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ABSTRACT

This work introduces a new approximate proximal sampler that operates solely
with zeroth-order information of the potential function. Prior theoretical anal-
yses have revealed that proximal sampling corresponds to alternating forward
and backward steps of the heat flow. The backward step was originally imple-
mented by rejection sampling, whereas we directly simulate the dynamics. Unlike
diffusion-based sampling methods that estimate scores via learned models or by
invoking auxiliary samplers, our method treats the intermediate particle distribu-
tion as a Gaussian mixture, thereby yielding a Monte Carlo score estimator from
directly samplable distributions. Theoretically, when the score estimation error is
sufficiently controlled, our method inherits the exponential convergence of proxi-
mal sampling under isoperimetric conditions on the target distribution. In practice,
the algorithm avoids rejection sampling, permits flexible step sizes, and runs with
a deterministic runtime budget. Numerical experiments demonstrate that our ap-
proach converges rapidly to the target distribution, driven by interactions among
multiple particles and by exploiting parallel computation.

1 INTRODUCTION

Sampling from probability distributions π(x) ∝ e−f(x) is a fundamental task in statistics and ma-
chine learning, with applications in Bayesian posterior inference and score-based generative model-
ing. Methods like the Unadjusted Langevin Algorithm (ULA) (Roberts & Tweedie, 1996; Durmus
& Moulines, 2017) and the Metropolis-Adjusted Langevin Algorithm (MALA) (Roberts & Rosen-
thal, 1998; Roberts & Stramer, 2002) are widely used. Their convergence under strong convexity
assumptions has been established in sharp nonasymptotic terms (Dalalyan, 2017; Dwivedi et al.,
2018), and it has further been shown that ULA enjoys exponential convergence in KL divergence
under functional inequalities (Cheng & Bartlett, 2018; Vempala & Wibisono, 2019).

Beyond Langevin-type approaches, there has been growing interest in alternative sampling schemes
with nonasymptotic guarantees. Among them, proximal sampling (Liang & Chen, 2023b) intro-
duces an auxiliary distribution close to the target—typically the Gaussian convolution of π (Lee
et al., 2021)—and alternates conditional updates between the target and auxiliary variables. From
a theoretical perspective, each update can be interpreted as alternating a forward heat-flow step and
a reverse denoising step, which yields exponential convergence under suitable functional-inequality
assumptions on the target distributions (Chen et al., 2022; Kook et al., 2024).

Despite this line of analysis, scalable implementations of proximal samplers remain challenging.
Existing implementations rely on local optimization of f combined with rejection sampling (Liang
& Chen, 2023a;b; Fan et al., 2023), which necessitates small step sizes (i.e., weak convolution)
to maintain acceptance and thus incurs many iterations and high overall cost. These bottlenecks
have spurred diffusion-based Monte Carlo, which simulates denoising stochastic differential equa-
tions (SDEs) (Huang et al., 2024a;b; He et al., 2024). This raises a natural question: can proximal
sampling be implemented in its theoretical form and in a scalable way, directly through Gaussian
convolutions and diffusion processes, without relying on rejection sampling?

Another practical consideration is the efficient sampling of many particles in parallel. In such set-
tings, particle-based algorithms that introduce additional interaction terms or gradient-flow struc-
tures can promote faster mixing while maintaining diversity (Liu & Wang, 2016; Futami et al., 2020;
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Figure 1: Illustration of the ideal proximal sampling (left) and our approximation (right). Heat flow
and reverse dynamics are defined between πX and πY , but applied to intermediate ρ. Although these
do not reach their targets in one step, the ideal version attains exponential convergence. Compared to
the rejection sampling-based implementation of proximal samplers, our approach allows for larger
step sizes (i.e., stronger convolution), which reduce the iterations to reach the target distribution.

Boffi & Vanden-Eijnden, 2023; Lu et al., 2024; Ilin et al., 2025). However, proximal sampling was
originally formulated as a single-particle iterative framework, leaving a gap between its theoretical
appeal and the practical demands of multi-particle sampling.

1.1 CONTRIBUTIONS

In this work, we propose and analyze a diffusion-based approximation of proximal sampling. The
key idea is to interpret the auxiliary samples as forming a Gaussian-mixture approximation and to
exploit this structure for approximate time-dependent score estimation in the denoising dynamics.
Our main contributions are as follows:

• We introduce a new algorithm that serves as an approximate proximal sampler. It is
learning-free, gradient-free with respect to f , and rejection-free with a fixed runtime.

• We extend the theory of proximal sampling to show that our diffusion-based approximation
inherits comparable convergence rates under suitable assumptions. This implies that our
algorithms which alternate perturbation and denoising converge to the target distribution
without requiring initialization from the Gaussian limit, unlike standard diffusion models.

• We provide empirical evidence that our method converges rapidly to representative tar-
gets compared to existing implementations of proximal sampler, and that its multi-particle
extension improves both wall-clock efficiency and sample diversity.

2 PRELIMINARIES

In this section, we provide a brief overview of proximal sampling, which underlies our proposed
method, along with its convergence properties.

2.1 DEFINITIONS

Let µ and ν be two probability measures on Rd with µ≪ ν. We define the Kullback–Leibler (KL)
divergence, the Rényi divergence of order q ≥ 1, and the relative Fisher information as

Hν(µ) =

∫
log

dµ

dν
dµ, Rq,ν(µ) =

1

q − 1
log

∫ (
dµ

dν

)q

dν, Jν(µ) =

∫ ∥∥∥∥∇ log
dµ

dν

∥∥∥∥2 dµ.
Note that setting q = 1 yields R1,ν(µ) = Hν(µ). We say that ν satisfies a log-Sobolev inequality
(LSI) with constant CLSI > 0 if Hν(µ) ≤ 1

2CLSIJν(µ).
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2.2 PROXIMAL SAMPLING

Let f : Rd → R be a potential function, and consider the target distribution πX(x) ∝ exp(−f(x)).
For a given step size h > 0, following Lee et al. (2021), we define a joint distribution on Rd×Rd as

πX,Y (x, y) ∝ exp

(
−f(x)− ∥x− y∥2

2h

)
. (1)

Marginalizing over y yields πX(x) ∝
∫
πX,Y (x, y) dy. On the other hand, marginalizing over x

defines a new distribution πY as πY (y) ∝
∫
exp

(
−f(x)− 1

2h∥x− y∥2
)
dx. This corresponds to

the Gaussian convolution πY = πX ∗ N (0, hId).

The proximal sampler with step size h iterates updating a current particle xk ∈ Rd as follows:

yk+ 1
2
∼ N (xk, hId) (2)

xk+1 ∼ π
X|Y=y

k+1
2 (3)

where πX|Y=yk+1/2(x) ∝ exp(−f(x)− ∥x−yk+1/2∥2

2h ). The restricted Gaussian oracle (RGO) (Lee
et al., 2021) assumes access to an oracle which enables sampling (3) from πX|Y=yk+1/2(x).

Several works have implemented the RGO (Liang & Chen, 2023a;b; Fan et al., 2023) through rejec-
tion sampling, achieving an expected complexity of Õ(1) under regularity conditions on f . How-
ever, this requires choosing h sufficiently small depending on f and d, which in practice leads to
many iterations, and the computational cost further fluctuates due to randomness.

2.3 CONNECTIONS TO DIFFUSION PROCESSES

Chen et al. (2022) established an improved convergence analysis of proximal sampling by inter-
preting each update through dynamics interpolated by an SDE, as illustrated in the left panel of
Figure 1. The forward step (2) amounts to Gaussian convolution, which corresponds to evolving the
heat equation or its associated SDE, for t ∈ [0, h],

dZt = dBt, ∂tµt =
1
2∆µt, (4)

where Bt is a standard Brownian motion. Writing Pt for the Gaussian convolution kernelN (0, tId),
we have µt = µ0Pt, and in particular πY = πXPh. The backward step (3) can be viewed as the
reverse operation of the forward step conditioned on Zh. It is governed by the following SDE
starting from Z←0 = Zh and the corresponding Fokker–Planck equation; for t ∈ [0, h],

dZ←t = ∇ log(πXPh−t)(Z
←
t ) dt+ dB←t , ∂tµ

←
t = −div

(
µ←t ∇ log(πXPh−t)

)
+ 1

2∆µ←t , (5)

where B←t denotes the backward Brownian motion. Letting Qt denote its transition kernel, we
obtain µ←h = µ←0 Qh =

∫
πX|Y=y(x)µ←0 (y) dy. In particular, we have πX = πY Qh.

