

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALTERNATING DIFFUSION FOR PROXIMAL SAMPLING WITH ZEROTH ORDER QUERIES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 This work introduces a new approximate proximal sampler that operates solely
013 with zeroth-order information of the potential function. Prior theoretical anal-
014 yses have revealed that proximal sampling corresponds to alternating forward
015 and backward steps of the heat flow. The backward step was originally imple-
016 mented by rejection sampling, whereas we directly simulate the dynamics. Unlike
017 diffusion-based sampling methods that estimate scores via learned models or by
018 invoking auxiliary samplers, our method treats the intermediate particle distribu-
019 tion as a Gaussian mixture, thereby yielding a Monte Carlo score estimator from
020 directly samplable distributions. Theoretically, when the score estimation error is
021 sufficiently controlled, our method inherits the exponential convergence of prox-
022 imal sampling under isoperimetric conditions on the target distribution. In practice,
023 the algorithm avoids rejection sampling, permits flexible step sizes, and runs with
024 a deterministic runtime budget. Numerical experiments demonstrate that our ap-
025 proach converges rapidly to the target distribution, driven by interactions among
026 multiple particles and by exploiting parallel computation.

1 INTRODUCTION

029 Sampling from probability distributions $\pi(x) \propto e^{-f(x)}$ is a fundamental task in statistics and
030 machine learning, with applications in Bayesian posterior inference and score-based generative model-
031 ing. Methods like the Unadjusted Langevin Algorithm (ULA) (Roberts & Tweedie, 1996; Durmus &
032 Moulines, 2017) and the Metropolis-Adjusted Langevin Algorithm (MALA) (Roberts & Rosenthal,
033 1998; Roberts & Stramer, 2002) are widely used. Their convergence under strong convexity
034 assumptions has been established in sharp nonasymptotic terms (Dalalyan, 2017; Dwivedi et al.,
035 2018), and it has further been shown that ULA enjoys exponential convergence in KL divergence
036 under functional inequalities (Cheng & Bartlett, 2018; Vempala & Wibisono, 2019).

037 Beyond Langevin-type approaches, there has been growing interest in alternative sampling schemes
038 with nonasymptotic guarantees. Among them, *proximal sampling* (Liang & Chen, 2023b) intro-
039 duces an auxiliary distribution close to the target—typically the Gaussian convolution of π (Lee
040 et al., 2021)—and alternates conditional updates between the target and auxiliary variables. From
041 a theoretical perspective, each update can be interpreted as alternating a forward heat-flow step and
042 a reverse denoising step, which yields exponential convergence under suitable functional-inequality
043 assumptions on the target distributions (Chen et al., 2022; Kook et al., 2024).

044 Despite this line of analysis, scalable implementations of proximal samplers remain challenging.
045 Existing implementations rely on local optimization of f combined with rejection sampling (Liang
046 & Chen, 2023a;b; Fan et al., 2023), which necessitates small step sizes (i.e., weak convolution)
047 to maintain acceptance and thus incurs many iterations and high overall cost. These bottlenecks
048 have spurred diffusion-based Monte Carlo, which simulates denoising stochastic differential equa-
049 tions (SDEs) (Huang et al., 2024a;b; He et al., 2024). This raises a natural question: *can proximal
050 sampling be implemented in its theoretical form and in a scalable way, directly through Gaussian
051 convolutions and diffusion processes, without relying on rejection sampling?*

052 Another practical consideration is the efficient sampling of many particles in parallel. In such set-
053 tings, particle-based algorithms that introduce additional interaction terms or gradient-flow struc-
054 tures can promote faster mixing while maintaining diversity (Liu & Wang, 2016; Futami et al., 2020;

Figure 1: Illustration of the ideal proximal sampling (left) and our approximation (right). Heat flow and reverse dynamics are defined between π^X and π^Y , but applied to intermediate ρ . Although these do not reach their targets in one step, the ideal version attains exponential convergence. Compared to the rejection sampling-based implementation of proximal samplers, our approach allows for larger step sizes (i.e., stronger convolution), which reduce the iterations to reach the target distribution.

Boffi & Vanden-Eijnden, 2023; Lu et al., 2024; Ilin et al., 2025). However, proximal sampling was originally formulated as a single-particle iterative framework, leaving a gap between its theoretical appeal and the practical demands of multi-particle sampling.

1.1 CONTRIBUTIONS

In this work, we propose and analyze a diffusion-based approximation of proximal sampling. The key idea is to interpret the auxiliary samples as forming a Gaussian-mixture approximation and to exploit this structure for approximate time-dependent score estimation in the denoising dynamics. Our main contributions are as follows:

- We introduce a new algorithm that serves as an approximate proximal sampler. It is learning-free, gradient-free with respect to f , and rejection-free with a fixed runtime.
- We extend the theory of proximal sampling to show that our diffusion-based approximation inherits comparable convergence rates under suitable assumptions. This implies that our algorithms which alternate perturbation and denoising converge to the target distribution without requiring initialization from the Gaussian limit, unlike standard diffusion models.
- We provide empirical evidence that our method converges rapidly to representative targets compared to existing implementations of proximal sampler, and that its multi-particle extension improves both wall-clock efficiency and sample diversity.

2 PRELIMINARIES

In this section, we provide a brief overview of proximal sampling, which underlies our proposed method, along with its convergence properties.

2.1 DEFINITIONS

Let μ and ν be two probability measures on \mathbb{R}^d with $\mu \ll \nu$. We define the Kullback–Leibler (KL) divergence, the Rényi divergence of order $q \geq 1$, and the relative Fisher information as

$$H_\nu(\mu) = \int \log \frac{d\mu}{d\nu} d\mu, \quad \mathcal{R}_{q,\nu}(\mu) = \frac{1}{q-1} \log \int \left(\frac{d\mu}{d\nu} \right)^q d\nu, \quad J_\nu(\mu) = \int \left\| \nabla \log \frac{d\mu}{d\nu} \right\|^2 d\mu.$$

Note that setting $q = 1$ yields $\mathcal{R}_{1,\nu}(\mu) = H_\nu(\mu)$. We say that ν satisfies a log-Sobolev inequality (LSI) with constant $C_{\text{LSI}} > 0$ if $H_\nu(\mu) \leq \frac{1}{2} C_{\text{LSI}} J_\nu(\mu)$.

108
109 2.2 PROXIMAL SAMPLING110 Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a potential function, and consider the target distribution $\pi^X(x) \propto \exp(-f(x))$.
111 For a given step size $h > 0$, following Lee et al. (2021), we define a joint distribution on $\mathbb{R}^d \times \mathbb{R}^d$ as

112
113
$$\pi^{X,Y}(x, y) \propto \exp\left(-f(x) - \frac{\|x - y\|^2}{2h}\right). \quad (1)$$

114

115 Marginalizing over y yields $\pi^X(x) \propto \int \pi^{X,Y}(x, y) dy$. On the other hand, marginalizing over x
116 defines a new distribution π^Y as $\pi^Y(y) \propto \int \exp\left(-f(x) - \frac{1}{2h}\|x - y\|^2\right) dx$. This corresponds to
117 the Gaussian convolution $\pi^Y = \pi^X * \mathcal{N}(0, hI_d)$.
118119 The proximal sampler with step size h iterates updating a current particle $x_k \in \mathbb{R}^d$ as follows:

120
121
$$y_{k+\frac{1}{2}} \sim \mathcal{N}(x_k, hI_d) \quad (2)$$

122
123

$$x_{k+1} \sim \pi^{X|Y=y_{k+\frac{1}{2}}} \quad (3)$$

124 where $\pi^{X|Y=y_{k+1/2}}(x) \propto \exp\left(-f(x) - \frac{\|x - y_{k+1/2}\|^2}{2h}\right)$. The restricted Gaussian oracle (RGO) (Lee
125 et al., 2021) assumes access to an oracle which enables sampling (3) from $\pi^{X|Y=y_{k+1/2}}(x)$.
126127 Several works have implemented the RGO (Liang & Chen, 2023a;b; Fan et al., 2023) through rejec-
128 tion sampling, achieving an expected complexity of $\tilde{O}(1)$ under regularity conditions on f . How-
129 ever, this requires choosing h sufficiently small depending on f and d , which in practice leads to
130 many iterations, and the computational cost further fluctuates due to randomness.131
132 2.3 CONNECTIONS TO DIFFUSION PROCESSES133 Chen et al. (2022) established an improved convergence analysis of proximal sampling by inter-
134 pretting each update through dynamics interpolated by an SDE, as illustrated in the left panel of
135 Figure 1. The forward step (2) amounts to Gaussian convolution, which corresponds to evolving the
136 heat equation or its associated SDE, for $t \in [0, h]$,
137

138
$$dZ_t = dB_t, \quad \partial_t \mu_t = \frac{1}{2} \Delta \mu_t, \quad (4)$$

139 where B_t is a standard Brownian motion. Writing P_t for the Gaussian convolution kernel $\mathcal{N}(0, tI_d)$,
140 we have $\mu_t = \mu_0 P_t$, and in particular $\pi^Y = \pi^X P_h$. The backward step (3) can be viewed as the
141 reverse operation of the forward step conditioned on Z_h . It is governed by the following SDE
142 starting from $Z_0^\leftarrow = Z_h$ and the corresponding Fokker–Planck equation; for $t \in [0, h]$,
143

144
$$dZ_t^\leftarrow = \nabla \log(\pi^X P_{h-t})(Z_t^\leftarrow) dt + dB_t^\leftarrow, \quad \partial_t \mu_t^\leftarrow = -\text{div}(\mu_t^\leftarrow \nabla \log(\pi^X P_{h-t})) + \frac{1}{2} \Delta \mu_t^\leftarrow, \quad (5)$$

145

146 where B_t^\leftarrow denotes the backward Brownian motion. Letting Q_t denote its transition kernel, we
147 obtain $\mu_h^\leftarrow = \mu_0^\leftarrow Q_h = \int \pi^{X|Y=y}(x) \mu_0^\leftarrow(y) dy$. In particular, we have $\pi^X = \pi^Y Q_h$.148 Hence the two steps in proximal sampling can be viewed as SDEs between π^X and π^Y , with P_t
149 and Q_t as their transition kernels. The proximal sampler applies the dynamics (4) and (5) with the
150 start distributions $\rho_k^X := \text{law}(x_k)$ and $\rho_{k+1/2}^X := \text{law}(y_{k+1/2})$ at k -th iteration, respectively, which
151 then evolve through Gaussian convolution or conditional integration. Although a single step does
152 not reach π^Y or π^X , iterating the forward–backward scheme leads to contraction towards the target
153 distribution, as made precise in the following theorem.154 **Theorem 1** (Chen et al. (2022), Theorem 3). *Assume that π^X satisfies LSI with constant C_{LSI} . For
155 any $h > 0$ and any initial distribution ρ_0^X , the k -th iterate ρ_k^X of the proximal sampler with step size
156 h satisfies, for $q \geq 1$,*

157
158
$$\mathcal{R}_{q, \pi^X}(\rho_k^X) \leq \frac{\mathcal{R}_{q, \pi^X}(\rho_0^X)}{(1 + h/C_{\text{LSI}})^{2k/q}}. \quad (6)$$

159

160 Theorem 1 provides the exponential convergence guarantee of proximal sampling. Its proof follows
161 by combining the forward and backward contraction properties at each step stated in the next lemma.

162 **Lemma 1** (Chen et al. (2022), Appendix A.4). *Assume that π^X satisfies LSI with constant C_{LSI} and*
 163 *$\rho \ll \pi^X, \rho' \ll \pi^Y$. For $q \geq 1$, we have*

$$165 \quad \mathcal{R}_{q,\pi^Y}(\rho P_h) = \mathcal{R}_{q,\pi^X P_h}(\rho P_h) \leq \frac{\mathcal{R}_{q,\pi^X}(\rho)}{(1 + h/C_{LSI})^{1/q}}, \quad (7)$$

$$167 \quad \mathcal{R}_{q,\pi^X}(\rho' Q_h) = \mathcal{R}_{q,\pi^Y Q_h}(\rho' Q_h) \leq \frac{\mathcal{R}_{q,\pi^Y}(\rho')}{(1 + h/C_{LSI})^{1/q}}. \quad (8)$$

170 In this paper, we aim to realize the proximal sampler by directly simulating the associated SDEs. In
 171 the forward direction, convolution with π^X can be simulated exactly by injecting Gaussian noise,
 172 so the bound (7) is directly applicable. In contrast, the backward dynamics (5) cannot be simulated
 173 exactly, and our surrogate version of (5) will provide an approximation in place of (8).

