) = (\\angle V:S:W)

Note: \\angle S:V:W is the angle at V in triangle VSW: points S, V, W -- so vertex V, with S and W on the
sides.

Similarly, \\angle V:S:W is angle at S: points V, S, W -- vertex S.

So we need to output:
<<< \\forall (T U W V S : Point) (TU SU TV VS : Line), [premises] -> (\\angle S:V:W) = (\\angle V:S:W) >>>

But wait -- in triangle VSW, we used lines VS, SU, TV.
But SU is used for SW, TV for WV.

But we also need to refer to angle at V: \\angle S:V:W -- this requires points S, V, W.
Similarly, angle at S: \\angle V:S:W -- points V, S, W.

We have all points.

But in the premises, we have formTriangle V S W VS SU TV -- this ensures that:

and S on VS

and W on SU
and V on TV

1
= n <

So the triangle is well-formed.

Now, write the full formalization.

Final Formalized Statement

Variables:
- Points: T, U, W, V, S
- Lines: TU (for side TU), SU (for side UW and SW), TV (for side WT and WV), VS (for side VS)

We use:

- formTriangle T U W TU SU TV

- formTriangle V S W VS SU TV

- between S W U

- between T W V

- twoDistinctLinesIntersectAtPoint SU TV W
- (\\angle T:U:W) = (\\angle U:T:W)

- parallel VS TU

Conclusion: (\\angle S:V:W) = (\\angle V:S:W)
Note: The line VS is the same as SV, TU is the same as UT -- direction doesn't matter for lines or parallel.
So:

<<< \\forall (T UWV S : Point) (TU SU TV VS : Line), formTriangle T U W TU SU TV \\land formTriangle V S W
VS SU TV \\land between S W U \\land between T W V \\land twoDistinctLinesIntersectAtPoint SU TV W
\\land (\\angle T:U:W) = (\\angle U:T:W) \\land parallel VS TU -> (\\angle S:V:W) = (\\angle V:S:W
) >>>

The following is the complete reasoning trace produced by Qwen3-235B when using our four-stage
hierarchical decomposition pipeline:

/*

To semi-formalize the English Statement into a structure of premises and conclusions, we will examine the
English Statement sentence by sentence, and break down each sentence into a natural language clause
that is as atomic as possible.

*/
{
"premises": [
/x
The sentence "Two triangles TUW and VSW share a point W." declares two triangles.
*/

"The distinct points T, U, and W form a triangle \\triangle T U W",
"The distinct points V, S, and W form a triangle \\triangle V S W",

/*

The sentence "The lines SU and TV intersect at point W." declares two lines and their intersection.
*/

"S and U are distinct points on line SU",

"T and V are distinct points on line TV",

"The distinct lines SU and TV intersect at point W",

/*

The sentence "The point W lies between S and U, and also lies between T and V."
*/

"Among the distinct points S, W, U, the point W is between S and U",

"Among the distinct points T, W, V, the point W is between T and V",

/x

The sentence "Given \\angle T U W = \\angle U T W"

*/

"The measure of angle T U W equals the measure of angle U T W",

32

Under review as a conference paper at ICLR 2026

/*

The sentence "S V || T U"

*/

"S and V are distinct points on line SV",

"T and U are distinct points on line TU",

"Line SV is parallel to line TU"
1,
"conclusions": [

"The measure of angle S V W equals the measure of angle V S W"
]

/*
To convert the Semi-Formalized Structure into a Formalized Structure, we now formalize each clause.
*/

"premises": [
"formTriangle T U W TU UW WT",
"formTriangle V S W VS SW wv",
"distinctPointsOnLine S U SU",
"distinctPointsOnLine T V TV",
"twoDistinctLinesIntersectAtPoint SU TV W",
"between S W U",
"between T W V",
"(\\angle T:U:W) = (\\angle U:T:W)",
"distinctPointsOnLine S V VS",
"distinctPointsOnLine T U TU",
"parallel VS TU"

1,

"conclusions": [
"(\\angle S:V:W) = (\\angle V:S:W)"

]

}

/*
Variables: (T U W V S : Point) (TU UW WT VS SW WV SU TV : Line)
*/

<<< \\forall (T UWV S : Point) (TU UW WT VS SW WV SU TV : Line),
formTriangle T U W TU UW WT \\land
formTriangle V S W VS SW WV \\land
distinctPointsOnLine S U SU \\land
distinctPointsOnLine T V TV \\land
twoDistinctLinesIntersectAtPoint SU TV W \\land
between S W U \\land
between T W V \\land
(\\angle T:U:W) = (\\angle U:T:W) \\land
distinctPointsOnLine S V VS \\land
distinctPointsOnLine T U TU \\land
parallel VS TU
—->
(\\angle s:V:W) = (\\angle V:S:W) >>>

Direct Formalization Without Decomposition. When prompted to formalize directly, Qwen3-
235B produces the following output:
\\forall (T UW V S : Point) (TU SU TV VS : Line),

formTriangle T U W TU SU TV \\land formTriangle V S W VS SU TV \\land

between S W U \\land between T W V \\land

twoDistinctLinesIntersectAtPoint SU TV W \\land

(\\angle T:U:W) = (\\angle U:T:W) \\land parallel VS TU
-> (\\angle S:V:W) = (\\angle V:S:W)

This formalization is missing two critical premises: distinctPointsOnLine S U SU and
distinctPointsOnLine T V TV. Without these, the statement is weaker than intended be-
cause it does not enforce that S and U are distinct points on line SU, nor that T and V are distinct
points on line TV. This error type corresponds to the “Stronger/Weaker Translation” category in our
error analysis (Table[d).

Notably, the model’s reasoning trace explicitly identifies these requirements. In Step 3 of its chain-
of-thought, the model states: “distinctPointsOnLine S U SU — to ensure S and U are
distinct and on SU” and initially considers adding this premise. However, the model then in-
correctly reasons: “But formTriangle already requires distinctPointsOnLine for each side?”
and lists that formTriangle T U W TU SU TV provides distinctPointsOnLine U W
SU. This reasoning is flawed: in the formal language, SU is simply a variable name for a line—it
could equivalently be called I; or any other identifie—and has no inherent semantic connection to
the points S and U. The only way to establish that S and U are actually distinct points on this line
is by explicitly stating distinctPointsOnLine S U SU. While formTriangle does con-
strain U and W to lie on the line named SU, it says nothing about whether S lies on this line. This

33

Under review as a conference paper at ICLR 2026

illustrates a common failure mode in direct formalization: the extended free-form reasoning process
can lead to flawed logical conclusions where the model is misled by suggestive variable naming into
believing semantic relationships are already captured when they are not.

Formalization With Hierarchical Decomposition. In contrast, our four-stage decomposition
pipeline guides the model through a structured process that prevents such errors. When processing
the sentence “The lines SU and TV intersect at point W” in Stage 2 (Semi-Formalized Structure),
the model is required to break it down into atomic clauses. This forces explicit representation of
implicit assumptions: the model produces three separate clauses—*“S and U are distinct points on
line SU”, “T and V are distinct points on line TV”, and “The distinct lines SU and TV intersect
at point W”. In Stage 3 (Formalized Structure), each atomic clause is independently translated to
its formal correspondent. The clause “S and U are distinct points on line SU” simply becomes
distinctPointsOnLine S U SU, regardless of what other predicates might or might not im-
ply. This one-to-one translation prevents information loss and eliminates the flawed dependency
reasoning that caused the direct formalization to fail, yielding:
\\forall (T UWV S : Point) (TU UW WT VS SW WV SU TV : Line),

formTriangle T U W TU UW WT \\land formTriangle V S W VS SW WV \\land

distinctPointsOnLine S U SU \\land distinctPointsOnLine T V TV \\land

twoDistinctLinesIntersectAtPoint SU TV W \\land

between S W U \\land between T W V \\land

(\Mangle T:U:W) = (\\angle U:T:W) \\land

distinctPointsOnLine S V VS \\land distinctPointsOnLine T U TU \\land

parallel VS TU
-> (\\angle S:V:W) = (\\angle V:S:W)

The decomposed output correctly includes all necessary premises. The hierarchical structure ensures
that each semantic unit from the English statement is explicitly represented as an atomic clause,
preventing information loss during the translation process.

Token Efficiency. Beyond correctness, our decomposition approach also demonstrates improved
token efficiency. Using OpenAl’s BPE tokenizer, the direct formalization consumed 4,661 output
tokens for the free-form reasoning trace, whereas the decomposed approach used only 1,892 output
tokens, which is a 59.4% significant reduction. The structured intermediate representations serve as
a more compact and organized “working memory” compared to verbose natural language reasoning,
reducing the cost, inference time, and most importantly the long-context challange for the model.

D PROMPT TEMPLATES

D.1 ABSTRACTION LEARNING

D.1.1 STEP 1: CONCEPT EXTRACTION

You are an expert in mathematics and logic with deep knowledge of all fields of mathematics. You are given
some English mathematical statements and a list of previously extracted mathematical concepts. Your task
is to extract ALL mathematical concepts mentioned in the current statements. {additional_specs}

Mathematical Concepts
There are 3 types of mathematical concepts to extract:
1. »xDefinitions of Mathematical Objects+x: Point, Line, Integer, Real Number, Series, Group, Ring, etc.

2. xxRelations between Mathematical Objects*x: 'a point being on a line', 'an integer being even', 'a group
being a subgroup of another group', etc.
3. xxFunctions mapping Mathematical Objects to Mathematical Objects: 'the Euclidean distance function

mapping two points in Euclidean space to a real number', 'the Determinant function mapping a square
matrix to a real number', etc.

Guidelines
1. »xPrecisionx*: When extracting definitions, relations and functions, you MUST be as precise and detailed as
possible. For example 'congruent' is not a precise mathematical relation! You MUST specify how many
arguments and what type of arguments the relation or function takes like 'two integers being congruent
modulo 3', 'two triangles being congruent', 'a list of line segments being congruent to each other', etc

2. x*xWell-Definedness*+: Please x+«MAKE SURExx that each mathematical object, relation, and function you
extract is well-defined, or has a conventionally well-accepted definition. For example, 'two lines being
on oppossing sides of a point' is not well-defined because a point can't partition a plane into sides.

3. xxAbstractness*x: The definitions, relations and functions you extract MUST be abstract i.e. not involving
any particular objects, variables, names in the current statements. For example, 'line AB being parallel
to line CD' is not abstract because it involves the names 'AB' and 'CD'.

4. xxNaming Consistency+x: When naming concepts, you MUST align with the previously extracted concepts if they
refer to the same thing. For example, if previous concepts contain 'two lines being parallel in
euclidean space' and the current statements mention 'parallel lines in euclidean space', you should use
exactly the name 'two lines being parallel in euclidean space' for this concept extracted from the

34

Under review as a conference paper at ICLR 2026

current statements. Only add new concept names if they are truly new and not covered by previously
extracted concepts.

4. xxReasoningxx: Please carefully analyze the all English statements sentence by sentence, identify all
potential definitions, relations and functions, and double-check that they are well-defined. Provide
your detailed step-by-step reasoning **BEFOREx* outputing your final extraction answer.