Hence the two steps in proximal sampling can be viewed as SDEs between πX and πY , with Pt

and Qt as their transition kernels. The proximal sampler applies the dynamics (4) and (5) with the
start distributions ρXk := law(xk) and ρYk+1/2

:= law(yk+1/2) at k-th iteration, respectively, which
then evolve through Gaussian convolution or conditional integration. Although a single step does
not reach πY or πX , iterating the forward–backward scheme leads to contraction towards the target
distribution, as made precise in the following theorem.

Theorem 1 (Chen et al. (2022), Theorem 3). Assume that πX satisfies LSI with constant CLSI. For
any h > 0 and any initial distribution ρX0 , the k-th iterate ρXk of the proximal sampler with step size
h satisfies, for q ≥ 1,

Rq,πX (ρXk ) ≤
Rq,πX (ρX0 )

(1 + h/CLSI)2k/q
. (6)

Theorem 1 provides the exponential convergence guarantee of proximal sampling. Its proof follows
by combining the forward and backward contraction properties at each step stated in the next lemma.
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Lemma 1 (Chen et al. (2022), Appendix A.4). Assume that πX satisfies LSI with constant CLSI and
ρ≪ πX , ρ′ ≪ πY . For q ≥ 1, we have

Rq,πY (ρPh) = Rq,πXPh
(ρPh) ≤

Rq,πX (ρ)

(1 + h/CLSI)1/q
, (7)

Rq,πX (ρ′Qh) = Rq,πY Qh
(ρ′Qh) ≤

Rq,πY (ρ′)

(1 + h/CLSI)1/q
. (8)

In this paper, we aim to realize the proximal sampler by directly simulating the associated SDEs. In
the forward direction, convolution with πX can be simulated exactly by injecting Gaussian noise,
so the bound (7) is directly applicable. In contrast, the backward dynamics (5) cannot be simulated
exactly, and our surrogate version of (5) will provide an approximation in place of (8).

3 APPROXIMATE MULTI-PARTICLE PROXIMAL SAMPLING

Building on the SDE interpretation in Section 2, we propose to approximate the backward dynamics
by replacing πX with a surrogate distribution constructed from the current particles. This enables
Monte Carlo estimation of the score function using only evaluations of f , without requiring gradient
or rejection sampling. At a high level, each iteration of our diffusion-based proximal sampler con-
sists of (i) evolving particles by the forward heat flow (4) and (ii) applying the surrogate dynamics,
which time-discretizes and approximates the reverse flow (5).

3.1 SCORE ESTIMATION FOR SURROGATE DYNAMICS

We derive the update rule in the backward step, given the particles at k-th iteration: Xk = {xi}Ni=1

and Yk+1/2 = {yj}Nj=1. We approximate the backward dynamics (5) by replacing πX with a surro-
gate distribution q̂k+1(· | Yk+1/2, Xk) constructed from these particles, as follows:

q̂k+1(x | Yk+1/2, Xk) ∝
1

N

N∑
j=1

πX|Y=yj (x)
πY (yj)

q̂k+1/2(yj | Xk)
, (9)

where q̂k+1/2(y | Xk) = 1
N

∑
iN (y;xi, hId). The conditional distribution with the reweighting

term ensures that, as N → ∞, sampling y ∼ q̂k+1/2 recovers the target distribution πX . By
substituting the explicit form of πX|Y=yj and πY we obtain

q̂k+1(x | Yk+1/2, Xk) ∝
1

N

N∑
j=1

exp
(
−f(x)− 1

2h∥x− yj∥2
)

q̂k+1/2(yj | Xk)

∝ 1

N

N∑
j=1

N (x; yj , hId)

q̂k+1/2(yj | Xk)
exp(−f(x)) =: gk+1/2

N (x) exp(−f(x)), (10)

where gk+1/2
N is the unnormalized density of an N -component weighted Gaussian mixture (see Ap-

pendix A.1 for the full derivation). q̂k+1 involves an inverse reweighting with respect to a Gaussian
mixture q̂k+1/2. This reduces weights when yj is located in areas where Xk is overly concentrated,
while amplifying their importance in sparse regions. The resulting term, derived from the empirical
particle system, may help prevent particle collapse and promote exploration. We later verify this
effect in our experiments.

The surrogate score is defined as ŝt(xt) := ∇ log(q̂k+1Ph−t) (xt), which serves as the drift term
in the surrogate reverse dynamics, replacing ∇ log(πXPh−t) in the backward dynamics (5). This
expression can be rewritten in expectation form using Bayes’ rule:

ŝt(xt) = E
g
k+1/2
N (x0|xt)

[
x0 − xt

σ2
t

e−f(x0)/Ck
t

]
, (11)

where σ2
t = h− t, Ct =

∫
g
k+ 1

2

N (x0|xt)e
−f(x0) dx0. (12)

4
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Algorithm 1 Zeroth-Order Diffusive Proximal Sampler

Input: potential function f :Rd → R, initial samples {x(i)
0 }Ni=1 step size h, iterations K, diffusion

steps T , number of interim samples M , noise schedule {σ2
t }Tt=0 with σ2

T = h and σ2
0 = σ2

min.

1: ▷ All operations for i = 1, . . . , N , j = 1, . . . , N , and l = 1, . . . ,M are evaluated in parallel.
2: for k = 0, 1, . . . ,K − 1 do

# Step 1: Forward heat flow (4)

3: y
(j)

k+ 1
2

← x
(j)
k +

√
h ξ

(j)
k with ξ

(j)
k

i.i.d.∼ N (0, Id).

4: Initialize z
(i)
T ← x

(i)
k +

√
h ξ
′(i)
k with ξ

′(i)
k

i.i.d.∼ N (0, Id).
# Step 2: Surrogate version of reverse dynamics (5)

5: for t = T, T − 1, . . . , 1 do
6: Set ∆t← σ2

t − σ2
t−1.

7: Compute σ̄,mi,j := mj(z
(i)
t ), wi,j := wj(z

(i)
t ) by (14) and set wi,j ← wi,j/

∑
j wi,j

8: Draw M samples z(i,l)0
i.i.d.∼
∑

j wi,jN (mi,j , σ̄
2).

9: Compute ci,l := exp
(
− f(z

(i,l)
0 )

)
and set ci,l ← ci,l/

∑
l ci,l.

# Update each particle using the Euler-Maruyama step

10: z
(i)
t−1 ← z

(i)
t +∆t

∑
l ci,l

(
z
(i,l)
0 − z

(i)
t

)
/σ2

t +
√
∆t ξ

′′(i)
k with ξ

′′(i)
k

i.i.d.∼ N (0, Id).
11: end for
12: Set x(i)

k+1 ← z
(i)
0 .

13: end for
14: return {x(i)

K }Ni=1

See Section A.1 for the derivation. Since g
k+1/2
N (x0) is a Gaussian mixture and the conditional

law xt | x0 under the perturbation kernel is N (x0, σ
2
t Id), Bayes’ rule implies that the posterior

distribution g
k+1/2
N (x0 | xt) is itself a Gaussian mixture:

g
k+ 1

2

N (x0|xt) ∝
N∑
j=1

wj(xt)N (x0;mj(xt), σ̄
2I), (13)

where σ̄2 = (h−1 + σ−2t )−1, mj(xt) = σ̄2(h−1yj + σ−2t xt), wj(xt) =
N (xt; yj , (h+ σ2

t )Id)

q̂k+
1
2 (yj | Xk)

.

(14)

The detailed derivation can be found in Section A.2. This formulation enables practical score esti-
mation via Monte Carlo sampling from the Gaussian mixture without requiring model training.

3.2 ALGORITHM AND COMPLEXITY

The surrogate score (11) involves an expectation with respect to the Gaussian-mixture posterior (13).
In practice, we approximate this expectation using Monte Carlo estimation by drawing M samples
for each particle. Combining the forward step (Gaussian perturbation) and the discretized surrogate
reverse dynamics with T denoising steps, we obtain the iterative sampling procedure that approx-
imates the proximal sampling. It is worth emphasizing that the proposed method relies only on a
zeroth-order oracle of f and does not require gradient information, unlike gradient-based sampling
methods such as Langevin Monte Carlo. A complete description of the algorithm is provided in
Algorithm 1.