175 3 APPROXIMATE MULTI-PARTICLE PROXIMAL SAMPLING

177 Building on the SDE interpretation in Section 2, we propose to approximate the backward dynamics
 178 by replacing π^X with a surrogate distribution constructed from the current particles. This enables
 179 Monte Carlo estimation of the score function using only evaluations of f , without requiring gradient
 180 or rejection sampling. At a high level, each iteration of our diffusion-based proximal sampler con-
 181 sists of (i) evolving particles by the forward heat flow (4) and (ii) applying the surrogate dynamics,
 182 which time-discretizes and approximates the reverse flow (5).

184 3.1 SCORE ESTIMATION FOR SURROGATE DYNAMICS

185 We derive the update rule in the backward step, given the particles at k -th iteration: $X_k = \{x_i\}_{i=1}^N$
 186 and $Y_{k+1/2} = \{y_j\}_{j=1}^N$. We approximate the backward dynamics (5) by replacing π^X with a surro-
 187 gate distribution $\hat{q}_{k+1}(\cdot | Y_{k+1/2}, X_k)$ constructed from these particles, as follows:

$$189 \quad \hat{q}_{k+1}(x | Y_{k+1/2}, X_k) \propto \frac{1}{N} \sum_{j=1}^N \pi^{X|Y=y_j}(x) \frac{\pi^Y(y_j)}{\hat{q}_{k+1/2}(y_j | X_k)}, \quad (9)$$

192 where $\hat{q}_{k+1/2}(y | X_k) = \frac{1}{N} \sum_i \mathcal{N}(y; x_i, hI_d)$. The conditional distribution with the reweighting
 193 term ensures that, as $N \rightarrow \infty$, sampling $y \sim \hat{q}_{k+1/2}$ recovers the target distribution π^X . By
 194 substituting the explicit form of $\pi^{X|Y=y_j}$ and π^Y we obtain

$$197 \quad \hat{q}_{k+1}(x | Y_{k+1/2}, X_k) \propto \frac{1}{N} \sum_{j=1}^N \frac{\exp(-f(x) - \frac{1}{2h} \|x - y_j\|^2)}{\hat{q}_{k+1/2}(y_j | X_k)} \\ 200 \quad \propto \frac{1}{N} \sum_{j=1}^N \frac{\mathcal{N}(x; y_j, hI_d)}{\hat{q}_{k+1/2}(y_j | X_k)} \exp(-f(x)) =: g_N^{k+1/2}(x) \exp(-f(x)), \quad (10)$$

202 where $g_N^{k+1/2}$ is the unnormalized density of an N -component weighted Gaussian mixture (see Ap-
 203 pendix A.1 for the full derivation). \hat{q}_{k+1} involves an inverse reweighting with respect to a Gaussian
 204 mixture $\hat{q}_{k+1/2}$. This reduces weights when y_j is located in areas where X_k is overly concentrated,
 205 while amplifying their importance in sparse regions. The resulting term, derived from the empirical
 206 particle system, may help prevent particle collapse and promote exploration. We later verify this
 207 effect in our experiments.

209 The surrogate score is defined as $\hat{s}_t(x_t) := \nabla \log(\hat{q}_{k+1} P_{h-t})(x_t)$, which serves as the drift term
 210 in the surrogate reverse dynamics, replacing $\nabla \log(\pi^X P_{h-t})$ in the backward dynamics (5). This
 211 expression can be rewritten in expectation form using Bayes’ rule:

$$212 \quad \hat{s}_t(x_t) = \mathbb{E}_{g_N^{k+1/2}(x_0 | x_t)} \left[\frac{x_0 - x_t}{\sigma_t^2} e^{-f(x_0)} / C_t^k \right], \quad (11)$$

$$215 \quad \text{where } \sigma_t^2 = h - t, \quad C_t = \int g_N^{k+\frac{1}{2}}(x_0 | x_t) e^{-f(x_0)} dx_0. \quad (12)$$

216 **Algorithm 1** Zeroth-Order Diffusive Proximal Sampler

217

218 **Input:** potential function $f: \mathbb{R}^d \rightarrow \mathbb{R}$, initial samples $\{x_0^{(i)}\}_{i=1}^N$ step size h , iterations K , diffusion

219 steps T , number of interim samples M , noise schedule $\{\sigma_t^2\}_{t=0}^T$ with $\sigma_T^2 = h$ and $\sigma_0^2 = \sigma_{\min}^2$.

220 1: \triangleright All operations for $i = 1, \dots, N$, $j = 1, \dots, N$, and $l = 1, \dots, M$ are evaluated in parallel.

221 2: **for** $k = 0, 1, \dots, K - 1$ **do**

222 # Step 1: Forward heat flow (4)

223 $y_{k+\frac{1}{2}}^{(j)} \leftarrow x_k^{(j)} + \sqrt{h} \xi_k^{(j)}$ with $\xi_k^{(j)}$ i.i.d. $\mathcal{N}(0, I_d)$.

224 4: Initialize $z_T^{(i)} \leftarrow x_k^{(i)} + \sqrt{h} \xi_k^{(i)}$ with $\xi_k^{(i)}$ i.i.d. $\mathcal{N}(0, I_d)$.

225 # Step 2: Surrogate version of reverse dynamics (5)

226 5: **for** $t = T, T - 1, \dots, 1$ **do**

227 6: Set $\Delta t \leftarrow \sigma_t^2 - \sigma_{t-1}^2$.

228 7: Compute $\bar{\sigma}, m_{i,j} := m_j(z_t^{(i)})$, $w_{i,j} := w_j(z_t^{(i)})$ by (14) and set $w_{i,j} \leftarrow w_{i,j} / \sum_j w_{i,j}$

229 8: Draw M samples $z_0^{(i,l)} \stackrel{\text{i.i.d.}}{\sim} \sum_j w_{i,j} \mathcal{N}(m_{i,j}, \bar{\sigma}^2)$.

230 9: Compute $c_{i,l} := \exp(-f(z_0^{(i,l)}))$ and set $c_{i,l} \leftarrow c_{i,l} / \sum_l c_{i,l}$.

231 # Update each particle using the Euler-Maruyama step

232 10: $z_{t-1}^{(i)} \leftarrow z_t^{(i)} + \Delta t \sum_l c_{i,l} (z_0^{(i,l)} - z_t^{(i)}) / \sigma_t^2 + \sqrt{\Delta t} \xi_k^{(i,l)}$ with $\xi_k^{(i,l)}$ i.i.d. $\mathcal{N}(0, I_d)$.

233 11: **end for**

234 12: Set $x_{k+1}^{(i)} \leftarrow z_0^{(i)}$.

235 13: **end for**

236 14: **return** $\{x_K^{(i)}\}_{i=1}^N$

240

241 See Section A.1 for the derivation. Since $g_N^{k+1/2}(x_0)$ is a Gaussian mixture and the conditional

242 law $x_t \mid x_0$ under the perturbation kernel is $\mathcal{N}(x_0, \sigma_t^2 I_d)$, Bayes' rule implies that the posterior

243 distribution $g_N^{k+1/2}(x_0 \mid x_t)$ is itself a Gaussian mixture:

244

$$g_N^{k+\frac{1}{2}}(x_0 \mid x_t) \propto \sum_{j=1}^N w_j(x_t) \mathcal{N}(x_0; m_j(x_t), \bar{\sigma}^2 I), \quad (13)$$

245

246 where $\bar{\sigma}^2 = (h^{-1} + \sigma_t^{-2})^{-1}$, $m_j(x_t) = \bar{\sigma}^2(h^{-1}y_j + \sigma_t^{-2}x_t)$, $w_j(x_t) = \frac{\mathcal{N}(x_t; y_j, (h + \sigma_t^2)I_d)}{\hat{q}^{k+\frac{1}{2}}(y_j \mid X_k)}$.

247

248

249

250

251

252 The detailed derivation can be found in Section A.2. This formulation enables practical score esti-

253 mation via Monte Carlo sampling from the Gaussian mixture without requiring model training.

254

255

3.2 ALGORITHM AND COMPLEXITY

256

257 The surrogate score (11) involves an expectation with respect to the Gaussian-mixture posterior (13).

258 In practice, we approximate this expectation using Monte Carlo estimation by drawing M samples

259 for each particle. Combining the forward step (Gaussian perturbation) and the discretized surrogate

260 reverse dynamics with T denoising steps, we obtain the iterative sampling procedure that approx-

261 imates the proximal sampling. It is worth emphasizing that the proposed method relies only on a

262 zeroth-order oracle of f and does not require gradient information, unlike gradient-based sampling

263 methods such as Langevin Monte Carlo. A complete description of the algorithm is provided in

264 Algorithm 1.

265

266 Regarding computational cost, a straightforward implementation would require $KTMN$ evalua-

267 tions of the potential f for K outer iterations. This complexity can be further reduced to KT under

268 the assumption of a parallel oracle that can evaluate f simultaneously on multiple samples. Such a

269 design naturally exploits parallel computation, making the method efficient in modern computing

environments.

270 4 THEORETICAL ANALYSIS
271

272 In this section, we provide a theoretical analysis that essentially quantifies the deviation from the
273 ideal proximal sampling caused by time and space discretization. Our method splits the macro step
274 size h into T substeps of length $\eta = h/T$ for the backward dynamics. For each $\ell \in \{1, \dots, T\}$,
275 let $t_\ell := (\ell - 1)\eta$ be the substep start time, and let μ_{t_ℓ} denote the current law at time t_ℓ . The
276 following lemma establishes the contraction of the KL divergence in a single outer iteration of
277 Algorithm 1, up to an error due to time discretization. We assume that π^X satisfies an LSI with
278 constant C_{LSI} . Focusing on iteration k , we write $\rho_k^X := \text{law}(x_k^{(i)})$ and $\rho_{k+1/2}^Y := \text{law}(y_{k+1/2}^{(j)})$. A
279 complete description of the assumptions and proofs is deferred to Appendix A.

280 **Lemma 2** (Discretization-only one-step bound). *Assume $N, M \rightarrow \infty$, so the backward update uses
281 the exact score. Suppose further that within each substep ℓ , the temporal variation of the score
282 between t_ℓ and $t_\ell + t$ ($t \in [0, \eta]$) integrating over $\mu_{t_\ell+t}$ is bounded by $L_{\ell,t}^2 t^2$, the score of the
283 reference measure ν_{t_ℓ} is Lipschitz in space with constant $L_{\nu,\ell}$, and there exists a uniform entropy
284 bound $\bar{H}^{(k)} > 0$ along the substep path. Then for $u \geq 1$,*

$$285 \quad H_{\pi^X}(\rho_{k+1}^X) \leq \frac{H_{\pi^Y}(\rho_{k+1/2}^Y)}{(1 + h/C_{LSI})^{1-1/(2u^2)}} + 2u^4 \Lambda_1^{(k)},$$

$$288 \quad \text{where } \Lambda_1^{(k)} := C_{LSI} \left((1 + h/C_{LSI})^{1/(2u^2)} - 1 \right) \{4\eta^2 L_{\nu,*}^2 (C_{LSI} + h) \bar{H}^{(k)} + \eta dC\},$$

$$290 \quad C := 2\eta L_{\nu,*}^3 + L_{\nu,*}^2 + \eta L_s^2, \text{ with } L_{\nu,*} := \sup_{\ell} L_{\nu,\ell} \text{ and } L_s := \sup_{\ell,t} L_{\ell,t}.$$

292 The additional discretization error term in Lemma 2 scales as $O(h/T)$ with respect to the number
293 of substeps T . Therefore, if T is chosen appropriately, the backward step essentially inherits the
294 convergence rate of the ideal proximal sampler in (8).

295 When $N', M < \infty$, we assume that at each substep start t_ℓ the score estimator admits the bound
296 $\Lambda_2^{(k)} := 2 \sup_{\ell=1, \dots, T} \mathbb{E}_{\mu_{t_\ell}} [\|\hat{s}_{N',M}^{(k)}(\cdot, t_\ell) - s_{t_\ell}^{(k)}(\cdot)\|^2]$, where s_{t_ℓ} is the true score at t_ℓ and
297 $\hat{s}_{N',M}^{(k)}(\cdot, t_\ell)$ is the Monte Carlo estimator. The following result incorporates this condition.

299 **Proposition 1** (Main one-step bound with split errors). *Let $u \geq 1$ and there exists C_{LSI} and $\Lambda_2^{(k)}$.
300 Then the k -th iterate of Algorithm 1 satisfies*

$$301 \quad H_{\pi^X}(\rho_{k+1}^X) \leq \frac{H_{\pi^Y}(\rho_{k+1/2}^Y)}{(1 + h/C_{LSI})^{1-1/(2u^2)}} + 2u^4 C_{LSI} \left((1 + h/C_{LSI})^{1/(2u^2)} - 1 \right) (\Lambda_1^{(k)} + 2\Lambda_2^{(k)}).$$

304 Proposition 1 directly implies that, as shown in Corollary 3, with $r := (1 + h/C_{LSI})^{2-1/(2u^2)}$, the
305 iteration complexity for achieving $H_{\pi^X}(\rho_K^X) \leq \varepsilon$ is $K = O(\log(H_{\pi^X}(\rho_0^X)/\varepsilon)/\log r)$, provided
306 that, each error term satisfies $\Lambda_1^{(k)} + \Lambda_2^{(k)} \asymp O(\varepsilon/C_{LSI})$.