Output Format

You x*MUST** provide your final extraction answer i.e. a list of extracted concepts within triple angle
brackets and separated by semi-colons. Each concept is a short phrase containing any necessary
characters except semi-colon!!!

<<< conceptl; concept2; ... >>>

Task Context:
Previously Extracted Concepts:

{previous_concepts}
Current English Statements:

{english_statements}

D.1.2 STEP 2: CONCEPT FILTERING

You are an expert in mathematics, logic, programming lanaguages, and formal verification with deep knowledge
of all fields of mathematics and formalization of mathematics. You are given a list of mathematical
concepts in English, and the documentation of a Domain-Specific Language (DSL) for formal mathematics. {
additional_specs}

I want to include and formalize some of these concepts into the current formal DSL. Your task is to filter out
concepts that do NOT meet the criteria for inclusion.

Filtering Criteria

You MUST filter out concepts that satisfy ANY of the following criteria:

1. xxDuplication of Other Concepts*x: The concept is a duplication of another concept. For example, the
concepts 'a point being the midpoint of a line segment' and 'a point dividing a line segment into two
equal parts' are duplications because they describe the exact same mathematical relationship using
different wording. Please keep the one with a clearer and more conventional wording. In this case,
please keep the concept 'a point being the midpoint of a line segment' and filter out the other one.

2. **Already Defined in Current DSLxx: The concept has a direct corresponding formal relation/function/type
already defined in the current DSL. For example, there is a concept 'two distinct points being on a line
', and in the DSL there is a formal relation “distinctPointsOnLine” with the description: def
distinctPointsOnLine (a b : Point) (L : Line) -- points a and b are distinct and on line L. The syntax
is “distinctPointsOnLine a b L. Then the concept 'two distinct points lies on a line' should be
filtered out because it is already defined in the current DSL.

Guidelines
1. »xConservative Filteringx+: When in doubt, *+«KEEP** the concept. Only filter out concepts that clearly
violate one of the criteria.

2. %%xDSL Comparisonsx: Carefully compare each concept against the current DSL to identify redundancy or easy

expressibility. Don't filter out concepts by mistake! Note that some concepts might be very similar to a
formal relation/function/type in the current DSL, but are different in some subtle aspects. For example

, the concept 'two points being on a line' is very similar to the formal relation “def
distinctPointsOnLine (a b : Point) (L : Line)”, but the former allows the two points to be the same
point, while the latter requires the two points to be distinct. For another example, the concept 'a set
of points being on the same side of a line' is very similar to the formal relation “def sameSide (a b
Point) (L : Line)”, but the latter only formalizes the concept that 'two points being on the same side
of a line', while the former allows the set of points to be more than two.

3. x*Reasoning*x: Please carefully analyze concept by concept, compare them with other concepts and the
current DSL to identify redundancy, determine which concepts should be FILTERED OUT (NOT KEEPING), and
provide your detailed step-by-step reasoning x*BEFOREx* outputing your final filtering answer.

Output Format

You *xMUST** provide your final filtering decision as a list of concepts to FILTER OUT (NOT KEEPING) within
triple angle brackets and separated by semi-colons. The name of the concepts you provide should be *x
EXACTLY THE SAMEx% as the name of the concepts in provided concept list!!!

<<< conceptl; concept2; ... >>>

If there is no concept to filter out (KEEPING ALL CONCEPTS), please output an empty list: <<< >>>

Task Context:
»xCurrent DSL Documentation:xx

{dsl_doc}
xxConcepts for Filtering:*=*

{concept_list}

D.1.3 STEP 3: CDG CONSTRUCTION

35

Under review as a conference paper at ICLR 2026

You are an expert in mathematics, logic, programming languages, and formal verification with deep knowledge of
all fields of mathematics and formalization of mathematics. You are given a list of mathematical
concepts in English, a list of previously analyzed concepts, and the documentation of a Domain-Specific
Language (DSL) for formal mathematics. {additional_specs}

Your task is to analyze the dependency structure of each concept and determine how they can be formalized in
the DSL.

Dependency Analysis
For each concept in the list, you need to determine:

1. »xDirect Expressibilityx+: Can this concept be directly expressed using existing formal types, relations,
and functions in the current DSL? If yes, list the specific DSL elements that can express this concept.

2. x*xConcept Dependenciesxx:If not directly expressible, what other mathematical concepts (with no direct
correspondents in the current DSL) does this concept depend on? List all the prerequisite concepts
needed to define this concept. These dependencies should be abstract mathematical concepts, not specific

instances.

3. xxFormalization Statusxx: Based on the analysis, classify the concept as:
— “directly_expressible”: Can be directly expressed using existing DSL elements
- “needs_dependencies”: Requires other concepts to be defined first, but ultimately formalizable
- “impossible”: Cannot be expressed in the current DSL and would require fundamental DSL extensions

Mathematical Concepts

There are 3 types of mathematical concepts you can add as additional dependencies:

1. xxDefinitions of Mathematical Objects+x: Point, Line, Integer, Real Number, Series, Group, Ring, etc.

2. *+xRelations between Mathematical Objectssx: 'a point being on a line', 'an integer being even', 'a group
being a subgroup of another group', etc.

3. x*xFunctions mapping Mathematical Objects to Mathematical Objectsx*: 'the Euclidean distance function
mapping two points in Euclidean space to a real number', 'the Determinant function mapping a square
matrix to a real number', etc.

Guidelines

1. »xConservative Classification*x: When in doubt between 'needs_dependencies' and 'impossible', choose '
needs_dependencies'. Only mark as 'impossible' if the concept fundamentally cannot be expressed in the
mathematical framework of the DSL. When in doubt between 'directly_expressible' and 'needs_dependencies
', choose 'directly_expressible' since the DSL is designed to be expressive enough for these concepts
and you should **TRY YOUR BEST«x* to find directly expressible formal correspondents for these concepts.

2. %xxDirect Correspondents Analysisx*: Be precise about what DSL elements (types, relations, functions) can
express each concept. Quote the exact DSL definitions and explain how they relate to the concept.

3. *xConcept Dependencies Analysisxx: First of all, %*TRY YOUR BEST NOT TO** introduce new concepts unless
absolutely necessary!!! If you must introduce new concepts, note that the list of concepts you are
analyzing might have dependencies on each other. It's great if we can define one concept on top of
another, but be careful about circular dependencies! NO TWO CONCEPTS CAN DEPEND ON EACH OTHER!!!

4. x*xConcept Dependencies Criteriaxx: When adding new mathematical concepts as dependencies, you MUST follow
these criteria:

a. x+xPrecision*: When adding new mathematical concepts as dependencies, you MUST be as precise and
detailed as possible. For example 'congruent' is not a precise mathematical relation! You MUST
specify how many arguments and what type of arguments the relation or function takes like 'two
integers being congruent modulo 3', 'two triangles being congruent', 'a list of line segments being
congruent to each other', etc.

b. xxWell-Definednessxx: Please **MAKE SUREx* that each mathematical object, relation, and function you add

as a dependency 1is well-defined, or has a conventionally well-accepted definition. For example, 'two
lines being on oppossing sides of a point' is not well-defined because a point can't partition a
plane into sides.

c. sxAbstractnessxx: The definitions, relations and functions you add as a dependency MUST be abstract i.e.

not involving any particular objects, variables, names in the current statements. For example, 'line
AB being parallel to line CD' is not abstract because it involves the names 'AB' and 'CD'.

4. xxReasoning*x: Please carefully examine concept by concept, recall the definition of each concept, analyze
which other concepts are necessary to define the current concept, which of those have direct
correspondents in the current DSL, and provide your detailed step-by-step reasoning *+*BEFORExx*
generating the JSON output surrounded by triple angle brackets.

Output Format
You **MUSTx+ provide your final analysis in JSON format within triple angle brackets. The JSON should have the
following structure:

" json
{
"concept_name_1": {
"analysis": "detailed step-by-step reasoning for dependency analysis"
"formal_correspondents”: ["list of DSL elements that can express this concept"],
"concept_dependencies™": ["list of prerequisite concepts"],
"status": "directly_expressible|needs_dependencies|impossible",
}
"concept_name_2": {

<<< JSON_OUTPUT_HERE >>>

Task Context:
»xCurrent DSL Documentation:xx

{dsl_doc}

36

Under review as a conference paper at ICLR 2026

»+Previously Analyzed Concepts: =
{previous_analysis}
»xConcepts for Analysis:xx

{concept_list}

D.1.4 STEP 4: CONCEPT FORMALIZATION

You are an expert in mathematics, logic, programming languages, and formal verification with deep knowledge of
all fields of mathematics, proof assistants like Lean, and Domain-Specific Language (DSL) design. You
are given a concept dependency graph (CDG) of mathematical concepts, previous extension file(s)
containing the concepts you have already implemented, and the documentation of a Domain-Specific
Language (DSL) for formal mathematics.

Your task is to extend the current DSL by implementing / formalizing the provided concepts in the CDG based on
the current DSL.

{additional_specs}

Guidelines
1. »xCDG Interpretationsx: In the CDG, for each concept, the field 'status' indicates if we can directly
formalize this concept as a relation, function, abbreviation, alias, etc. in the current DSL. If it is '
directly_expressible', then the field 'formal_correspondents' lists the specific DSL elements that can
express this concept. You xxMUSTxx first try your best to implement the concepts using these '
formal_correspondents'. However, if they contradicts any specifications given above, You should
carefully use your own knowledge and judgement to determine the most appropriate way to implement /
formalize each concept based on the current DSL. If the field 'status' is 'needs_dependencies', then the
field 'concept_dependencies' lists the prerequisite concepts that we need to formalize first before we
can formalize this concept.
2. xxFaithfulness to Original Concept#+: Please try your best to faithfully implement / formalize the original
concept, nothing more and nothing less. For example, if the original concept is a 'a quadrilateral in
2-dimensional Euclidean space', then you should only invovle the four points and four lines that form
the quadrilateral, **no other elements such as the diagonal linesxx!!! Please x%xPAY EXTRA ATTENTION«+* to
this!!! Such subtlety will result in entirely different formalizations.

3. »xCode Reusexx: Please try your best to reuse the helper functions or formalized concepts from the previous
extension file(s) to implement / formalize the current new concepts. Please don't reinvent the wheel!!!

4. xxConsistency with Current DSLxx: Please ensure your extension matches the current DSL in spirit and style.
For example, naming, API convention, formalization choices, etc..

5. xxDocumentationx: Please carefully document every new type, relation, function, axiom, abbrevition, alias,
notation, etc. in your implementation. Please make sure that the style and level of detail are
consistent with the current DSL documentation.

6. xxReasoningxx: Please carefully examine concept by concept, analyze the dependency structure of each
concept, determine the best way to implement / formalize each concept based on the current DSL, and
provide your detailed step-by-step reasoning **BEFOREx* outputing your final implementation.

Output Format

You don't need to re—generate the previous extension file(s), **ONLY** output your implementation of the new
concepts, which will be appended to the previous extension file(s). You x*MUSTx* provide your final
implementation within triple angle brackets.