Regarding computational cost, a straightforward implementation would require KTMN evalua-
tions of the potential f for K outer iterations. This complexity can be further reduced to KT under
the assumption of a parallel oracle that can evaluate f simultaneously on multiple samples, Such a
design naturally exploits parallel computation, making the method efficient in modern computing
environments.
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4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis that essentially quantifies the deviation from the
ideal proximal sampling caused by time and space discretization. Our method splits the macro step
size h into T substeps of length η = h/T for the backward dynamics. For each ℓ ∈ {1, . . . , T},
let tℓ := (ℓ − 1)η be the substep start time, and let µtℓ denote the current law at time tℓ. The
following lemma establishes the contraction of the KL divergence in a single outer iteration of
Algorithm 1, up to an error due to time discretization. We assume that πX satisfies an LSI with
constant CLSI. Focusing on iteration k, we write ρXk := law(x

(i)
k ) and ρYk+1/2

:= law(y
(j)
k+1/2). A

complete description of the assumptions and proofs is deferred to Appendix A.
Lemma 2 (Discretization-only one-step bound). Assume N,M →∞, so the backward update uses
the exact score. Suppose further that within each substep ℓ, the temporal variation of the score
between tℓ and tℓ + t (t ∈ [0, η]) integrating over µtℓ+t is bounded by L2

ℓ,tt
2, the score of the

reference measure νtℓ is Lipschitz in space with constant Lν,ℓ, and there exists a uniform entropy
bound H̄(k) > 0 along the substep path. Then for u ≥ 1,

HπX (ρXk+1) ≤
HπY (ρYk+1/2)

(1 + h/CLSI)1−1/(2u
2)

+ 2u4 Λ
(k)
1 ,

where Λ
(k)
1 := CLSI

(
(1 + h/CLSI)

1/(2u2) − 1
)
{4η2L2

ν,∗(CLSI + h)H̄(k) + ηdC},

C := 2ηL3
ν,∗ + L2

ν,∗ + ηL2
s, with Lν,∗ := sup

ℓ
Lν,ℓ and Ls := sup

ℓ,t
Lℓ,t.

The additional discretization error term in Lemma 2 scales as O(h/T ) with respect to the number
of substeps T . Therefore, if T is chosen appropriately, the backward step essentially inherits the
convergence rate of the ideal proximal sampler in (8).

When N ′,M < ∞, we assume that at each substep start tℓ the score estimator admits the bound
Λ
(k)
2 := 2 supℓ=1,...,T Eµtℓ

[∥ŝ(k)N ′,M (·, tℓ) − s
(k)
tℓ

(·)∥2], where stℓ is the true score at tℓ and

ŝ
(k)
N ′,M (·, tℓ) is the Monte Carlo estimator. The following result incorporates this condition.

Proposition 1 (Main one-step bound with split errors). Let u ≥ 1 and there exists CLSI and Λ
(k)
2 .

Then the k-th iterate of Algorithm 1 satisfies

HπX (ρXk+1) ≤
HπY (ρYk+1/2)

(1 + h/CLSI)1−1/(2u
2)

+ 2u4CLSI

(
(1 + h/CLSI)

1/(2u2) − 1
)
(Λ

(k)
1 + 2Λ

(k)
2 ).

Proposition 1 directly implies that, as shown in Corollary 3, with r := (1 + h/CLSI)
2−1/(2u2), the

iteration complexity for achieving HπX (ρXK) ≤ ε is K = O
(
log(HπX (ρX0 )/ε)/ log r

)
, provided

that, each error term satisfies Λ(k)
1 + Λ

(k)
2 ≍ O(ε/CLSI).

Λ
(k)
2 reflects Monte Carlo fluctuations due to the finite numbers of samples N and M . Under

bounded conditional variances of πX we obtain O(1/N) error, and under bounded expectations
of e4f and finite fourth moments under the Gaussian mixture proposals we obtain O(1/M) error,
yielding Λ

(k)
2 = O(1/N + 1/M).

From Theorem 1, the ideal proximal sampler requires about (2 log(1+h/CLSI))
−1 outer iterations

times a logarithmic factor in the initial divergence. When CLSI ≫ h, this factor is approximated
by Õ(CLSI/h), suggesting that larger h is favorable. While rejection-sampling implementations of
RGO suffer from an upper bound on h, our method can take h large as long as T = O(h) to control
the discretization error. This does not change the overall computational cost (outer iterations × T
steps), but allows h to reflect global structure of πX such as inter-mode distances rather than only
local smoothness of f , which we confirm to be practically advantageous in experiments.

5 EXPERIMENTS

We design two experiments to showcase the strengths of our algorithm as an approximation to
proximal sampling. First, we revisit the Gaussian Lasso mixture (Liang & Chen, 2023b) to test

6
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Figure 2: Convergence of estimated KL divergence, averaged over 10 random seeds with shaded
areas indicating variances. Our method (orange) outperforms both the proximal sampler with RGO
(blue) and an ablated variant of our algorithm without particle interactions (green). It achieves the
same accuracy as RGO in about 10× fewer iterations (100× faster when accounting for thinning).

whether our method accelerates convergence beyond RGO-based proximal sampling, especially via
parallel particle updates. Second, we study uniform distributions over bounded, nonconvex, and
disjoint domains, comparing our method with In-and-Out (Kook et al., 2024), the proximal sampler
for uniform distributions originally analyzed for convex bodies. These experiments respectively
demonstrate the benefits of larger step sizes and the applicability of our approach when gradients
are unavailable.

5.1 GAUSSIAN LASSO MIXTURE

Setup. Following the experimental setting in Liang & Chen (2023b), we set the target distribution
as a Gaussian Lasso mixture:

πX(x) =

√
detQ

2
√
(2π)d

exp

(
−1

2
(x− 1)⊤Q(x− 1)

)
+ 2d−1 exp (−∥4x∥1)

where Q = USU⊤, d = 5, S = diag(14, 15, 16, 17, 18), and U is an arbitrary orthogonal matrix.

We compare against the RGO baseline with 100 chains and step size h=1/135, exactly matching
the experimental setting of Liang & Chen (2023b), where it outperformed ULA and MALA. Our
method uses step size h=1/10 under two settings: N=100 interacting particles, or N=1 run with
100 chains. For comparability, we thin the RGO baseline by grouping every 10 single-step updates
into one iteration, so that the parallel f -evaluation cost is comparable to ours.

Convergence is measured by KL divergence to the target distribution, estimated using Büth et al.
(2025) with a fixed reference of 1000 particles from a long RGO run. At each evaluation, 1000
particles are aggregated from 10 successive iterations. The histogram in the right panel of Figure 3
shows this reference distribution. All experiments are repeated with 10 random seeds, reporting the
mean and variance of the KL estimate. Detailed settings are given in Table 1 and Section B.

Results. Figure 2 shows the convergence curves. Our method converges substantially faster than
the RGO baseline. With step size 13.5 times larger, our method reaches comparable KL divergence
in ∼100 iterations, while the proximal sampler needs ∼950 iterations (≈ 9500 RGO updates). Our
method also surpasses the ablated variant with N=1 independent parallel chains, indicating that
particle interactions are essential to accelerate mixing. The marginals in Figure 3 indicate that our
method is already approaching the target by ∼100 iterations (vs. ∼950 for RGO), and it closely
matches the long-run reference by ∼250 iterations. A more detailed observation is deferred to
Section B (Figure 5), which shows that increasing the step size h leads to faster convergence.

Discussion. These results demonstrate that relaxing the stringent step size restriction of proximal
sampling yields a practical gain of nearly an order of magnitude in convergence speed. The benefit is
amplified when leveraging multiple interacting particles, which facilitate more efficient exploration
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Figure 3: One-dimensional marginals of πX along the third coordinate (seed = 0). The red curve
is the ground-truth marginal. Our method around 100 iterations (left, orange) already matches the
proximal sampler with RGO in ∼1000 iterations (left, blue), and after 200–300 iterations it closely
aligns with the reference obtained from a long run of the proximal sampler with RGO.
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Figure 4: Empirical distributions at k = 3, 10, 200 iterations with seed = 0 on the two-tori domain.
In-and-Out (top row) finds T1, which overlaps with the initial standard Gaussian distribution, but
fails to reach T2. Our method (bottom row) generates some particles outside the domain but gradu-
ally drives particles toward T2, demonstrating its ability to explore both components.

of the mixture components. This effect can be explained by the surrogate target distribution in (9),
which re-weights via (q̂k+1/2(y | Xk))

−1 to down-weight overpopulated regions and encourage
exploration of sparser ones, thereby accelerating convergence beyond the step-size effect alone.