308 $\Lambda_2^{(k)}$ reflects Monte Carlo fluctuations due to the finite numbers of samples N and M . Under
309 bounded conditional variances of π^X we obtain $O(1/N)$ error, and under bounded expectations
310 of e^{4f} and finite fourth moments under the Gaussian mixture proposals we obtain $O(1/M)$ error,
311 yielding $\Lambda_2^{(k)} = O(1/N + 1/M)$.

313 From Theorem 1, the ideal proximal sampler requires about $(2 \log(1 + h/C_{LSI}))^{-1}$ outer iterations
314 times a logarithmic factor in the initial divergence. When $C_{LSI} \gg h$, this factor is approximated
315 by $\tilde{O}(C_{LSI}/h)$, suggesting that larger h is favorable. While rejection-sampling implementations of
316 RGO suffer from an upper bound on h , our method can take h large as long as $T = O(h)$ to control
317 the discretization error. This does not change the overall computational cost (outer iterations \times T
318 steps), but allows h to reflect global structure of π^X such as inter-mode distances rather than only
319 local smoothness of f , which we confirm to be practically advantageous in experiments.

320 5 EXPERIMENTS
321

323 We design two experiments to showcase the strengths of our algorithm as an approximation to
proximal sampling. First, we revisit the Gaussian Lasso mixture (Liang & Chen, 2023b) to test

Figure 2: Convergence of estimated KL divergence, averaged over 10 random seeds with shaded areas indicating variances. Our method (orange) outperforms both the proximal sampler with RGO (blue) and an ablated variant of our algorithm without particle interactions (green). It achieves the same accuracy as RGO in about $10\times$ fewer iterations ($100\times$ faster when accounting for thinning).

whether our method accelerates convergence beyond RGO-based proximal sampling, especially via parallel particle updates. Second, we study uniform distributions over bounded, nonconvex, and disjoint domains, comparing our method with In-and-Out (Kook et al., 2024), the proximal sampler for uniform distributions originally analyzed for convex bodies. These experiments respectively demonstrate the benefits of larger step sizes and the applicability of our approach when gradients are unavailable.

5.1 GAUSSIAN LASSO MIXTURE

Setup. Following the experimental setting in Liang & Chen (2023b), we set the target distribution as a Gaussian Lasso mixture:

$$\pi^X(x) = \frac{\sqrt{\det Q}}{2\sqrt{(2\pi)^d}} \exp\left(-\frac{1}{2}(x-1)^\top Q(x-1)\right) + 2^{d-1} \exp(-\|4x\|_1)$$

where $Q = USU^\top$, $d = 5$, $S = \text{diag}(14, 15, 16, 17, 18)$, and U is an arbitrary orthogonal matrix.

We compare against the RGO baseline with 100 chains and step size $h=1/135$, exactly matching the experimental setting of Liang & Chen (2023b), where it outperformed ULA and MALA. Our method uses step size $h=1/10$ under two settings: $N=100$ interacting particles, or $N=1$ run with 100 chains. For comparability, we thin the RGO baseline by grouping every 10 single-step updates into one iteration, so that the parallel f -evaluation cost is comparable to ours.

Convergence is measured by KL divergence to the target distribution, estimated using Büth et al. (2025) with a fixed reference of 1000 particles from a long RGO run. At each evaluation, 1000 particles are aggregated from 10 successive iterations. The histogram in the right panel of Figure 3 shows this reference distribution. All experiments are repeated with 10 random seeds, reporting the mean and variance of the KL estimate. Detailed settings are given in Table 1 and Section B.

Results. Figure 2 shows the convergence curves. Our method converges substantially faster than the RGO baseline. With step size 13.5 times larger, our method reaches comparable KL divergence in ~ 100 iterations, while the proximal sampler needs ~ 950 iterations (≈ 9500 RGO updates). Our method also surpasses the ablated variant with $N=1$ independent parallel chains, indicating that particle interactions are essential to accelerate mixing. The marginals in Figure 3 indicate that our method is already approaching the target by ~ 100 iterations (vs. ~ 950 for RGO), and it closely matches the long-run reference by ~ 250 iterations. A more detailed observation is deferred to Section B (Figure 5), which shows that increasing the step size h leads to faster convergence.

Discussion. These results demonstrate that relaxing the stringent step size restriction of proximal sampling yields a practical gain of nearly an order of magnitude in convergence speed. The benefit is amplified when leveraging multiple interacting particles, which facilitate more efficient exploration

378
379
380
381
382
383
384

Figure 3: One-dimensional marginals of π^X along the third coordinate (seed = 0). The red curve is the ground-truth marginal. Our method around 100 iterations (left, orange) already matches the proximal sampler with RGO in ~ 1000 iterations (left, blue), and after 200–300 iterations it closely aligns with the reference obtained from a long run of the proximal sampler with RGO.

389
390
391
392
393
394
395
396
403

Figure 4: Empirical distributions at $k = 3, 10, 200$ iterations with seed = 0 on the two-tori domain. In-and-Out (top row) finds T_1 , which overlaps with the initial standard Gaussian distribution, but fails to reach T_2 . Our method (bottom row) generates some particles outside the domain but gradually drives particles toward T_2 , demonstrating its ability to explore both components.

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

of the mixture components. This effect can be explained by the surrogate target distribution in (9), which re-weights via $(\hat{q}_{k+1/2}(y \mid X_k))^{-1}$ to down-weight overpopulated regions and encourage exploration of sparser ones, thereby accelerating convergence beyond the step-size effect alone.

5.2 UNIFORM DISTRIBUTIONS ON BOUNDED DOMAINS

Setup. We evaluate our method on uniform sampling over a bounded, nonconvex, and disjoint domain $K \subset \mathbb{R}^3$, and compare it with the In-and-Out (Kook et al., 2024). In-and-Out proposes $y_{i+1} \sim \mathcal{N}(x_i, hI_d)$ and repeatedly resamples $x_{i+1} \sim \mathcal{N}(y_{i+1}, hI_d)$ until $x_{i+1} \in K$ or a retry threshold R is reached. It converges under warm starts, but practical efficiency requires convex K .

We take K as the union of two disjoint solid tori in \mathbb{R}^3 . T_1 is a torus centered at $(10, 0, 0)$ with major radius 10 and minor radius 1, and T_2 is a torus centered at $(-13, 0, 0)$ with major radius 3 and minor radius 1. We denote $K = T_1 \cup T_2$. Particles start from $\mathcal{N}(0, I_3)$. Our sampler uses the potential $f(x) = 0$ if $x \in K$ and 100 otherwise, inducing an approximate uniform law. We run 1,000 particles and monitor their occupancies, visualized from the third coordinate direction. Details of the experimental setting are given in Table 2.

Results. Figure 4 shows that In-and-Out converges to uniformity inside the near torus T_1 , consistent with its guarantee under warm starts, but fails to reach the distant torus T_2 . Our method first fills the near torus, then transitions to the remote one, where many particles eventually accumulate.

Discussion. This experiment confirms that our algorithm works without gradients and can explore disconnected modes where exact proximal steps stagnate. The noisy score approximation facilitates such transitions, akin to effects observed in diffusion-based black-box optimization (Lyu et al.,

2025). Other constrained-domain samplers include Projected Langevin Monte Carlo (Bubeck et al., 2018), MYULA (Brosse et al., 2017), and penalized Langevin dynamics (Gurbuzbalaban et al., 2024) based on distance to the constraint set, all of which rely on projection-type operations and are therefore limited to simple convex bodies where such mappings are computable. By contrast, our sampler only requires a membership oracle or a simple outside penalty, making the zeroth-order oracle framework applicable to a broader range of domains.

6 CONNECTIONS TO OTHER SAMPLING METHODS

Diffusion-based Monte Carlo methods transport samples from a Gaussian initialization to the target distribution. Some rely on training models for score estimation (Vargas et al., 2023; Richter & Berner, 2024), while others drive auxiliary samplers (Huang et al., 2024a; He et al., 2024). Several works also develop acceleration and correction techniques within this paradigm (Lu et al., 2022; Kim & Ye, 2023; Li et al., 2024). Beyond diffusion-based pushforwards, related approaches construct explicit density paths (Fan et al., 2024; Guo et al., 2025).

Our approach also specifies and employs SDE dynamics between two fixed distributions, but unlike the one-way pushforward paradigm, it repeatedly applies these dynamics. This removes the restriction of restarting from a Gaussian base by using a variance-expanding (VE) diffusion. In the context of variance-preserving (VP) diffusions, sampling error partly arises from the discrepancy between the Gaussian equilibrium and the distribution obtained after finite-time mixing (Li et al., 2023; Pierret & Galerne, 2025). Our analysis suggests that, even though the VE process does not reach the Gaussian equilibrium in any bounded horizon, convergence can still be ensured by alternating finite-time noise addition and denoising dynamics through repeated cycles.

A particularly relevant comparison is with ZOD-MC (He et al., 2024), a diffusion-based method that performs denoising from a Gaussian initialization. In ZOD-MC, the outer loop transports samples while an inner proximal sampler is used for score estimation. Our method inverts this structure: instead of nesting a sampler inside a pushforward loop, we simulate proximal-style SDE dynamics directly. Moreover, unlike ZOD-MC, which requires access to the minimizer of the potential—or, in practice, gradient information to locate local solutions for proximal updates—our algorithm operates solely with zeroth-order oracle information. Another related line is SLIPS (Grenioux et al., 2024), which alternates between denoising noisy observations and updating auxiliary variables. This alternating scheme resembles ours, but the overall iteration follows a one-way dynamics that converges to the target distribution as the time horizon grows.

Finally, our method is also close in spirit to Diffusive Gibbs Sampling (DiGS) (Chen et al., 2024), which performs Gibbs updates by alternating perturbation and denoising, updating both the state and an auxiliary variable at each step. However, the designs differ: DiGS employs VP diffusion with auxiliary samplers such as MALA and provides no convergence guarantees, whereas our method uses VE diffusion consistent with proximal sampling, yields provable contraction guarantees, and exploits parallel multi-particle computation for lightweight score estimation.

7 CONCLUSION

We have introduced a diffusion-based approximation of proximal sampling, which simulates the backward SDE using only zeroth-order information of f . The key idea is to approximate the intermediate particle distribution by a Gaussian mixture, enabling score estimation without auxiliary samplers or additional model training.

Our method remains within the proximal sampling framework, while also being closely connected to diffusion-based Monte Carlo methods. Our theoretical analysis shows that it achieves comparable convergence rates when discretization and score estimation errors are properly controlled. Unlike rejection-sampling implementations of RGO, which are constrained to small step sizes by local properties of f , our algorithm may accommodate larger step sizes that reflect global features such as inter-mode distances.

Finally, we incorporate interaction terms among multiple particles, which empirically accelerate convergence. A complete theoretical characterization of these interactions, together with efficient parameter tuning across iterations, remains an important direction for future work.

486 REPRODUCIBILITY STATEMENT
487488 We provide complete assumptions and full proofs of all theoretical results in Appendix A. The
489 detailed settings of our experimental evaluations are described in Section 5 and Section B.
490491 REFERENCES
492

493 Nicholas M Boffi and Eric Vanden-Eijnden. Probability flow solution of the fokker–planck equation.
494 *Machine Learning: Science and Technology*, 4(3):035012, jul 2023. doi: 10.1088/2632-2153/
495 ace2aa. URL <https://dx.doi.org/10.1088/2632-2153/ace2aa>.

496 Nicolas Brosse, Alain Durmus, Éric Moulines, and Marcelo Pereyra. Sampling from a log-
497 concave distribution with compact support with proximal langevin monte carlo. In Satyen Kale
498 and Ohad Shamir (eds.), *Proceedings of the 2017 Conference on Learning Theory*, volume 65
499 of *Proceedings of Machine Learning Research*, pp. 319–342. PMLR, 07–10 Jul 2017. URL
500 <https://proceedings.mlr.press/v65/brosse17a.html>.

501 Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-concave distribution with
502 projected langevin monte carlo. *Discrete & Computational Geometry*, 59(4):757–783, Jun 2018.
503 ISSN 1432-0444. doi: 10.1007/s00454-018-9992-1. URL <https://doi.org/10.1007/s00454-018-9992-1>.

