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Abstract

The contemporary LLMs are prone to produc-001
ing hallucinations, stemming mainly from the002
knowledge gaps within the models. To address003
this critical limitation, researchers employ di-004
verse strategies to augment the LLMs by incor-005
porating external knowledge, aiming to reduce006
hallucinations and enhance reasoning accuracy.007
Among these strategies, leveraging knowledge008
graphs as a source of external information has009
demonstrated promising results. In this survey,010
we comprehensively review these knowledge-011
graph-based augmentation techniques in LLMs,012
focusing on their efficacy in mitigating hallu-013
cinations. We systematically categorize these014
methods into three overarching groups, offering015
methodological comparisons and performance016
evaluations. Lastly, this survey explores the017
current trends and challenges associated with018
these techniques and outlines potential avenues019
for future research in this emerging field.020

1 Introduction021

Large language models (LLMs) seek to emulate hu-022

man intelligence through statistical training on ex-023

tensive datasets (Huang and Chang, 2022). LLMs024

operate on input text to predict the subsequent to-025

ken or word in the sequence while identifying pat-026

terns and connections between words and phrases,027

aiming to comprehend and generate human-like028

text. Due to their stochastic decoding processes,029

i.e., sampling the next token in the sequence, these030

models exhibit probabilistic behavior, potentially031

yielding varied outputs or predictions for the same032

input across different instances. Additionally, if033

the training data includes misinformation, biases,034

or inaccuracies, these flaws may be mirrored or035

amplified in the content produced by these models.036

LLMs also face challenges in accurately interpret-037

ing phrases or terms when the context is vague and038

resides in a knowledge gap region of the model,039

leading to outputs that may sound plausible but040

Figure 1: Knowledge Graphs (KG) employed to reduce
hallucinations in LLMs at different stages.

are often irrelevant or incorrect (Ji et al., 2023; 041

Lenat and Marcus, 2023). This phenomenon, often 042

termed "hallucinations," undermines the reliability 043

of these models (Mallen et al., 2023). 044

Addressing the issue of hallucinations in these 045

models is challenging due to their inherent prob- 046

abilistic nature. To effectively tackle this issue, 047

there have been continuous research efforts in mak- 048

ing knowledge updates and model tuning (Zhang 049

et al., 2023c; Mialon et al., 2023; Petroni et al., 050

2019). However, adding random information does 051

not improve the model’s interpretation and reason- 052

ing capabilities. Instead, providing more granular 053

and contextually relevant, precise external knowl- 054

edge can significantly aid the model in recalling 055

essential information (Jiang et al., 2020). 056

One emerging research trend is enhancing LLMs 057

through integrating knowledge representation tools 058

such as knowledge graphs (KGs) (Mruthyunjaya 059

et al., 2023). Zheng et al. (Zheng et al., 2023) 060

demonstrate that augmenting these models with 061

comprehensive external knowledge from KGs can 062

boost their performance and facilitate a more robust 063

reasoning process. The strategies for enhancing 064

LLMs with KGs can be grouped into three main 065

categories, each uniquely contributing to the refine- 066

ment of the model as shown in Figure 1: enhanc- 067

ing the inference process, improving the learning 068
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KG-augmented
LLM

Knowledge-aware
Validation (§ 3.3)

Fact-aware LM (Logan IV et al., 2019), SURGE (Kang et al., 2022b), FOLK (Wang and Shu, 2023),
Critic-Driven (Lango and Dušek, 2023)

Knowledge-aware
Training (§ 3.2)

Fine-tuning
(§ 3.2.2)

SKILL (Moiseev et al., 2022), KGLM (Youn and Tagkopoulos, 2022),
LMSI (Huang et al., 2022), CoT Fine-Tuning (Kim et al., 2023)

Pre-training
(§ 3.2.1)

Knowledge-Probing
Rewire-then-Probe (Meng et al., 2021),
Knowledge graph extraction (Kassner
et al., 2021; Swamy et al., 2021)

Knowledge-Fusion JointLK (Sun et al., 2021b),
LKPNR (Runfeng et al., 2023)

Knowledge-
Guided Masking

SKEP (Tian et al., 2020), GLM (Shen
et al., 2020; Zhang et al.)

