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ABSTRACT

Understanding neural representations will help open the black box of neural net-
works and advance our scientific understanding of modern AI systems. However,
how complex, structured, and transferable representations emerge in modern neu-
ral networks has remained a mystery. Building on previous results, we propose the
Canonical Representation Hypothesis (CRH), which posits a set of six alignment
relations to universally govern the formation of representations in most hidden lay-
ers of a neural network. Under the CRH, the latent representations (R), weights
(W), and neuron gradients (G) become mutually aligned during training. This
alignment implies that neural networks naturally learn compact representations,
where neurons and weights are invariant to task-irrelevant transformations. We
then show that the breaking of CRH leads to the emergence of reciprocal power-
law relations between R, W, and G, which we refer to as the Polynomial Alignment
Hypothesis (PAH). We present a minimal-assumption theory proving that the bal-
ance between gradient noise and regularization is crucial for the emergence of the
canonical representation. The CRH and PAH lead to an exciting possibility of
unifying major key deep learning phenomena, including neural collapse and the
neural feature ansatz, in a single framework.

1 INTRODUCTION

The success of deep learning is often attributed to its ability to learn meaningful latent represen-
tations from data (Bengio et al., 2013). These latent representations, progressively formed as data
passes through the network’s layers, are found to encode increasingly abstract features of the input:

x→ h1 → h2 → ...→ hD → ŷ, (1)
where x is the input, ŷ the output, D the network depth, and hi the activation of the i-th layer.
For neural networks to perform well, the transformations between layers must capture meaningful
structures in the data. Understanding how these latent representations are formed and structured is
a foundational problem in deep learning, with implications for both theoretical understanding and
practical applications. Despite significant advances, how neural networks organize and transform
these internal representations remains an open question. This gap in understanding hinders our
ability to design more efficient, interpretable, and generalizable models.

In this work, we seek to bridge this gap by introducing the Canonical Representation Hypothesis
(CRH). At its core, the CRH posits that neural networks, during training, inherently align their
representations with the gradients and weights. The satisfaction and breaking of a subset of CRH
equations are found to delineate the universal phases, which are empirically observable scaling re-
lationships between the weights, activations, and gradients. The CRH reveals a striking aspect of
representation learning: there may exist a set of universal equations that govern the formation of
representations and universal phases which distinguish the layers in modern neural networks, inde-
pendent of the task, architecture, or loss function. Thus, the CRH provides an useful perspective on
how neural networks evolve toward compact and interpretable solutions.

Our main contributions are the following:

1. Proposal and justification of the CRH which states that within a layer, the neuron gradients,
latent representation, and parameters are driven into mutual alignment after training, due to
noise-regularization balance (Section 3 and 4);
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2. Identification of mechanisms that break alignments, quantified via a Polynomial Alignment
Hypothesis, which predicts power law scaling behaviors that characterize distinct phases of
neural networks arising when the CRH is broken (Section 5).

The experiments are presented in Section 6. Section 7 discusses the implications of CRH to the
formation of neural representations and the connection of the CRH to prior observations. Related
works are discussed in Section 2. The proofs are left to the Appendix Section B.

2 RELATED WORKS

Empirical results show that the representations of well-trained neural networks share universal char-
acteristics (Maheswaranathan et al., 2019; Huh et al., 2024; Ziyin et al., 2025). For us, a closely
related phenomenon is the neural collapse (NC) (Papyan et al., 2020), which studies how structured
and noise-robust low-rank representations emerge in a classification model. The CRH can be seen
as a generalization of NC because one can prove that when restricted to certain settings, the CRH is
equivalent to the NC (Section 7). Another related phenomenon is the neural feature ansatz (NFA)
(Radhakrishnan et al., 2023), which shows that the weight matrices of fully connected layers evolve
according to the gradient outer product during training. However, the NFA studies the weight evo-
lution, not the representations. Empirical power-laws are known to exist in large neural networks
(Kaplan et al., 2020; Bahri et al., 2024), which relates the model performance to their sizes. The
power laws discovered in our work are different because they are reciprocal relations that relate dual
objects (R, G, W) to each other rather than to the performance. Other related works are discussed in
the context where they become relevant. More related works are discussed in Appendix A.