<<< your entire implementation goes here >>>

Task Context:
»xCurrent DSL Documentation:xx

{dsl_doc}

**Previous Extension File(s) :xx*
{previous_extension_files}

x+Concept Dependency Graph (CDG) :*x*

{cdg_list}

D.1.5 STEP5: FORMALIZATION REFACTORING

You are an expert in mathematics, logic, programming languages, and formal verification with deep knowledge of
all fields of mathematics, proof assistants like Lean, and Domain-Specific Language (DSL) design. You
are given the documentation of the current Domain-Specific Language (DSL) for formal mathematics and
file(s) containing extensions (new definitions, relations, functions, axioms, theorems, notations, etc.)
to this DSL.

Your task is to refactor the extension file to improve its quality, maintainability, and consistency with the
DSL design principles.

{additional_specs}
Guidelines
1. xxAggressive Refactorings+: You should be bold in refactoring the extension file:

- **Eliminate Redundancyxx: If multiple definitions express the exact same mathematical concept with
different levels of generality, keep only the most general and well-abstracted version.

37

Under review as a conference paper at ICLR 2026

- xxConsolidate Similar Patternsxx: When you find multiple similar definitions that can be unified, remove
the individual ones and create a single, parameterized abstraction

— x%xQuality Over Quantity=xx: It's better to have fewer, well-designed abstractions than many specific,
poorly abstracted ones. You are not required to preserve every single definition from the original
file. Focus on creating a clean, maintainable, and mathematically sound extension.

- x%xPick Best One Onlyxx: If there are many formal relations that are similar to each other, or can
substitute each other, you should either carefully choose one of them, or merge them into a single,
more general and canonical definition. Multiple similar APIs can be confusing to the user, =**BE
CONCISE, BE CONCISE, BE CONCISExx!!!

2. *+xPreserve The Necessarys: Even though you are required to refactor aggressively, you should preserve the
formal concepts are not truely not in the current DSL. It's ok if they might be easy to implement using
the current DSL primitives, but this will enhance the readability and further extendability of the DSL.

3. x*xDocumentationx*: Please carefully update the documentation of every relation, function, axiom,
abbrevition, alias, notation, etc. you refactored. Please make sure that the style and content are
consistent with the current DSL documentation, NOT the comments in the extension file(s). If there are
comments in the extension file(s) that are not consistent with the DSL documentation, please refactor
them as well.

4. xxReasoningxx: Please carefully analyze the extension file, identify areas for improvement according to the
refactoring criteria, and provide your detailed step-by-step reasoning x*BEFOREx% outputting your
refactored implementation.
Output Format
You x*MUSTx% provide your refactored Lean file within triple angle brackets. The output should be a complete,
valid Lean file that can be appended to the DSL. Do not include any import statements - they will be
handled separately.

<<< your refactored implementation goes here >>>

Task Context:
»+Current DSL Documentation:sx

{dsl_doc}
»xExtension File to Refactor:x

{extension_file}

D.1.6 STEP 6: DOCUMENTATION UPDATE

You are an expert in mathematics, logic, programming languages, and formal verification with deep knowledge of
all fields of mathematics, proof assistants like Lean, and Domain-Specific Language (DSL) design. You
are given the documentation of the current Domain-Specific Language (DSL) for formal mathematics and
extension file(s) containing new definitions, relations, functions, axioms, theorems, notations, etc.
that have been added to this DSL. Your task is to generate a new DSL documentation to incorporate all
the new elements from the extension file(s), while preserving the previous documentation intact.

{additional_specs}

Guidelines
1. »*xPreserve Existing Contentxx: Keep all existing documentation content unchanged. This is a **MUST#*x*.

2. xxConsistency with Current Docxx: Keep the style and content consistent with the current DSL documentation.
For example, if the current documentation explains the syntax or gives usage examples, then you should
do the same.

3. **Reasoning+«+: Please carefully analyze the extension file(s), identify all new elements that need to be
documented, determine the best way to integrate them into the existing documentation structure, and
provide your detailed step-by-step reasoning **BEFOREx* outputting the new updated DSL documentation.

Output Format

You »*MUST+* provide the new DSL documentation within triple angle brackets. The output should be a complete,
new version of the DSL documentation that includes everything: both elements from the current DSL
documentation and new documentation for the extension file(s).

<<< your entire new DSL documentation goes here >>>

Task Context:
»xCurrent DSL Documentation:xx

{dsl_doc}
»xExtension File(s) to Document:*x

{extension_files}

D.2 HIERARCHICAL DECOMPOSITION

D.2.1 LEANEUCLIDPLUS INSTRUCTIONS WITH LEARNED ABSTRACTION

You are given an English Statement of a theorem from Euclidean Geometry. Note that all points and lines
mentioned in the statement are distinct, unless otherwise implied by some premises.

38

Under review as a conference paper at ICLR 2026

Your task is to first semi-formalize the English Statement into a Json-style structure (see Guidlines #2),
then formalize each clause in the Semi-Formalized Structure resulting in a Formalized Structure, and
finally convert the Formalized Structure into a formal statement in Lean 4 strictly adhering to the
following formal definitions and guidelines.

-- Basic Geometric Sorts —-
axiom Point : Type

axiom Line : Type

axiom Circle : Type

—— Inductive Types for Geometric Entities —-—
inductive Angle | right | ofPoints (A B C : Point)
inductive Segment | endpoints (a b : Point)
inductive Triangle | ofPoints (a b ¢ : Point)

-- Notations and Macros for Geometric Entities --
"| (a-b) |" means the length of the line segment (type \\mathbb{R}, not type Segment) between point a and point
b.

"\\angle a:b:c" means the degree of the angle (type \\mathbb{R}, not type Angle) formed by points a, b, and c
, where b is the vertex of the angle and a and c are points respectively on the two sides of the angle.
Add parentheses around the angle notation like "(\\angle a:b:c)" to avoid ambiguity.

"\\perp " means the degree of the right angle (type \\mathbb{R}, not type Angle).
"\\triangle a:b:c" means the triangle (type Triangle) formed from points a, b and c.

"Triangle.area \\triangle a:b:c" means the area of the triangle formed by points a, b and c. Add parentheses
around the triangle notation like " (\\triangle a:b:c)" to avoid ambiguity.

-- Relations and Axioms for Geometric Sorts --—
namespace Point
def onLine (a : Point) (L : Line) -- point a is on line L. The syntax is “a.onLine L".

def sameSide (a b : Point) (L : Line) -- point a and b are on the same side of line L. They both are not on
line L, but can be the same point. The syntax is “a.sameSide b L.

def opposingSides (a b : Point) (L : Line) -- distinct point a and b are on opposite sides of line L. They
both are not on line L. The syntax is “a.opposingSides b L~.

def onCircle (a: Point) (C: Circle) -- point a is on circle C. The syntax is “a.onCircle C~.

def insideCircle (a: Point) (C: Circle) -- point a is inside circle C. It can't be on the circle. The syntax
is “a.insideCircle C~.

def outsideCircle (a: Point) (C: Circle)-- point a is outside circle C. It can't be on the circle. The syntax
is "a.outsideCircle C~.

def isCentre (a: Point) (C: Circle) -- point a is on the unique center circle C. The syntax is “a.isCentre C~.

def isMidpointOf (m a b : Point) -- point m is the midpoint of segment AB iff m is between a and b (hence all
three are distinct and collinear), and |AM| = |MB|. The syntax is “m.isMidpointOf a b~.

def isMidpointOfSegmentEndpoints (m a b : Point) (SP : Segment) -- same as “m.isMidpointOf a b~ with an

explicit segment witness. Requires “SP = Segment.endpoints a b~. The syntax is “m.
isMidpointOfSegmentEndpoints a b SP~.

def onExtensionBeyondB (p a b : Point) -- point p lies on the extension of segment AB beyond endpoint B iff ~
between a b p°. The syntax is “p.onExtensionBeyondB a b~ .

def onExtensionBeyondA (p a b : Point) -- point p lies on the extension of segment AB beyond endpoint A iff ~
between b a p . The syntax is “p.onExtensionBeyondA a b~ .

end Point

namespace Line
def intersectsLine (L M : Line) -- two lines L and M intersect at some point. They can be the same line. The
syntax is “L.intersectsLine M".

def intersectsCircle (L : Line) (C : Circle) -- line L and circle C intersect. The syntax is "L.
intersectsCircle C~.
end Line

namespace Circle
def intersectsCircle (Cl C2: Circle) -- circle Cl and C2 intersect. The syntax is “Cl.intersectsCircle C2~.
end Circle

namespace Triangle
def sideAB (a b : Point) (_c : Point) : Segment -- the side AB of triangle ABC as a segment, i.e. ~Segment.
endpoints a b”. The syntax is "Triangle.sideAB a b c~.

def sideBC (_a : Point) (b c : Point) : Segment -- the side BC of triangle ABC as a segment, i.e. ~Segment.
endpoints b c¢”. The syntax is “Triangle.sideBC a b c~.

39

Under review as a conference paper at ICLR 2026

def

end

sideCA (a : Point) (_b : Point) (c : Point) : Segment —-- the side CA of triangle ABC as a segment, i.e.
Segment.endpoints ¢ a”. The syntax is “Triangle.sideCA a b c”
Triangle

-- Geometric Relations --

def

def

distinctPointsOnLine (a b : Point) (L : Line) -- points a and b are distinct and on line L. The syntax is
“distinctPointsOnLine a b L~.

between (a b ¢ : Point) -- mutually distinct points a, b and c are collinear and ordered. Point b is
between point a and c. The syntax is “between a b c”.

formTriangle (a b ¢ : Point) (AB BC CA : Line) -- mutually distinct points a, b and ¢ form a triangle,
where point a and b are on line AB, point b and ¢ are on line BC, point a and c are on line CA. The
lines AB, BC, and CA must be distinct. Note that the order and correspondence of arguments a, b, c, AB,
BC, CA is strictly required i.e. a and b must be on AB, b and c must be on BC, a and ¢ must be on CA,
and they must be passed in the exact order! The syntax is ~formTriangle a b ¢ AB BC CA~.

formRectilinearAngle (a b c¢ : Point) (AB BC : Line) -- points a, b and c form a rectilinear angle, where
b is the vertex of the angle and a and c are points respectively on the sides AB and BC. The sides AB
and BC can be the same line, the points a and c can be the same point, but the vertex b must be distinct
from a and c. The syntax is ~formRectilinearAngle a b ¢ AB BC~.

formParallelogram (a b ¢ d : Point) (AB CD AC BD : Line) -- mutually distinct points a, b, d, and c (in
clockwise/counterclockwise order i.e. ad is a diagonal) form a parallelogram, where points a and b are
on line AB, points c and d are on line CD, points a and c are on line AC, and points b and d are on line
BD. The lines AB, CD, AC, and BD must be distinct. Note that the order and correspondence of arguments
a, b, ¢, d, AB, CD, AC, BD is strictly required i.e. a and b must be on AB, c and d must be on CD, a and
c must be on AC, b and d must be on BD, and they must be passed in the exact order! The syntax is
formParallelogram a b ¢ d AB CD AC BD™.

twoDistinctLinesIntersectAtPoint (L M : Line) (i : Point) -- two distinct lines L and M intersect at point
i, i.e. L != M, i lies on both L and M, and “L.intersectsLine M". The syntax is
twoDistinctLinesIntersectAtPoint L M i~.