504 Carlson Moses Büth, Kishor Acharya, and Massimiliano Zanin. infomeasure: a comprehensive
505 python package for information theory measures and estimators. *Scientific Reports*, 15(1):29323,
506 Aug 2025. ISSN 2045-2322. doi: 10.1038/s41598-025-14053-5. URL <https://doi.org/10.1038/s41598-025-14053-5>.

507 Djalil Chafaï. Entropies, convexity, and functional inequalities, On Φ -entropies and Φ -Sobolev
508 inequalities. *Journal of Mathematics of Kyoto University*, 44(2):325 – 363, 2004. doi: 10.1215/
509 kjm/1250283556. URL <https://doi.org/10.1215/kjm/1250283556>.

510 Wenlin Chen, Mingtian Zhang, Brooks Paige, José Miguel Hernández-Lobato, and David Barber.
511 Diffusive Gibbs sampling. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
512 Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st Inter-
513 national Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning
514 Research*, pp. 7731–7747. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/chen24be.html>.

515 Yongxin Chen, Sinho Chewi, Adil Salim, and Andre Wibisono. Improved analysis for a proximal
516 algorithm for sampling. In Po-Ling Loh and Maxim Raginsky (eds.), *Proceedings of Thirty Fifth
517 Conference on Learning Theory*, volume 178 of *Proceedings of Machine Learning Research*, pp.
518 2984–3014. PMLR, 02–05 Jul 2022. URL <https://proceedings.mlr.press/v178/chen22c.html>.

519 Xiang Cheng and Peter Bartlett. Convergence of langevin memc in kl-divergence. In Firdaus Janoos,
520 Mehryar Mohri, and Karthik Sridharan (eds.), *Proceedings of Algorithmic Learning Theory*, vol-
521 ume 83 of *Proceedings of Machine Learning Research*, pp. 186–211. PMLR, 07–09 Apr 2018.
522 URL <https://proceedings.mlr.press/v83/cheng18a.html>.

523 Arnak Dalalyan. Further and stronger analogy between sampling and optimization: Langevin
524 monte carlo and gradient descent. In Satyen Kale and Ohad Shamir (eds.), *Proceedings of the
525 2017 Conference on Learning Theory*, volume 65 of *Proceedings of Machine Learning Research*,
526 pp. 678–689. PMLR, 07–10 Jul 2017. URL <https://proceedings.mlr.press/v65/dalalyan17a.html>.

527 Alain Durmus and Éric Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin
528 algorithm. *The Annals of Applied Probability*, 27(3):1551 – 1587, 2017. doi: 10.1214/
529 16-AAP1238. URL <https://doi.org/10.1214/16-AAP1238>.

530 Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling: Metropolis-
531 hastings algorithms are fast! In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet (eds.),

540 *Proceedings of the 31st Conference On Learning Theory*, volume 75 of *Proceedings of Machine*

541 *Learning Research*, pp. 793–797. PMLR, 06–09 Jul 2018. URL <https://proceedings.mlr.press/v75/dwivedi18a.html>.

542

543 Jiaojiao Fan, Bo Yuan, and Yongxin Chen. Improved dimension dependence of a proximal algo-

544 rithm for sampling. In Gergely Neu and Lorenzo Rosasco (eds.), *Proceedings of Thirty Sixth*

545 *Conference on Learning Theory*, volume 195 of *Proceedings of Machine Learning Research*, pp.

546 1473–1521. PMLR, 12–15 Jul 2023. URL <https://proceedings.mlr.press/v195/fan23a.html>.

547

548 Mingzhou Fan, Ruida Zhou, Chao Tian, and Xiaoning Qian. Path-guided particle-based sampling.

549 In *Proceedings of the 41st International Conference on Machine Learning*, ICML’24. JMLR.org,

550 2024.

551

552 Futoshi Futami, Issei Sato, and Masashi Sugiyama. Accelerating the diffusion-based ensemble

553 sampling by non-reversible dynamics. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of*

554 *the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine*

555 *Learning Research*, pp. 3337–3347. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/futami20a.html>.

556

557 Louis Grenioux, Maxence Noble, Marylou Gabrié, and Alain Oliviero Durmus. Stochastic localiza-

558 tion via iterative posterior sampling. In *Forty-first International Conference on Machine Learning*,

559 2024. URL <https://openreview.net/forum?id=2Gr5wZR6uc>.

560

561 Wei Guo, Molei Tao, and Yongxin Chen. Provable benefit of annealed langevin monte carlo for non-

562 log-concave sampling. In *The Thirteenth International Conference on Learning Representations*,

563 2025. URL <https://openreview.net/forum?id=P6IVIOGRRg>.

564 Mert Gurbuzbalaban, Yuanhan Hu, and Lingjiong Zhu. Penalized overdamped and underdamped

565 langevin monte carlo algorithms for constrained sampling. *Journal of Machine Learning Re-*

566 *search*, 25(263):1–67, 2024. URL <http://jmlr.org/papers/v25/22-1443.html>.

567 Ye He, Kevin Rojas, and Molei Tao. Zeroth-order sampling methods for non-log-concave dis-

568 tributions: Alleviating metastability by denoising diffusion. In A. Globerson, L. Mackey,

569 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-*

570 *ral Information Processing Systems*, volume 37, pp. 71122–71161. Curran Associates, Inc.,

571 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/8337b176767d948275d0b6d17cf4221e-Paper-Conference.pdf.

572

573 Xunpeng Huang, Hanze Dong, Yifan HAO, Yian Ma, and Tong Zhang. Reverse diffusion monte

574 carlo. In *The Twelfth International Conference on Learning Representations*, 2024a. URL

575 <https://openreview.net/forum?id=kIPEyMSdFV>.

576

577 Xunpeng Huang, Difan Zou, Hanze Dong, Yi-An Ma, and Tong Zhang. Faster sampling with-

578 out isoperimetry via diffusion-based monte carlo. In Shipra Agrawal and Aaron Roth (eds.),

579 *Proceedings of Thirty Seventh Conference on Learning Theory*, volume 247 of *Proceedings of*

580 *Machine Learning Research*, pp. 2438–2493. PMLR, 30 Jun–03 Jul 2024b. URL <https://proceedings.mlr.press/v247/huang24a.html>.

581

582 Vasily Ilin, Peter Sushko, and Jingwei Hu. Score-based deterministic density sampling. *arXiv*

583 *preprint arXiv:2504.18130*, 2025.

584

585 Beomsu Kim and Jong Chul Ye. Denoising MCMC for accelerating diffusion-based generative mod-

586 els. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and

587 Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*,

588 volume 202 of *Proceedings of Machine Learning Research*, pp. 16955–16977. PMLR, 23–29 Jul

589 2023. URL <https://proceedings.mlr.press/v202/kim23z.html>.

590

591 Yunbum Kook, Santosh S. Vempala, and Matthew S. Zhang. In-and-out: Algorithmic

592 diffusion for sampling convex bodies. In A. Globerson, L. Mackey, D. Bel-

593 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-*

594 *formation Processing Systems*, volume 37, pp. 108354–108388. Curran Associates, Inc.,

595 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/c4006ff54a7bbda74c09bad6f7586f5b-Paper-Conference.pdf.

594 LF Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random vector.
 595 *Problemy Peredachi Informatsii*, 23(2):9–16, 1987.
 596

597 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. *Phys.
 598 Rev. E*, 69:066138, Jun 2004. doi: 10.1103/PhysRevE.69.066138. URL <https://link.aps.org/doi/10.1103/PhysRevE.69.066138>.
 599

600 Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted gaussian
 601 oracle. In Mikhail Belkin and Samory Kpotufe (eds.), *Proceedings of Thirty Fourth Conference
 602 on Learning Theory*, volume 134 of *Proceedings of Machine Learning Research*, pp. 2993–3050.
 603 PMLR, 15–19 Aug 2021. URL <https://proceedings.mlr.press/v134/lee21a.html>.
 604

605 Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating
 606 convergence of score-based diffusion models, provably. In Ruslan Salakhutdinov, Zico Kolter,
 607 Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
 608 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
 609 ceedings of Machine Learning Research*, pp. 27942–27954. PMLR, 21–27 Jul 2024. URL
 610 <https://proceedings.mlr.press/v235/li24ad.html>.
 611

612 Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffusion
 613 models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Ad-
 614 vances in Neural Information Processing Systems*, volume 36, pp. 2097–2127. Curran Associates,
 615 Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/06abed94583030dd50abe6767bd643b1-Paper-Conference.pdf.
 616

617 Jiaming Liang and Yongxin Chen. A proximal algorithm for sampling from non-smooth potentials.
 618 In *Proceedings of the Winter Simulation Conference*, WSC ’22, pp. 3229–3240. IEEE Press,
 619 2023a.

620 Jiaming Liang and Yongxin Chen. A proximal algorithm for sampling. *Transactions on Machine
 621 Learning Research*, 2023b. ISSN 2835-8856. URL <https://openreview.net/forum?id=CkX0wlhf27>.
 622

623 Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian in-
 624 ference algoritm. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
 625 *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc.,
 626 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf.
 627

628 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan LI, and Jun Zhu. Dpm-solver: A
 629 fast ode solver for diffusion probabilistic model sampling in around 10 steps. In S. Koyejo,
 630 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-
 631 ral Information Processing Systems*, volume 35, pp. 5775–5787. Curran Associates, Inc.,
 632 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.
 633

634 Jianfeng Lu, Yue Wu, and Yang Xiang. Score-based transport modeling for mean-field fokker-
 635 planck equations. *Journal of Computational Physics*, 503:112859, 2024. ISSN 0021-9991.
 636 doi: <https://doi.org/10.1016/j.jcp.2024.112859>. URL <https://www.sciencedirect.com/science/article/pii/S0021999124001086>.
 637

638 Yueming Lyu, Atsushi Nitanda, and Ivor Tsang. Nonparametric distributional black-box optimiza-
 639 tion via diffusion process. In *ICLR 2025 Workshop on Deep Generative Model in Machine Learn-
 640 ing: Theory, Principle and Efficacy*, 2025. URL <https://openreview.net/forum?id=DOXsyHprRN>.
 641

642 Emile Pierret and Bruno Galerne. Diffusion models for gaussian distributions: Exact solutions and
 643 wasserstein errors. In *Forty-second International Conference on Machine Learning*, 2025. URL
 644 <https://openreview.net/forum?id=bxYbxzCI2R>.
 645

648 Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=h4pNROsO06>.
 649
 650

651 G. O. Roberts and O. Stramer. Langevin diffusions and metropolis-hastings algorithms. *Methodology And Computing In Applied Probability*, 4(4):337–357, Dec 2002. ISSN 1573-7713. doi:
 652 10.1023/A:1023562417138. URL <https://doi.org/10.1023/A:1023562417138>.
 653
 654

655 Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling of discrete approximations to langevin
 656 diffusions. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 60(1):
 657 255–268, 1998. ISSN 13697412, 14679868. URL <http://www.jstor.org/stable/2985986>.
 658

659 Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin distributions and
 660 their discrete approximations. *Bernoulli*, 2(4):341 – 363, 1996.
 661

662 Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.
 663 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=8pvnftAbulf>.
 664

665 Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted langevin algorithm:
 666 Isoperimetry suffices. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
 667 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 668 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/65a99bb7a3115fdede20da98b08a370f-Paper.pdf.
 669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PROOFS AND TECHNICAL DETAILS

704 A.1 DERIVATION OF THE SURROGATE SCORE ESTIMATOR

706 We begin by substituting π^X with

$$707 \hat{q}_{k+1}(x \mid Y_{k+\frac{1}{2}}, X_k) \propto \frac{1}{N} \sum_{j=1}^N \pi^{X \mid Y=y_j}(x) \frac{\pi^Y(y_j)}{\hat{q}_{k+\frac{1}{2}}(y_j \mid X_k)},$$

710 where $\hat{q}_{k+1/2}(y \mid X_k) = \frac{1}{N} \sum_i \mathcal{N}(y; x_i, hI_d)$. This follows from the fact that the forward heat
711 flow (4) transports the empirical Dirac mixture $\frac{1}{N} \sum_i \delta_{x_i}$ to the Gaussian mixture $\hat{q}_{k+1/2}$.
712

713 Using

$$714 \pi^{X \mid Y=y_j}(x) = \frac{\exp(-f(x) - \frac{1}{2h} \|x - y_j\|^2)}{\int \exp(-f(z) - \frac{1}{2h} \|z - y_j\|^2) dz},$$

$$717 \pi^Y(y_j) \propto \int \exp(-f(z) - \frac{1}{2h} \|z - y_j\|^2) dz,$$

719 we obtain

$$720 \hat{q}_{k+1}(x \mid Y_{k+\frac{1}{2}}, X_k) \propto \frac{1}{N} \sum_{j=1}^N \frac{\exp(-f(x) - \frac{1}{2h} \|x - y_j\|^2)}{\hat{q}_{k+\frac{1}{2}}(y_j \mid X_k)}$$

$$723 \propto \left(\frac{1}{N} \sum_{j=1}^N \frac{\mathcal{N}(x; y_j, hI_d)}{\hat{q}_{k+1/2}(y_j \mid X_k)} \right) \exp(-f(x)) =: g_N^{k+1/2}(x) \exp(-f(x)),$$

726 where $g_N^{k+1/2}$ is the unnormalized density of an N -component weighted Gaussian mixture. As
727 $N \rightarrow \infty$,

$$728 \lim_{N \rightarrow \infty} g_N^{k+1/2}(x) = \int \frac{\mathcal{N}(x; y, hI_d)}{\hat{q}_{k+1/2}(y \mid X_k)} \hat{q}_{k+1/2}(y \mid X_k) dy = \text{const},$$

731 and therefore $\hat{q}_{k+1}(\cdot \mid Y_{k+1/2}, X_k) \rightarrow \pi^X(\cdot)$.