Knowledge-
Enhanced Models

ERNIE 3.0 (Sun et al., 2021a),
KALM (Rosset et al., 2020)

Knowledge-aware
Inference (§ 3.1)

KG-controlled Gen-
eration (§ 3.1.3)

Know-Prompt (Chen et al., 2022), KB-Binder (Li et al., 2023),
BeamQA (Atif et al., 2023), NeMo guardrails (Rebedea et al., 2023), AL-
CUNA (Yin et al., 2023a), PRCA (Yang et al., 2023)

KG-augmented
Reasoning (§ 3.1.2)

IRCoT (Trivedi et al., 2022), Reasoning on graphs (Luo et al., 2023),
MindMap (Wen et al., 2023), MOT (Li and Qiu, 2023), ReCEval (Prasad
et al., 2023), RAP (Hao et al., 2023), EoT (Yin et al., 2023b)

KG-augmented
Retrieval (§ 3.1.1)

KAPING (Baek et al., 2023),StructGPT (Jiang et al., 2023), IAG (Zhang
et al., 2023b), SAFARI (Wang et al., 2023b), KICGPT (Wei et al., 2023),
Rigel Facts (Sen et al., 2023), Retrieve-Rewrite-Answer (Wu et al., 2023)

Figure 2: Taxonomy of Knowledge Graph-Augmented Large Language Models

mechanism, and establishing robust methods for069

validating the model’s decisions.070

In this survey, we critically review KG augmen-071

tation methods used in specific stages to reduce072

hallucinations in LLMs and improve their perfor-073

mance and reliability. In Section 3, we classify074

these methods into three overarching categories:075

(1) Knowledge-Aware Inference, (2) Knowledge-076

Aware Learning, and (3) Knowledge-Aware Val-077

idation. Additionally, in Section 4, we evaluate078

the empirical efficacy of these methods and discuss079

current research trends, followed by suggestions080

for potential future research directions.081

Related Works: There are several related sur-082

veys which discuss LLM augmentation using ex-083

ternal knowledge (Hu et al., 2023; Yin et al., 2022;084

AlKhamissi et al., 2022; Ye et al., 2022; Wei et al.,085

2021; Liang et al., 2022; Zhang et al., 2023c; Mi-086

alon et al., 2023). However, to our knowledge,087

this is the first survey to exclusively focus on criti-088

cally reviewing LLM augmentation methods utiliz-089

ing structured knowledge from knowledge graphs.090

Specifically, our emphasis is on addressing halluci-091

nations in LLMs through KG integration.092

2 Preliminaries093

We now introduce the preliminaries and definitions094

that will be used throughout the survey.095

2.1 Large Language Models 096

Language modeling, a key task in natural language 097

processing (NLP), focuses on understanding lan- 098

guage’s structure and generating text. It has gained 099

importance over recent years. Specifically, in neu- 100

ral probabilistic language models (Bengio et al., 101

2000), the goal is to estimate the likelihood of a 102

text sequence. It involves computing the probabil- 103

ity of each token xi in the sequence, considering 104

preceding tokens, using the chain rule to simplify 105

the process. 106

p(x) =
N∏
i=1

p(xi|x1, x1...xi−1) (1) 107

The introduction of the transformer architec- 108

ture (Vaswani et al., 2017) significantly advanced 109

neural probabilistic language models, enabling 110

efficient parallel processing and recognition of 111

long-range dependencies in text. Coupled with 112

training advancements like instruction tuning and 113

Reinforcement Learning from Human Feedback 114

(RLHF) (Ouyang et al., 2022), these neural proba- 115

bilistic language models led to the creation of ad- 116

vanced Large Language Models (LLMs) like GPT- 117

3 (Brown et al., 2020), GPT-4 (OpenAI, 2023), and 118

PaLM (Chowdhery et al., 2022), notable for their 119

exceptional language capabilities. 120
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2.2 Knowledge Graphs121

Knowledge graphs (KGs) organize information122

into a structured format, capturing relationships123

between real-world entities, making it comprehen-124

sible to both humans and machines (Hogan et al.,125

2021). They store data as triples in a graph, with126

nodes representing entities (like people or places)127

and edges depicting relationships. Their capacity to128

represent complex interrelations makes them appli-129

cable in various domains (Fensel et al., 2020). KGs130

are used in a semantic search to enhance search131

engines semantic understanding (Singhal, 2012),132

enterprise knowledge management (Deng et al.,133

2023b), supply chain optimization (Deng et al.,134

2023a), education (Agrawal et al., 2022), finan-135

cial fraud detection (Mao et al., 2022), cybersecu-136

rity (Agrawal et al., 2023b), recommendation sys-137

tems (Guo et al., 2020), and QA systems (Agrawal138

et al., 2023a; Omar et al., 2023; Jiang et al., 2021).139

3 Knowledge Graph-Enhanced LLMs140

The LLMs primarily have three points of fail-141

ure: a failure to comprehend the question due142

to lack of context, insufficient knowledge to re-143

spond accurately, or an inability to recall specific144

facts. Improving the cognitive capabilities of these145

models involves refining their inference-making146

process, optimizing learning mechanisms, and es-147

tablishing a mechanism to validate results. This148

survey comprehensively reviews existing method-149

ologies aimed at mitigating hallucinations and150

enhancing the reasoning capabilities of LLMs151

through the augmentation of KGs using these152

three techniques. We classify them as Knowledge-153

Aware Inference, Knowledge-Aware Learning,154

and Knowledge-Aware Validation. Figure 2 de-155

tails key works from each of these categories.156

Figure 3: Knowledge-aware inference by incorporating
KG-augmented retrieval (Baek et al., 2023).

