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Abstract

Coarse room layout estimation provides important geometric
cues for many downstream tasks. Current state-of-the-art
methods are predominantly based on single views and of-
ten assume panoramic images. We introduce PixCuboid, an
optimization-based approach for cuboid-shaped room layout
estimation, which is based on multi-view alignment of dense
deep features. By training with the optimization end-to-end,
we learn feature maps that yield large convergence basins
and smooth loss landscapes in the alignment. This allows us
to initialize the room layout using simple heuristics. For the
evaluation we propose two new benchmarks based on Scan-
Net++ and 2D-3D-Semantics, with manually verified ground
truth 3D cuboids. In thorough experiments we validate our
approach and significantly outperform the competition. Fi-
nally, while our network is trained with single cuboids, the
flexibility of the optimization-based approach allow us to
easily extend to multi-room estimation, e.g. larger apart-
ments or offices. Code and model weights are available at
https://github.com/ghanning/PixCuboid.

1. Introduction

For indoor scenes, knowing the room layout (i.e. position
of the walls, ceiling, and floor) can provide important geo-
metric cues for downstream applications. For example, for
anchoring virtual content to walls in AR applications. Room
layouts can also serve as a map for localization problems
with low-fidelity sensors (e.g. radar, ultrasonics or 1D lidars).
In such cases, the layout provides an abstract representa-
tion of the scene, excluding clutter and retaining only key
structural elements. Recent methods have focused on the
monocular case, predicting the full room layout from a sin-
gle image or panorama. In this paper, we argue that only
considering single images makes the task unnecessarily hard,
since in many application contexts multi-view imagery is
readily available. Instead, we consider solving the room lay-
out estimation problem from a collection of posed images,
e.g. obtained via SLAM or Structure-from-Motion. Knowing
the camera geometry greatly simplifies the problem as it re-
solves the global scale and the parallax between views allows
for proper geometric reasoning about the extent of the room.
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Figure 1. Featuremetric alignment with PixCuboid. From the
posed input images {I;} (two or more) we extract feature maps
{F;}. Points {x;x } are sampled in each feature map and warped
(W;—j) via the cuboid C to the other views. We find the optimal
cuboid by minimizing the featuremetric error (Eq. (2)).

Most methods currently estimate the room layout in a feed-
forward manner via regression directly from the images. In
contrast, we propose an optimization-based approach which
can naturally integrate image and pose information from an
arbitrary number of images. Inspired by PixLoc [28], the
optimization is based on direct alignment of learned dense
feature maps. This is performed in a coarse-to-fine manner,
allowing our method to obtain high accuracy results even
from poor initial estimates. The feature extraction network
is trained end-to-end with unrolled optimization to ensure
a smooth loss landscape for the alignment, leading to large
convergence basins. As our method operates directly on the
RGB images, it does not require performing costly dense
3D reconstruction, instead fitting directly to the pixels. In
the paper, we focus on room shapes consisting of a single
cuboid. However, neither the learned features or optimiza-
tion framework is specific for cuboids, but can in principle
be applied to any parametric room representation consisting
of flat surfaces that allow warping between images, e.g. 3D
polygons or compositions of multiple cuboids.

In the paper, we make the following contributions:
» We propose a featuremetric approach for room layout esti-
mation based on multi-view alignment of deep features.
* We propose a simple cuboid initialization heuristic which
only relies on the orientation and position of the cameras.
* We provide new benchmarks based on ScanNet++ v2 [44]
and 2D-3D-Semantics [2] where we provide manually
verified ground truth 3D cuboids and code for evaluation.
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Figure 2. Room Geometry from PixCuboid. Taking only posed images as input, PixCuboid estimates the room cuboid C,,¢ by optimizing
from a coarse initial estimate C;n;¢ (see Figure 6 for examples). First, a deep network predicts dense feature-, confidence- and edge maps for
each image. The optimization then minimizes a combination of three terms: a) a multi-view featuremetric alignment which warps features
between images using the cuboid faces, b) a monocular edge cost which tries to align the projected cuboid with the learned edge map, and c)
a vanishing point-based cost that aligns the orientation of the cuboid with lines detected in the image. The network is trained end-to-end by
supervising on the result of the optimization, propagating gradients back to the network through the optimization steps.