5.2 UNIFORM DISTRIBUTIONS ON BOUNDED DOMAINS

Setup. We evaluate our method on uniform sampling over a bounded, nonconvex, and disjoint
domain K ⊂ R3, and compare it with the In-and-Out (Kook et al., 2024). In-and-Out proposes
yi+1 ∼ N (xi, hId) and repeatedly resamples xi+1 ∼ N (yi+1, hId) until xi+1 ∈ K or a retry
threshold R is reached. It converges under warm starts, but practical efficiency requires convex K.

We take K as the union of two disjoint solid tori in R3. T1 is a torus centered at (10, 0, 0) with
major radius 10 and minor radius 1, and T2 is a torus centered at (−13, 0, 0) with major radius 3
and minor radius 1. We denote K = T1 ∪ T2. Particles start from N (0, I3). Our sampler uses
the potential f(x) = 0 if x ∈ K and 100 otherwise, inducing an approximate uniform law. We
run 1,000 particles and monitor their occupancies, visualized from the third coordinate direction.
Details of the experimental setting are given in Table 2.

Results. Figure 4 shows that In-and-Out converges to uniformity inside the near torus T1, consis-
tent with its guarantee under warm starts, but fails to reach the distant torus T2. Our method first
fills the near torus, then transitions to the remote one, where many particles eventually accumulate.

Discussion. This experiment confirms that our algorithm works without gradients and can explore
disconnected modes where exact proximal steps stagnate. The noisy score approximation facili-
tates such transitions, akin to effects observed in diffusion-based black-box optimization (Lyu et al.,

8
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2025). Other constrained-domain samplers include Projected Langevin Monte Carlo (Bubeck et al.,
2018), MYULA (Brosse et al., 2017), and penalized Langevin dynamics (Gurbuzbalaban et al.,
2024) based on distance to the constraint set, all of which rely on projection-type operations and
are therefore limited to simple convex bodies where such mappings are computable. By contrast,
our sampler only requires a membership oracle or a simple outside penalty, making the zeroth-order
oracle framework applicable to a broader range of domains.

6 CONNECTIONS TO OTHER SAMPLING METHODS

Diffusion-based Monte Carlo methods transport samples from a Gaussian initialization to the target
distribution. Some rely on training models for score estimation (Vargas et al., 2023; Richter &
Berner, 2024), while others drive auxiliary samplers (Huang et al., 2024a; He et al., 2024). Several
works also develop acceleration and correction techniques within this paradigm (Lu et al., 2022; Kim
& Ye, 2023; Li et al., 2024). Beyond diffusion-based pushforwards, related approaches construct
explicit density paths (Fan et al., 2024; Guo et al., 2025).

Our approach also specifies and employs SDE dynamics between two fixed distributions, but un-
like the one-way pushforward paradigm, it repeatedly applies these dynamics. This removes the
restriction of restarting from a Gaussian base by using a variance-expanding (VE) diffusion. In the
context of variance-preserving (VP) diffusions, sampling error partly arises from the discrepancy
between the Gaussian equilibrium and the distribution obtained after finite-time mixing (Li et al.,
2023; Pierret & Galerne, 2025). Our analysis suggests that, even though the VE process does not
reach the Gaussian equilibrium in any bounded horizon, convergence can still be ensured by alter-
nating finite-time noise addition and denoising dynamics through repeated cycles.

A particularly relevant comparison is with ZOD-MC (He et al., 2024), a diffusion-based method that
performs denoising from a Gaussian initialization. In ZOD-MC, the outer loop transports samples
while an inner proximal sampler is used for score estimation. Our method inverts this structure:
instead of nesting a sampler inside a pushforward loop, we simulate proximal-style SDE dynamics
directly. Moreover, unlike ZOD-MC, which requires access to the minimizer of the potential—or, in
practice, gradient information to locate local solutions for proximal updates—our algorithm operates
solely with zeroth-order oracle information. Another related line is SLIPS (Grenioux et al., 2024),
which alternates between denoising noisy observations and updating auxiliary variables. This alter-
nating scheme resembles ours, but the overall iteration follows a one-way dynamics that converges
to the target distribution as the time horizon grows.

Finally, our method is also close in spirit to Diffusive Gibbs Sampling (DiGS) (Chen et al., 2024),
which performs Gibbs updates by alternating perturbation and denoising, updating both the state and
an auxiliary variable at each step. However, the designs differ: DiGS employs VP diffusion with
auxiliary samplers such as MALA and provides no convergence guarantees, whereas our method
uses VE diffusion consistent with proximal sampling, yields provable contraction guarantees, and
exploits parallel multi-particle computation for lightweight score estimation.

7 CONCLUSION

We have introduced a diffusion-based approximation of proximal sampling, which simulates the
backward SDE using only zeroth-order information of f . The key idea is to approximate the in-
termediate particle distribution by a Gaussian mixture, enabling score estimation without auxiliary
samplers or additional model training.

Our method remains within the proximal sampling framework, while also being closely connected
to diffusion-based Monte Carlo methods. Our theoretical analysis shows that it achieves comparable
convergence rates when discretization and score estimation errors are properly controlled. Unlike
rejection-sampling implementations of RGO, which are constrained to small step sizes by local
properties of f , our algorithm may accommodate larger step sizes that reflect global features such
as inter-mode distances.

Finally, we incorporate interaction terms among multiple particles, which empirically accelerate
convergence. A complete theoretical characterization of these interactions, together with efficient
parameter tuning across iterations, remains an important direction for future work.

9
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REPRODUCIBILITY STATEMENT

We provide complete assumptions and full proofs of all theoretical results in Appendix A. The
detailed settings of our experimental evaluations are described in Section 5 and Section B.
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A PROOFS AND TECHNICAL DETAILS

A.1 DERIVATION OF THE SURROGATE SCORE ESTIMATOR

We begin by substituting πX with

q̂k+1(x | Yk+ 1
2
, Xk) ∝

1

N

N∑
j=1

πX|Y=yj (x)
πY (yj)

q̂k+ 1
2
(yj | Xk)

,

where q̂k+1/2(y | Xk) = 1
N

∑
iN (y;xi, hId). This follows from the fact that the forward heat

flow (4) transports the empirical Dirac mixture 1
N

∑
i δxi

to the Gaussian mixture q̂k+1/2.

Using

πX|Y=yj (x) =
exp
(
−f(x)− 1

2h∥x− yj∥2
)∫

exp
(
−f(z)− 1

2h∥z − yj∥2
)
dz

,

πY (yj) ∝
∫

exp
(
−f(z)− 1

2h∥z − yj∥2
)
dz,

we obtain

q̂k+1(x | Yk+ 1
2
, Xk) ∝

1

N

N∑
j=1

exp
(
−f(x)− 1

2h∥x− yj∥2
)

q̂k+ 1
2
(yj | Xk)

∝

 1

N

N∑
j=1

N (x; yj , hId)

q̂k+1/2(yj | Xk)

 exp(−f(x)) =: gk+1/2
N (x) exp(−f(x)),

where g
k+1/2
N is the unnormalized density of an N -component weighted Gaussian mixture. As

N →∞,

lim
N→∞

g
k+1/2
N (x) =

∫
N (x; y, hId)

q̂k+1/2(y | Xk)
q̂k+1/2(y | Xk)dy = const,

and therefore q̂k+1(· | Yk+1/2, Xk)→ πX(·).
Since q̂k+1 can be regarded as the product of (i) a weighted Gaussian mixture term and (ii) the
exponential factor exp(−f), the surrogate score function ŝt(xt) := ∇ log(q̂k+1Ph−t)(xt) can be
computed using only the particles and evaluations of f . Following the derivation in Lyu et al.
(2025), we obtain

ŝt(xt) = ∇ log

(∫
g
k+1/2
N (x0) p(xt | x0) e

−f(x0)dx0

)

=

∫
g
k+1/2
N (x0)∇p(xt | x0) e

−f(x0)dx0∫
g
k+1/2
N (x0) p(xt | x0) e−f(x0)dx0

.

Here

p(xt | x0) =
1

(2πσ2
t )

d/2
exp

(
−∥xt − x0∥2

2σ2
t

)
, σ2

t = h− t,

so that
∇p(xt | x0) = p(xt | x0)

x0 − xt

σ2
t

.