3.1 Knowledge-Aware Inference 157

In LLMs, “inference” means generating text or 158

predictions from a pre-trained model based on an 159

input context. Challenges include incorrect or sub- 160

optimal outputs due to ambiguous inputs, unclear 161

context, knowledge gaps, training data biases, or 162

inability to generalize to unseen scenarios. LLMs 163

often struggle with multi-step reasoning and, un- 164

like humans, can not seek extra information to 165

clarify ambiguous queries. To improve LLMs’ in- 166

ference and reasoning, researchers integrate KGs 167

for structured symbolic knowledge, primarily by 168

incorporating them at the input level to enhance 169

contextual understanding. These methods, are fur- 170

ther categorized into ‘KG-Augmented Retrieval,’ 171

‘KG-Augmented Reasoning,’ and ‘KG-Controlled 172

Generation.’ 173

3.1.1 KG-Augmented Retrieval 174

Retrieval-augmented generation models like 175

RAG (Lewis et al., 2020) and RALM (Ram et al., 176

2023) enhance LLMs’ contextual awareness for 177

knowledge-intensive tasks by providing relevant 178

documents during generation, reducing hallucina- 179

tion without altering the LLM architecture. These 180

methods, which are helpful for tasks needing 181

external knowledge, augment top-k relevant 182

documents to inputs. However, as shown in 183

Figure 3, using well-organized, curated knowledge 184

from structured sources or knowledge graphs, 185

aligns more closely with factual accuracy. Baek et 186

al. (Baek et al., 2023) introduced KAPING, which 187

matches entities in questions to retrieve related 188

triples from knowledge graphs for zero-shot 189

question answering. Wu et al. (Wu et al., 2023) 190

found that converting these triples into textualized 191

statements enhances LLM performance. Sen 192

et al. (Sen et al., 2023) developed a retriever 193

module trained on a KGQA model, addressing 194

the inadequacy of similarity-based retrieval for 195

complex questions. StructGPT (Jiang et al., 2023) 196

augments LLMs with data from knowledge graphs, 197

tables, and databases, utilizing structured queries 198

for information extraction. Other notable works 199

include IAG(Zhang et al., 2023b), KICGPT (Wei 200

et al., 2023), and SAFARI (Wang et al., 2023b). 201

LLMs serve as natural language interfaces, ex- 202

tracting and generating information without rely- 203

ing on their internal knowledge. Tools like the 204

ChatGPT plugin use Langchain (Chase, 2022) and 205

LlamaIndex (Liu, 2022) to integrate external data, 206

prompting LLMs for context-retrieved, knowledge- 207
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augmented outputs. However, relying solely on208