2. Related Work

Featuremetric alignment, minimizing the distance between
extracted features, has been used to tackle a wide variety of
problems, for example monocular depth and egomotion es-
timation [30], camera tracking [42], structure-from-motion
[16] and visual localization [28]. These methods typically
extract features with a convolutional neural network to im-
prove accuracy and robustness as compared to photometric
alignment. Similar to our approach, [42] and [28] apply fea-
turemetric alignment at multiple scales, sequentially refining
the camera pose and their networks are trained end-to-end
via differentiable optimization steps. In contrast, we have
fixed poses and optimize the scene representation (cuboid).

Room layout estimation from a single view, inferring
the location of the floor, ceiling and walls from an image
captured indoors, is a well-studied problem. Early algorithms
[9, 14] predicted the layout from one perspective image and
relied on geometric reasoning with e.g. vanishing points
and line segments. With the emergence of deep learning
they were superseded by methods [13, 20, 22, 47] trained
on annotated datasets [31]. Due to the limited field-of-view
of the perspective image a lot of focus has recently been
given to room layout estimation from a 360° equirectangular
panorama, which contains a more complete view of the
surrounding environment. A wide range of architectures
have been suggested, for example recurrent [34, 37], graph
convolutional [26] and transformer-based [7, 33, 38] neural
networks. A common approach [33, 34, 37, 48] is to identify
boundaries between floor, wall and ceiling in the image, from
which the layout is derived. Monocular methods, however,

suffer from scale ambiguity and often assume knowledge
about the camera height relative to the floor to fix the scale.
Another approach is to use multiple views, which only a
few prior works have considered. PSMNet [38] predicts
the layout from a pair of panoramic images but requires
an approximate relative pose as input, a limitation that the
later GPR-Net [33] gets rid of by direct regression with a
pose transformer. MVLayoutNet [10] and the multi-view
method of Pintore et al. [24] can leverage more than two
panoramas, but as no public implementations exist we do not
compare against these networks. In this work we formulate
layout estimation as an optimization problem that combines
geometric cues with learned deep features, extracted from
a simple U-Net style network architecture. Our proposed
method PixCuboid uses multiple posed perspective views
for a larger context and to resolve the global scale.

Many layout estimation methods make assumptions about
the room shape. Due to its simplicity a box or cuboid assump-
tion is commonly employed [9, 22, 47]. A less restrictive
model is the "Manhattan world” where walls meet at right an-
gles [34, 37, 48]. Lee et al. [14] proposed the ”indoor world”
model which extends the Manhattan world with a single-
floor, single-ceiling constraint. In this work we focus on
single cuboid-shaped rooms, but show that our optimization-
based approach is flexible and can be extended to other
setups, e.g. apartments consisting of multiple cuboids.

Layout from 3D point clouds and RGB-D. Several prior
works have used laser scans or RGB-D sensors to reconstruct
indoor scenes. Xiao and Furukawa [40] present a system to
produce 3D models from laser points, textured with ground-
level photographs to create interactive maps of museums.



Later, DNN-based methods [5, 17, 46] extract floor plans
from point clouds captured with RGB-D sensors. In contrast,
PixCuboid operates on posed RGB images and does not rely
on additional information from lasers or depth sensors.

Plane reconstruction is the task of detecting planar sur-
faces in images and differs from room layout estimation in
that not only the floor, ceiling and walls should be recon-
structed. Both single view [18, 45] and multi-view [1, 12, 39]
methods exist. PlanarRecon [41] and UniPlane [11] are two
recent methods that focus on plane reconstruction from
posed monocular videos by the use of 3D feature volumes.

For an in-depth review of reconstruction methods for
indoor environments we refer the interested reader to the
survey paper of Pintore et al. [25].

3. Method

We assume that the room shape can be represented by a
cuboid C, where the six faces correspond to the walls, floor
and ceiling. As input, our method takes a collection of im-
ages I, Io, ..., I, captured inside the room, together with
their camera poses (R;, t;) and intrinsics K.