3 CANONICAL REPRESENTATION HYPOTHESIS

Let us consider an arbitrary hidden layer hb of any model after a linear transformation:

hb =Wha(x). (2)

For convention, hb is called the “preactivation” of the next layer, and ha is the “postactivation”
of the previous layer. The gradients of the representations are also of interest: ga = −∇haℓ and
gb = −∇hb

ℓ, where ℓ is the sample-wise loss function. We note the generality of this setting, as
ha can be an arbitrarily nonlinear function of x, and f(x) = f(hb(x)) can be another arbitrary
transformation. Also, letting ha = (h′a(x),1) accounts for when there is a trainable bias.1

Much recent literature has suggested that the quantities ha, hb, W and their gradients are correlated
with each other after or throughout training. The neural collapse phenomenon suggests that in a deep
overparameterized classifier, E[hah

⊺
a] ∝ W ⊺W for the penultimate fully connected layer (Papyan

et al., 2020; Xu et al., 2023b; Ji et al., 2021; Kothapalli, 2022; Rangamani et al., 2023). In the study
of kernel and feature learning, a primary mechanism of how the neural tangent kernel changes is
that after a few steps of update, the representations become correlated with the weights (Everett
et al., 2024) and so the quantity Wha will be significantly away from zero, which also implies a
strong relationship between W ⊺W and E[hah

⊺
a]. The recent work on neural feature ansatz shows

that W ⊺W ∝ ∇haf∇⊺ha
f for fully connected networks (Radhakrishnan et al., 2023; Gan & Poggio,

2024). The idea that the latent variables will become correlated with the weight updates is also a
central notion in the feature learning literature (Yang & Hu, 2020; Everett et al., 2024).

Taken together, these results suggest a simple and unifying set of equations that can describe a
fully connected layer after (and perhaps during) training. Let c ∈ {a, b} and define Hc = E[hch

⊺
c ],

Gc = E[gcg⊺c ], and Zc =McM
⊺
c , where Ma =W ⊺ =M⊺

b . One can imagine six alignment relations
between all the quantities within the same layer:

representation-gradient alignment (RGA): Hc ∝ Gc, (3)
representation-weight alignment (RWA): Hc ∝ Zc, (4)

gradient-weight alignment (GWA): Gc ∝ Zc, (5)

where E denotes the averaging over the training set. Because hb comes after ha during computation,
we will refer to the alignment between any of the b-subscript matrices as a forward relation and all
a-subscript matrices as a backward relation.

1As an example, consider a two-layer network, f(x) = W2σ(W1x), with fully connected layers. For the
first layer, h1

a = x, and h1
b =W1x. For the second layer, h2

a = σ(W1x) and h2
b =W2h

2
a.
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For the formation of representations in neural networks, the most important relations in Eq. (3)-
(5) are perhaps the forward and backward RGA, as they directly relate the representations E[hh⊺]
to their gradients with respect to the loss function. Because there is no scientific reason for us to
believe that the forward representation is more important than the backward representation or vice
versa, one should study both directions carefully. The backward RWA in its general form has not
been discussed in the literature but has been implicitly studied in the particular setting of neural
collapse, which happens in the penultimate layer of an image classification task (Section 7), while
the backward GWA seems to be unknown to the best of our knowledge. The backward GWA is not
identical to the neural feature ansatz (NFA) but can be seen as an equivariant correction to the NFA
(Section 7), and the forward GWA is also unknown to the community. Adding together the forward
and backward versions, there are six alignment relations. That these relations simultaneously hold
for any fully connected layer will be referred to as the canonical representation hypothesis (CRH).

Three scientifically fundamental questions are thus (1) does there exists a rigorous set of assumptions
under which the CRH can be proved; (2) what mechanisms can cause the CRH to break; and (3) can
predictions of the CRH and its breaking be empirically observed in realistic deep neural network
settings? We devote the rest of the paper to answering these three questions in the given order, and
then we collect insights from all these answers.