internal databases can limit performance due to re-209

stricted knowledge bases. Mallen et al. (Mallen210

et al., 2023) investigated LLMs’ factual knowledge211

retention, finding that augmenting with retrieved212

data improves performance. However, these mod-213

els perform well with popular entities and relations214

but face challenges with less popular subjects, and215

increasing model size doesn’t improve their perfor-216

mance in such cases.217

3.1.2 KG-Augmented Reasoning218

KG-augmented retrieval methods effectively an-219

swer factual questions. However, questions that re-220

quire reasoning call for more proficient approaches,221

such as decomposing complex, multi-step tasks222

into manageable sub-queries, as detailed by (Qiao223

et al., 2022; Liu et al., 2023). These techniques are224

referred to as KG-augmented reasoning methods225

in our study. Following the intuition behind the226

human reasoning process, the Chain of Thought227

(CoT) (Wei et al., 2022a), Chain of Thought with228

Self-Consistency (CoT-SC) (Wang et al., 2022),229

Program-Aided Language Model (PAL) (Gao et al.,230

2023), and Reason and Act (ReAct) (Yao et al.,231

2022), Reflexion (Shinn et al., 2023) methods used232

a series of intermediate reasoning steps to improve233

the complex reasoning ability of LLMs. These234

methods mimic human step-by-step reasoning, aid-235

ing in understanding and debugging the model’s236

reasoning process. They are useful for math prob-237

lems, commonsense reasoning, and symbolic tasks238

solvable through language-explained steps. Tree of239

Thoughts(ToT) (Yao et al., 2023) method enhances240

this by exploring coherent text units as intermediate241

steps, enabling LLMs to consider multiple paths,242

self-evaluate, and make informed decisions.243

Different knowledge augmentation techniques244

using knowledge graphs, inspired by CoT and245

ToT prompting, enhance reasoning in domain-246

specific and open-domain tasks. “Rethinking247

with Retrieval" (He et al., 2022) model uses de-248

composed reasoning steps from chain-of-thought249

prompting to retrieve external knowledge, leading250

to more accurate and faithful explanations. IR-251

CoT (Trivedi et al., 2022) interleaves generating252

chain-of-thoughts (CoT) and retrieving knowledge253

from graphs, iteratively guiding retrieval and rea-254

soning for multi-step questions. MindMap (Wen255

et al., 2023) introduces a plug-and-play approach to256

evoke graph-of-thoughts reasoning in LLMs. Rea-257

soning on Graphs (RoG) (Luo et al., 2023) uses258

knowledge graphs to create faithful reasoning paths 259

based on various relations, enabling interpretable 260

and accurate reasoning in LLMs. Complementary 261

advancements include MoT (Li and Qiu, 2023), 262

Democratizing Reasoning (Wang et al., 2023c), Re- 263

CEval (Prasad et al., 2023), RAP (Hao et al., 2023), 264

EoT (Yin et al., 2023b) and Tree Prompting (Singh 265

et al., 2023), each contributing uniquely to the de- 266

velopment of reasoning capabilities in LLMs. 267

Exploring the interaction between prompts and 268

large language models in the context of reason- 269

ing tasks is an exciting research avenue (Liu et al., 270

2023). A crucial aspect is the design of prompts 271

tailored to the specific use case. However, the fun- 272

damental question of whether neural networks gen- 273

uinely engage in "reasoning" remains unanswered, 274

and it is uncertain whether following the correct 275

reasoning path always leads to accurate answers 276

(Qiao et al., 2022; Jiang et al., 2020). 277

3.1.3 Knowledge-Controlled Generation 278

These methods generate knowledge using a lan- 279

guage model and then use probing or API calls 280

for tasks. Liu et al. (Liu et al., 2021) used a 281

second model to produce question-related knowl- 282

edge statements for deductions. Binder (Cheng 283

et al., 2022) uses Codex to parse context and gen- 284

erate task API calls. KB-Binder (Li et al., 2023) 285

also employs Codex to create logical drafts for 286

questions, integrating knowledge graphs for com- 287

plete answers. Brate et al. (Brate et al., 2022) cre- 288

ate cloze-style prompts for entities in knowledge 289

graphs, enhancing them with auxiliary data via 290

SPARQL queries, improving recall and accuracy. 291

KnowPrompt (Chen et al., 2022) generates prompts 292

from a pre-trained model and tunes them for rela- 293

tion extraction in cloze-style tasks. BeamQA (Atif 294

et al., 2023) uses a language model to generate 295

inference paths for knowledge graph embedding- 296

based search in link prediction. ALCUNA (Yin 297

et al., 2023a) and PRCA (Yang et al., 2023) are 298

other significant methods in controlled generation. 299

Guardrails in generative AI set operational 300

boundaries for models, ensuring safe and secure 301

output generation. NeMo guardrails (Rebedea 302

et al., 2023) by Nvidia guide conversational flows 303

in enterprise applications to meet safety and secu- 304

rity standards. Knowledge-controlled generation 305

ensures alignment with facts and prevents misinfor- 306

mation. Knowledge graph ontologies can provide 307

specific domain constraints, aiding LLMs in defin- 308

ing output generation boundaries. 309
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3.2 Knowledge-Aware Training310

Another stage where we can address hallucination311

issues in LLMs is to utilize KGs to optimize their312

learning either by improving the quality of train-313

ing data at the model pre-training stage or by fine-314

tuning the pre-trained language model (PLM) to315

adapt to specific tasks or domains. We classify316

these methods as Knowledge-Aware Pre-Training317

and Knowledge-Aware Fine-Tuning.318

3.2.1 Knowledge-Aware Pre-Training319

Training data quality and diversity are crucial for re-320

ducing hallucinations in LLMs. Integrating knowl-321

edge graphs, which provide structured information322

about entities and their interconnections, improves323

the comprehension abilities of LLMs and aids in324

generating text that more accurately reflects the325

complexities of real-world entities. However, train-326

ing from scratch is highly resource-heavy and ex-327

pensive. Different approaches were proposed by328

researchers (Yu et al., 2023; Fu et al., 2023; Deng329

et al., 2023b; Liu et al., 2020; Poerner et al., 2019;330

Peters et al., 2019) for pre-training models by aug-331

menting knowledge graphs in training data. We332

further categorize them as follows:333

1. Knowledge-Enhanced Models: These meth-334

ods enriched the large-scale text corpora with335

KGs for improved language representation.336

ERNIE (Zhang et al., 2019) used masked lan-337

guage modeling (MLM) and next sentence338

prediction (NSP) in pre-training to capture the339

text’s lexical and syntactical elements, com-340

bining context with knowledge facts for pre-341

dictions. ERNIE 3.0 (Sun et al., 2021a) fur-342

ther evolved by integrating an auto-regressive343

model with an auto-encoding network, ad-344

dressing the limitations of a single auto-345

regressive framework in exploring enhanced346

knowledge. Meanwhile, Rosset et al. (Rosset347

et al., 2020) introduced a knowledge-aware348

input through an entity tokenizer dictionary,349

enhancing semantic understanding without al-350

tering the transformer architecture.351

2. Knowledge-Guided Masking: Knowledge352

graph-guided entity masking schemes (Shen353

et al., 2020; Zhang et al.) utilized linked354

knowledge graphs to mask key entities in355

texts, enhancing question-answering and356

knowledge-base completion tasks by lever-357

aging relational knowledge. Similarly, Sen-358

timent Knowledge Enhanced Pre-training359

Figure 4: Knowledge-aware Pre-training by Knowledge
Fusion (Sun et al., 2021b).