To estimate the room cuboid C we propose an
optimization-based approach where an initial cuboid is re-
fined using both multi-view consistency and monocular cues.
Each image is passed independently through a CNN that pro-
duce dense feature maps, which are used to define the cost
function in the optimization. Similar to [28], the network
is trained end-to-end by only supervising on the result of
the cuboid optimization, ensuring that the features we learn
provide useful cues for the cuboid fitting. See Fig. 2 for an
overview of our method which we call PixCuboid.

In the next section we detail the cuboid parameteriza-
tion, followed by definition of the cost functions (Sec. 3.2).
Sec. 3.3 describes how the feature extractor is trained and
finally in Sec. 3.4 we propose a simple heuristic for finding
initial cuboid estimates.

3.1. Cuboid Parameterization

Let R € SO(3) be the rotation that rotates the coordinate
system such that the cuboid is axis aligned. We then param-
eterize the offsets d € RS for each of the six faces of the
cuboid along either the x-, y- or z-axis. So the first face is
defined by the plane (1, 0, 0)X = d;, and so on. Together,
the rotation R and vector d then minimally parameterizes
the 9 degrees of freedom of the cuboid C. The translation
of the cuboid is encoded in the offsets d. Note that the pa-
rameterization is not unique, as the axes can be switched
by changing the rotation and switching corresponding ele-
ments of d. An important aspect of this parameterization
(compared to e.g. explicitly parameterizing the translation)
is that it decouples the parameters for each face. This allow
us to easily perform optimization over a subset of faces in
cases where the cuboid is only partially observable.

3.2. Geometric Optimization of Cuboids

To refine cuboids we define a cost function depending on
three terms: a) a featuremetric cost E'yq;, measuring multi-
view consistency by performing alignment between feature
maps, b) a monocular edge cost g4, forcing the projected
edges of the cuboid to align with a predicted edge map, and
¢) a VP-based cost Ey p, where the vanishing points defined
by the cuboid is compared with extracted line segments. The
full cost function is then given by

E(C) = Efeat(C) + aFeage(C) + BEvpP(C). (1)

If 2D line segments are not available we set 5 = 0. The three
terms are further detailed in the following paragraphs.
Featuremetric cost: Inspired by the success of PixLoc [28],
we leverage featuremetric alignment. From each image I; €
RW*HX3 3 dense feature map F; € RW*HXD jg extracted
with a CNN. The featuremetric cost function E.q; is then
defined by measuring the consistency of the warped features
using the faces of the cuboid, i.e. Efeqi(C) =

DD wigkp (HFi [@ir] = Fj Wisj(@in, C)]||2) - @
ik

Here {x;;} is a set of sampled image points in image
I; and W;_,; represents the warping of these points to
image I; via the cuboid, i.e. first projecting them onto
the planes of C and then into I;. This warp is a differen-
tiable function of the cuboid parameters allowing us to op-
timize over C. [-] denotes lookup with sub-pixel interpola-
tion and p is a robust loss function. The residual weights
wijr = Cri[xik]Cr;[Wisj(xir, C)] are interpolated from
the confidence images Cr;, Cr; € RW>H which are pre-
dicted by the network. We also utilize Cg; for point sam-
pling: the image points {x;;} are drawn, without replace-
ment, from the probability map Cg;, where v € R.
Cuboid edge cost: In addition to the feature map F'; we also
let the CNN predict a dense edge map E; € R" > which
aims to delineate the room edges. We sample 3D points
{X;} uniformly on the twelve edges of the cuboid C. The
edge cost E.gq is then defined by evaluating the edge map
E; at the projections of these points, i.e.