732 Since \hat{q}_{k+1} can be regarded as the product of (i) a weighted Gaussian mixture term and (ii) the
733 exponential factor $\exp(-f)$, the surrogate score function $\hat{s}_t(x_t) := \nabla \log(\hat{q}_{k+1} P_{h-t})(x_t)$ can be
734 computed using only the particles and evaluations of f . Following the derivation in Lyu et al.
735 (2025), we obtain

$$736 \hat{s}_t(x_t) = \nabla \log \left(\int g_N^{k+1/2}(x_0) p(x_t \mid x_0) e^{-f(x_0)} dx_0 \right)$$

$$739 = \frac{\int g_N^{k+1/2}(x_0) \nabla p(x_t \mid x_0) e^{-f(x_0)} dx_0}{\int g_N^{k+1/2}(x_0) p(x_t \mid x_0) e^{-f(x_0)} dx_0}.$$

742 Here

$$743 p(x_t \mid x_0) = \frac{1}{(2\pi\sigma_t^2)^{d/2}} \exp\left(-\frac{\|x_t - x_0\|^2}{2\sigma_t^2}\right), \quad \sigma_t^2 = h - t,$$

745 so that

$$746 \nabla p(x_t \mid x_0) = p(x_t \mid x_0) \frac{x_0 - x_t}{\sigma_t^2}.$$

748 Substituting into the above expression yields

$$750 \hat{s}_t(x_t) = \frac{\int g_N^{k+1/2}(x_0) p(x_t \mid x_0) \frac{x_0 - x_t}{\sigma_t^2} e^{-f(x_0)} dx_0}{\int g_N^{k+1/2}(x_0) p(x_t \mid x_0) e^{-f(x_0)} dx_0}$$

$$753 = \frac{\int g_N^{k+1/2}(x_0 \mid x_t) \frac{x_0 - x_t}{\sigma_t^2} e^{-f(x_0)} dx_0}{\int g_N^{k+1/2}(x_0 \mid x_t) e^{-f(x_0)} dx_0},$$

755 which is exactly the score function of surrogate dynamics (11).

756 *Remark 1.* Lyu et al. (2025) consider distributional black–box optimization for maximizing f . When
 757 $p^k(x_0)$ is a Gaussian mixture, they show that setting $p^{k+1}(x_0) \propto p^k(x_0) \exp(-f(x_0)/\lambda)$ as the
 758 denoised distribution at time 0 in VP diffusion, the score at each time t can be computed directly
 759 from samples of the posterior Gaussian mixture, without any auxiliary sampler.

760 A structurally similar mechanism appears in our particle-based proximal sampling. To sample
 761 from $\pi(x) \propto \exp(-f(x))$ (in practice, by moving samples from $\hat{q}_{k+1/2}(y \mid X_k)$ toward
 762 $\hat{q}_{k+1}(x \mid Y_{k+1/2}, X_k)$), we place the denoised distribution $g_N^{k+1/2}(x) \exp(-f(x))$, where $g_N^{k+1/2}$
 763 is the Gaussian mixture obtained by smoothing the empirical particles $Y_{k+1/2}$. The score identity
 764 yields a backward update that uses only zeroth-order evaluations of f .
 765

766 A.2 DERIVATION OF THE (UNNORMALIZED) GAUSSIAN MIXTURE POSTERIOR

768 When sampling from a N -component Gaussian mixture, we first draw a component index according
 769 to the relative weights and then sample from the corresponding Gaussian component. For this
 770 reason, we often ignore constant multiplicative factors of the mixture distribution for simplicity.

771 We write $g_N^{k+1/2}(x_0) \propto \sum_j \alpha_j \mathcal{N}(x_0; y_j, hI_d)$ with $\alpha_j := 1/\hat{q}^{k+1/2}(y_j)$. By Bayes' rule,
 772

$$\begin{aligned} 773 \quad g_N^{k+1/2}(x_0 \mid x_t) &= \frac{g_N^{k+1/2}(x_0) p(x_t \mid x_0)}{\int g_N^{k+1/2}(u) p(x_t \mid u) du} \\ 774 &= \frac{\sum_{j=1}^N \alpha_j \mathcal{N}(x_0; y_j, hI_d) \mathcal{N}(x_t; x_0, \sigma_t^2 I_d)}{\sum_{j=1}^N \alpha_j \int \mathcal{N}(u; y_j, hI_d) \mathcal{N}(x_t; u, \sigma_t^2 I_d) du} \\ 775 &\propto \sum_{j=1}^N \alpha_j \mathcal{N}(x_0; y_j, hI_d) \mathcal{N}(x_t; x_0, \sigma_t^2 I_d). \end{aligned} \quad (15)$$

782 We now complete the square in the exponent of the product $\mathcal{N}(x_0; y_j, hI_d) \mathcal{N}(x_t; x_0, \sigma_t^2 I_d)$ viewed
 783 as a function of x_0 . Using the identity

$$784 \quad \frac{1}{2h} \|x_0 - y_j\|^2 + \frac{1}{2\sigma_t^2} \|x_t - x_0\|^2 = \frac{1}{2\bar{\sigma}^2} \|x_0 - m_j(x_t)\|^2 + \frac{1}{2(h + \sigma_t^2)} \|x_t - y_j\|^2,$$

787 with

$$788 \quad \bar{\sigma}^2 := \left(h^{-1} + \sigma_t^{-2} \right)^{-1} = \frac{h\sigma_t^2}{h + \sigma_t^2}, \quad m_j(x_t) := \bar{\sigma}^2 \left(h^{-1} y_j + \sigma_t^{-2} x_t \right) = \frac{\sigma_t^2}{h + \sigma_t^2} y_j + \frac{h}{h + \sigma_t^2} x_t,$$

790 we obtain the product-of-Gaussians factorization

$$791 \quad \mathcal{N}(x_0; y_j, hI_d) \mathcal{N}(x_t; x_0, \sigma_t^2 I_d) = \mathcal{N}(x_t; y_j, (h + \sigma_t^2) I_d) \mathcal{N}(x_0; m_j(x_t), \bar{\sigma}^2 I_d).$$

793 Substituting this into (15) yields

$$794 \quad g_N^{k+1/2}(x_0 \mid x_t) \propto \sum_{j=1}^N \alpha_j \mathcal{N}(x_t; y_j, (h + \sigma_t^2) I_d) \mathcal{N}(x_0; m_j(x_t), \bar{\sigma}^2 I_d).$$

797 Therefore $g_N^{k+1/2}(x_0 \mid x_t)$ is again a Gaussian mixture with a common covariance $\bar{\sigma}^2 I_d$ and updated
 798 means $m_j(x_t)$. Writing the relative weights as

$$800 \quad w_j(x_t) := \alpha_j \mathcal{N}(x_t; y_j, (h + \sigma_t^2) I_d) = \frac{1}{\hat{q}^{k+1/2}(y_j \mid X_k)} \mathcal{N}(x_t; y_j, (h + \sigma_t^2) I_d),$$

802 we obtain the desired posterior decomposition

$$803 \quad g_N^{k+1/2}(x_0 \mid x_t) \propto \sum_{j=1}^N w_j(x_t) \mathcal{N}(x_0; m_j(x_t), \bar{\sigma}^2 I_d).$$

806 Finally, note that using $W(x_t) = \sum_j w_j(x_t)$, the normalized posterior distribution can be written
 807 as

$$808 \quad g_N^{k+1/2}(x_0 \mid x_t) = \frac{1}{W(x_t)} \sum_{j=1}^N \tilde{w}_j(x_t) \mathcal{N}(x_0; m_j(x_t), \bar{\sigma}^2 I_d).$$

810 A.3 ANALYSIS FOR TIME-DISCRETIZATION ERROR
811

812 Our algorithm simulates the surrogate version of diffusion process (5) by dividing the dynamics
813 over horizon h into T steps. We first analyze the discretization error under the assumption that the
814 score function is perfectly estimated (i.e., $N, M \rightarrow \infty$). Each step simulates the time evolution over
815 an interval of length $\eta := h/T$, corresponding to the segment $(\ell - 1)\eta + t \in [(\ell - 1)\eta, \ell\eta]$ with
816 $t \in [0, \eta]$ for $\ell = 1, \dots, T$. In the ideal dynamics (5), the drift term is time-dependent, whereas in
817 the discretized scheme we approximate it by fixing the drift at the beginning of each step. Following
818 an argument similar to that in Vempala & Wibisono (2019), we obtain the following result.
819

820 **Lemma 3.** *Fix a step index $\ell \in \{1, \dots, T\}$ and let $\eta := h/T$. Let $(\nu_t)_{t \in [0, \eta]}$ denote the ideal
821 backward marginals in (5) at elapsed time $h - (\ell - 1)\eta - t$ for $t \in [0, \eta]$, and $(\mu_t)_{t \in [0, \eta]}$ denote the
822 frozen-drift approximation within this step. Then for $u \geq 1$ and all $t \in [0, \eta]$,*

$$823 \frac{d}{dt} H_{\nu_t}(\mu_t) \leq -\left(\frac{1}{2} - \frac{1}{4u^2}\right) J_{\nu_t}(\mu_t) + u^2 \mathbb{E}_{\mu_{0,t}}[\|\tilde{s}_0(z_0) - \tilde{s}_t(z_t)\|^2]. \quad (16)$$

824 Equivalently, integrating over $t \in [0, \eta]$ yields

$$825 H_{\nu_\eta}(\mu_\eta) - H_{\nu_0}(\mu_0) \leq -\left(\frac{1}{2} - \frac{1}{4u^2}\right) \int_0^\eta J_{\nu_t}(\mu_t) dt + u^2 \int_0^\eta \mathbb{E}_{\mu_{0,t}}[\|\tilde{s}_0(z_0) - \tilde{s}_t(z_t)\|^2] dt.$$

826 *Proof.* For convenience to analyze the behavior at $(\ell - 1)\eta + t$ with $t \in [0, \eta]$ which corresponds to
827 the time interval $[(\ell - 1)\eta, \ell\eta]$ in original backward process defined in (5), we restate the SDE and
828 the associated Fokker–Plank equation as: for $t \in [0, h]$,

$$829 \begin{aligned} dZ_t^\leftarrow &= \tilde{s}_t(Z_t^\leftarrow) dt + dB_t, \quad \text{law}(Z_t^\leftarrow) = \nu_t, \\ 830 \partial_t \nu_t &= -\text{div}(\nu_t \tilde{s}_t) + \frac{1}{2} \Delta \nu_t = \nabla \cdot \left(\nu_t \left(-\tilde{s}_t + \frac{1}{2} \nabla \log \nu_t \right) \right), \end{aligned}$$

831 where we define the score function $\tilde{s}_t := \nabla \log(\pi^X P_{h-(\ell-1)\eta-t})$.
832

833 In contrast, the time-discretized approximation corresponds to the process

$$834 dz_t = \tilde{s}_0(z_0) dt + dB_t, \quad \text{law}(z_t) = \mu_t, \quad (17)$$

835 where the drift is frozen at the beginning of the step.
836

837 The associated Fokker–Planck equation is
838

$$839 \begin{aligned} \partial_t \mu_t(z_t | z_0) &= -\text{div}(\mu_t(z_t | z_0) \tilde{s}_0(z_0)) + \frac{1}{2} \Delta \mu_t(z_t | z_0) \\ 840 &= \nabla \cdot (\mu_t(z_t | z_0) (-\tilde{s}_0(z_0) + \frac{1}{2} \nabla \log \mu_t(z_t | z_0))). \end{aligned}$$

841 Averaging over $z_0 \sim \mu_0$, this becomes
842

$$843 \partial_t \mu_t = -\nabla \cdot \left(\mu_t \left(-\mathbb{E}_{\mu_{0|t}}[\tilde{s}_0(z_0) | z_t] + \frac{1}{2} \nabla \log \mu_t \right) \right).$$