Substituting into the above expression yields

ŝt(xt) =

∫
g
k+1/2
N (x0) p(xt | x0)

x0−xt

σ2
t

e−f(x0)dx0∫
g
k+1/2
N (x0) p(xt | x0) e−f(x0)dx0

=

∫
g
k+1/2
N (x0 | xt)

x0−xt

σ2
t

e−f(x0)dx0∫
g
k+1/2
N (x0 | xt) e−f(x0)dx0

,

which is exactly the score function of surrogate dynamics (11).
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Remark 1. Lyu et al. (2025) consider distributional black–box optimization for maximizing f . When
pk(x0) is a Gaussian mixture, they show that setting pk+1(x0) ∝ pk(x0) exp(−f(x0)/λ) as the
denoised distribution at time 0 in VP diffusion, the score at each time t can be computed directly
from samples of the posterior Gaussian mixture, without any auxiliary sampler.

A structurally similar mechanism appears in our particle-based proximal sampling. To sam-
ple from π(x) ∝ exp(−f(x)) (in practice, by moving samples from q̂k+1/2( y | Xk ) toward
q̂k+1(x | Yk+1/2, Xk )), we place the denoised distribution g

k+1/2
N (x) exp(−f(x)), where g

k+1/2
N

is the Gaussian mixture obtained by smoothing the empirical particles Yk+1/2. The score identity
yields a backward update that uses only zeroth-order evaluations of f .

A.2 DERIVATION OF THE (UNNORMALIZED) GAUSSIAN MIXTURE POSTERIOR

When sampling from a N -component Gaussian mixture, we first draw a component index accord-
ing to the relative weights and then sample from the corresponding Gaussian component. For this
reason, we often ignore constant multiplicative factors of the mixture distribution for simplicity.

We write g
k+1/2
N (x0) ∝

∑
j αj N (x0; yj , hId) with αj := 1/q̂k+1/2(yj). By Bayes’ rule,

g
k+ 1

2

N (x0 | xt) =
g
k+ 1

2

N (x0) p(xt | x0)∫
g
k+ 1

2

N (u) p(xt | u) du

=

∑N
j=1 αj N (x0; yj , hId)N (xt;x0, σ

2
t Id)∑N

j=1 αj

∫
N (u; yj , hId)N (xt;u, σ2

t Id) du

∝
N∑
j=1

αj N (x0; yj , hId)N (xt;x0, σ
2
t Id). (15)

We now complete the square in the exponent of the productN (x0; yj , hId)N (xt;x0, σ
2
t Id) viewed

as a function of x0. Using the identity
1

2h
∥x0 − yj∥2 +

1

2σ2
t

∥xt − x0∥2 =
1

2σ̄2
∥x0 −mj(xt)∥2 +

1

2(h+ σ2
t )
∥xt − yj∥2,

with

σ̄2 :=
(
h−1 + σ−2t

)−1
=

hσ2
t

h+ σ2
t

, mj(xt) := σ̄2
(
h−1yj + σ−2t xt

)
=

σ2
t

h+ σ2
t

yj +
h

h+ σ2
t

xt,

we obtain the product-of-Gaussians factorization
N (x0; yj , hId)N (xt;x0, σ

2
t Id) = N (xt; yj , (h+ σ2

t )Id)N (x0;mj(xt), σ̄
2Id).

Substituting this into (15) yields

g
k+ 1

2

N (x0 | xt) ∝
N∑
j=1

αj N (xt; yj , (h+ σ2
t )Id)N (x0;mj(xt), σ̄

2Id).

Therefore gk+1/2
N (x0 | xt) is again a Gaussian mixture with a common covariance σ̄2Id and updated

means mj(xt). Writing the relative weights as

wj(xt) := αj N (xt; yj , (h+ σ2
t )Id) =

1

q̂k+
1
2 (yj |Xk)

N (xt; yj , (h+ σ2
t )Id),

we obtain the desired posterior decomposition

g
k+ 1

2

N (x0 | xt) ∝
N∑
j=1

wj(xt)N (x0;mj(xt), σ̄
2Id).

Finally, note that using W (xt) =
∑

j wj(xt), the normalized posterior distribution can be written
as

g
k+ 1

2

N (x0 | xt) =
1

W (xt)

N∑
j=1

w̃j(xt)N (x0;mj(xt), σ̄
2Id).
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A.3 ANALYSIS FOR TIME-DISCRETIZATION ERROR

Our algorithm simulates the surrogate version of diffusion process (5) by dividing the dynamics
over horizon h into T steps. We first analyze the discretization error under the assumption that the
score function is perfectly estimated (i.e., N,M →∞). Each step simulates the time evolution over
an interval of length η := h/T , corresponding to the segment (ℓ − 1)η + t ∈ [(ℓ − 1)η, ℓη] with
t ∈ [0, η] for ℓ = 1, . . . , T . In the ideal dynamics (5), the drift term is time-dependent, whereas in
the discretized scheme we approximate it by fixing the drift at the beginning of each step. Following
an argument similar to that in Vempala & Wibisono (2019), we obtain the following result.
Lemma 3. Fix a step index ℓ ∈ {1, . . . , T} and let η := h/T . Let (νt)t∈[0,η] denote the ideal
backward marginals in (5) at elapsed time h− (ℓ− 1)η− t for t ∈ [0, η], and (µt)t∈[0,η] denote the
frozen-drift approximation within this step. Then for u ≥ 1 and all t ∈ [0, η],

d

dt
Hνt(µt) ≤ −

(1
2
− 1

4u2

)
Jνt(µt) + u2 Eµ0,t

[
∥s̃0(z0)− s̃t(zt)∥2

]
. (16)

Equivalently, integrating over t ∈ [0, η] yields

Hνη
(µη)−Hν0

(µ0) ≤ −
(1
2
− 1

4u2

) ∫ η

0

Jνt
(µt) dt + u2

∫ η

0

Eµ0,t

[
∥s̃0(z0)− s̃t(zt)∥2

]
dt.

Proof. For convenience to analyze the behavior at (ℓ− 1)η+ t with t ∈ [0, η] which corresponds to
the time interval [(ℓ − 1)η, ℓη] in original backward process defined in (5), we restate the SDE and
the associated Fokker–Plank equation as: for t ∈ [0, h],

dZ←t = s̃t(Z
←
t ) dt+ dBt, law(Z←t ) = νt,

∂tνt = −div
(
νts̃t

)
+

1

2
∆νt = ∇ ·

(
νt
(
−s̃t +

1

2
∇ log νt

))
,

where we define the score function s̃t := ∇ log
(
πXPh−(ℓ−1)η−t

)
.

In contrast, the time-discretized approximation corresponds to the process
dzt = s̃0(z0) dt+ dBt, law(zt) = µt, (17)

where the drift is frozen at the beginning of the step.

The associated Fokker–Planck equation is

∂tµt(zt | z0) = −div
(
µt(zt | z0) s̃0(z0)

)
+

1

2
∆µt(zt | z0)

= ∇ · (µt(zt | z0)(−s̃0(z0) +
1

2
∇ logµt(zt | z0))).

Averaging over z0 ∼ µ0, this becomes

∂tµt = −∇ ·
(
µt

(
−Eµ0|t [s̃0(z0) | zt] +

1

2
∇ logµt

))
.

The time derivative of the KL divergence is then
d

dt
Hνt(µt) =

d

dt

∫
µt log

µt

νt
dz

=

∫ [
(∂tµt) log

µt

νt
+
(
∂tµt − µt

∂tνt
νt

)]
dz

=

∫ [
∇·
(
µt

(
−Eµ0|t [s̃0(z0) | zt] +

1

2
∇ logµt

))
log

µt

νt

− µt

νt
∇·
(
νt
(
−s̃t +

1

2
∇ log νt

))]
dz

=

∫ [
−
〈
µt

(
−Eµ0|t [s̃0(z0) | zt] + 1

2∇ logµt

)
,∇ log µt

νt

〉
+
〈
νt
(
−s̃t +

1

2
∇ log νt

)
,
µt

νt
∇ log

µt

νt

〉]
dz

=

∫ 〈
−1

2
∇ log

µt

νt
+ Eµ0|t [s̃0(z0) | zt]− s̃t, ∇ log

µt

νt

〉
µtdz.
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Here, the third equality substitutes the Fokker–Planck equations for ∂tµt and ∂tνt and also uses that
the integral of ∂tµt vanishes due to mass conservation. The forth equality uses integration by parts
(assuming sufficiently fast decay at infinity) and the identity.

