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Abstract

Despite recent developments on the application of the Fourier transform in com-
binatorial optimization, few meta-heuristic algorithms have been proposed in the
literature that exploit the information provided by this technique. In this work, we
address this research gap by considering the case of the Linear Ordering Problem
(LOP). Based on the Fourier transform of the problem’s objective function, we
propose an instance decomposition strategy that divides any LOP instance into
the sum of two LOP instances associated with a P and an NP-Hard optimization
problem. We take advantage of this decomposition to design a meta-heuristic algo-
rithm called P-Descent Search (PDS). The proposed method intelligently adjusts
the proportion of the P and NP-Hard components in the decomposition to define
a sequence of surrogate instances suitable for optimization. By iteratively solv-
ing those instances, PDS is able to find better solutions than classical algorithms
operating on the original problem.

The following document is a brief summary of the paper by Benavides et al. (2025).
For further information, we refer the interested reader to the original paper.

1 Introduction

Given a matrix M = [mi,j ]n×n, the Linear Ordering Problem (LOP) is a Combinatorial Optimization
Problem (COP) that consists in finding the joint permutation of rows and columns that maximizes the
sum of the entries above the main diagonal. Thus, any given permutation σ ∈ Σn is evaluated as

f(σ) =

n−1∑
i=1

n∑
j=i+1

mσ(i),σ(j) . (1)

From a Fourier transform perspective, the LOP consists of two non-constant components that capture
the different order information of the objective function (Elorza et al., 2022). Thus, Eq 1 can be seen
as the sum of two orthogonal functions, plus a constant that comes from the mean objective value:

f(σ) = fρ(n−1,1)
(σ) + fρ(n−2,1,1)

(σ) + f .

Note that fρ(n−1,1)
and fρ(n−2,1,1)

come from the inverse Fourier transform, where fρ(n−1,1)
captures

the first-order information of the problem and fρ(n−2,1,1)
measures its second-order information.
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Elorza et al. (2022) proved that the optimization problem defined by the first-order component
fρ(n−1,1)

can be exactly solved in polynomial time. In the same work, they also showed that the
problem defined by fρ(n−2,1,1)

remains NP-Hard, which implies that the complexity of the LOP stems
from the second-order component. Thus, we hypothesize that modifying the proportion of the P and
NP-Hard components in the target instance could allow us to control the properties of the objective
function in a way that is beneficial for optimization. This hypothesis is validated through the proposal
of a meta-heuristic algorithm based on this foundation, called P-Descent Search (PDS).

The main drawback of the previous strategy is that working with the decomposed functions is
very costly (Maslen, 1998). Directly evaluating fρ(n−1,1)

and fρ(n−2,1,1)
requires performing matrix

operations that introduce a considerable computational burden, limiting the practical application of
the Fourier transform to small problem sizes. To avoid this issue, we propose an alternative approach
that focuses on decomposing the problem instance instead of the objective function. This instance
decomposition, which does not require computing the Fourier coefficients, allows us to access the
information provided by the Fourier transform much more efficiently. We denote this method as
P-NP instance decomposition. The PDS algorithm is built upon this new, more efficient framework.

2 P-NP instance decomposition

Given an LOP instance M = [mi,j ]n×n, the P-NP instance decomposition consists in finding two
LOP instances defined by a pair of matrices P = [pi,j ]n×n and H = [hi,j ]n×n such that M = P +H
whose objective functions are equal to the fρ(n−1,1)

and fρ(n−2,1,1)
functions of the original instance,

respectively (plus a constant). This is equivalent to solving a system of linear equations of the form
pi,j + hi,j = mi,j ∀ i, j = 1, ..., n

pi,j − pj,i + pj,k − pk,j + pk,i − pi,k = 0 ∀ i, j, k = 1, ..., n∑n
j=1(hi,j − hj,i) = 0 ∀ i = 1, ..., n

,

which is always solvable regardless of the input instance M . The previous system can be efficiently
constructed and solved in O(n4) by considering that the coefficient matrix is always the same for a
certain instance size n. Once the instance is decomposed, the value of fρ(n−1,1)

and fρ(n−2,1,1)
can be

efficiently recovered from P and H in just O(n2).