4 NOISE-REGULARIZATION BALANCE LEADS TO ALIGNMENT

Notation ∆A denotes the difference in the quantity A(θ) after one step of training algorihtm
iteration at time step t: ∆A ∶= A(θt+1) − A(θt). η denotes the learning rate and γ denotes the
weight decay. E denotes the empirical average over the training set. ℓ(x, θ) denotes the per-sample
loss function, where x is the data point and θ is the parameters. Its empirical average is the empirical
loss L: L(θ) = E[ℓ(x, θ)].
In this section, we present a formal and rigorous framework under which the CRH can be proved.
As will become clear in the next section, this proof also explains how and when the CRH may fail.
The problem setting is the same as in Eq. (2). The training proceeds in an online learning setting in
which the training proceeds with weight decay of strength γ. We make the following assumption.
Assumption 1 (Mean-field norms). The norms of g and h approximate their empirical averages:
(A1) ∥ha∥2 = E[∥ha∥2], (A2) ∥gb∥2 = E[∥gb∥2].

This assumption holds, for example, for a high-dimensional Gaussian random vector, whose norm
is of order O(d) with a

√
d standard deviation. A1 also holds automatically if the representations

are normalized. Note that only a subset of all the assumptions is needed to prove each equation we
derive below. For example, Eq. (6) below only requires A1 to prove. The minimal set of assumptions
required to prove each equation in this section are stated in Section B.3. We discuss the main
intuition for the proof in the main text, and present the formal theorem at the end of the section.

Forward alignment. Consider the time evolution of hbh
⊺
b during SGD training:

∆(hb(x)h⊺b(x)) = η(∥ha∥2gbh⊺b + ∥ha∥2hbg
⊺
b − 2γhbh

⊺
b) + η

2∥ha∥4gbg⊺b +O(η
2γ + ∥∆(hah

⊺
a)∥),

where η is the learning rate. At the end of training, the learned representations should reach station-
arity and so ∆E[hbh

⊺
b ] ≈ 0.2 Taking the expectation of both sides, we obtain

0 = zbE[gbh⊺b ] + zbE[hbg
⊺
b ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
learning

−2γE[hbh
⊺
b ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
regularization

+ηz2bE[gbg⊺b ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

noise

, (6)

where zb = E[∥ha∥2]. The noise term is due to the discretization error of SGD and can be significant
either when the step size is large, or the gradient is noisy. The mechanism behind this alignment
is that while the gradient noise expands the representation, weight decay contracts it. When the
dynamics reaches approximate stationarity, the dynamics due to learning plus these two effects must
balance at the end of training.

Now, if additionally either (a) E[∆W ] = 0 (namely, at a local minimum) or (b) E[∆(WW ⊺)] = 0
holds (Section B), the weight will also align with the cross terms between gb and hb: WW ⊺ ∝

2See Figure 21 for the evolution of ∆H .
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E[gbh⊺b ] + E[hbg
⊺
b ], which leads to the effect that the learning term above must also balance with

the regularization term. Thus, eventually, the regularization effect will have to be balanced with the
gradient noise. Lastly, if both (a) and (b) hold, the alignment between all three matrices emerges:
Gb ∝Hb ∝ Zb.

Backward Alignment. One can similarly derive condition for E[∆Ga] = 0: za(E[hag
⊺
a] +

E[gah⊺a]) + ηz2aE[hah
⊺
a] = 2γE[gag⊺a], where we have defined za = E[∥gb∥2]. The forward CRH

can then be derived if W ⊺W and W reaches stationarity.

The following theorem formalizes these results.
Theorem 1. Under Assumption 1, when E[∆Ha] = 0, E[∆Gb] = 0, E[∆(WW ⊺)] = 0, and
E[∆(W ⊺W )] = 0, there exist real-valued constants c1, c2, c3, c4 > 0 such that

WW ⊺ + c1E[gbg⊺b ] = c2E[hbh
⊺
b ], W ⊺W + c3E[hah

⊺
a] = c4E[gag⊺a]. (7)

Additionally, if at a local minimum,

WW ⊺ ∝ E[gbg⊺b ]∝ E[hbh
⊺
b ], W ⊺W ∝ E[hah

⊺
a]∝ E[gag⊺a]. (8)

Remark. A strength of this derivation is that it is oblivious to the loss function, the model architec-
ture, or the type of activation used (as long as the second moments exist). This may explain the wide
applicability of the RGA observed in Section 6. The above alignment relations can be seen as a type
of fluctuation-dissipation theorem in theoretical physics (Kubo, 1966), which states that in a driven
stochastic dynamics, the fluctuation of the force must balance with the rate of energy loss – a fun-
damental law first discovered by Einstein (1905). Prior applications of the fluctuation-dissipation
theorem to deep learning have focused on the covariance of the model parameters (Yaida, 2018; Liu
et al., 2021) and are not directly relevant to the representations.