Simplifying, we obtain
d

dt
Hνt

(µt) = −
1

2
Jνt

(µt) + Eµt

[〈
Eµ0|t [s̃0(z0) | zt]− s̃t,∇ log

µt

νt

〉]
.

Applying ⟨a, b⟩ ≤ u2∥a∥2 + 1
4u2 ∥b∥2, we conclude

d

dt
Hνt

(µt) ≤ −
(
1

2
− 1

4u2

)
Jνt

(µt) + u2Eµ0,t(z0,zt)

[
∥s̃0(z0)− s̃t(zt)∥2

]
.

This establishes the discretization error bound of one diffution step in terms of the deviation between
the frozen score s̃0 and the ideal time-dependent score s̃t.
Assumption 1 (Smoothness of the interim distribution). The interim distribution πXPh−(ℓ−1)η is
Lℓ-smooth, i.e., the potential gradient ∇ log(πXPh−(ℓ−1)η) is Lℓ-Lipschitz.
Assumption 2 (Lipschitz condition along the time direction). The expected score satisfies a
Lipschitz-type condition along the time direction:

Eµt

[
∥s̃0(zt)− s̃t(zt)∥2

]
≤ C2

t,ℓ t
2.

Corollary 1. Assume ν0 := πXP(ℓ−1)η satisfies LSI with constant CLSI(ν0) and under Assumption 1
and Assumption 2,

d

dt
Hνt

(µt) ≤ −
(
1

2
− 1

4u2

)
Jνt

(µt) + u2
(
4η2L4

ℓ CLSI(ν0) Hν0
(µ0) + ηdC

)
, (18)

where C = sup
l

sup
t

2tL3
ℓ + L2

ℓ + tC2
t,ℓ/d. (19)

Proof. We bound the second term of the right hand side in the inequality in Lemma 3 using As-
sumption 1 and Assumption 2,
Eµ0,t(z0,zt)

[
∥s̃0(z0)− s̃t(zt)∥2

]
≤ Eµ0,t(z0,zt)

[
∥s̃0(z0)− s̃0(zt)∥2

]
+ Eµt

[
∥s̃0(zt)− s̃t(zt)∥2

]
≤ L2

ℓEµ0,t(z0,zt)

[
∥z0 − zt∥2

]
+ C2

t,ℓ t
2.

Under the discretization update

zt = z0 + s̃0(x0) t+
√
t ξ, ξ ∼ N (0, Id),

we have
Eµ0,t(z0,zt)

[
∥z0 − zt∥2

]
= Eµ0

[∥s̃0(x0) t+
√
t ξ∥2]

= t2 Eµ0 [∥s̃0(x0)∥2] + td

≤ t2(4L2
ℓ CLSI(ν0) Hν0

(µ0) + 2dLℓ) + td.

The last inequality comes from Lemma 12 in Vempala & Wibisono (2019) with Assumption 1 and
ν0 satisfying Talagrand’s inequality with constant CLSI(ν0)

−1. Putting them altogether, we obtain
(18) where C is independent on ℓ by taking supremum as (19).

Proposition 2 (One-step bound for the diffusion-approximated proximal sampler without score es-
timation error). Assume Assumption 1 and Assumption 2 hold, and that πX satisfies an LSI with
constant CLSI(π

X). Let C be as in (19). Let overall step size h > 0 be split into T steps with
η := h/T . In the regime N,M →∞ where the score estimation error vanishes, distribution at k-th
iteration ρXk satisfies

HπX (ρXk+1) ≤
HπX (ρXk )

(1 + h/CLSI(πX))2−1/(2u2)

+ 2u4CLSI(π
X)
(
(1 + h/CLSI(π

X))1/(2u
2) − 1

){
4η2L̄2(CLSI(π

X) + h)H̄ + ηdC
}

for u ≥ 1, where H̄ is the supremum of KL divergence between the interim distribution of the
backward denoised distribution at timestep t = ℓη and πY Qℓη and L̄ = supℓ Lℓ
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Proof. As shown in Corollary 13 of Chafaı̈ (2004), the logarithmic Sobolev constant satisfies

CLSI(π
XPt) ≤ CLSI(π

X) + t.

For t ∈ [0, η], the law νt corresponds to the ideal denoising path at time (ℓ − 1)η + t, namely
νt = πXPh−(ℓ−1)η−t. Hence its logarithmic Sobolev constant can be bounded as

CLSI(νt) ≤ CLSI(π
X) + h− (ℓ− 1)η − t =: αℓ − t.

From Corollary 1 combined with LSI, we obtain

d

dt
Hνt(µt) ≤ −

1− 1/(2u2)

αℓ − t
Hνt(µt) + u2[4η2L4

ℓCLSI(ν0)Hν0(µ0) + ηdC].

Applying Gronwall’s inequality, where we multiply by the integrating factor: (αℓ − t)−1+1/(2u2),

d

dt

{
(ανt − t)−1+1/(2u2)Hνt(µt)

}
≤ (ανt − t)−1+1/(2u2)u2

[
4η2L2

v0CLSI(ν0)Hν0(µ0) + ηdC
]

and integrating over t ∈ [0, η], we obtain

(αℓ − η)−1+1/(2u2)Hνη
(µη)− α

−1+1/(2u2)
ℓ Hν0

(µ0)

≤ 2u4(α
1/(2u2)
ℓ − (αℓ − η)1/(2u

2))
{
4η2L2

v0CLSI(ν0)Hν0(µ0) + ηdC
}
.

Recall that we µt, νt is in ℓ-th step in time discretized diffusion. Using the fact that µη, νη is equiv-
alent to µ0, ν0 in ℓ+ 1-th step and αℓ − η = αℓ+1, we iterating this inequality over ℓ = 1, . . . , T to
obtain

CLSI(π
X)−1+1/(2u2)HπX (pXk+1)− (CLSI(π

X) + h)−1+1/(2u2)HπX (pYk+1/2)

≤ 2u4
(
(CLSI(π

X) + h)1/(2u
2) − CLSI(π

X)1/(2u
2)
){

4η2L̄2(CLSI(π
X) + h)H̄ + ηdC

}
,

where H̄ := supl Hν0(µ0), the supremum of the KL divergence between the updated distribution in
each diffusion step and corresponding ideal distribution without distretization error and L̄ := Lℓ.

Equivalently,

HπX (pXk+1) ≤
HπY (pYk+1/2)

(1 + h/CLSI(πX))1−1/(2u2)

+ 2u4CLSI(π
X)
(
(1 + h/CLSI(π

X))1/(2u
2) − 1

){
4η2L2

ℓ(CLSI(π
X) + h)H̄ + ηdC

}
.

This corresponds to the time discretized version of the KL contraction in (8) with q = 1. We finalize
this proof by applying inequality (7) in Lemma 1 with q = 1.

https://anonymous.4open.science/r/zod-ps-662B

A.4 ANALYSIS FOR SCORE ESTIMATION ERROR

In this section, we evaluate the error of score estimation under a set of assumptions. We do not
necessarily generate Yk+1/2 by evolving particles from Xk, but may instead sample Yk+1/2 directly
from the Gaussian mixture. In this case, we denote the number of Yk+1/2 particles by N ′. We
prove that the estimation error scales as O(1/N ′ + 1/M), which converges to zero in the limit of
N ′,M → 0.

Recall that q̂k+1/2(y|Xk) =
1
N

∑
iN (xi, hId) and we further define (normalized) Gaussian mixture

density

ĝ
k+ 1

2

N ′ (x | Xk) ∝
1

N ′

N ′∑
j=1

N (x; yj , hId)

q̂k+
1
2 (yj | Xk)

.
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At time t, the true score in the surrogate dynamics is expressed as

ŝN ′(zt, t) = ∇ log
(
(ĝ

k+ 1
2

N ′ |Xk
e−f )Ph−t

)
(zt).