3 P-Descent Search

Given the P-NP instance decomposition of an LOP, it is possible to generate surrogate instances by
modifying the proportion of the P and NP-Hard components. According to experimental results,
moderately increasing the proportion of the P component results in a less rugged fitness landscape
with a similar ranking of solutions. This allows us to create surrogate instances that are more suitable
for optimization while maintaining as much information about the original problem as possible.

Based on this idea, we propose a meta-heuristic algorithm that uses the P-NP instance decomposition
to create a sequence of less rugged surrogate instances by iteratively adjusting the proportion of the P
and NP-Hard components. We call this method P-Descent Search (PDS). Given an LOP instance
M = P +H , PDS starts by creating an initial surrogate instance as

Mα0
= (1 + α0) · P + (1− α0) ·H s.t. α0 ∈ [0, 1] ,

where the P component has an equal or higher weight than the NP-Hard component in the linear
combination. Once the initial instance is defined, PDS performs a greedy local search using the insert
neighborhood on Mα0

starting from a random solution. The output of this process is considered as
a starting point for another greedy local search on a new instance Mα1 with 0 ≤ α1 < α0. This
chained procedure is carried out iteratively, feeding the output of a local search on Mαi as the input
for a local search on Mαi+1 such that 0 ≤ αi+1 < αi. The value of αi+1 is calculated in an adaptive
way to avoid redundant local searches that do not lead to changes in the solution. When the original
instance is reached (αi = 0), the loop stops and the best solution found during the search is returned.

3.1 Experimentation

In this section, we test a multi-start version of PDS, denoted as MS-PDS, consisting of a collection of
independent PDS runs with different initial solutions. Note that, if the starting point of the algorithm
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Figure 1: Average relative error of MS-PDS and MS-RDS with respect to the best solutions found
according to α0. The best-case configurations are marked by a star symbol.

is set to α0 = 0, the MS-PDS is equivalent to a classical Multi-Start Local Search (MS-LS) on the
original problem. Thus, if the optimal performance of MS-PDS is achieved with α0 > 0, then the
information derived from the P-NP instance decomposition could be useful for optimization.

The experimentation is conducted on a set of artificial LOP instances whose entries are generated
based on a U(0, 1) distribution (n = 100). We consider instances in which the P and NP-Hard
components have different degrees of influence on the objective function. This feature is controlled
using an ϵ parameter, where the value of ϵ positively correlates with the weight of the NP-Hard
component in the problem. The algorithm is evaluated on three sets of 100 generated instances with
ϵ = {1, 10, 100}. In each test instance, MS-PDS is executed once with a time limit of n seconds
for each α0 = {0.0, 0.1, ..., 0.9}. In order to check if the observed performance is due to the P-NP
instance decomposition, we carry out additional experiments by repeating the algorithm executions
with a random instance decomposition. We call this baseline strategy MS-RDS. The average relative
error obtained for each instance set, algorithm and parameter configuration is shown in Figure 1.

In all cases, the best average performance of MS-PDS is achieved with α0 > 0, thus supporting that
MS-PDS obtains better results than a classical MS-LS that only operates on the original problem.
Moreover, as the value of ϵ increases, the algorithm requires starting closer to the P component
(α0 → 1) to exploit the benefits of the Fourier transform-based strategy. This suggests that there
exists a relationship between the weight of the P-NP components in the target instance and the
behaviour of MS-PDS. These particularities are not observed in the random decomposition-based
MS-RDS, proving that the performance of MS-PDS is caused by the P-NP instance decomposition.

4 Conclusions and future work

In this work, we have presented a P-NP instance decomposition strategy for the LOP that allows us to
efficiently access the information provided by the Fourier transform. Based on this new framework,
we have proposed a meta-heuristic algorithm called P-Descent Search (PDS) that increases the
proportion of the P component to obtain a sequence of surrogate instances that are more suitable for
optimization. Experimental results show that the multi-start version of PDS exhibits a promising
performance that seems related to specific characteristics of the problem.

Although this work has focused on the LOP, we plan to extend the proposed methodology to other
problems. Given an arbitrary COP, could we design a similar instance decomposition based on the
Fourier transform? If so, would increasing the proportion of lower-order components create surrogate
instances suitable for optimization? Addressing these questions would allow us to further study the
potential of the information derived from the Fourier transform in guiding meta-heuristic algorithms.
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