(SKEP) (Tian et al., 2020) employed sen- 360

timent masking to develop unified senti- 361

ment representations, improving performance 362

across various sentiment analysis tasks. 363

3. Knowledge-Fusion: These methods inte- 364

grates the KGs into LLMs using graph query 365

encoders (Wang et al., 2021; Ke et al., 2021; 366

He et al., 2019). As shown in Figure 4, 367

JointLK (Sun et al., 2021b) employed knowl- 368

edge fusion and joint reasoning for com- 369

monsense question answering, selectively us- 370

ing relevant KG nodes and synchronizing 371

updates between text and graph encoders. 372

LKPNR (Runfeng et al., 2023) combined 373

LLMs with KGs, enhancing semantic under- 374

standing in complex news texts to create a per- 375

sonalized news recommendation framework 376

through a KG-augmented encoder. 377

4. Knowledge-Probing: Knowledge probing in- 378

volves examining language models to as- 379

sess their factual and commonsense knowl- 380

edge (Petroni et al., 2019). This process aids 381

in evaluating and enhancing the models (Kass- 382

ner et al., 2021; Swamy et al., 2021). Rewire- 383

then-Probe (Meng et al., 2021) introduced a 384

self-supervised contrastive-probing approach, 385

utilizing biomedical knowledge graphs to 386

learn language representations. 387

3.2.2 Knowledge-Aware Fine-Tuning 388

Fine-tuning adapts LLMs to specific domains 389

by training them on relevant datasets, using se- 390

lected architectures and hyper-parameters to mod- 391

ify the model’s weights for improved task perfor- 392

mance (Guu et al., 2020; Hu et al., 2021; Lu et al., 393

2022; Dettmers et al., 2023). KGs can further tune 394

these models to update and expand their internal 395
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knowledge for domain-specific tasks like custom396