We approximate this by

ŝN ′,M (zt, t) =
1
M

∑M
m=1 exp

(
−f(ẑ(m))

)
(ẑ(m) − zt)/(h− t)

1
M

∑M
m=1 exp

(
−f(ẑ(m))

) , ẑ(m) ∼ ĝ
k+ 1

2

N ′ |Xk
(· | zt). (20)

Compared to the setting with only time discretization in Section A.3, the drift term s̃0 in one de-
noising step of the discretized dynamics (17) is replaced by the estimator ŝN ′,M (·, (ℓ − 1)η) given
in (20). Using this substitution, the statement of Lemma 3, originally expressed as (16), is modified
accordingly as follows:

d

dt
Hνt

(µt) ≤ −
(1
2
− 1

4u2

)
Jνt

(µt) + u2 Eµ0,t

[
∥ŝN ′,M (z0, (ℓ− 1)η)− s̃t(zt)∥2 | U, Ẑ|U

]
where U ∼N ′ q̂k+1/2(· | Xk) and Ẑ|U ∼M ĝ

k+ 1
2

N ′ (· | z0).
The expectation in the second term of right hand side is evaluated as:

Eµ0,t

[
∥ŝN ′,M (z0, (ℓ− 1)η)− s̃t(zt)∥2 | U, Ẑ|U

]
≤ 2Eµ0,t

[
∥s̃0(z0)− s̃t(zt)∥2

]
+ 2Eµ0

[
∥ŝN ′,M (z0, (ℓ− 1)η)− s̃0(z0)∥2 | U, Ẑ|U

]
≤ 2Eµ0,t

[
∥s̃0(z0)− s̃t(zt)∥2

]
+ 4Eµ0

[
∥ŝN ′(z0, (ℓ− 1)η)− s̃0(z0)∥2 | U

]
+ 4Eµ0

[
∥ŝN ′,M (z0, (ℓ− 1)η)− ŝN ′(z0, (ℓ− 1)η)∥2 | U, Ẑ|U

]
,

which means we can independently evaluate the errors from time discretization (the first term), from
finite N ′ (the second term) and from finite M (the third term).

Score error from finite N ′. Let τ := h− (ℓ− 1)η and zτ equivalent to z0, initial sample of ℓ-th
denoising step. For z0 ∈ Rd, define the conditional law, where denoised ẑ is conditioned by zτ ,

πX(ẑ | zτ ) ∝ exp
(
−f(ẑ)− ∥ẑ − zτ∥2

2τ

)
,

with normalizer

Z(zτ ) :=

∫
exp
(
−f(ẑ)− ∥ẑ − zτ∥2

2τ

)
dẑ.

Let

G(zτ ) :=
1

Z(zτ )

∫
ĝ
k+ 1

2

N ′ (ẑ | Xk) exp
(
−f(ẑ)− ∥ẑ − zτ∥2

2τ

)
dẑ.

Here we assume:
Assumption 3 (Bounded Covariance of the conditioned target distribution). For all ℓ = 1, · · ·L and
zτ , there exists Cv > 0 s.t. supVarπX(ẑ|zτ )[ẑ] ≤ CV .
Assumption 4 (Lower bound of density ratio between the perturbed distributions).

πX(ẑ | zτ ) ∗ N (0, hId)(u)

ρ̂Yk+1/2(u)
≥ K > 0

for a.e. u, hence G(zτ ) ≥ K.
Lemma 4 (finite-N ′ error is O(1/N ′)). Under Assumption 3 and Assumption 4, conditioned on
U ∼N ′ q̂k+1/2(· | Xk), the error term induced by the finite base sample size N ′ satisfies

Eµ0

[
∥ŝN ′(zτ , h− τ)− sh−τ (zτ )∥2

∣∣∣U] ≤ 2K−2CV

N ′τ2
Eµ0,πX(ẑ|zτ )

[
χ2
(
N (ẑ, hId) ∥ ρ̂Yk+1/2

)
+ χ2

(
πX(ẑ | zτ ) ∗ N (0, hId) ∥ ρ̂Yk+1/2

)]
.

In particular, under bounded χ2-divergences, the second term on the right-hand side of the inequal-
ity in the context is O(1/N).
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Proof. By Tweedie’s formula at time τ = h− (ℓ− 1)η, we have

Eµ0

[
∥ŝN ′(zτ , h− τ)− sh−τ (zτ )∥2

∣∣∣U] = 1

τ2
Eµ0

[∥∥∥E
ẑ∼ĝ

k+1
2

N′ (·|zτ )
[ẑ]− Eẑ∼πX(·|zτ )[ẑ]

∥∥∥2]
=

1

τ2
Eµ0

[∥∥∥∫ ẑ
(

ĝ
k+1

2
N′ (ẑ|Xk)

G(zτ )
− 1
)
πX(ẑ | zτ ) dẑ

∥∥∥2] .
Let C(zτ ) :=

∫
ẑ πX(ẑ | zτ ) dẑ. Since

∫
(
ĝ
k+1

2
N′ (ẑ|Xk)

G(zτ )
− 1)πX(ẑ | zτ ) dẑ = 0, we can center the

integrand and apply Cauchy–Schwarz to obtain

Eµ0

[
∥ŝN ′(zτ , h− τ)− sh−τ (zτ )∥2

∣∣∣U] ≤ 1

τ2
Eµ0

[
VarπX(ẑ|zτ )(ẑ) ·VarπX(ẑ|zτ )

( ĝk+1
2

N′ (ẑ|Xk)

G(zτ )

)]
≤ CV

τ2
Eµ0

[∫
1

G(zτ )2
(
ĝ
k+ 1

2

N ′ (ẑ | Xk)−G(zτ )
)2

πX(ẑ | zτ ) dẑ
]

≤ K−2CV

τ2
Eµ0

[∫ (
ĝ
k+ 1

2

N ′ (ẑ | Xk)−G(zτ )
)2

πX(ẑ | zτ ) dẑ
]
.

The second inequality is from Assumption 3 and Assumption 4 yields the last inequality. Using the
unbiasedness identities with uj ∼ ρ̂Yk+1/2,

Euj∼ρ̂Y
k+1/2

 1

N ′

N ′∑
j=1

N (ẑ;uj , hId)

ρ̂Yk+1/2(uj)

 = 1, Euj∼ρ̂Y
k+1/2

[
πX(ẑ | zτ ) ∗ N (0, hId)(uj)

ρ̂Yk+1/2(uj)

]
= 1,

and the decomposition
(
(ĝ − 1) + (1−G)

)2 ≤ 2(ĝ − 1)2 + 2(G− 1)2, we get

≤ 2K−2CV

τ2
Eµ0

[∫ (
(ĝ

k+ 1
2

N ′ (ẑ | Xk)− 1)2 + (G(zτ )− 1)2
)
πX(ẑ | zτ ) dẑ

]
.

Standard variance calculations for importance-weighted kernel mixtures yield∫
(ĝ

k+ 1
2

N ′ (ẑ | Xk)− 1)2 πX(ẑ | zτ ) dẑ =
1

N ′
Varuj∼ρ̂Y

k

(N (ẑ;uj , hId)

ρ̂Yk+1/2(uj)

)
,

(G(zτ )− 1)2 =
1

N ′
Varuj∼ρ̂Y

k+1/2

(πX(ẑ | zτ ) ∗ N (0, hId)(uj)

ρ̂Yk+1/2(uj)

)
.

Each variance is upper bounded by the corresponding χ2-divergence, i.e., Varq(pq ) ≤ χ2(p∥q),
yielding the claim.

Score estimation error from finite M . Here we assume

Assumption 5. The following fourth moments under ĝk+
1
2

N ′ (· | zτ ) are finite:

E
[
exp
(
4f(ẑ)

)]
<∞, E

[
∥ẑ − zτ∥4 exp

(
4f(ẑ)

)]
<∞.

This can be satisfied, for instance, the variance of each component in Gaussian mixture ĝ
k+1/2
N ′ is

sufficiently small compared to the divergence of f .
Lemma 5 (finite-M error is O(1/M))). Fix zτ and U ∼N ′ q̂k+ 1

2
(· | Xk). Under Assumption 5,

there exists a constant CM such that

Eµ0

[
∥ŝN ′,M (zτ , h− τ)− ŝN ′(zτ , h− τ)∥2

∣∣U] ≤ CM

M τ2
.

Proof. Write the estimator (20) at time τ as a ratio of empirical means as following:

ŝN ′,M (zτ , τ) =
AM

τ BM
, AM :=

1

M

M∑
m=1

(ẑ(m) − zτ ) e
−f(ẑ(m)), BM :=

1

M

M∑
m=1

e−f(ẑ
(m)).
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Let A := E[AM ] and B := E[BM ] under ẑ(m) i.i.d.∼ ĝ
k+ 1

2

N ′ (· | zτ ). Then ŝN ′(zτ , h − τ) = A/(τB)
and

∥ŝN ′,M − ŝN ′∥2 =
1

τ2

∥∥∥∥AM

BM
− A

B

∥∥∥∥2 =
1

τ2

∥∥∥∥AMB −ABM

BMB

∥∥∥∥2 .
Use the decomposition AMB−ABM = (AM−A)B+A(B−ABM/B) to obtain the crude bound∥∥∥∥AM

BM
− A

B

∥∥∥∥2 ≤ 2∥AM −A∥2

B2
M

+
2∥A∥2 ∥BM −B∥2

B2
MB2

.