sequentiallyAligned (pts : List Point) -- a list of points is sequentially aligned (ordered collinear
chain) iff every consecutive triple (p_i, p_i+_1, p_i_2) satisfies “between p_i p_i+_1 p_i_2".
No extra line or global distinctness is required beyond betweenness. The syntax is “sequentiallyAligned
[P_0, p_1, p_2, ...]1".

sequentiallyAlignedThreeOrMore (pts : List Point) -- like “sequentiallyAligned”, additionally requiring
the list to contain at least three points. The syntax is “sequentiallyAlignedThreeOrMore [p_0, p_1l, p\
2, ...

twoSetsOpposingSidesOnLine (xs ys : List Point) (L : Line) -- two lists of points lie on opposite sides of
line L: (1) no point from either list is on L; (2) every cross-pair (x \\in xs, y \\in ys) is on
opposing sides of L. The syntax is ~twoSetsOpposingSidesOnLine [x_1, x_2, ...] [y_1, y_2, ...] L~.

supplementaryAngles (a b ¢ d e £ : Point) -- angles \\angle a:b:c and \\angle d:e:f are supplementary
iff (\\angle a:b:c) + (\\angle d:e:f) = \\perp + \\perp . The syntax is “supplementaryAngles a b c d
e f7.

parallel (L M : Line) —-- two lines L and M are parallel iff they are distinct and do not intersect. The
syntax is “parallel L M".

nonCollinearPoints (a b ¢ : Point) -- points a, b, c are non-collinear iff Triangle.area (\\triangle a:b:
c) != 0. The syntax is “nonCollinearPoints a b c~.

segmentFromVertexToOppositeSide (v sl s2 p : Point) (SP : Segment) -- a segment SP connects vertex v to a
point p on the opposite side sls2, witnessed by “between sl p s2°. Requires “SP = Segment.endpoints v p
*. The syntax is ~segmentFromVertexToOppositeSide v sl s2 p SP~.

congruentSegments (a b ¢ d : Point) -- segments AB and CD are congruent iff [|AB| = |CD|. The syntax is ~

congruentSegments a b c d”.

perpendicularAt (L M : Line) (i a ¢ : Point) —--— lines L and M are perpendicular with right angle at
witness point i using points a on L and c¢c on M iff: (1) “L.intersectsLine M"; (2) ~formRectilinearAngle
aicLM (soa,i lie on L and i,c lie on M, with i as the vertex); (3) (\\angle a:i:c) = \\perp . The
syntax is “perpendicularAt L M i a c”.

equallengthRatios (a b ¢ d e £ g h : Point) -- equality of two segment-length ratios: (|AB| / |CD|) = (|EF
| / |GH|). This is a real-number equation; no non-zero-length guard is enforced. The syntax is
equallengthRatios a b ¢ d e £ g h™.

triangleAngleSum (a b c : Point) -- for non-degenerate triangle ABC (i.e. “nonCollinearPoints a b c¢7), the
interior angle sum is \\perp + \\perp : (\\angle b:a:c) + (\\angle a:b:c) + (\\angle a:c:b) = \\
perp + \\perp . The syntax is “triangleAngleSum a b c”.

trianglesSimilar (a b ¢ d e £ : Point) -- triangles ABC and DEF are similar iff: (1) corresponding angles
are equal: \\angle BAC = \\angle EDF, \\angle ABC = \\angle DEF, \\angle ACB = \\angle DFE; (2)
corresponding sides are proportional: |AB|/|DE| = |BC|/|EF| and |BC|/|EF| = |CA|/|FD|. The
correspondence is A<->D, B<->E, C<->F. No non-degeneracy is assumed. The syntax is “trianglesSimilar a b
cde f7.

trianglesCongruent (a b ¢ d e f : Point) —— triangles ABC and DEF are congruent iff: (1) corresponding
angles are equal; (2) corresponding sides are equal: |AB|=|DE|, |BC|=|EF|, |CA|=|FD|. The correspondence
is A<->D, B<->E, C<->F. The syntax is “trianglesCongruent a b ¢ d e f~.

formConvexQuadrilateral (a b ¢ d : Point) (AB BC CD DA : Line) -- ordered points a, b, ¢, d with side-
lines AB, BC, CD, DA form a convex quadrilateral iff: (1) consecutive vertices lie on their side lines
with distinct endpoints: “distinctPointsOnLine a b AB", “distinctPointsOnLine b c¢ BC™, ~
distinctPointsOnLine ¢ d CD”, ~distinctPointsOnLine d a DA™; (2) for each side line, the two nonincident

40

Under review as a conference paper at ICLR 2026

vertices lie on the same side of that line: c.sameSide d AB, d.sameSide a BC, a.sameSide b CD, b.
sameSide ¢ DA. No further distinctness, intersection, or non-collinearity is imposed. The order and
correspondence are strict: AB is the side ab, BC is the side bc, CD is the side cd, DA is the side da,
and they must be passed in this exact order. The syntax is ~formConvexQuadrilateral a b ¢ d AB BC CD DA

def diagonalACOfQuadrilateral (a b ¢ d : Point) (SP : Segment) -- SP is the diagonal AC of the ordered
quadruple (a, b, ¢, d), i.e. “SP = Segment.endpoints a c~. The syntax is ~diagonalACOfQuadrilateral a b
c d sp.

def diagonalBDOfQuadrilateral (a b ¢ d : Point) (SP : Segment) -- SP is the diagonal BD of the ordered
quadruple (a, b, ¢, d), i.e. “SP = Segment.endpoints b d°. The syntax is “diagonalBDOfQuadrilateral a b
c d sp.

def segmentBisectsAngleAtVertex (a b ¢ p : Point) (SP : Segment) (AB BC BP : Line) -- segment BP bisects angle
ABC at vertex b, with: a,b on AB; b,c on BC; b,p on BP; interior witnessed by same-side constraints a.
sameSide p BC and c.sameSide p AB; sub-angles equal (\\angle a:b:p) = (\\angle p:b:c); and “SP =

Segment .endpoints b p . The order is strict: AB is the side ab, BC is the side bc, BP is the carrier
line of the bisector bp, and they must be passed in this exact order. The syntax is ~
segmentBisectsAngleAtVertex a b ¢ p SP AB BC BP~.

def trianglesShareSideBy
(sel_1 : Point -> Point -> Point -> Segment)
(sel_2 : Point -> Point -> Point -> Segment)
(a b cde f : Point) —-- triangles ABC and DEF share a side witnessed by segment selectors “sel_1" and “sel
_2" iff "sel_1l] a b ¢ = sel_2 d e f7. Typical selectors are “Triangle.sideAB”, “Triangle.sideBC", or
“Triangle.sideCA”~. The syntax is “trianglesShareSideBy Triangle.sideAB Triangle.sideBC a b ¢ d e f~.

def equilateralTriangle (a b ¢ : Point) -- triangle ABC is equilateral iff |AB| = |BC| and |BC| = |CA|. The
syntax is “equilateralTriangle a b c”.

def isoscelesAtA (a b c : Point) —-- triangle ABC is isosceles at vertex A iff |AB| = |AC|. The syntax is
isoscelesAtA a b c”.

def isoscelesAtB (a b c : Point) -- triangle ABC is isosceles at vertex B iff |BA| = |BC|. The syntax is ~
isoscelesAtB a b c”.

def isoscelesAtC (a b c : Point) -- triangle ABC is isosceles at vertex C iff |CA| = |CB|. The syntax is
isoscelesAtC a b c”.

def lineCutsTriangleOnABandACAt (a b ¢ p g : Point) (AB BC CA L : Line) -- line L intersects sides AB and AC
of triangle ABC at points p and g respectively, with: “formTriangle a b ¢ AB BC CA"; betweenness
between a p b~ and “between c g a’; and both p and g on L. The order and correspondence are strict: AB
is the side ab, BC is the side bc, CA is the side ca, and L is the cutting line; they must be passed in
this exact order. The syntax is ~lineCutsTriangleOnABandACAt a b ¢ p g AB BC CA L~.

def lineCutsTriangleOnABandBCAt (a b ¢ p g : Point) (AB BC CA L : Line) -- line L intersects sides AB and BC
at points p and g respectively, with: “formTriangle a b ¢ AB BC CA"; betweenness “between a p b~ and ~
between b g c¢”; and both p and g on L. The order and correspondence are strict as above. The syntax is
lineCutsTriangleOnABandBCAt a b ¢ p g AB BC CA L.

def lineCutsTriangleOnACandBCAt (a b ¢ p g : Point) (AB BC CA L : Line) -- line L intersects sides AC and BC
at points p and g respectively, with: “formTriangle a b ¢ AB BC CA"; betweenness “between c p a~ and ~
between b g c¢”; and both p and g on L. The order and correspondence are strict as above. The syntax is
lineCutsTriangleOnACandBCAt a b ¢ p g AB BC CA L~.

def lineCutsABandACParallelBC (a b ¢ p g : Point) (AB BC CA L : Line) -- line L cuts sides AB and AC at p and
g and is parallel to side BC; requires ~lineCutsTriangleOnABandACAt a b ¢ p g AB BC CA L~ and “parallel
L BC™. The syntax is ~lineCutsABandACParallelBC a b ¢ p q AB BC CA L~.

def lineCutsABandBCParallelCA (a b ¢ p g : Point) (AB BC CA L : Line) -- line L cuts sides AB and BC at p and
q and is parallel to side CA; requires ~lineCutsTriangleOnABandBCAt a b ¢ p g AB BC CA L~ and ~“parallel
L CA”. The syntax is ~lineCutsABandBCParallelCA a b ¢ p g AB BC CA L~.

def lineCutsACandBCParallelAB (a b ¢ p g : Point) (AB BC CA L : Line) -- line L cuts sides AC and BC at p and
g and is parallel to side AB; requires ~lineCutsTriangleOnACandBCAt a b ¢ p g AB BC CA L~ and “parallel
L AB". The syntax is ~lineCutsACandBCParallelAB a b ¢ p g AB BC CA L".

-- Guidelines --
1. Formalized Statement Format: Your formalized statement must be of the form <<< \\forall (...), P_1 \\land
P_2 ... \\land P_n -> Q_1 \\land Q_2 ... \\land Q_m >>> where where each P_i and Q_i is built from

the above building blocks using conjunction (\\land) disjunction (\\lor) and negation (\\neg). All
variable declarations must be placed in parentheses after the universal quantifier. You shouldn't
declare variables or use quantifiers in any other places! For different types of variables, you should
put them in different parentheses. For example, if the English statement contains "The points A, B are
on line AB", then you should declare (A B : Point) (AB : Line) in the formalized statement.

2. Semi-Formalized Structure: For the Semi-Formalized Structure, you must output a json5-style structure (you
can interleave comments in between data) with 2 fields "premises" and "conclusions", and the value of
each filed is a list of clauses.

"premises": [
English clause 1,
English clause 2,

1,

"conclusions": [
English clause 1,
English clause

N

41

Under review as a conference paper at ICLR 2026

Each clause is an English sentence representing a proposition. The relationship between premises and
conclusions is implication. The premises are the antecedent and the conclusions are the consequent. The
relationship between each clause is conjunction. You should try to make each clause as atomic as
possible i.e. within a clause, there shouldn't be any logical operators. If there has to be some, you
should use as few logical operators within a clause as possible, and use multiple clauses instead to
express the same meaning.