named-entity recognition (Agrawal et al., 2023b),397

and text summarization (Kang et al., 2022a).398

SKILL (Moiseev et al., 2022) used synthetic sen-399

tences converted from WikiData (Seminar et al.,400

2019) and KELM (Agarwal et al., 2020) used401

KGs to fine-tune the pre-trained model checkpoints.402

KGLM (Youn and Tagkopoulos, 2022) employed403

an entity-relation embedding layer with KG triples404

for link prediction tasks. Cross-lingual reason-405

ing (Foroutan et al., 2023) improved by fine-tuning406

MultiLM, mBERT, and mT5 models with logical407

datasets using a self-attention network. LLMs im-408

prove more with additional training using datasets409

with few-shot CoT reasoning prompts and fine-410

tuning (Kim et al., 2023; Huang et al., 2022).411

Fine-tuning language models like ChatGPT, lim-412

ited by their last knowledge update in 2021, is413

more efficient than training from scratch. It handles414

queries beyond this cutoff using a curated, domain-415

specific knowledge graph. The extent to which416

updated knowledge is integrated into the model417

remains to be determined. Onoe et al.’s (Onoe418

et al., 2023) evaluation framework indicate that419

while models can recall facts about new entities,420

inferring based on these is harder. The effect of421

updating knowledge on existing entities is still an422

open research question.423

3.3 Knowledge-Aware Validation424

The third category type uses structured data as425

a fact-checking mechanism and provides a refer-426

ence for the model to verify information. Knowl-427

edge graphs can provide comprehensive explana-428

tions and can be used to justify the models’ de-429

cisions. These methods also help enforce consis-430

tency across the facts, obviating the necessity for431

laborious human-annotated data and enhancing the432

reliability of generated content.433

The fact-aware language model, KGLM (Lo-434

gan IV et al., 2019), referred to a knowledge graph435

to generate entities and facts relevant to the context.436

SURGE (Kang et al., 2022b) retrieves high simi-437

larity context-relevant triples as a sub-graph from438

a knowledge graph. “Text critic" classifier (Lango439

and Dušek, 2023) was proposed to guide the gen-440

eration by assessing the match between the input441

data and the generated text. FOLK (Wang and Shu,442

2023) used first-order-logic (FOL) predicates for443

claim verification in online misinformation. Be-444

yond verification, FOLK generates explicit expla-445

nations, providing valuable assistance to human446

fact-checkers in understanding and interpreting the 447

model’s decisions. This approach contributes to the 448

accuracy and interpretability of the model’s outputs 449

in the context of misinformation detection. 450

4 Discussion, Challenges and Future 451

In this section, we examine the effectiveness of KG- 452

enhanced LLM techniques in reducing hallucina- 453

tions and enhancing performance and reliability in 454

LLMs. We also identify key challenges associated 455

with each method and propose potential research 456

avenues in this evolving field. 457

4.1 Resources 458

Table 1 details the key features of different KG- 459

enhanced LLM methods, emphasizing their appli- 460

cation in specific industries using domain-specific 461

knowledge graphs. The inference methods used 462

general knowledge and commonsense reasoning 463

datasets for QA tasks without requiring LLM re- 464

training. Mindmap (Wen et al., 2023) demon- 465

strated an application in healthcare, augmenting 466

clinical datasets with GPT-4. Meng et al. (Meng 467

et al., 2021) pre-trained T5 and BART models us- 468

ing a biomedical knowledge graph, Unified Med- 469

ical Language System (UMLS) Metathesaurus. 470

LKPNR (Runfeng et al., 2023) pre-trained LM and 471

graph encoders on MIND-200K user click logs to 472

provide personalized news recommendations. Bal- 473

dazzi (Baldazzi et al., 2023) fine-tuned T5-large on 474

financial customer-service enterprise KG. 475

4.2 Evaluation Metrics 476

Various criteria were applied to assess the effective- 477

ness of knowledge graph augmentation in reducing 478

hallucinations in LLMs. 479

Accuracy: Accuracy comparison with and with- 480

out augmented knowledge from KGs (Baek et al., 481

2023; Zhang et al., 2023b). 482

Top-K and MRR: Retrieval performance was mea- 483

sured by the relevance of retrieved triples for gen- 484

erating answers. Mean Reciprocal Rank (MRR) 485

and Top-K accuracy determined the ranks of cor- 486

rectly retrieved answer-containing triples (Baek 487

et al., 2023; Sen et al., 2023). The effectiveness 488

of KG triples was assessed as either "Helpful" or 489

"Harmful" and compared against scenarios where 490

"no knowledge" was provided (Wu et al., 2023). 491

Hits@1: Evaluates answer accuracy and examines 492

the coverage of multi-choice question answers (Luo 493

et al., 2023; Wu et al., 2023; Wei et al., 2023). 494
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Comparison Attributes
Category Representative Method Downstream

Task KG Dataset LLM Training

KAPING (Baek et al., 2023) Question-Answering Mintaka, WebQSP T5, T0, OPT,
GPT-3

Rigel Facts (Sen et al., 2023) Question-Answering WebQuestions, ComplexWebQuestions,
Mintaka, LC-QuAD

Flan-T5, T0,
OPT, AlexaTMKG-

Augmented
Retrieval Retrieve-Rewrite-Answer

(Wu et al., 2023) Question-Answering MetaQA, WebQSP, WebQ, ZJQA ChatGPT, Llama 2,
Flan-T5, T0, T5

X⃝

IRCoT (Trivedi et al., 2022) Multi-step Reasoning QA HotpotQA, 2WikiMultihopQA,
MusiQue, IIRC GPT3, Flan-T5

MindMap (Wen et al., 2023) Medical Diagnosis GenMedGPT-5k,
CMCQA, ExplainCPE GPT-3.5, GPT-4KG-

Augmented
Reasoning RoG (Luo et al., 2023) Reasoning WebQSP,

Complex WebQuestions (CWQ) Llama 2-Chat-7B
X⃝

KnowPrompt (Chen et al., 2022) Relation Extraction and Labeling SemEval, DialogRE, TACRED RoBERTa_large Few-shot training

BINDER (Cheng et al., 2022) Information extraction,
Commonsense QA WikiTableQuestions, TabFact Codex API calls / Few-shot

In-context learning
Knowledge-
Controlled
Generation BeamQA (Atif et al., 2023) Generate Questions MetaQA, WebQSP, T5, BART Fine-tuned for 4 epochs

SKEP (Tian et al., 2020) Sentiment Analysis SST, Amazon,
Sem, MPQA BERT, RoBERTa Encoder trained on

3.2m train data

JointLK (Sun et al., 2021b) Commonsense Question
Answering

CommonSenseQA,
OpenBookQA RoBERTa-Large LM/graph encoder trained

jointly for 20 GPU hoursKnowledge-
Aware
Pre-Training LKPNR (Runfeng et al., 2023) Personalized News

Recommendation MIND ChatGLM2,
Llama 2, RWKV

LK-Encoders trained on
GPU for 200K user click logs

SKILL (Moiseev et al., 2022) Closed-book QA tasks Wikidata, KELM, MetaQA T5-base, L,
XXL models T5 fine-tuned for 50k steps