Since e−f(ẑ) > 0, Jensen implies B−2M ≤ 1
M

∑M
m=1 e

2f(ẑ(m)). Hence

∥ŝN ′,M − ŝN ′∥2

≤ 2

τ2

{( 1

M

M∑
m=1

e2f(ẑ
(m))
)
∥AM −A∥2 + ∥A∥

2

B2

( 1

M

M∑
m=1

e2f(ẑ
(m))
)
∥BM −B∥2

}
.

Taking conditional expectation with respect to Ẑ|U and applying Hölder’s inequality with exponents
(2, 2) to each term, we have

E
[
∥ŝN ′,M − ŝN ′∥2

∣∣U]
≤ 2

τ2

{(
E[X2

M ]
) 1

2
(
E[∥AM −A∥4]

) 1
2 +
∥A∥2

B2

(
E[X2

M ]
) 1

2
(
E[(BM −B)4]

) 1
2

}
,

where XM := 1
M

∑M
m=1 e

2f(ẑ(m)). We compute the second moment of XM explicitly:

E
[
X2

M

]
=

1

M
E
[
e4f(ẑ)

]
+

M − 1

M

(
E[e2f(ẑ)]

)2
.

For the fourth moments of the centered empirical means, using the standard 4th-moment expansion
for i.i.d. averages, we obtain

E
[
∥AM −A∥4

]
≤ 1

M3
E
[∥∥((ẑ − zτ )e

−f(ẑ) − E[(ẑ − zτ )e
−f(ẑ)]

)∥∥4]+ 3

M2
Var

(
(ẑ − zτ )e

−f(ẑ)
)2

,

E
[
(BM −B)4

]
≤ 1

M3
E
[(
e−f(ẑ) − E[e−f(ẑ)]

)4]
+

3

M2
Var

(
e−f(ẑ)

)2
.

Substituting these bounds back gives

E
[
∥ŝN ′,M − ŝN ′∥2

∣∣U] ≤ 2

τ2

(
E[X2

M ]
) 1

2

{(
1

M3
E
[
∥ · ∥4

]
+

3

M2
Var
(
(ẑ − zτ )e

−f(ẑ)
)2)1

2

+
∥A∥2

B2

(
1

M3
E
[(
e2f(ẑ) − E[e2f(ẑ)]

)4]
+

3

M2
Var
(
e2f(ẑ)

)2)1
2

}
.

If the 4-th moments are finite under Assumption 5, E[X2
M ] = O(1) and each rooted bracket is

O(M−1). Therefore,

E
[
∥ŝN ′,M (zτ , τ)− ŝN ′(zτ , τ)∥2

∣∣U] ≤ CM

M τ2
,

for a constant CM depending only on the above moments.

Combining Lemma 4 and Lemma 5, we conclude the overall score estimation error is O(1/N ′ +
1/M) under several appropriate assumptions.
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A.5 OVERALL ITERATION COMPLEXITY

We begin by combining the KL contraction in the forward step (Lemma 1, (7)) with the approximate
KL contraction in the backward step subject to estimation errors (Proposition 1).
Corollary 2 (Main one-iteration bound with split errors). Let u ≥ 1 and suppose there exist con-
stants CLSI and Λ

(k)
2 . Then the k-th iterate of Algorithm 1 satisfies

HπX (ρXk+1) ≤
HπX (ρXk+1/2)

r
+ c

(
Λ
(k)
1 + 2Λ

(k)
2

)
,

where r := (1 + h/CLSI)
2− 1

2u2 and c := 2u4CLSI

(
(1 + h/CLSI)

1
2u2 − 1

)
.

Applying the standard iteration argument to this yields

HπX (ρXk ) ≤ 1

rk
HπX (ρX0 ) + c

k−1∑
j=0

Λ
(j)
1 + 2Λ

(j)
2

r k−1−j .

Corollary 3 (Iteration complexity under uniform error bound). Suppose that the per-step error
satisfies

Λ
(j)
1 + 2Λ

(j)
2 ≤ Λ for all j ≥ 0.

Then the iterates of Algorithm 1 obey

HπX (ρXk ) ≤ 1

rk
HπX (ρX0 ) +

cr

r − 1
Λ.

Consequently, to guarantee HπX (ρXk ) ≤ ε, it is sufficient that

k ≥
log
(
2HπX (ρX0 )/ε

)
log r

and Λ ≤ ε(r − 1)

2cr
.

Furthermore, the order evaluation with r and c substituted is

k = O

(
CLSI

h
log

HπX (ρX0 )

ε

)
, Λ = O(ε/CLSI),

where we used the asymptotic equivalences

log r ≍ h
CLSI

, c ≍ u2h, as h/CLSI → 0.
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B EXPERIMENT DETAILS

We provide parameters of each method for our experiments in Table 1 and Table 2. All experiments
were conducted on an Intel Xeon CPU Max 9480 without GPU acceleration.

KL divergence estimation for the Gaussian Lasso experiment. Following the setting of Liang
& Chen (2023b), we first ran the proximal sampler for 100,000 burn-in iterations, and then continued
for 400,000 iterations. From this long trajectory we randomly collected 1000 samples to serve as
reference particles. At each evaluation of the experiment, the KL divergence was estimated using
1000 current particles and these 1000 reference particles. For estimation we used the k-nearest-
neighbor estimator (Kozachenko & Leonenko, 1987) implemented in Büth et al. (2025), with k = 4
as recommended by Kraskov et al. (2004). Although this estimation involves sampling error, we
repeated the entire experiment with 10 different random seeds and, for each seed, computed the KL
divergence based on the corresponding set of particles. We then reported the mean and variance of
these estimates across the 10 runs to provide a more robust evaluation.

Table 1: Parameter setting for the experiment in Section 5.1.
Method Parameters
Proximal Sampler with RGO Initial distribution: y(j)1/2 ∼ N (0, Id)

Step size: η = 1/135
Number of independent chains: 100
Thinning: 10

Ours Initial distribution: x(i)
0 ∼ N (0, Id)

Step size: h = 1/10
Diffusion steps: T = 10
Noise schedule: linear interpolation between 0 and h
Number of particles: N = 100
Number of interim samples: M = 4000

Ours without interaction Same as Ours, except:
Number of particles: N = 1
Number of independent chains: 100

Table 2: Parameter setting for the experiment in Section 5.2.
Method Parameters
In-and-Out Initial distribution: x(i)

0 ∼ N (0, Id)
Step size: h = 1
Number of proposals for rejection sampling: 10000
(Particles are discarded if not accepted)
Number of independent chains: 1000

Ours Initial distribution: x(i)
0 ∼ N (0, Id)

Step size: h = 1
Diffusion steps: T = 10
Noise schedule: linear interpolation from 0.01 to 1
Number of particles: N = 1000
Number of interim samples: M = 300
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Figure 5: Convergence of KL divergence for different step sizes h, with all other parameters set as
Ours in Table 1. Each curve shows the mean over 10 random seeds, with shaded areas indicating
variances. Larger step sizes lead to faster convergence.
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Figure 6: Comparison of hyperparameter tuning while keeping the number of particles used during
the algorithm’s execution (i.e., M × N ). For readability, the first iteration has been omitted While
increasing the number of particles N used for approximating the target distribution stabilizes the KL
divergence, changing both M and N results in very similar convergence patterns.

Effect of step size. In addition to the default choice h = 1/10, we conducted experiments with
other values of h (Figure 5). We observe that larger step sizes accelerate convergence, which can
be attributed to the heat flow more rapidly bridging the two modes. This phenomenon resembles
diffusion-based Monte Carlo methods, where pushforward dynamics from a Gaussian initialization
cover the target distribution.

Hyperparameter sensitivity under fixed computational cost. Furthermore, Figure 6 shows that
when the total number of particles used during the algorithm’s execution (i.e., M ×N ) is fixed, the
algorithm exhibits comparable behavior across different choices of N and M . Increasing N im-
proves the approximation of the target distribution, thereby stabilizing the estimated KL divergence.
Conversely, increasing M enhances the Monte Carlo estimation of the diffusion scores. Thus, under
sufficient computational budgets, the method remains robust to these hyperparameters.
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