3. Formalized Structure: The structure is exactly the same as the Semi-Formalized Structure, but you will
formalize each English clauses in premises and conclusions into Lean expressions, to get the Formalized

Structure.
{

"premises": [
Formalized clause 1,
Formalized clause 2,

1,

"conclusions": [
Formalized clause 1,
Formalized clause 2,

For the formalization of each clause, you should first try to find if there is a direct corresponding formal
relation provided. For example, the English sentence "distinct points a is between b and c" has a
potential directly corresponding formal relation “between”. You should then double check the detailed
description of the formal relation to see if the details match the actual English clause, and pass the
arguments in the correct order specified in the description: “between b a c¢”. If no direct formalization

is available, or the relation description does not match, you should formalize it equivalently using
available operators, constants, and other formal relations. For example, "the points A, B, C form an
inscribed triangle in circle \\alpha " doesn't have any direct formalization, but it's equivalent to "
the points A, B, C form a triangle, and they are all on circle \\alpha ", which can be formalized as ~
formTriangle A B C AB BC CA \\land A.onCircle \\alpha \\land B.onCircle \\alpha \\land C.onCircle
\\alpha ~.

4. Implication: There can be only a single implication in the formula; either side of the implication must be
a conjunction of formulae.

5. Variable Naming: You should always use the EXACT SAME variable name in the formalized statement as the one
in the English statement. For example, if the English statement contains "Point A, B is on line AB",
then you should use the variable names (A B : Point) (AB : Line) in the formalized statement. x*You must

not add any prefix or suffix to the variable names like "point_A" or "AB_line"!!!xx Somtimes the
English statement might first refer to a line as "AB", but later use "BA" for the same line, in which
case you should use the first occurring name "AB" for that same line consistently in your formalized
statement.

6. Numeric Values Restrictions: Denote 90-degree angle by \\perp , 180-degree angle by \\perp + \\perp , etc.
Also, when referring to segments, we always mean its length (i.e. |(a-b)]|).

7. Quantified Variables: Your quantified variables must be limited to primitive geometric types: points, lines
, and circles. ALL bound variables that you declared must be mentioned in some clauses later.

8. Intermediate Variables: You should never define an intermediate variable inside the proposition. For
example, "let \\alpha := (something);" is not allowed.

9. Numeric Operators: You should only uses addition (+), subtraction (-), multiplication (%), and division
(/). Avoid using other mathematical operators such as exponentiation.

10. Equality Relation: You can use the equality relation (=) and non-equality relation (!=) to compare points,
lines, circles, angles, and line segments. However, please *xavoidxx using the equality relation to
compare expressions and numeric values as it's not supported by the current formal language
implementation. For example, you should write "|(a-b)| = |(c-d)|" instead of "|(a-b)| / |(c-d)| = 1".

11. Angle Notation: When you see a short-hand angle notation like "\\angle X", this means that X is the
vertex of the angle. You should always expand it to the full angle notation "\\angle A X B" (formally,
\\angle A:X:B) where A and B are points respectively on the two sides of the angle.

12. Syntax Tip 1: You should only use the provided relations and axioms. Please examine the provided axioms
and relations carefully to find the best way to express your proposition. Don't create or use new ones
that are not provided above! When you see an error message that contains "unknown identifier", it means
that you might have used some relations that are not provided in the guidelines. Please double-check
this, or your formalized statement won't compile!

13. Syntax Tip 2: You must declare all Points, Lines, and Circles that you will use in the formal statement.
You shouldn't declare any extra Points, Lines, or Circles that are not used in the formalized statement.
When you see an error message that contains "unknown identifier", it means that you might have
forgotten to declare some Points, Lines, or Circles that are used in the formalized statement. Please
double-check this, or your formalized statement won't compile!

14. Syntax Tip 3: You shouldn't declare any extra Points, Lines, or Circles that are not used in the
formalized statement. When you see an error message that contains "Unexpected expression", it means that
you might have declared some extra variables that are not used in the formalized statement. Please
double-check this, or your formalized statement won't compile!

15. Syntax Tip 4: A formalized angle \\angle A:B:C always expects three point identifiers separated by colons
! Even though you will see the English expressions like "\\angle Y", but "\\angle Y" is not a valid
formalization. You should formalize it into "\\angle X:Y:2" where X, Y, and Z are the three points that

form the angle. When you see an error message like "unexpected token ')'; expected ':'", it means that
you have not provided the correct number of identifiers for the angle, or you need to surround the angle

42

Under review as a conference paper at ICLR 2026

with parentheses like (\\angle X:Y:Z) to avoid ambiguity. Please double-check this, or your formalized
statement won't compile!

16. Reasoning: Please think carefully step-by-step and state your intermediate reasoning steps before you semi
-formalize each clause when converting the English Statement to Semi-Formalized Structure, formalize
each clause when converting the Semi-Formalized Structure into Formalized Structure, and write down the
final Formalized Statement. *%This is crucial!!! Please do not skip this!!! If there are examples
provided by the user, you must strictly follow the format and reasoning in the examples!!!xx

17. Response Format: Present your formalized Lean expression within triple angle brackets (<<< Lean expression
here >>>). Do not add any annotations/explanations, or markdown syntax.

D.2.2 LEANEUCLIDPLUS ONE-SHOT EXAMPLE

Here is an example:
English Statement:

There are two triangles \\triangle GHJ and \\triangle IFJ with a shared vertex J. The lines GI and HF
intersect at point J. The point J lies between G and I, and also lies between H and F.

Given G J / I J =H J / F J. Complete the proof that \\triangle G H J ~ \\triangle I F J.

Semi-Formalized Structure:

/*

To semi-formalize the English Statement into a structure of premises and conclusions, we will examine the
English Statement sentence by sentence, and break down each sentence into a natural language clause
that is as atomic as possible.

*/
{
"premises": [
/x

The sentence "There are two triangles \\triangle GHJ and \\triangle IFJ with a shared vertex J." first
declares 2 triangles \\triangle G H J and \\triangle I F J.

From the instructions, we know that all points and lines are distinct, so it also declares 5 distinct
points: H, J, G that form triangle \\triangle G H J, and I, F, J that form triangle \\triangle
IFJ.

We can break down the sentence into the following 2 premises:

*/

"The distinct points G, H, and J form a triangle \\triangle G H J"

"The distinct points I, F, and J form a triangle \\triangle I F J"

/*

For now, the premises above only partially express the fact that points G, H, J, I, F are all distinct
, and some lines (sides of the triangles) are distinct.

However, we might be able to incorporate and express this distinctness relation in later premises, so
we don't create additional premises for them right now.

Instead, we will first examine all sentences in the English statement and eventually create premises
for the remaining unexpressed distinctness relations if necessary.
*/

/*
The sentence "The lines GI and HF intersect at point J." first declares 2 lines: GI, HF.

From the instructions, we know that all points and lines are distinct, so it also declares 4 distinct
points and 2 distinct lines: H, F on line HF, G, I on line GI.

It then states an intersection relation: the lines GI and HF intersect at point J.

If we don't explicitly state the distinctness of the points and lines, it might be interpreted that
either G and I can be the same point, H and F can be the same point, or GI and HF are the same
line, which is not what we want.

Therefore, we can break down the sentence into the following 3 premises:

*/

"H and F are distinct points on line HF"

"G and I are distinct points on line GI",

"The distinct lines GI and HF intersect at point J"

/*

Since we had explicitly expressed that the points G, H, J are mutually distinct, and that the points I
, F, J are mutually distinct, we have also expressed all distinctness relations between the
points G, H, J, I, F except for the distinctness relation between G and F, H and I.

If G were the same as F, then GI (FI) would intersects HF at point F as well as point J, which means
that either J = F or GI = HF, which contradicts the fact that J and F are distinct points or GI

and HF are distinct lines. Therefore, G and F must be distinct points.

If H were the same as I, following the exact same reasoning, we will get a contradiction. Therefore, H
and I must be distinct points.

Therefore, we checked that all distinctness relations among the points G, H, I, F are expressed. There
is only one more distinctness relation left to check: the lines GH and FI are distinct.

43

Under review as a conference paper at ICLR 2026

If GH were the same as FI, we would have the intersection of GI and HF, point J also lying on GH (FI),
which contradicts the fact that G, H, and J (I, F, and J) form a triangle. Therefore, GH and FI
must be distinct lines.

Therefore, we checked that all distinctness relations among the points and lines are expressed.

*/

/*
The sentence "The point J lies between G and I, and also lies between H and F." states order relations
the point J is between G and I, and also between H and F.

If we don't explicitly state the distinctness of the points, it might be interpreted that J can be the
same as G or I, or J can be which is not what we want.

Therefore, we have the following 2 premises:

*/

"Among the distinct points G, J, I, the point J is between G and I",
"Among the distinct points H, J, F, the point J is between H and F",

/*
The sentence "Given G J / I
segments: G J / I J =

H / F J." states a numeric equation between the ratios of line
J/ J.

J J

H F

Therefore, we have the following premise:

*/

"The ratio of segment GJ to segment IJ equals the ratio of segment HJ to segment FJ, denoted as G J /
IJ=HJ/FJ",

"conclusions": [

/%
The sentence "Complete the proof that \\triangle G H J ~ \\triangle I F J." states the goal of the
proof: to show that the triangles \\triangle G H J and \\triangle I F J are similar.

Therefore, we have the following conclusion:

*/

"The triangles \\triangle G H J and \\triangle I F J are similar, denoted as \\triangle G H J ~ \\
triangle I F J"

Formalized Structure:

/%

*/

To convert the Semi-Formalized Structure into a Formalized Structure, we will examine the natural language

clauses in the Semi-Formalized Structure one by one, and formalize each into a formal clause that
is well-formed and well-defined according to the guidelines.

"premises": [

/*
The clause "The distinct points G, H, and J form a triangle \\triangle G H J" has a potential direct
formalization in the guidelines: ~formTriangle™.

We double check the description of the ~formTriangle” relation: "mutually distinct points a, b and c
form a triangle, where point a and b are on line AB, point b and c are on line BC, point a and c
are on line CA. The lines AB, BC, and CA must be distinct".

The mutual distinctness of points in our target clause matches the description of "mutually distinct
points a, b and c". By definition, the 3 points that form a triangle must be non-collinear,
which matches the description "The lines AB, BC, and CA must be distinct". Therefore, this
relation is indeed equivalent to our target clause.

“formTriangle”™ takes (a b ¢ : Point) (AB BC CA : Line) as arguments in order, so we can formalize the
clause as: ~formTriangle G H J GH HJ JG™.

The following clause "The distinct points I, F, and J form a triangle \\triangle I F J" can be
formalized in the exact same way.

Therefore, we can formalize the first 2 clauses as follows:
*/

"formTriangle G H J GH HJ JG",

"formTriangle I F J IF FJ JI",

/x
The clause "H and F are distinct points on line HF" has a potential direct formalization in the
guidelines: “distinctPointsOnLine”.