KGLM (Youn and Tagkopoulos, 2022) Link Prediction WN18RR, FB15k-237, UMLS RoBERTa Large Model tuned for 5 epochs
Knowledge-
Aware
Fine-Tuning Neurosymbolic (Baldazzi et al., 2023) Banking Customer Query Chase EKG T5-large Model tuned for 10 epochs

Fact-aware LM (Logan IV et al., 2019) Fact Generation Linked WikiText-2 TransE Transformer trained on
256-dim KG embeddings

SURGE (Kang et al., 2022b) Dialogue Generation OpenDialKG T5-small X⃝Knowledge-
Aware
Validation FOLK (Wang and Shu, 2023) Claim Verification in

Online Misinformation
HoVER, FEVEROUS,

SciFact-Open
Llama(7B), Llama(13B),

Llama(30B) X⃝

Table 1: Comparison attributes of Knowledge Graph-enhanced LLM methods

Execution Accuracy (EA): The controlled genera-495

tion method, such as Binder (Cheng et al., 2022),496

uses Execution Accuracy (EA) as a metrics to mea-497

sure the accuracy in semantic parsing, API call498

generation, and the success rate of code execution.499

Exact Match (EM): Model’s performance after500

fine-tuning was evaluated using EM (Exact Match)501

scores on test sets (Moiseev et al., 2022).502

Human Evaluation: Validation methods were man-503

ually evaluated to assess the explanation quality,504

coverage, logical soundness, fluency, and factual505

accuracy of sentence completion (Wang and Shu,506

2023; Kang et al., 2022b).507

4.3 Performance Analysis508

Retrieved facts enhance small LLMs: Smaller509

models, due to their limited parameter spaces,510

struggle to incorporate extensive knowledge in pre-511

training. Augmenting facts from knowledge graphs,512

rather than increasing model size, enhanced answer513

correctness by over 80% for question-answering514

tasks (Baek et al., 2023; Sen et al., 2023; Wu et al.,515

2023). However, the success of these methods with516

complex queries heavily relies on the retriever mod-517

ules, whose capabilities are limited to the knowl-518

edge graph (BehnamGhader et al., 2022).519

Step-wise reasoning more effective in larger520

models: Variations of CoT methods offer cost-521

effective control and task-specific tuning, enhanc-522

ing model performance. For instance, RoG (Luo523

et al., 2023) reported an increase in ChatGPT’s524

accuracy from 66.8% to 85.7% in reasoning tasks 525

with knowledge graph augmentation. Similarly, 526

Mindmap (Wen et al., 2023) boosted accuracy in 527

disease diagnosis and drug recommendation to 528

88.2% using a clinical reasoning graph. 529

Controlled generation boosts the performance: 530

Knowledge-controlled generation methods surpass 531

baseline models in accuracy and contextual rele- 532

vance, enhancing their ability to handle diverse 533

queries (Chen et al., 2022; Cheng et al., 2022; Atif 534

et al., 2023). However, these methods can vary 535

in quality and are sometimes prone to generating 536

incorrect or irrelevant information. 537

Pre-training and fine-tuning are costly: Pre- 538

training and fine-tuning significantly enhance 539

domain-specific task performance. However, these 540

improvements require substantial computational 541

resources, as shown in Table 1. Additionally, fine- 542

tuning’s data-dependency makes it task-specific 543

and limits its transferability and generalizabil- 544

ity (Gueta et al., 2023; Wang and Shu, 2023). 545

Fact-checking ensures reliability: Knowledge 546

validation through fact-checking reduces halluci- 547

nations by checking model-generated data against 548

a knowledge graph, but it increases computational 549

load and may miss some inaccuracies (Kang et al., 550

2022b; Lango and Dušek, 2023) 551

The effectiveness of knowledge augmentation 552

is influenced by the size of the knowledge graph 553

and its impact on query responses. Standard ap- 554

proaches include fine-tuning pre-trained models 555
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2019 2020 2021 2022 2023

Knowledge-Aware Validation

Knowledge-Aware Fine-Tuning

Knowledge-Aware Pre-Training

Knowledge-Controlled Generation

KG-Augmented Reasoning

KG-Augmented Retrieval

Year

Figure 5: Research trend over years- The bubble size
represents number of papers we observed for each
knowledge-graph augmentation categories: smallest
size (#papers=1), largest size (#papers=8)