Eeqge(C) = Z ZwijEi[Hi(Rin +t)%  (3)
J

%

where II; : R? — R? is the projection into the image using
the known intrinsics K. As with Ef.q:, we predict a confi-
dence map Cg; from which the weights w;; are interpolated.
Vanishing point cost: Finally, the VP cost Ey p measures
consistency between line segments in the images and the
orientation of the cuboid. Projected into image I;, the cuboid
defines three vanishing points, given by the columns of
R,RT = [v;1 wv;2 wv;3]. We extract line segments
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Figure 3. Network Architecture. Our feature extractor uses a
U-Net [27] architecture consisting of a ResNet-101 image en-
coder followed by a multi-scale decoder extracting dense feature-,
confidence- and edge maps.
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{l;;} from the image using DeepLSD [23] and use the consis-
tency measure of [36] between line segments and vanishing
points to form the vanishing point cost function
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where each line is softly assigned to one of the three VPs by
only considering the minimum residual. Here

Dyp(l,v) = [I"1|/\J&} + 13 ®)

denotes the distance between the line segment endpoint Iy
andalinel =1 x v passing through its midpoint I and the
vanishing point v. We cap the distance at 7 to account for line
segments that are not aligned with any of the cuboid sides.
Note that the lines do not need to coincide with the outline
of the room to be consistent with the vanishing points.
Coarse-to-fine optimization: The feature network follows a
U-Net style [27] architecture with a ResNet-101 [8] encoder
and our multi-scale decoder predicts the feature-, confidence-
and edge maps at three different resolutions (see Fig. 3). Sim-
ilar to [28], the optimization is then performed in a coarse-to-
fine manner. For each scale level s € {coarse, medium, fine}
the cost is minimized using the corresponding network out-
puts,

¢* = argmin E(C, F*, Cr*, E*, Cg’), (©6)

each optimization initialized from the output of the previous
scale, i.e. medium scale is starting from C®**® and so on.
The minimization is performed using standard Levenberg-
Marquardt [15, 21] optimization, iterated until convergence.

3.3. Learning to Optimize Room Layouts

For training we assume that we have posed images together
with a ground truth 3D mesh that has semantic labels for

walls, ceiling and floor. We train the network end-to-end,
propagating gradients through the optimization process. Dur-
ing training, the same coarse-to-fine approach is used, but
for each scale s we compute C° using a fixed number of
unrolled Levenberg-Marquardt iterations minimizing F(C).
Supervision for the network is only applied on resulting opti-
mized cuboids C®. This forces the network to learn features
and confidence maps that are useful for optimization.

As rooms are not perfectly cuboid shaped, we propose to
supervise using points sampled from the ground truth mesh.
We sample points from the mesh corresponding to the wall,
ceiling and floor semantic labels and project into the images,
filtering for occlusion using the ground truth depth maps.
This yields a set of 2D-3D correspondences {(z§, X57)}
for each image. The loss for a cuboid is then computed as

1
L) = SO Wi (@G 0) -1 (R X G +t5) 1%,
ij k

@)
where N is the total number of points successfully warped
between images. The loss is applied after each scale level
and our network is trained to minimize

»Ctotal _ c(ccoarse) + ,ymc(cmedium) 4 "Yfﬁ(cﬁne), (8)

where 7, and «; are the relative weightings of the scales.
After each scale we check whether the optimization failed
(loss above some threshold), and if so stop gradients to the
next scale (setting y,,, or s to zero for this instance). This
prevents oversmoothing the fine and medium feature maps.
For the coarse optimization the cuboid parameters are
initialized from the ground truth layout (see Sec. 4.1 for
details), perturbed by random rotation, translation and scal-
ing, so that the network is exposed to examples of varying
difficulty throughout the training. In addition to the network
parameters we learn a separate LM dampening factor for
each of the nine cuboid parameters similar to [28].
Pre-training: As the training procedure requires the net-
work to at least be somewhat successful to get meaningful
gradients from the optimization, we perform some simple
pre-training. While featuremetric alignment can work reason-
ably with off-the-shelf ImageNet pre-trained features [16] ,
this is not the case for the edge loss. Therefore we pre-train
only the edge map, supervising with a weighted MSE loss
against a line-drawing of the projected ground truth cuboid.

3.4. Initializing the Optimization

At inference time the cuboid is initialized based on the cam-
era poses. We set the cuboid z axis to the mean of the camera
negative y axes (assumed to be pointing down on average).
The x and y axes of the cuboid are selected by randomly
sampling two basis vectors in the plane orthogonal to the
z axis. We then run a few iterations of optimization with
FEy p to further enhance the orientation of the initial cuboid.