We double check the description of the “distinctPointsOnLine” relation: "points a and b are distinct
and on line L". It is indeed equivalent to our target clause.

It takes (a b : Point) (L : Line) as arguments in order, so we can formalize the clause as:
distinctPointsOnLine H F HF~

The following clause "G and I are distinct points on line GI" can be formalized in the exact same way.
Therefore, we can formalize the next 2 clauses as follows:
*/

"distinctPointsOnLine H F HF",
"distinctPointsOnLine G I GI",

44

Under review as a conference paper at ICLR 2026

/*
The clause "The distinct lines GI and HF intersect at point J" has a potential direct formalization in
the guidelines: “twoDistinctLinesIntersectAtPoint’.

We double check the description of the “twoDistinctLinesIntersectAtPoint™ relation: "two distinct
lines L and M intersect at point i, i.e. L != M, i lies on both L and M, and "“L.intersectsLine M
", It is indeed equivalent to our target clause since it guarantees that the lines are distinct

It takes (L M : Line) (i : Point) as arguments in order, so we can formalize the clause as follows:
*/
"twoDistinctLinesIntersectAtPoint GI HF J",

/*
The clause "Among the distinct points G, J, I, the point J is between G and I" has a potential direct
formalization in the guidelines: “between”.

We double check the description of the “between™ relation: "mutually distinct points a, b and c are
collinear and ordered. Point b is between point a and c". It is indeed equivalent to our target
clause since it guarantees that the points are mutually distinct.

It takes (a b c : Point) as arguments in order, with Point b being the one that is between Point a and
Point ¢, so we can formalize the clause as: “between G J I~.

The following clause "Among the distinct points H, J, F, the point J is between H and F" can be
formalized in the exact same way.

Therefore, we can formalize the next 2 clauses as follows:
*/

"between G J I",

"between H J F",

/*

The clause "The ratio of segment GJ to segment IJ equals the ratio of segment HJ to segment FJ,
denoted as G J / I J =H J / F J" has a potential direct formalization in the guidelines:
equallengthRatios™.

We double check the description of the “equallengthRatios”™ relation: "equality of two segment-length
ratios: (|AB| / |CD|) = (|EF| / |GH|). This is a real-number equation; no non-zero-length guard
is enforced". It is indeed equivalent to our target clause.

It takes (a b cde f gh : Point) as arguments in order. Therefore, the parameters a, b corresponds
our concrete arguments G and J, the parameters c, d corresponds to I and J, the parameters e, f
corresponds to H and J, and the parameters g, h corresponds to F and J, so we can formalize the
clause as follows:
*/
"equallengthRatios G J I J H JF J"
I
"conclusions": [
/*
The clause "The triangles \\triangle G H J and \\triangle I F J are similar, denoted as \\triangle
G H J ~ \\triangle I F J" has a potential direct formalization in the guidelines:
trianglesSimilar”

We double check the description of the “similar” relation: "triangles ABC and DEF are similar iff: (1)
corresponding angles are equal: \\angle BAC = \\angle EDF, \\angle ABC = \\angle DEF, \\
angle ACB = \\angle DFE; (2) corresponding sides are proportional: |AB|/|DE| = |BC|/|EF| and
BC|/|EF| = |CA|/|FD|. The correspondence is A<->D, B<->E, C<->F. No non-degeneracy is assumed".
It is indeed equivalent to our target clause.

We check that the point G corresponds to the point I, the point H corresponds to the point F, and the
point J corresponds to the point J.

The “trianglesSimilar”™ relation takes (a b c d e f : Point) as arguments in order. Therefore, the
parameters a, b, ¢ corresponds our concrete arguments G, H, J, the parameters d, e, f
corresponds to I, F, J, so we can formalize the clause as follows:

*/

"trianglesSimilar G H J I F J"

Formalized Statement:

Before converting the Formalized Structure into a Formalized statement, we first need to declare all the
geometric objects that are mentioned in the clauses of the Formalized Structure as variables.

According to the guidelines, since all our declared variables will be bounded by a universal quantifier \\
forall , we shouldn't declare any extra variables that are not mentioned in any clauses of Formalized

Structure.

We will examine the clauses in the Formalized Structure one by one, and declare variables for the mentioned
geometric objects in order.

The first 2 clauses, ~formTriangle G H J GH HJ JG°, and ~formTriangle I F J IF FJ JI°, require the declaration
of Points: G, H, J, I, F, and Lines: GH, HJ, JG, IF, FJ, JI.

The next 2 clauses, “distinctPointsOnLine H F HF~, and “distinctPointsOnLine G I GI°, requires the additional
declaration of Lines: HF, GI.

The remaining clauses require no additional declarations.

45

Under review as a conference paper at ICLR 2026

Therefore, we need to declare all and only the following geometric objects as variables:
(GHJIF : Point) (GH HJ JG IF FJ JI HF GI : Line)

Now we can combine the declarations, premises, and conclusions to convert the Formalized Structure to a
Formalized Statement. According to the guidelines, we will do the following:

Quantify the declared variables correctly.

Use the conjunction of all formal clauses in the premises as the antecedent.

Use the conjunction of all formal clauses in the conclusions as the consequent.

Connect the antecedent and consequent with an implication (->).

Wrap the entire Formalized Statement with triple angle brackets (<<< Lean expression here >>>) for parsing.

G s W N e

Finally, we have the Formalized Statement:

<<< \\forall (GHJIF : Point) (GH HJ JG IF FJ JI HF GI : Line), formTriangle G H J GH HJ JG \\land
formTriangle I F J IF FJ JI \\land distinctPointsOnLine H F HF \\land distinctPointsOnLine G I GI \\
land twoDistinctLinesIntersectAtPoint GI HF J \\land between G J I \\land between H J F \\land
equallengthRatios G J I J H JF J -> trianglesSimilar G H J I F J >>>

D.2.3 PROOFNET-HARD INSTRUCTIONS WITH LEARNED ABSTRACTION

You are given an English Statement of a mathematical theorem. Target environment: Lean 4.7.0-rc2 with Mathlib4
Do NOT use Lean 3 or deprecated identifiers. Use only current Lean 4/Mathlib4 names and notations.

Your task is to formalize the English Statement into a formal theorem in Lean 4 using the Mathlib library and
no other libraries, strictly adhering to the following formal definitions and guidelines.

Here are an extra set of helpers you can x*DIRECTLY USExx in addition to Mathlib:

import Mathlib

/=t

This file extends Mathlib with a small, self-contained collection of reusable
definitions used in undergraduate-level formalization tasks. The design
emphasizes generality, concise naming, and consistency with Mathlib conventions.

Contents:

1. Iterated square-root map on \\mathbb{R}>=0 and a recursive sequence:
- “nnrealSqgrt2PlusSqrt” : x |-> sqgrt(2 + sqgrt(x)) on \\mathbb{R}>=0
- “nnrealSqrt2” : the nonnegative real sqrt(2)
- “nnreallterSqrtSeq” : the sequence defined by s_0 = sqgrt(2), s_{n+l} = sqgrt(2+sqrt(s_n))

2. Simple sequence predicates and examples:
— "StrictlyBoundedAboveBy~ : strict upper bound predicate for sequences
- “sqgrtSuccDiff” : the real sequence n |-> sqgrt(n+l) - sqgrt(n)

3. Comparability of topologies:
- “TopologiesComparable™ : t <= u \\lor u <=t

4. Subbasis and generated topologies on \\mathbb{R}:
- "IsSubbasisFor™ : a family is a subbasis for a topology if the topology is generated from it
- "LowerLimitSubbasis™ and ~sorgenfreyTopology™ (lower limit / Sorgenfrey line)
- "KNatRecip™, “KTopologySubbasis™, and “kTopology™ (K-topology on \\mathbb{R})
- "RationallooSubbasis”™ and “realTopologyFromRationalIoo™ (topology from rational intervals)

5. Pointwise convergence on a set and limit points:
— “UnitInterval® : the type Icc 0 1

— “powSegOnUnitInterval”™ : the sequence of functions x |-> x”n on the unit interval
- “powLimitOnUnitInterval”™ : its pointwise limit

— “PointwiseConvergesOn”~ : pointwise convergence on a set

— "IsLimitPoint® and “LimitPointCompact”™ : limit points and limit point compactness

6. Nested closed nonempty families:

- "NestedClosedNonempty™ : antitone closed nonempty families

- "NestedClosedNonemptyInterNonempty™ : their intersection is nonempty
All definitions are marked with ~
-/

@[simp]” as requested.

noncomputable section

open Real Filter Set TopologicalSpace
open scoped NNReal

/-— The function on \\mathbb{R}>=0 given by “x |-> sgrt(2 + sqgrt(x)) . -/
@[simp]
def nnrealSqrt2PlusSgrt (x : \\mathbb{R}>=0) : \\mathbb{R}>=0 :=
\\langle Real.sgrt ((2 : \\mathbb{R}) + Real.sqgrt x), Real.sqrt_nonneg _\\rangle

/-- The nonnegative real number “sqrt(2) . -/
Q@[simp]
def nnrealSqrt2 : \\mathbb{R}>=0 :=
\\langle Real.sgrt (2 : \\mathbb{R}), Real.sqrt_nonneg 2\\rangle

/-- The recursively defined sequence on \\mathbb{R}>=0:

46

Under review as a conference paper at ICLR 2026

s 0 = sqrt(2)° and s (n+l) = sgrt(2 + sqgrt(s n)) . -/
@[simp]
def nnrealIterSgrtSeq : \\mathbb{N} -> \\mathbb{R}>=0
| 0 => nnrealSqrt2
n+l => nnrealSqrt2PlusSqrt (nnreallterSqrtSeq n)

/-- A predicate expressing that a sequence “s : \\mathbb{N} -> \\alpha °~ is strictly bounded above by ~c~
i.e. “"\\forall n, s n<c. -/
@[simp]
def StrictlyBoundedAboveBy {\\alpha : Typex} [LT \\alpha] (s : \\mathbb{N} -> \\alpha) (c : \\alpha
Prop :=
\\forall n, s n <c

/-— The real sequence "n |-> sgrt(n + 1) - sqrt(n) . -/
@[simp]
def sqgrtSuccDiff (n : \\mathbb{N}) : \\mathbb{R} :=

Real.sqgrt ((n : \\mathbb{R}) + 1) - Real.sgrt (n : \\mathbb{R})

/-- Two topologies on the same type are comparable if one is included in the other
(i.e. "t <= u \\lor u<=¢t"). -/

@[simp]

def TopologiesComparable {\\alpha : Typex} (t u : TopologicalSpace \\alpha) : Prop :=

t <= u \\lor u <=t

/-— A family ~S : Set (Set X) 1is a subbasis for a topology "t on X if

“tT is generated from “ST. -/
@[simp]
def IsSubbasisFor {X : Typex} (S : Set (Set X)) (t : TopologicalSpace X) : Prop :=

t = TopologicalSpace.generateFrom S

/-— The generating family for the lower limit (Sorgenfrey) topology on ~\\mathbb{R}:
all half-open intervals ~[a, b)~ with “a < b~. -/
@[simp]
def LowerLimitSubbasis : Set (Set \\mathbb{R}) :=
{U | \\exists a b : \\mathbb{R}, a < b \\land U = Set.Ico a b}