for reliability but at a higher cost, and example-556

based prompting, less effective in certain reasoning557

tasks (Brown et al., 2020; Rae et al., 2021). Zhang558

et al. (Zhang et al., 2023a) noted that language559

model inconsistencies often arise from incorrect560

context usage. Method selection depends on the561

specific use case and available resources. Wang et562

al. (Wang et al., 2023a) showed that pre-training563

decoder-only LLMs with retrieval can improve fac-564

tual accuracy in knowledge-intensive tasks, while565

Shi et al. (Shi et al., 2023) developed GraphNar-566

rative, a dataset aimed at reducing hallucinations,567

beneficial for fine-tuning LLMs.568

4.4 Trend Analysis569

Figure 5 shows the research trends using different570

knowledge-graph augmentation techniques from571

2019 to 2023. Pre-training methods by adding572

knowledge graphs to the training corpus were pre-573

dominant in the early years of language model574

development. After the extensive GPT series of575

LLMs, retraining the huge model with billions576

of parameters became impractical and resource-577

intensive. More efforts were made to fine-tune578

the models with task-specific data without training579

from scratch. Very recently, there has been a shift580

towards using knowledge-augmented retrieval, rea-581

soning, generation, and validation methods without582

incurring additional training costs.583

4.5 Future Directions584

Here are some potential future research directions585

for further investigation:586

Mixture of Experts (MoE) LLMs: Efforts are587

underway to optimize the MoE architecture to588

scale LLMs and increase their capacity without589

increasing computation (Zhou et al., 2022). In- 590

tegrating MoE with knowledge graphs (Yu et al., 591

2022) can develop adaptive learning strategies for 592

context-based expert utilization and improve the 593

interpretability and transparency of MoE-LLMs. 594

Synergizing LLM and KG: LLMs are being used 595

for link prediction and knowledge graph comple- 596

tion (Xiao et al., 2023; Veseli et al., 2023). Syner- 597

gizing the LLM and KGs is a potential direction 598

where both components can mutually enhance each 599

other’s capabilities through a bidirectional reason- 600

ing process driven by a harmonious blend of data 601

and knowledge (Pan et al., 2023). 602

Causality-Awareness: Causality in knowledge 603

graphs (Wei et al., 2022b) will improve LLMs’ abil- 604

ity to understand causation, not just correlations. 605

Symbolic-Subsymbolic Unification: Knowledge 606

fabrics, such as symbolic KGs and sub-symbolic 607

vectors, enables versatile reasoning in LLMs, mim- 608

icking human mind’s capacity to reconcile struc- 609

tured theories (Núñez-Molina et al., 2023). 610

Improve Quality of KG: a⃝Context-Aware: Dy- 611

namic KGs that continuously adapt to changing 612

contexts and new information can improve LLMs 613

effectively. b⃝Addressing Biases:Fairness-aware 614

algorithms in KGs can ensure bias or misinforma- 615

tion is not perpetuated by KGs. c⃝Cross-Domain 616

Knowledge: Integrating knowledge from diverse 617

domains like science, art, and history into a sin- 618

gle graph could enhance the depth and nuance 619

of LLM responses. d⃝Multi-Modal:Adding multi- 620

modal data such as images, videos, and audio to 621

KGs can enrich the data pool and improve LLMs’ 622

contextual responses. 623

The progress of KGs promises to greatly en- 624

hance LLMs, making them more relevant, respon- 625

sive, and accurate. This aims to create more reliable 626

and trustworthy language models, advancing robust 627

and responsible AI systems. 628

5 Conclusion 629

In this survey, we systematically investigate the in- 630

tegration of KGs into LLMs to mitigate hallucina- 631

tions and improve reasoning accuracy. We empha- 632

size the benefits of using KGs to enhance LLM per- 633

formance across various phases at inference, model 634

training, and output verification stages. While sub- 635

stantial progress has been made, we emphasize the 636

need for continuous innovation and propose future 637

directions to facilitate the development of more 638

advanced KG-augmented LLMs. 639
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6 Limitations640

In this paper, we conduct a comprehensive641

review of knowledge-graph-based augmentation642

techniques in LLMs, with a specific focus on643

their ability to address hallucinations. We identify644

commonalities among these techniques and645

categorize them into three distinct groups based on646

their mechanisms and approaches. Furthermore,647

we systematically assess the performance of these648

methods. In Section 1, we compare our work649

with existing related surveys and we will continue650

adding more related approaches. However, it’s651

important to acknowledge that despite our diligent652

efforts, there may be certain limitations that still653

exist in this paper.654

655

References and Methods. Due to page limitations,656

we may not include all relevant references and657

detailed technical information. Our study primarily658

focuses on state-of-the-art methods developed659

between 2019 and 2023, sourced primarily from660

reputable conferences and platforms such as ACL,661

EMNLP, NAACL, ICLR, ICML, and arXiv. We662

remain committed to keeping our work up-to-date.663

664

Taxonomy and Comparison. We primarily665

categorized the methods based on their primary666

augmentation approach. In some cases, hybrid667

studies incorporating multiple approaches may668

be categorized differently, depending on specific669

criteria. It’s essential to note that our evaluation670

and comparisons are based on the performance671

of existing works using the current experiments672

and datasets. Given the rapid evolution in this673

field, benchmarks and baseline models may674

change, potentially leading to variations in these675

evaluations.676
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