Plane offsets d are set so that the cuboid contains all cameras
with some margin. In Sec. 5.2 we compare this initialization
strategy to using uniformly sampled rotation matrices R and
also validate the gain of vanishing point optimization.

4. Experimental Setup

For the experiments we use the following settings: o = 0.05,
B = 40 and 7 = 0.05. The number of LM iterations on
each scale level is 15. Cuboids are initialized as described
in Sec. 3.4, using a margin of 2.5 m between camera centers
and cuboid faces. We additionally expand the cuboid after
each optimization step if needed so that the cameras are at
least 0.1 m from the faces.

4.1. Datasets

ScanNet++: From ScanNet++ v2 [44], an indoor dataset
comprised of 1006 scenes of varying types, we create a new
benchmark specifically to evaluate multi-view cuboid room
layout estimation. For each scene we use the ground truth
semantic mesh to fit a cuboid to the vertices classified as
either “floor”, "wall” or ceiling”” by minimizing the distance
between the cuboid and the vertices using L-BFGS [19].
Since not all scenes are cuboid-shaped, and because the L-
BFGS optimization occasionally fails, we manually inspect
the results to determine which scenes should be included.
This way 391 out of 856 scenes in the existing ScanNet++
v2 training set were selected as a new training set. From the
existing validation set we pick 28 out of 50 scenes. As the
test scenes of ScanNet++ do not include any semantic mesh
we split the 28 validation scenes into new validation and test
sets with 10 and 18 scenes, respectively.

For every scene in this new dataset we sample image
tuples, consisting of ten random DSLR images, to be used as
the input to multi-view room layout estimation methods. For
each training scene, 250 tuples are sampled and 20 tuples for
each of the validation and test scenes. In total there are hence
391 x 250 = 97750 image tuples for training, 10 x 20 = 200
for validation and 18 x 20 = 360 for testing. For experiments
with k < 10 images, we select the first & from each tuple.

2D-3D-Semantics: To enable comparison with panorama-
based room layout estimation methods, and to assess the
generalization capabilities of PixCuboid, we use 2D-3D-
Semantics [2]. This is an indoor dataset divided into six
areas in three different buildings. Each area is further split
into spaces, for example offices or hallways. Similar to Scan-
Net++ v2 we fit a cuboid to every space by minimizing its
distance to points labeled ’floor”, "wall” or “ceiling” in the
supplied point cloud. Again we inspect the results to find
cuboid-shaped spaces. In addition, only spaces with at least
two panorama images captured within the fitted cuboid are
considered. For spaces with more than two such panora-
mas we randomly select two of them. The result is a set
of 160 spaces that can be used for evaluation. As we do

not train or tune our model on 2D-3D-Semantics no train-
ing/validation/test split is performed. The panorama images
for all spaces are divided into four perspective views with
90° horizontal field-of-view to allow comparison between
methods that work on the two different types of images.
We will make the ground truth cuboids, image tuples and
evaluation code publicly available for both datasets.

4.2. Metrics

We evaluate the estimated layouts with the commonly used
3D Intersection over Union (IoU) and the Chamfer distance
between the predicted layout and the ground truth cuboid.
For methods that predict a cuboid-shaped layout we compute
the rotation error between the two cuboids, taking rotational
symmetries into account. We also report the area under the
recall curve for the rotation error, using one coarse (20°)
and one fine (1°) threshold. These metrics are averaged over
image tuples (ScanNet++) or spaces (2D-3D-Semantics). For
single-view methods we only consider the prediction with
the highest IoU for each tuple/space.

The predicted and ground truth room layouts are rendered
into the perspective views and we compute the depth RMSE
and the ratio of pixels for which the normal angle error is
less than 10°, averaged over all images. For single-view
panorama methods the prediction corresponding to the per-
spective view is used. Finally we measure the mean time in
seconds to predict the room layout for one tuple or space.

4.3. Training Details

We train our model on the ScanNet++ training set and tune
its hyperparameters on the validation set (using our data split
as explained in Sec. 4.1). The five first images in each tuple,
which are undistorted beforehand, are used as input. We
utilize a two-stage training process as described in Sec. 3.3.
First the edge maps are pre-trained with a weighted MSE
loss, followed by training of the full network with the loss in
Eq. (7). See our supplementary material for a more detailed
description of the training process.