844 The time derivative of the KL divergence is then
845

$$846 \begin{aligned} \frac{d}{dt} H_{\nu_t}(\mu_t) &= \frac{d}{dt} \int \mu_t \log \frac{\mu_t}{\nu_t} dz \\ 847 &= \int \left[(\partial_t \mu_t) \log \frac{\mu_t}{\nu_t} + \left(\partial_t \mu_t - \mu_t \frac{\partial_t \nu_t}{\nu_t} \right) \right] dz \\ 848 &= \int \left[\nabla \cdot \left(\mu_t \left(-\mathbb{E}_{\mu_{0|t}}[\tilde{s}_0(z_0) | z_t] + \frac{1}{2} \nabla \log \mu_t \right) \right) \log \frac{\mu_t}{\nu_t} \right. \\ 849 &\quad \left. - \frac{\mu_t}{\nu_t} \nabla \cdot \left(\nu_t \left(-\tilde{s}_t + \frac{1}{2} \nabla \log \nu_t \right) \right) \right] dz \\ 850 &= \int \left[-\langle \mu_t \left(-\mathbb{E}_{\mu_{0|t}}[\tilde{s}_0(z_0) | z_t] + \frac{1}{2} \nabla \log \mu_t \right), \nabla \log \frac{\mu_t}{\nu_t} \rangle \right. \\ 851 &\quad \left. + \langle \nu_t \left(-\tilde{s}_t + \frac{1}{2} \nabla \log \nu_t \right), \frac{\mu_t}{\nu_t} \nabla \log \frac{\mu_t}{\nu_t} \rangle \right] dz \\ 852 &= \int \left\langle -\frac{1}{2} \nabla \log \frac{\mu_t}{\nu_t} + \mathbb{E}_{\mu_{0|t}}[\tilde{s}_0(z_0) | z_t] - \tilde{s}_t, \nabla \log \frac{\mu_t}{\nu_t} \right\rangle \mu_t dz. \end{aligned}$$

864 Here, the third equality substitutes the Fokker–Planck equations for $\partial_t \mu_t$ and $\partial_t \nu_t$ and also uses that
 865 the integral of $\partial_t \mu_t$ vanishes due to mass conservation. The forth equality uses integration by parts
 866 (assuming sufficiently fast decay at infinity) and the identity.

867 Simplifying, we obtain

$$869 \frac{d}{dt} H_{\nu_t}(\mu_t) = -\frac{1}{2} J_{\nu_t}(\mu_t) + \mathbb{E}_{\mu_t} \left[\langle \mathbb{E}_{\mu_{0|t}} [\tilde{s}_0(z_0) | z_t] - \tilde{s}_t, \nabla \log \frac{\mu_t}{\nu_t} \rangle \right].$$

871 Applying $\langle a, b \rangle \leq u^2 \|a\|^2 + \frac{1}{4u^2} \|b\|^2$, we conclude

$$873 \frac{d}{dt} H_{\nu_t}(\mu_t) \leq -\left(\frac{1}{2} - \frac{1}{4u^2}\right) J_{\nu_t}(\mu_t) + u^2 \mathbb{E}_{\mu_{0,t}(z_0, z_t)} [\|\tilde{s}_0(z_0) - \tilde{s}_t(z_t)\|^2].$$

875 \square

877 This establishes the discretization error bound of one diffusion step in terms of the deviation between
 878 the frozen score \tilde{s}_0 and the ideal time-dependent score \tilde{s}_t .

879 **Assumption 1** (Smoothness of the interim distribution). *The interim distribution $\pi^X P_{h-(\ell-1)\eta}$ is
 880 L_ℓ -smooth, i.e., the potential gradient $\nabla \log(\pi^X P_{h-(\ell-1)\eta})$ is L_ℓ -Lipschitz.*

881 **Assumption 2** (Lipschitz condition along the time direction). *The expected score satisfies a
 882 Lipschitz-type condition along the time direction:*

$$883 \mathbb{E}_{\mu_t} [\|\tilde{s}_0(z_t) - \tilde{s}_t(z_t)\|^2] \leq C_{t,\ell}^2 t^2.$$

885 **Corollary 1.** *Assume $\nu_0 := \pi^X P_{(\ell-1)\eta}$ satisfies LSI with constant $C_{\text{LSI}}(\nu_0)$ and under Assumption 1
 886 and Assumption 2,*

$$887 \frac{d}{dt} H_{\nu_t}(\mu_t) \leq -\left(\frac{1}{2} - \frac{1}{4u^2}\right) J_{\nu_t}(\mu_t) + u^2 (4\eta^2 L_\ell^4 C_{\text{LSI}}(\nu_0) H_{\nu_0}(\mu_0) + \eta dC), \quad (18)$$

$$889 \text{where } C = \sup_l \sup_t 2tL_\ell^3 + L_\ell^2 + tC_{t,\ell}^2/d. \quad (19)$$

891 *Proof.* We bound the second term of the right hand side in the inequality in Lemma 3 using Assumption 1 and Assumption 2,

$$894 \mathbb{E}_{\mu_{0,t}(z_0, z_t)} [\|\tilde{s}_0(z_0) - \tilde{s}_t(z_t)\|^2] \leq \mathbb{E}_{\mu_{0,t}(z_0, z_t)} [\|\tilde{s}_0(z_0) - \tilde{s}_0(z_t)\|^2] + \mathbb{E}_{\mu_t} [\|\tilde{s}_0(z_t) - \tilde{s}_t(z_t)\|^2] \\ 895 \leq L_\ell^2 \mathbb{E}_{\mu_{0,t}(z_0, z_t)} [\|z_0 - z_t\|^2] + C_{t,\ell}^2 t^2.$$

897 Under the discretization update

$$898 z_t = z_0 + \tilde{s}_0(x_0) t + \sqrt{t} \xi, \quad \xi \sim \mathcal{N}(0, I_d),$$

899 we have

$$900 \mathbb{E}_{\mu_{0,t}(z_0, z_t)} [\|z_0 - z_t\|^2] = \mathbb{E}_{\mu_0} [\|\tilde{s}_0(x_0) t + \sqrt{t} \xi\|^2] \\ 901 = t^2 \mathbb{E}_{\mu_0} [\|\tilde{s}_0(x_0)\|^2] + td \\ 902 \leq t^2 (4L_\ell^2 C_{\text{LSI}}(\nu_0) H_{\nu_0}(\mu_0) + 2dL_\ell) + td.$$

904 The last inequality comes from Lemma 12 in Vempala & Wibisono (2019) with Assumption 1 and
 905 ν_0 satisfying Talagrand’s inequality with constant $C_{\text{LSI}}(\nu_0)^{-1}$. Putting them altogether, we obtain
 906 (18) where C is independent on ℓ by taking supremum as (19). \square

908 **Proposition 2** (One-step bound for the diffusion-approximated proximal sampler without score es-
 909 timation error). *Assume Assumption 1 and Assumption 2 hold, and that π^X satisfies an LSI with
 910 constant $C_{\text{LSI}}(\pi^X)$. Let C be as in (19). Let overall step size $h > 0$ be split into T steps with
 911 $\eta := h/T$. In the regime $N, M \rightarrow \infty$ where the score estimation error vanishes, distribution at k -th
 912 iteration ρ_k^X satisfies*

$$913 H_{\pi^X}(\rho_{k+1}^X) \leq \frac{H_{\pi^X}(\rho_k^X)}{(1 + h/C_{\text{LSI}}(\pi^X))^{2-1/(2u^2)}} \\ 914 + 2u^4 C_{\text{LSI}}(\pi^X) ((1 + h/C_{\text{LSI}}(\pi^X))^{1/(2u^2)} - 1) \left\{ 4\eta^2 \bar{L}^2 (C_{\text{LSI}}(\pi^X) + h) \bar{H} + \eta dC \right\}$$

917 for $u \geq 1$, where \bar{H} is the supremum of KL divergence between the interim distribution of the
 918 backward denoised distribution at timestep $t = \ell\eta$ and $\pi^Y Q_{\ell\eta}$ and $\bar{L} = \sup_\ell L_\ell$

918 *Proof.* As shown in Corollary 13 of Chafaï (2004), the logarithmic Sobolev constant satisfies
919

$$920 \quad C_{LSI}(\pi^X P_t) \leq C_{LSI}(\pi^X) + t.$$

921 For $t \in [0, \eta]$, the law ν_t corresponds to the ideal denoising path at time $(\ell - 1)\eta + t$, namely
922 $\nu_t = \pi^X P_{h-(\ell-1)\eta-t}$. Hence its logarithmic Sobolev constant can be bounded as
923

$$924 \quad C_{LSI}(\nu_t) \leq C_{LSI}(\pi^X) + h - (\ell - 1)\eta - t =: \alpha_\ell - t.$$

925 From Corollary 1 combined with LSI, we obtain
926

$$927 \quad \frac{d}{dt} H_{\nu_t}(\mu_t) \leq -\frac{1 - 1/(2u^2)}{\alpha_\ell - t} H_{\nu_t}(\mu_t) + u^2 [4\eta^2 L_\ell^4 C_{LSI}(\nu_0) H_{\nu_0}(\mu_0) + \eta dC].$$

930 Applying Gronwall's inequality, where we multiply by the integrating factor: $(\alpha_\ell - t)^{-1+1/(2u^2)}$,
931

$$932 \quad \frac{d}{dt} \left\{ (\alpha_{\nu_t} - t)^{-1+1/(2u^2)} H_{\nu_t}(\mu_t) \right\} \leq (\alpha_{\nu_t} - t)^{-1+1/(2u^2)} u^2 \left[4\eta^2 L_{v_0}^2 C_{LSI}(\nu_0) H_{\nu_0}(\mu_0) + \eta dC \right]$$

933 and integrating over $t \in [0, \eta]$, we obtain
934

$$935 \quad (\alpha_\ell - \eta)^{-1+1/(2u^2)} H_{\nu_\eta}(\mu_\eta) - \alpha_\ell^{-1+1/(2u^2)} H_{\nu_0}(\mu_0) \\ 936 \quad \leq 2u^4 (\alpha_\ell^{1/(2u^2)} - (\alpha_\ell - \eta)^{1/(2u^2)}) \left\{ 4\eta^2 L_{v_0}^2 C_{LSI}(\nu_0) H_{\nu_0}(\mu_0) + \eta dC \right\}.$$

939 Recall that we μ_t, ν_t is in ℓ -th step in time discretized diffusion. Using the fact that μ_η, ν_η is equivalent to μ_0, ν_0 in $\ell + 1$ -th step and $\alpha_\ell - \eta = \alpha_{\ell+1}$, we iterating this inequality over $\ell = 1, \dots, T$ to
940 obtain
941

$$942 \quad C_{LSI}(\pi^X)^{-1+1/(2u^2)} H_{\pi^X}(p_{k+1}^X) - (C_{LSI}(\pi^X) + h)^{-1+1/(2u^2)} H_{\pi^X}(p_{k+1/2}^Y) \\ 943 \quad \leq 2u^4 ((C_{LSI}(\pi^X) + h)^{1/(2u^2)} - C_{LSI}(\pi^X)^{1/(2u^2)}) \left\{ 4\eta^2 \bar{L}^2 (C_{LSI}(\pi^X) + h) \bar{H} + \eta dC \right\},$$

946 where $\bar{H} := \sup_l H_{\nu_0}(\mu_0)$, the supremum of the KL divergence between the updated distribution in
947 each diffusion step and corresponding ideal distribution without distretization error and $\bar{L} := L_\ell$.
948

Equivalently,

$$949 \quad H_{\pi^X}(p_{k+1}^X) \leq \frac{H_{\pi^Y}(p_{k+1/2}^Y)}{(1 + h/C_{LSI}(\pi^X))^{1-1/(2u^2)}} \\ 950 \quad + 2u^4 C_{LSI}(\pi^X) ((1 + h/C_{LSI}(\pi^X))^{1/(2u^2)} - 1) \left\{ 4\eta^2 L_\ell^2 (C_{LSI}(\pi^X) + h) \bar{H} + \eta dC \right\}.$$

954 This corresponds to the time discretized version of the KL contraction in (8) with $q = 1$. We finalize
955 this proof by applying inequality (7) in Lemma 1 with $q = 1$. □

956 <https://anonymous.4open.science/r/zod-ps-662B>
957

958 A.4 ANALYSIS FOR SCORE ESTIMATION ERROR

959 In this section, we evaluate the error of score estimation under a set of assumptions. We do not
960 necessarily generate $Y_{k+1/2}$ by evolving particles from X_k , but may instead sample $Y_{k+1/2}$ directly
961 from the Gaussian mixture. In this case, we denote the number of $Y_{k+1/2}$ particles by N' . We
962 prove that the estimation error scales as $O(1/N' + 1/M)$, which converges to zero in the limit of
963 $N', M \rightarrow 0$.
964