/-— The lower limit (Sorgenfrey) topology on ~\\mathbb{R}",

generated by “{ [a, b) | a <b } . -/

@[simp]

def sorgenfreyTopology : TopologicalSpace \\mathbb{R} :=
TopologicalSpace.generateFrom LowerLimitSubbasis

/== The set K := { 1/n | n \\in \\mathbb{N}+ } \\subseteq \\mathbb{R} , used in the definition of the K-
topology. -/
@[simp]
def KNatRecip : Set \\mathbb{R} :=
{x | \\exists n : PNat, x = (1 : \\mathbb{R}) / ((n : \\mathbb{N}) : \\mathbb{R})}

/-— The generating family for the K-topology on ~\\mathbb{R}™:
all open intervals "~ (a, b) ~ and the punctured intervals ~(a, b) \ K. -/
@[simp]
def KTopologySubbasis : Set (Set \\mathbb{R}) :=
{U | \\exists a b : \\mathbb{R}, a < b \\land (U = Set.Ioo a b \\lor U = Set.Ioo a b \ KNatRecip)}

/-- The K-topology on ~\\mathbb{R}", generated by the subbasis consisting of all sets
of the form “(a, b)" and “(a, b) \ K°, where K = { 1/n | n \\in \\mathbb{N}+ }~. -/
@[simp]
def kTopology : TopologicalSpace \\mathbb{R} :=

TopologicalSpace.generateFrom KTopologySubbasis

/-- The generating family for the topology on ~\\mathbb{R} with a basis of intervals having
rational endpoints: “Ioo a b~ with “a, b \\in \\mathbb{Q} and "a < b~. -/
@[simp]
def RationalIooSubbasis : Set (Set \\mathbb{R}) :=
{U | \\exists a b : \\mathbb{Q}, a < b \\land U = Set.Ioo (a : \\mathbb{R}) (b : \\mathbb{R})}

/-— The topology on ~“\\mathbb{R} generated by the subbasis of open intervals with rational endpoints. -/
@[simp]
def realTopologyFromRationallIoo : TopologicalSpace \\mathbb{R} :=

TopologicalSpace.generateFrom RationalIooSubbasis

/== The unit interval ~[0,1] seen as a subtype of “\\mathbb{R} . -/

@[simp] abbrev UnitInterval : Type := Set.Icc (0 : \\mathbb{R}) 1
/-- The sequence of functions on the unit interval “[0,1] given by
" (powSegOnUnitInterval n) x = x"n~. -/

@[simp]

def powSeqOnUnitInterval : \\mathbb{N} -> UnitInterval -> \\mathbb{R} :=
fun n x => (x : \\mathbb{R}) " n

/-- The pointwise limit function on ~[0,1] associated with the sequence “x [-> x"n
it is 07 for “x < 17 and 1 otherwise (in particular at “x = 17). -/
@[simp]
def powLimitOnUnitInterval : UnitInterval -> \\mathbb{R} :=
fun x => if (x : \\mathbb{R}) < 1 then 0 else 1

/-— Pointwise convergence on a set: a sequence of functions “F : \\mathbb{N} -> X -> \\beta ° converges
pointwise on S to “g : X -> \\beta * if “\\forall x \\in S, Tendsto (fun n => F n x) atTop (nhds (g x)) .
-/
@[simp]
def PointwiseConvergesOn {X \\beta : Typex} [TopologicalSpace \\beta
(F : \\mathbb{N} -> X -> \\beta) (g : X -> \\beta) (S : Set X) : Prop :=

47

Under review as a conference paper at ICLR 2026

\\forall x \\in S, Tendsto (fun n => F n x) atTop (nhds (g x)
/-— A point “x 1is a limit point (accumulation point) of a subset A" of a topological space “X
if every neighborhood of “x* meets A \ {x} . -/
@[simp]
def IsLimitPoint {X : Typex} [TopologicalSpace X] (A : Set X) (x : X) : Prop :=
\\forall U \\in nhds x, (U \cap (A \ {x})) .Nonempty

/-- A topological space is limit point compact if every infinite subset has a limit point. -/
@[simp]
def LimitPointCompact {X : Typex} [TopologicalSpace X] : Prop :=

\\forall A : Set X, A.Infinite -> \\exists x : X, IsLimitPoint A x

/-— A nested (decreasing) sequence “C : \\mathbb{N} -> Set X° of closed, nonempty sets in a
topological space:

“Antitone C \\land (\\forall n, IsClosed (C n)) \\land (\\forall n, (C n).Nonempty) . -/
@[simp]

def NestedClosedNonempty {X : Typex} [TopologicalSpace X] (C : \\mathbb{N} -> Set X) : Prop :=
Antitone C \\land (\\forall n : \\mathbb{N}, IsClosed (C n)) \\land (\\forall n : \\mathbb{N}, (C n).
Nonempty)
/-- The property that every nested (decreasing) sequence of closed nonempty subsets of X~
has nonempty intersection “\\bigcap n, C n . -/
@[simp]
def NestedClosedNonemptyInterNonempty {X : Typex} [TopologicalSpace X] : Prop :=

\\forall (C : \\mathbb{N} -> Set X),
Antitone C ->
(\\forall n : \\mathbb{N}, IsClosed (C n)) ->
(\M\forall n : \\mathbb{N}, (C n).Nonempty) ->
(\M\bigcap n, C n).Nonempty

1. Target & Environment
— Formalize an English statement into Lean 4 using **ONLYx* Mathlib
— *x*NOx* other libraries or import should be used.
— Environment: Lean 4.7.0-rc2 with Mathlib4. Use only current Lean 4/Mathlib4 identifiers. Do NOT use Lean
3-era names.

2. Forbidden Lean 3-Era Identifiers & Notations

- Identifiers: “Convergent®, “Function.IsFieldHom™, ~QuotientGroup.quotient”®, “Metric.bounded™, ~IsPerfect
", "Real.cbrt-.

- Notations: “\\mathbb{R}"m>, “Z[i] , raw “\int x in \\mathbb{R}, \ldots”, binder shorthand ~“\\forall x vy
\\in S, \ldots™, negative exponents with ~*° (e.g., "~ (-p)7).

- Use "“RingHom™/ AlgHom™ (not “Function.IsFieldHom™).

- Use ~Subgroup.Quotient”™ (not ~QuotientGroup.quotient™).

- Use "Bornology.IsBounded E~ (not “Metric.bounded E7).

- Avoid “Real.cbrt”; use "Real.rpow”™ or rational exponents.

3. Header Format:
- You need to generate **BOTH+xx the header and the theorem in your final response
— The *xONLY*x import statement you should generate is “import Mathlib™.
- After that, write “open ... and “open scoped * for the namespaces you need to use in the theorem.
— »*MAKE SUREx* that the names and notations you are using are opened in the header!!! Please check this if
you receive syntax errors!!!

4. Theorem Format: ALWAYS include theorem name, and it MUST be exactly “thm_Q~.

- Required format: “theorem thm_Q (params) : conclusion := by sorry~

- You xx*MUST*x use “by sorry” as the placeholder. Do **NOT** generate a proof!!!

- Note that some formalizations of a statement might not have parameters/binders, only the type/goal. For
example, "Prove that $\sqrt[3]{2}+\sqrt[3]{3}$ is irrational." can be formalized as “theorem thm_Q
Irrational (27 ((l:\\mathbb{R})/3) + 3" ((l:\\mathbb{R})/3)) := by sorry’

- You should try to use the binder/parameter form as much as possible. For example, try to convert
existential statements to universal statements so that you can use the binder/parameter form.

5. Parameter Format: Use explicit parentheses for ALL parameters/binders ~ (\\Omega : Set \\mathbb{C}) (f : \\
mathbb{C} -> \\mathbb{C}) (h : IsOpen \\Omega) . NEVER use implicit ~{\\Omega }~.

6. Parameter/Binder Naming:

— For object names, use the *xEXACT SAMEx+ names as the in problem text. For example, if the problem
mentions "complex function f" then you should name the corresponding parameter “f° like ~(f : \\
mathbb{C} -> \\mathbb{C}) .

- For hypothesis names, use the object name with a prefix “h” and index them from 1. For example, if the
problem mentions "complex function f that is holomorphic on X" then you should name the corresponding

hypothesis “hf_1° like " (hf_1 : DifferentiableOn \\mathbb{C} f X) .

7. Reasoning
- Please think carefully step-by-step and state your intermediate reasoning steps before write down the
final Formalized Statement.

- This is **EXTREMELY CRUCIAL!!!%x Please do not skip this!!! %%PAY EXTRA ATTENTION TO THIS!!!xx
- If there are examples provided by the user, you must strictly follow the format and reasoning in the
examples!!! x*THINK EXTRA HARD!!!xx

8. Response Format: Return the header and the theorem together, surrounded by triple angle brackets <<< import
Mathlib

open

open scoped

theorem thm_Q ... := by sorry >>>.

Do *x*NOT+x include *xANYxx comments or proof tactics in your final response!!! xxPAY EXTRA ATTENTION TO THIS
R

48

Under review as a conference paper at ICLR 2026

Example of CORRECT output (declare all variables, name must be thm_Q):
<<< import Mathlib

open

open scoped

theorem thm Q : \\forall N : \\mathbb{N}, \\exists n >= N, (3xn+l).Prime \\land (3*n+l) >= N := by sorry
>>>

Example of INCORRECT output (wrong theorem name, missing variable N declaration, includes comments, missing
by sorry’):

<<< import Mathlib

open

open scoped

-- some random comment
theorem some_random_name : \\exists n >= N, (3%n+l).Prime \\land (3%n+l) >= N := >>>

D.2.4 PROOFNET-HARD ONE-SHOT EXAMPLE

Here is an example:
English Statement:
Let $U \subset \mathbb{C}$ be a (non-empty) connected open set and let f_n be a sequence of holomorphic

functions defined on US. Suppose that f_n converges uniformly to a function f on every compact
subset of US. Show that f is holomorphic in US.

Semi-Formalized Structure:

/*x
To semi-formalize the English Statement into a nested structure of quantifications, premises and
conclusions, we will examine the English Statement sentence by sentence, and break down each
sentence into natural language clauses that are as atomic as possible.
*/

/*

The sentence "Let $U \subset \mathbb{C}$ be a (non-empty) connected open set and let f_n be a sequence
of holomorphic functions defined on U." indicates that the choice of U and f_n are arbitrary,
so we should choose the universal quantifier for the entire statement that quantifies over $US,
f_n, and possibly other variables.

Since f_n is a sequence of functions with certain properties, we will further break it into a nested sub
-structure. Now, we will first universally quantify over U as follows:
*/
"quantification": "for all US, f_n, possibly other variables",
"premises": [
/x
The sentence first declares that U is a subset of the complex plane \mathbb{C}, that it is a non-
empty, a connected, and an open, so we have the following 4 premises:
*/
"SUS is a subset of the complex plane \mathbb{C}",
"US is non-empty",
"SUS is connected",
"S$US is open",

/*

The sentence also declares that f_n is a sequence of complex functions, so we have the following
premise:

*/

"SSf_n is a sequence of functions from \mathbb{C} to \mathbb{C}",

/*

Now we can break down the specification on f_n, a sequence of holomorphic functions defined on U.
Recall our mathematical knowledge, a sequence is countably indexed, which means that for all $i
\in \mathbb{N}$, f_i is holomorphic on $US.