5. Results

5.1. Room Layout Estimation

Baselines: On ScanNet++ PixCuboid is compared
against the single-view layout estimation methods To-
tal3DUnderstanding [22] and Implicit3DUnderstanding [47].
They both take a single perspective image as input and si-
multaneously predict the room layout, camera pose and 3D
object bounding boxes and meshes. On 2D-3D-Semantics
we also compare with three recent panorama-based meth-
ods: Deep3DLayout [26], LED?-Net [37] and PSMNet [38].
Deep3DLayout and LED?-Net predict the room layout from
a single panoramic view while PSMNet uses two panorama
images. To the networks LED?-Net and PSMNet we input



Method Input Output Trained on
Total3D [22] 1xB3  Cuboid SUN RGB-D [31], Pix3D [35]
Implicit3D [47] 1x83 Cuboid SUN RGB-D [31], Pix3D [35]
Deep3DLayout [26] 1x Mesh  MatterportL. [49], Pano3DL. [26]
LED?-Net [37] 1x&  Polygon Realtor360 [43]
PSMNet [38] 2xE3  Polygon ZInD [6]
PixCuboid (ours) NxB&3 Cuboid ScanNet++ v2 [44]

Table 1. An overview of the room layout estimation methods in-
cluded in our experimental evaluation. The methods take a varying

number of perspective E3) or panoramic &) images as input.

the average camera height over the dataset from the ground
truth. PSMNet does not estimate the room height so we give
it the height of the corresponding ground truth cuboid as
well, along with the relative pose between the two panoramas
(without added noise). For all methods we use the authors’
official implementations and their provided pre-trained net-
work weights. For Deep3DLayout we utilize the weights
fine-tuned on Pano3DLayout [26]. For a summary of all
methods, see Tab. 1.

The two-view GPR-Net [33], the multi-view MVLayout-
Net [10] and the work of Pintore et al. [24] are also relevant
competing methods, but as no public implementations are
available we do not include them in our benchmark.

Results: For ScanNet++ we run Total3DUnderstanding,
Implicit3DUnderstanding and PixCuboid on the five first
images of each image tuple in the test set. As described
in Sec. 4.2 we use the best prediction (highest IoU) out
of five for the two single-view methods. The results are
presented in Tab. 2 (top section). PixCuboid outperforms
the two competing methods by a large margin on all metrics
(except runtime), however it should be noted that our method
is the only one trained on ScanNet++ v2.

On 2D-3D-Semantics the perspective methods (To-

tal3DUnderstanding, Implicit3DUnderstanding) make eight
predictions (two panoramas, split into four perspective
views) per space. We also run Deep3DLayout and LED?-
Net which predict two room layouts for each space (one per
panorama image). Again we emphasize that for all these
single-view methods only the top prediction is included in
the metrics. PSMNet and PixCuboid outputs a single room
layout prediction from the two panoramas and the eight
perspective images, respectively (thus taking the same im-
age data as input). We report the results in Tab. 2 (bottom
section). The panorama methods generally predict better lay-
outs than the single-view perspective-based ones, but are
outperformed by PixCuboid on all metrics.

In Fig. 4 we show qualitative examples of predicted room
layouts in 2D-3D-Semantics. For single-view methods the
room layout with the highest IoU metric is visualized. Some
failure cases of PixCuboid are visualized in Fig. 5. Due to
the vanishing point cost Ey p our method is often able to
estimate the orientation of the cuboid accurately, even when
the plane offsets d cannot be properly determined.

5.2. Ablation Experiments

We validate the design of PixCuboid in a series of ablation
experiments on our ScanNet++ v2 test set. In addition to
previous metrics we also report the success rate on the finest
scale (proportion of image tuples with average warp error
(7) smaller than 3 pixels).

First, the learned feature maps are compared to those of
PixLoc (trained on Extended CMU Seasons [3, 29]) and to
using the images directly (i.e. photometric alignment). Here
only the featuremetric cost E.q is considered in the LM
optimization (o« = = 0). Results are shown in the top
section of Tab. 3, from which it is clear that learning features
specifically for room layout estimation is beneficial.