965 Recall that $\hat{q}_{k+1/2}(y|X_k) = \frac{1}{N} \sum_i \mathcal{N}(x_i, hI_d)$ and we further define (normalized) Gaussian mixture
966 density
967

$$968 \quad \hat{g}_{N'}^{k+\frac{1}{2}}(x | X_k) \propto \frac{1}{N'} \sum_{j=1}^{N'} \frac{\mathcal{N}(x; y_j, hI_d)}{\hat{q}^{k+\frac{1}{2}}(y_j | X_k)}.$$

972 At time t , the true score in the surrogate dynamics is expressed as
 973

$$974 \hat{s}_{N'}(z_t, t) = \nabla \log((\hat{g}_{N'}^{k+\frac{1}{2}}|_{X_k} e^{-f}) P_{h-t})(z_t).$$

975 We approximate this by
 976

$$977 \hat{s}_{N',M}(z_t, t) = \frac{\frac{1}{M} \sum_{m=1}^M \exp(-f(\hat{z}^{(m)}))(\hat{z}^{(m)} - z_t)/(h-t)}{\frac{1}{M} \sum_{m=1}^M \exp(-f(\hat{z}^{(m)}))}, \quad \hat{z}^{(m)} \sim \hat{g}_{N'}^{k+\frac{1}{2}}|_{X_k}(\cdot | z_t). \quad (20)$$

980 Compared to the setting with only time discretization in Section A.3, the drift term \tilde{s}_0 in one de-
 981 noising step of the discretized dynamics (17) is replaced by the estimator $\hat{s}_{N',M}(\cdot, (\ell-1)\eta)$ given
 982 in (20). Using this substitution, the statement of Lemma 3, originally expressed as (16), is modified
 983 accordingly as follows:

$$984 \frac{d}{dt} H_{\nu_t}(\mu_t) \leq -\left(\frac{1}{2} - \frac{1}{4u^2}\right) J_{\nu_t}(\mu_t) + u^2 \mathbb{E}_{\mu_{0,t}}[\|\hat{s}_{N',M}(z_0, (\ell-1)\eta) - \tilde{s}_t(z_t)\|^2 | U, \hat{Z}|_U]$$

985 where $U \sim_{N'} \hat{q}_{k+1/2}(\cdot | X_k)$ and $\hat{Z}|_U \sim_M \hat{g}_{N'}^{k+\frac{1}{2}}(\cdot | z_0)$.
 986

988 The expectation in the second term of right hand side is evaluated as:
 989

$$990 \mathbb{E}_{\mu_{0,t}}[\|\hat{s}_{N',M}(z_0, (\ell-1)\eta) - \tilde{s}_t(z_t)\|^2 | U, \hat{Z}|_U] \\ 991 \leq 2\mathbb{E}_{\mu_{0,t}}[\|\tilde{s}_0(z_0) - \tilde{s}_t(z_t)\|^2] + 2\mathbb{E}_{\mu_0}[\|\hat{s}_{N',M}(z_0, (\ell-1)\eta) - \tilde{s}_0(z_0)\|^2 | U, \hat{Z}|_U] \\ 992 \leq 2\mathbb{E}_{\mu_{0,t}}[\|\tilde{s}_0(z_0) - \tilde{s}_t(z_t)\|^2] + 4\mathbb{E}_{\mu_0}[\|\hat{s}_{N'}(z_0, (\ell-1)\eta) - \tilde{s}_0(z_0)\|^2 | U] \\ 993 + 4\mathbb{E}_{\mu_0}[\|\hat{s}_{N',M}(z_0, (\ell-1)\eta) - \hat{s}_{N'}(z_0, (\ell-1)\eta)\|^2 | U, \hat{Z}|_U],$$

995 which means we can independently evaluate the errors from time discretization (the first term), from
 996 finite N' (the second term) and from finite M (the third term).
 997

998 **Score error from finite N' .** Let $\tau := h - (\ell-1)\eta$ and z_τ equivalent to z_0 , initial sample of ℓ -th
 999 denoising step. For $z_0 \in \mathbb{R}^d$, define the conditional law, where denoised \hat{z} is conditioned by z_τ ,

$$1000 \pi^X(\hat{z} | z_\tau) \propto \exp\left(-f(\hat{z}) - \frac{\|\hat{z} - z_\tau\|^2}{2\tau}\right),$$

1002 with normalizer
 1003

$$1004 Z(z_\tau) := \int \exp\left(-f(\hat{z}) - \frac{\|\hat{z} - z_\tau\|^2}{2\tau}\right) d\hat{z}.$$

1006 Let
 1007

$$1008 G(z_\tau) := \frac{1}{Z(z_\tau)} \int \hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} | X_k) \exp\left(-f(\hat{z}) - \frac{\|\hat{z} - z_\tau\|^2}{2\tau}\right) d\hat{z}.$$

1010 Here we assume:
 1011

1012 **Assumption 3** (Bounded Covariance of the conditioned target distribution). *For all $\ell = 1, \dots, L$ and
 1013 z_τ , there exists $C_v > 0$ s.t. $\sup \text{Var}_{\pi^X(\hat{z}|z_\tau)}[\hat{z}] \leq C_v$.*

1014 **Assumption 4** (Lower bound of density ratio between the perturbed distributions).

$$1015 \frac{\pi^X(\hat{z} | z_\tau) * \mathcal{N}(0, hI_d)(u)}{\hat{\rho}_{k+1/2}^Y(u)} \geq K > 0$$

1017 for a.e. u , hence $G(z_\tau) \geq K$.
 1018

1019 **Lemma 4** (finite- N' error is $O(1/N')$). *Under Assumption 3 and Assumption 4, conditioned on
 1020 $U \sim_{N'} \hat{q}_{k+1/2}(\cdot | X_k)$, the error term induced by the finite base sample size N' satisfies*

$$1021 \mathbb{E}_{\mu_0}[\|\hat{s}_{N'}(z_\tau, h - \tau) - s_{h-\tau}(z_\tau)\|^2 | U] \leq \frac{2K^{-2}C_V}{N'\tau^2} \mathbb{E}_{\mu_0, \pi^X(\hat{z}|z_\tau)} \left[\chi^2(\mathcal{N}(\hat{z}, hI_d) \| \hat{\rho}_{k+1/2}^Y) \right. \\ 1022 \left. + \chi^2(\pi^X(\hat{z} | z_\tau) * \mathcal{N}(0, hI_d) \| \hat{\rho}_{k+1/2}^Y) \right].$$

1023 In particular, under bounded χ^2 -divergences, the second term on the right-hand side of the inequality
 1024 in the context is $O(1/N)$.
 1025

1026 *Proof.* By Tweedie's formula at time $\tau = h - (\ell - 1)\eta$, we have
1027

$$\begin{aligned} \mathbb{E}_{\mu_0} \left[\|\hat{s}_{N'}(z_\tau, h - \tau) - s_{h-\tau}(z_\tau)\|^2 \mid U \right] &= \frac{1}{\tau^2} \mathbb{E}_{\mu_0} \left[\left\| \mathbb{E}_{\hat{z} \sim \hat{g}_{N'}^{k+\frac{1}{2}}(\cdot \mid z_\tau)} [\hat{z}] - \mathbb{E}_{\hat{z} \sim \pi^X(\cdot \mid z_\tau)} [\hat{z}] \right\|^2 \right] \\ &= \frac{1}{\tau^2} \mathbb{E}_{\mu_0} \left[\left\| \int \hat{z} \left(\frac{\hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} \mid X_k)}{G(z_\tau)} - 1 \right) \pi^X(\hat{z} \mid z_\tau) d\hat{z} \right\|^2 \right]. \end{aligned}$$

1033 Let $C(z_\tau) := \int \hat{z} \pi^X(\hat{z} \mid z_\tau) d\hat{z}$. Since $\int \left(\frac{\hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} \mid X_k)}{G(z_\tau)} - 1 \right) \pi^X(\hat{z} \mid z_\tau) d\hat{z} = 0$, we can center the
1034 integrand and apply Cauchy-Schwarz to obtain
1035

$$\begin{aligned} \mathbb{E}_{\mu_0} \left[\|\hat{s}_{N'}(z_\tau, h - \tau) - s_{h-\tau}(z_\tau)\|^2 \mid U \right] &\leq \frac{1}{\tau^2} \mathbb{E}_{\mu_0} [\text{Var}_{\pi^X(\hat{z} \mid z_\tau)}(\hat{z}) \cdot \text{Var}_{\pi^X(\hat{z} \mid z_\tau)}\left(\frac{\hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} \mid X_k)}{G(z_\tau)}\right)] \\ &\leq \frac{C_V}{\tau^2} \mathbb{E}_{\mu_0} \left[\int \frac{1}{G(z_\tau)^2} (\hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} \mid X_k) - G(z_\tau))^2 \pi^X(\hat{z} \mid z_\tau) d\hat{z} \right] \\ &\leq \frac{K^{-2} C_V}{\tau^2} \mathbb{E}_{\mu_0} \left[\int (\hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} \mid X_k) - G(z_\tau))^2 \pi^X(\hat{z} \mid z_\tau) d\hat{z} \right]. \end{aligned}$$

1043 The second inequality is from Assumption 3 and Assumption 4 yields the last inequality. Using the
1044 unbiasedness identities with $u_j \sim \hat{\rho}_{k+1/2}^Y$,
1045

$$\mathbb{E}_{u_j \sim \hat{\rho}_{k+1/2}^Y} \left[\frac{1}{N'} \sum_{j=1}^{N'} \frac{\mathcal{N}(\hat{z}; u_j, hI_d)}{\hat{\rho}_{k+1/2}^Y(u_j)} \right] = 1, \quad \mathbb{E}_{u_j \sim \hat{\rho}_{k+1/2}^Y} \left[\frac{\pi^X(\hat{z} \mid z_\tau) * \mathcal{N}(0, hI_d)(u_j)}{\hat{\rho}_{k+1/2}^Y(u_j)} \right] = 1,$$

1049 and the decomposition $((\hat{g} - 1) + (1 - G))^2 \leq 2(\hat{g} - 1)^2 + 2(G - 1)^2$, we get
1050

$$\leq \frac{2K^{-2} C_V}{\tau^2} \mathbb{E}_{\mu_0} \left[\int \left((\hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} \mid X_k) - 1)^2 + (G(z_\tau) - 1)^2 \right) \pi^X(\hat{z} \mid z_\tau) d\hat{z} \right].$$

1053 Standard variance calculations for importance-weighted kernel mixtures yield
1054

$$\begin{aligned} \int (\hat{g}_{N'}^{k+\frac{1}{2}}(\hat{z} \mid X_k) - 1)^2 \pi^X(\hat{z} \mid z_\tau) d\hat{z} &= \frac{1}{N'} \text{Var}_{u_j \sim \hat{\rho}_k^Y} \left(\frac{\mathcal{N}(\hat{z}; u_j, hI_d)}{\hat{\rho}_{k+1/2}^Y(u_j)} \right), \\ (G(z_\tau) - 1)^2 &= \frac{1}{N'} \text{Var}_{u_j \sim \hat{\rho}_{k+1/2}^Y} \left(\frac{\pi^X(\hat{z} \mid z_\tau) * \mathcal{N}(0, hI_d)(u_j)}{\hat{\rho}_{k+1/2}^Y(u_j)} \right). \end{aligned}$$

1060 Each variance is upper bounded by the corresponding χ^2 -divergence, i.e., $\text{Var}_q(\frac{p}{q}) \leq \chi^2(p\|q)$,
1061 yielding the claim. \square
1062

1063 **Score estimation error from finite M .** Here we assume
1064

1065 **Assumption 5.** The following fourth moments under $\hat{g}_{N'}^{k+\frac{1}{2}}(\cdot \mid z_\tau)$ are finite:

$$1066 \quad \mathbb{E} [\exp(4f(\hat{z}))] < \infty, \quad \mathbb{E} [\|\hat{z} - z_\tau\|^4 \exp(4f(\hat{z}))] < \infty.$$

1068 This can be satisfied, for instance, the variance of each component in Gaussian mixture $\hat{g}_{N'}^{k+1/2}$ is
1069 sufficiently small compared to the divergence of f .
1070

1071 **Lemma 5** (finite- M error is $O(1/M)$). Fix z_τ and $U \sim_{N'} \hat{g}_{k+\frac{1}{2}}(\cdot \mid X_k)$. Under Assumption 5,
1072 there exists a constant C_M such that
1073

$$1074 \quad \mathbb{E}_{\mu_0} [\|\hat{s}_{N',M}(z_\tau, h - \tau) - \hat{s}_{N'}(z_\tau, h - \tau)\|^2 \mid U] \leq \frac{C_M}{M \tau^2}.$$