By the definition of holomorphic function, each f_i is a function from U to \mathbb{C} and is
complex-differentiable at every point of S$US.

Therefore, we break it into a nested sub-structure by universally quantifying over n as follows:

*/
{
"quantification": "for all is",
"premises": [
"i is a natural number i.e. $i \in \mathbb{N}$",
1,
"conclusions": [
"Sf_i in the sequence f_n is holomorphic on U, which means that f_i is complex-—
differentiable at every point of $US"
]
}
/x

The next sentence "Suppose that f_n converges uniformly to a function f on every compact subset of
SUS"™ indicates that there exists a function f with a certain property, which indicates a
nested existential quantifier over $£$.

However, our conclusion "Show that f is holomorphic in U" requires $£f$ to be declared beforehand.
Therefore, the correct conclusion should really be "Show that if there exists a functions f

49

Under review as a conference paper at ICLR 2026

such that f_n converges uniformaly to f on every compact subset of U, then f is
holomorphic in S$US".

According to the guidelines, we should convert statement to universally quantified as much as possilbe
so that later we can easily formalize them in the binder form. Recall our mathematical
knowledge, if a limit exists, it is unique. Then we can rewrite the existential quantified
conclusion as "for all f, such that $f n$ converges uniformaly to f on every compact subset
of U, f is holomorphic in US".

In addition, since no other premises before depends on f, we can move the quantification over f to
our top-level quantifications i.e. f can be quantified by the outmost universal quantifier.

Therefore, we declare f as follows:

*/

"f is a function from \mathbb{C} to S$\mathbb{C}s$",

/*

Now we can break down the specification on f, a function that for all compact subset X of $US, the
sequence f_n converges uniformly to f on X, which indicates a nested universal quantifier
over X.

Therefore, we break it into a nested sub-structure by universally quantifying over X as follows:

*/
{
"quantification": "for all Xs",
"premises": [
"X is a subset of $US",
"X is compact"
1,
"conclusions": [
"the sequence f_n converges uniformly to f on X"
]
}
1,
"conclusions": [
/*

The final sentence "Show that f is holomorphic in U" means that f is complex-differentiable at
every point of U. Since we have declared f beforehand in the premises, we can directly refer
to the name f in the conclusion.

Therefore, we have the following conclusion:
*/
"f is holomorphic on U, which means that f is complex-differentiable at every point of US"

Formalized Structure:

/%

*/

To convert the Semi-Formalized Structure into a Formalized Structure, we will examine the natural language
clauses in the Semi-Formalized Structure one by one, and formalize each into a formal clause that
is well-formed and well-defined according to the guidelines.

/*

First of all, we notice that the premises and conclusions in the Semi-Formalized Structure are quantified
by a universal quantifier over US. According to the guidelines, for outmost universally quantified
statements, we should use the binder form as much as possible.

Therefore, we put no formal quantifier over U in the Formalized Structure, but instead formalize the
premises "U is subset of the complex plane \mathbb{C}", "$US is non-empty", "S$US$ is connected",

etc. as binders like (U : some_type)”, ~(hU_l : some_property_of_U)~, etc.
*/
"quantification": "omitted since we will use the binder form",
"premises": [
/*

Now we should formalize the premises one by one. The first premise is "U is a subset of the complex
plane \mathbb{C}". Check the provided helpers and recall our knowledge of the required
versions of Lean and Mathlib in the guidelines, there is no direct correspondents of "the set of

all complex numbers", so we need to come up with an equivalent way to formalize this premise
alternatively.

We notice that this premise is equivalent to just saying that U is a set of complex numbers.
Therefore, we can use the type former “Set” and the complex number type ~\\mathbb{C} to say
that U is of type “Set \\mathbb{C}~.

Therefore, we can formalize this premise as follows:

*/

"(U : Set \\mathbb{C})",

/*

The next premise is "US is non-empty". Check the provided helpers and recall our knowledge of the
required versions of Lean and Mathlib in the guidelines, there is a direct corresponding formal
relation “Nonempty~. Therefore, we can formalize this property of U as follows:

*/

"(hU_l : Nonempty U)",

/*

The next premise is "US is connected". Check the provided helpers and recall our knowledge of the
required versions of Lean and Mathlib in the guidelines, there is a direct corresponding formal
relation “IsConnected’. Therefore, we can formalize this property of U as follows:

*/

"(hU_2 : IsConnected U)",

50

Under review as a conference paper at ICLR 2026

/*

The next premise is "US is open". Check the provided helpers and recall our knowledge of the required
versions of Lean and Mathlib in the guidelines, there is a direct corresponding formal relation
“IsOpen”. Therefore, we can formalize this property of U as follows:

*/

"(hU_3 : IsOpen U)",

/x

The next premise is "f_n is a sequence of complex functions". Check the provided helpers and recall

our knowledge of the required versions of Lean and Mathlib in the guidelines, since a sequence
is countably indexed, we can say that f_n is of the curried function type ~\\mathbb{N} -> \\
mathbb{C} -> \\mathbb{C} . When we want to talk about the i-th function in the sequence, we
can use the function application notation “f_n 1i°.

Therefore, we can formalize this premise as follows:

*/

"(f_n : \\mathbb{N} —-> \\mathbb{C} -> \\mathbb{C})",

/*

The next premise is a universally quantified statement (a sub-structure in our semi-formalized
structure) about each f_i in the sequence f_n: "for all $i \in \mathbb{N}$" we have "Sf_i
in the sequence f_n is holomorphic on U, which means that f_i is complex-differentiable at

every point of US".

For "i being a natural number", check the provided helpers and recall our knowledge of the required
versions of Lean and Mathlib in the guidelines, we can say that i is of type “\\mathbb{N} , so
we can formalize the quantification over i as “\\forall i : \\mathbb{N}'.

For "f_i is complex-differentiable at every point of U", check the provided helpers and recall our
knowledge of the required versions of Lean and Mathlib in the guidelines, there is a direct
corresponding formal relation “DifferentiableOn” to talk about complex-differentiability by
passing \\mathbb{C} as the first argument.

Therefore, we can formalize this property of f_i as follows:

*/

"(hf_n_1 : \\forall i : \\mathbb{N}, DifferentiableOn \\mathbb{C} (f_n i) U)",

/*

The next premise is "f is a function from \mathbb{C} to \mathbb{C}". Check the provided helpers
and recall our knowledge of the required versions of Lean and Mathlib in the guidelines, we can
say that f is of the function type ~“\\mathbb{C} -> \\mathbb{C}".

Therefore, we can formalize this premise as follows:

*/

"(f : \\mathbb{C} -> \\mathbb{C})",

/*

The next premise is a universally quantified statement (a sub-structure in our semi-formalized
structure) about each subset X of $US: "for all subsets X of U, if X is compact, then
the sequence f_n converges uniformly to $£$ on X".

For "X being a subset of U", check the provided helpers and recall our knowledge of the required
versions of Lean and Mathlib in the guidelines, there is a direct corresponding formal notation
“\\subseteg °. However, according to the guidelines, we should always declare the type of any
variable first. Therefore, we can formalize the quantificaiton over X as “\\forall X : Set \\
mathbb{C}~ and the subset relation as X \\subseteq U".

For "X being compact", check the provided helpers and recall our knowledge of the required versions
of Lean and Mathlib in the guidelines, there is a direct corresponding formal relation
IsCompact™. Therefore, we can formalize this property of X as follows as ~IsCompact X .

For "the sequence f_n converges uniformly to f on X", check the provided helpers and recall our
knowledge of the required versions of Lean and Mathlib in the guidelines, there is a direct
corresponding relation “TendstoUniformlyOn F £ 1 X° for "F : \\iota -> \\alpha -> \\beta and

“f : \\alpha -> \\beta - along a filter “1°. Here "F° is our sequence of functions ~\\lambda
n x, £.n n x°, the limit is “f°, the index filter is “atTop~ (we can directly use this name
since we opened the namespace “Filter”), and the set is “X°. We can formalize the conclusion of
this quantified statement as “TendstoUniformlyOn (\\lambda n x => f_n n x) f atTop X .

Therefore, assembling every piece together, we can formalize this universally quantified statement as
follows:
*/
"(hf_1 : \\forall X : Set \\mathbb{C}, X \\subseteq U \\land IsCompact X -> TendstoUniformlyOn (\\
lambda n x => f_n n x) f atTop X)",
1,

"conclusions": [
/x
The conclusion is "f is holomorphic on U, which means that f is complex-differentiable at every
point of US". Check the provided helpers and recall our knowledge of the required versions of

Lean and Mathlib in the guidelines, there is a direct corresponding formal relation
DifferentiableOn~ to talk about complex-differentiability by passing \\mathbb{C} as the first
argument .

Therefore, we can formalize this property of f as follows:

*/
"DifferentiableOn \\mathbb{C} f U",

Formalized Statement:

Now we can convert the Formalized Structure to a Formalized Statement. According to the guidelines, we will do
the following:

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

1. Assemble the quantification, premises, and conclusions properly into a Formalized Statement. Name the
theorem following the guidelines as “thm_Q°. Use the correct syntax if we are using the binder form.
2. Wrap the entire Formalized Statement with triple angle brackets (<<< Lean expression here >>>) for parsing.

Finally, we have the Formalized Statement:

<<< theorem thm_Q (U : Set \\mathbb{C}) (hU_1 : Nonempty U) (hU_2 : IsConnected U) (hU_3 : IsOpen U) (f_n : \\
mathbb{N} -> \\mathbb{C} -> \\mathbb{C}) (hf_n_1 : \\forall n : \\mathbb{N}, DifferentiableOn \\mathbb/{
C} (f_n n) U) (f : \\mathbb{C} -> \\mathbb{C}) (hf_1 : \\forall X : Set \\mathbb{C}, X \\subseteq U \\
land IsCompact X -> TendstoUniformlyOn (\\lambda n x => £ n n x) f atTop X) : DifferentiableOn \\
mathbb{C} f U := by sorry >>>

52

	Introduction
	The Divide and Abstract Framework
	Phase I: Language Extension
	Phase II: Statement Formalization

	Experiments
	Results
	Effectiveness of DNA
	Generalizability of DNA
	Synergy between Decomposition and Abstraction

	Related Work
	Conclusion
	Ablation on The Statement Formalization Phase
	Ablation on The One-Shot Example
	Qualitative Analysis
	Abstraction Learning
	Comparision between Learned and Oracle Abstractions
	Hierarchical Decomposition

	Prompt Templates
	Abstraction Learning
	Step 1: Concept Extraction
	Step 2: Concept Filtering
	Step 3: CDG Construction
	Step 4: Concept Formalization
	Step 5: Formalization Refactoring
	Step 6: Documentation Update

	Hierarchical Decomposition
	LeanEuclidPlus Instructions with Learned Abstraction
	LeanEuclidPlus One-Shot Example
	ProofNet-Hard Instructions with Learned Abstraction
	ProofNet-Hard One-Shot Example