3D Rotation Pixel-wise
Method IoUt Chamfer| Mean| AUC@{1,20}°t Depth| Normal? Time ]}
g Total3D [22] cverao 34.5 1.44 m 13.7° 0.0 37.6 0.86 m 37.2 0.16 s
S Implicit3D [47] cverai 30.8 1.60 m 16.4° 0.0 31.0 1.02 m 33.1 0.16s
@ PixCuboid (ours) 87.2 0.22m 1.3° 45.7 95.3 0.09 m 96.1 0.31s
Total3D [22] cverao 31.8 1.57 m 8.9° 0.0 56.9 141 m 44.1 0.32s
vy Implicit3D [47] cverai 31.6 1.59 m 10.4° 0.0 51.5 1.51 m 37.6 0.15s
&2 Deep3DLayout [26] roez  58.8 0.68 m N/A N/A N/A 0.44 m 52.6 1.30s
A LED?-Net'[37] cverar 68.7 0.45m NA  NA N/A 040m™ 346"  0.71s
" PSMNet' [38] cvera 435 1.04 m N/A N/A N/A 0.63m" 51.4" 232s
PixCuboid (ours) 89.0 0.18 m 0.7° 48.8 97.0 0.10 m 96.1 042s

Table 2. Room layout estimation results on our ScanNet++ v2 test set and the cuboid-shaped spaces of 2D-3D-Semantics. For
single-view methods the metrics are computed using the best prediction for each image tuple or space.

¥ Uses the ground truth camera height.

¥ Uses the ground truth room height and vanishing angle (see code of [38] for details).

" Excludes views (10 for LED?*-Net and 104 for PSMNet, out of 1280) where the layout does not contain the camera.
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Figure 4. Qualitative comparisons of predicted room layouts for one space in 2D-3D-Semantics. The ground truth point cloud is shown for
visualization purposes, but the methods only have the RGB images as input. Predictions are shown in blue and the ground truth cuboids in
. None of the methods are trained on this dataset. For more examples see our supplementary material.

Figure 5. Failure cases of PixCuboid on 2D-3D-Semantics. Pre-
dicted room layouts are shown in blue and ground truth cuboids in
. See our supplementary material for more examples.

Next, we try different combinations of the cost functions
Eteat, Fedge and By p (Tab. 3, second section). Using Eegge
on its own (second row) gives better layout predictions than
with only featuremetric cost Efqq; (first row), showcasing
the significance of the learned edge map. The two costs
complements each other as seen on row 3, where the success
rate increases by almost 18 percentage points compared to
optimization with just E.44.. Adding the vanishing point
cost F'y p results in better metrics across the board (rows
4-6). This cost is particularly helpful in determining the
orientation of the cuboid, with large reductions in the rotation
error and better estimation of the surface normals.

To study the impact of point sampling we compare the
guided sampling outlined in Sec. 3.2 to random sampling and
to sampling from the ground truth points mgcT that lie on the
floor, wall or ceiling. We train models with these different
point sampling approaches and give the results in the third
section of Tab. 3. Guided sampling is used during evaluation.
The results show that training with guided sampling performs
the best, although the differences are minor.

ToU1T Rot.] Success T
-~ RGB 242 36.4° 1.4%
E)’ PixLoc (CMU) 253  334° 1.1%
PixCuboid (Ef.,; only) 352 23.0° 5.8%
Efeat 352  23.0° 5.8%
Eeage 76.1 4.7° 43.6%
‘g’ Efeat + Eedge 81.9 3.8° 61.4%
O Efeat+Evp 44.6 1.5° 21.7%
Eeqge + Evp 83.1 1.3° 51.9%
Efteat + Ecage + Evp 87.2 1.3° 67.2%
=, Random 86.9 1.4° 65.8%
g Floor/wall/ceiling 86.6 1.4° 66.4%
“ Guided 87.2 1.3° 67.2%
" Low (256 px) 84.2 1.3° 63.3%
2 Medium (512 px) 87.2 1.3° 67.2%
High (768 px) 85.7 1.3° 66.1%
Random 60.8 18.0° 40.0%
= Random + VP 72.2 10.9° 51.9%
= Y down 849  2.1°  647%
Y down + VP 87.2 1.3° 67.2%
#  Coarse 81.0 1.4° 36.7%
'S Coarse + medium 86.5  14° 65.6%
X Coarse + medium + fine  87.2 1.3° 67.2%

Table 3. Ablation experiments on our ScanNet++ v2 test set. The
full set of metrics is available in the supplementary material.