1076 *Proof.* Write the estimator (20) at time τ as a ratio of empirical means as following:
1077

$$1078 \quad \hat{s}_{N',M}(z_\tau, \tau) = \frac{A_M}{\tau B_M}, \quad A_M := \frac{1}{M} \sum_{m=1}^M (\hat{z}^{(m)} - z_\tau) e^{-f(\hat{z}^{(m)})}, \quad B_M := \frac{1}{M} \sum_{m=1}^M e^{-f(\hat{z}^{(m)})}.$$

1080 Let $A := \mathbb{E}[A_M]$ and $B := \mathbb{E}[B_M]$ under $\hat{z}^{(m)} \stackrel{\text{i.i.d.}}{\sim} \hat{g}_{N'}^{k+\frac{1}{2}}(\cdot \mid z_\tau)$. Then $\hat{s}_{N'}(z_\tau, h - \tau) = A/(\tau B)$
 1081 and
 1082

$$1083 \|\hat{s}_{N',M} - \hat{s}_{N'}\|^2 = \frac{1}{\tau^2} \left\| \frac{A_M}{B_M} - \frac{A}{B} \right\|^2 = \frac{1}{\tau^2} \left\| \frac{A_M B - A B_M}{B_M B} \right\|^2.$$

1085 Use the decomposition $A_M B - A B_M = (A_M - A)B + A(B - A B_M/B)$ to obtain the crude bound
 1086

$$1087 \left\| \frac{A_M}{B_M} - \frac{A}{B} \right\|^2 \leq \frac{2\|A_M - A\|^2}{B_M^2} + \frac{2\|A\|^2\|B_M - B\|^2}{B_M^2 B^2}.$$

1090 Since $e^{-f(\hat{z})} > 0$, Jensen implies $B_M^{-2} \leq \frac{1}{M} \sum_{m=1}^M e^{2f(\hat{z}^{(m)})}$. Hence
 1091

$$1092 \|\hat{s}_{N',M} - \hat{s}_{N'}\|^2 \\ 1093 \leq \frac{2}{\tau^2} \left\{ \left(\frac{1}{M} \sum_{m=1}^M e^{2f(\hat{z}^{(m)})} \right) \|A_M - A\|^2 + \frac{\|A\|^2}{B^2} \left(\frac{1}{M} \sum_{m=1}^M e^{2f(\hat{z}^{(m)})} \right) \|B_M - B\|^2 \right\}.$$

1096 Taking conditional expectation with respect to $\hat{Z}|_U$ and applying Hölder's inequality with exponents
 1097 (2, 2) to each term, we have
 1098

$$1099 \mathbb{E}[\|\hat{s}_{N',M} - \hat{s}_{N'}\|^2 \mid U] \\ 1100 \leq \frac{2}{\tau^2} \left\{ (\mathbb{E}[X_M^2])^{\frac{1}{2}} (\mathbb{E}[\|A_M - A\|^4])^{\frac{1}{2}} + \frac{\|A\|^2}{B^2} (\mathbb{E}[X_M^2])^{\frac{1}{2}} (\mathbb{E}[(B_M - B)^4])^{\frac{1}{2}} \right\},$$

1103 where $X_M := \frac{1}{M} \sum_{m=1}^M e^{2f(\hat{z}^{(m)})}$. We compute the second moment of X_M explicitly:
 1104

$$1105 \mathbb{E}[X_M^2] = \frac{1}{M} \mathbb{E}[e^{4f(\hat{z})}] + \frac{M-1}{M} (\mathbb{E}[e^{2f(\hat{z})}])^2.$$

1108 For the fourth moments of the centered empirical means, using the standard 4th-moment expansion
 1109 for i.i.d. averages, we obtain

$$1110 \mathbb{E}[\|A_M - A\|^4] \\ 1111 \leq \frac{1}{M^3} \mathbb{E}[\|((\hat{z} - z_\tau)e^{-f(\hat{z})} - \mathbb{E}[(\hat{z} - z_\tau)e^{-f(\hat{z})}])\|^4] + \frac{3}{M^2} \text{Var}((\hat{z} - z_\tau)e^{-f(\hat{z})})^2, \\ 1114 \mathbb{E}[(B_M - B)^4] \leq \frac{1}{M^3} \mathbb{E}[(e^{-f(\hat{z})} - \mathbb{E}[e^{-f(\hat{z})}])^4] + \frac{3}{M^2} \text{Var}(e^{-f(\hat{z})})^2.$$

1116 Substituting these bounds back gives
 1117

$$1118 \mathbb{E}[\|\hat{s}_{N',M} - \hat{s}_{N'}\|^2 \mid U] \leq \frac{2}{\tau^2} (\mathbb{E}[X_M^2])^{\frac{1}{2}} \left\{ \left(\frac{1}{M^3} \mathbb{E}[\|\cdot\|^4] + \frac{3}{M^2} \text{Var}((\hat{z} - z_\tau)e^{-f(\hat{z})})^2 \right)^{\frac{1}{2}} \right. \\ 1121 \left. + \frac{\|A\|^2}{B^2} \left(\frac{1}{M^3} \mathbb{E}[(e^{2f(\hat{z})} - \mathbb{E}[e^{2f(\hat{z})}])^4] + \frac{3}{M^2} \text{Var}(e^{2f(\hat{z})})^2 \right)^{\frac{1}{2}} \right\}.$$

1124 If the 4-th moments are finite under Assumption 5, $\mathbb{E}[X_M^2] = O(1)$ and each rooted bracket is
 1125 $O(M^{-1})$. Therefore,
 1126

$$1127 \mathbb{E}[\|\hat{s}_{N',M}(z_\tau, \tau) - \hat{s}_{N'}(z_\tau, \tau)\|^2 \mid U] \leq \frac{C_M}{M \tau^2},$$

1129 for a constant C_M depending only on the above moments. \square
 1130

1131 Combining Lemma 4 and Lemma 5, we conclude the overall score estimation error is $O(1/N' + 1/M)$ under several appropriate assumptions.
 1132

1134 A.5 OVERALL ITERATION COMPLEXITY
11351136 We begin by combining the KL contraction in the forward step (Lemma 1, (7)) with the approximate
1137 KL contraction in the backward step subject to estimation errors (Proposition 1).1138 **Corollary 2** (Main one-iteration bound with split errors). *Let $u \geq 1$ and suppose there exist con-
1139 stants C_{LSI} and $\Lambda_2^{(k)}$. Then the k -th iterate of Algorithm 1 satisfies*
1140

1141
$$H_{\pi^X}(\rho_{k+1}^X) \leq \frac{H_{\pi^X}(\rho_{k+1/2}^X)}{r} + c(\Lambda_1^{(k)} + 2\Lambda_2^{(k)}),$$

1142

1143 where $r := (1 + h/C_{LSI})^{2 - \frac{1}{2u^2}}$ and $c := 2u^4 C_{LSI}((1 + h/C_{LSI})^{\frac{1}{2u^2}} - 1)$.
11441145 Applying the standard iteration argument to this yields
1146

1147
$$H_{\pi^X}(\rho_k^X) \leq \frac{1}{r^k} H_{\pi^X}(\rho_0^X) + c \sum_{j=0}^{k-1} \frac{\Lambda_1^{(j)} + 2\Lambda_2^{(j)}}{r^{k-1-j}}.$$

1148

1149 **Corollary 3** (Iteration complexity under uniform error bound). *Suppose that the per-step error
1150 satisfies*
1151

1152
$$\Lambda_1^{(j)} + 2\Lambda_2^{(j)} \leq \Lambda \quad \text{for all } j \geq 0.$$

1153

1154 *Then the iterates of Algorithm 1 obey*

1155
$$H_{\pi^X}(\rho_k^X) \leq \frac{1}{r^k} H_{\pi^X}(\rho_0^X) + \frac{cr}{r-1} \Lambda.$$

1156

1157
1158 *Consequently, to guarantee $H_{\pi^X}(\rho_k^X) \leq \varepsilon$, it is sufficient that*
1159

1160
$$k \geq \frac{\log(2H_{\pi^X}(\rho_0^X)/\varepsilon)}{\log r} \quad \text{and} \quad \Lambda \leq \frac{\varepsilon(r-1)}{2cr}.$$

1161

1162 *Furthermore, the order evaluation with r and c substituted is*
1163

1164
$$k = O\left(\frac{C_{LSI}}{h} \log \frac{H_{\pi^X}(\rho_0^X)}{\varepsilon}\right), \quad \Lambda = O(\varepsilon/C_{LSI}),$$

1165

1166 *where we used the asymptotic equivalences*
1167

1168
$$\log r \asymp \frac{h}{C_{LSI}}, \quad c \asymp u^2 h, \quad \text{as } h/C_{LSI} \rightarrow 0.$$

1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **B EXPERIMENT DETAILS**
11891190 We provide parameters of each method for our experiments in Table 1 and Table 2. All experiments
1191 were conducted on an Intel Xeon CPU Max 9480 without GPU acceleration.
11921193 **KL divergence estimation for the Gaussian Lasso experiment.** Following the setting of Liang
1194 & Chen (2023b), we first ran the proximal sampler for 100,000 burn-in iterations, and then continued
1195 for 400,000 iterations. From this long trajectory we randomly collected 1000 samples to serve as
1196 reference particles. At each evaluation of the experiment, the KL divergence was estimated using
1197 1000 current particles and these 1000 reference particles. For estimation we used the k -nearest-
1198 neighbor estimator (Kozachenko & Leonenko, 1987) implemented in Büth et al. (2025), with $k = 4$
1199 as recommended by Kraskov et al. (2004). Although this estimation involves sampling error, we
1200 repeated the entire experiment with 10 different random seeds and, for each seed, computed the KL
1201 divergence based on the corresponding set of particles. We then reported the mean and variance of
1202 these estimates across the 10 runs to provide a more robust evaluation.
1203

1204 Table 1: Parameter setting for the experiment in Section 5.1.

1205 Method	1206 Parameters
1206 Proximal Sampler with RGO	1207 Initial distribution: $y_{1/2}^{(j)} \sim \mathcal{N}(0, I_d)$ 1208 Step size: $\eta = 1/135$ 1209 Number of independent chains: 100 1210 Thinning: 10
1210 <i>Ours</i>	1211 Initial distribution: $x_0^{(i)} \sim \mathcal{N}(0, I_d)$ 1212 Step size: $h = 1/10$ 1213 Diffusion steps: $T = 10$ 1214 Noise schedule: linear interpolation between 0 and h 1215 Number of particles: $N = 100$ 1216 Number of interim samples: $M = 4000$
1216 <i>Ours without interaction</i>	1217 Same as <i>Ours</i> , except: 1218 Number of particles: $N = 1$ 1219 Number of independent chains: 100

1220 Table 2: Parameter setting for the experiment in Section 5.2.

1222 Method	1223 Parameters
1223 In-and-Out	1224 Initial distribution: $x_0^{(i)} \sim \mathcal{N}(0, I_d)$ 1225 Step size: $h = 1$ 1226 Number of proposals for rejection sampling: 10000 1227 (Particles are discarded if not accepted) 1228 Number of independent chains: 1000
1228 <i>Ours</i>	1229 Initial distribution: $x_0^{(i)} \sim \mathcal{N}(0, I_d)$ 1230 Step size: $h = 1$ 1231 Diffusion steps: $T = 10$ 1232 Noise schedule: linear interpolation from 0.01 to 1 1233 Number of particles: $N = 1000$ 1234 Number of interim samples: $M = 300$

Figure 5: Convergence of KL divergence for different step sizes h , with all other parameters set as *Ours* in Table 1. Each curve shows the mean over 10 random seeds, with shaded areas indicating variances. Larger step sizes lead to faster convergence.

Figure 6: Comparison of hyperparameter tuning while keeping the number of particles used during the algorithm’s execution (i.e., $M \times N$). For readability, the first iteration has been omitted. While increasing the number of particles N used for approximating the target distribution stabilizes the KL divergence, changing both M and N results in very similar convergence patterns.

Effect of step size. In addition to the default choice $h = 1/10$, we conducted experiments with other values of h (Figure 5). We observe that larger step sizes accelerate convergence, which can be attributed to the heat flow more rapidly bridging the two modes. This phenomenon resembles diffusion-based Monte Carlo methods, where pushforward dynamics from a Gaussian initialization cover the target distribution.

Hyperparameter sensitivity under fixed computational cost. Furthermore, Figure 6 shows that when the total number of particles used during the algorithm’s execution (i.e., $M \times N$) is fixed, the algorithm exhibits comparable behavior across different choices of N and M . Increasing N improves the approximation of the target distribution, thereby stabilizing the estimated KL divergence. Conversely, increasing M enhances the Monte Carlo estimation of the diffusion scores. Thus, under sufficient computational budgets, the method remains robust to these hyperparameters.