We run PixCuboid on both lower and higher resolution
input images (resized to 256 and 768 pixels in height, re-
spectively) and compare to our standard size 512 px, which
is what the network sees during training (Tab. 3, section



Figure 6. Cuboid initialization examples on 2D-3D-Semantics.

Even from poor initial estimates (red), PixCuboid can align the

cuboids with the help of vanishing points (gray) and is able to

converge to accurate layouts (blue). The ground truth is shown in
. See our supplementary material for more examples.
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Figure 7. IoU as a function of the number of input views. Results
on our ScanNet++ v2 test set.

four). The success threshold is adjusted to account for the
difference in image dimensions. Our model performs only
slightly worse with the low resolution images. There is no
gain in using a higher resolution - the best performance is
reached with the medium sized 512 px input.

The importance of cuboid initialization is examined by
employing four different strategies. As a baseline we sample
the orientation R uniformly and then select plane offsets
d so that all cameras are inside the cuboid, with a margin
of 2.5 m on each side (Tab. 3, section five, first row). The
proposed initialization scheme in Sec. 3.4, where R is set
based on the mean camera y axis (assumed to be pointing
down), performs significantly better (third row). For both
of these initialization procedures we also try running five
iterations of cuboid optimization with E'y p, after which d is
re-computed so that all cameras are again contained by the
cuboid with the same 2.5 m margin (rows two & four). We
see that this extra step results in improved layouts, especially
when using random initialization. Fig. 6 shows examples of
cuboids initialized with our proposed method.

Lastly the coarse-to-fine optimization is ablated in the
last section of Tab. 3. Here we stop the optimization after
the first ("coarse”, first row) and second ("medium”, second
row) scale level and compare to using all three scales (third
row). A reasonable room layout is generally found already
after the coarse optimization, but it is not so accurate. At the
second scale the cuboid is refined, resulting in an increase in
the success rate by almost 30 pp. At the last scale level we
see only a marginal improvement to the metrics.

In Fig. 7 we also look at how the quality of PixCuboid’s

Figure 8. Multi-room layout estimation on Replica.

predictions vary with the number of input views. As expected
the IoU increases with the number of views, with the largest
gain seen when going from two to three views.

5.3. Multi-room Layout Estimation

As a final experiment we apply PixCuboid to a multi-room
scenario: a scene from the Replica [32] dataset with four in-
terconnected rooms. We use the trajectory and pre-rendered
frames from [4]. A simple algorithm is devised to handle
multiple rooms. We start by subsampling the list of frames
by a factor of 60, and then loop over the remaining frames
in order. When 8 frames have been accumulated, the cuboid
optimization is run. In this experiment we optimize the new
cuboid together with previously added ones, with shared
orientation, floor/ceiling height and wall locations. Then, we
skip over subsequent frames until the camera has moved
outside the last cuboid at which point we start accumulating
new frames and repeat the process. A new cuboid is accepted
only if it does not overlap (IoU > 0.01) with existing ones.
Results are presented in Fig. 8.

6. Conclusion

We have presented PixCuboid which formulates the room
layout estimation task as an optimization problem by align-
ing deep features across images. As the network learns rela-
tively low-level features (useful for pixel-wise direct align-
ment), our method is able to generalize to new datasets
without retraining, in contrast to competing methods. The
flexibility of the optimization-based approach allow us to
include an arbitrary number of images. Further, other geo-
metric constraints can easily be integrated, e.g. optimizing
multiple cuboids with the same orientation or shared room
height. We have focused on indoor room estimation, but we
believe the method can be generalized to outdoor images,
i.e. fitting cuboids or other geometric primitives to buildings.
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