5 CRH BREAKING AND POLYNOMIAL ALIGNMENT HYPOTHESIS

While the CRH can be found to hold for many scenarios, it is highly unlikely that it always holds
perfectly and for every layer (e.g., see Section 6). In this section, we study what happens if the CRH
is broken; we then suggest two mechanisms which cause the CRH to break. The following theorem
shows that all six relations are intimately connected, even if only a subset of the CRH holds. For a
square matrix A, we use A−n ∶= (A+)n to denote the n−th power of the pseudo inverse of A, and
A0 = AA+ is an orthogonal projection matrix to the column space of A.
Theorem 2 (CRH Master Theorem). Let A, B, C be a permutation of E[hh⊺], E[gg⊺], and Z, and
let D̃ ∶= PDP be a projected version of D for a projection matrix P . Then,

1. (Directional Redundancy) if any two forward (backward) alignments hold, all forward (back-
ward) alignments hold;

2. (Reciprocal Polynomial Alignments) if one of any forward alignments and one of any backward
alignments hold, there exists scalars αc, βc, and δc satisfying −1 ≤ αc, βc, δc ≤ 3 such that

Ãαc
c ∝ B̃βc

c ∝ C̃δc
c , (9)

(as detailed in Table 1) where c ∈ {a, b} denotes the backward and forward relations respectively,
and the corresponding projection Pc ∈ {Z0

c ,E[hch
⊺
c ]0,E[gcg⊺c ]0}, e.g. such that Ã = PcAPc.

3. (Canonical Alignment I) If (any) one more relation holds in addition to part 2, then all six align-
ments hold in the Z0 subspace; in addition, at a local minimum, all six alignments hold;

4. (Canonical Alignment II) If all six alignments hold, E[hh⊺]∝ E[gg⊺]∝ Z ∝ P , where P is an
orthogonal projection matrix.

The idea behind the proof is that there is some redundancy in the six matrices: every forward relation
implies a backward relation and vice versa. As an example, if Za ∝Ha, then we also have Z2

b ∝Hb,
which can be obtained by multiplying W on the left and W ⊺ on the right.

Part (4) of the theorem clarifies what it means to satisfy the CRH: the latent representation is fully
compact, where weight and representation are only nonvanishing in the subspaces where the gradient
is nonvanishing. Moreover, the weight matrix does nothing but rotates the representation, implying
that the information processing is invertible once the CRH is fully satisfied. This is consistent
with the observation that once a layer has an almost perfect alignment, all the layers after it also
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have perfect alignment, a sign that the representation cannot be further compressed (Section 6).
Therefore, the CRH is consistent with the observation that last layers of neural networks are low-
rank and invariant to irrelevant features.

Part (2) is especially relevant when the CRH is broken. Depending on which subset of the hypothe-
ses holds, the learning process may be classifiable into as many as 26 = 64 phases. In different
phases, the learning dynamics and the found solution will likely be different due to different scaling
relations. For example, positive exponents between Za and Ha will imply that the layer is enhancing
the principle components of Ha, while suppressing the lesser features; a negative exponent would
imply the converse. Even if we remove the redundancy implied by the theorem, there are still at least
22 phases. One can also define additional phases according to the ordering of the degree of breaking
for each relation, which gives 6! = 720 phases, although these ordering phases may not have a major
influence. In many experiments, we performed, at least one of the forward relations and one of the
backward relations are observed to hold very well (e.g., see Figure 8). This means that one is quite
likely to observe the power-law relations predicted in Table 1. We also find it common for different
layers to be in different phases, even within the same network. We discuss more potential meanings
and examples in Section D.

Broadly interpreted, part (2) predicts a power law relation between the spectrum of all six matrices,
which is also what we observe in almost all experiments (Section 6). What is quite surprising is that
almost all positive exponents we observed are within the range [1/3,3], which is exactly the range
of exponents that the theorem predicts (e.g., see Section C.8). Formally, that the H , Z, and G are
polynomially related can be called the “Polynomial Alignment Hypothesis (PAH)” and is a natural
extension of the CRH. That scaling relations can be used to characterize different phases of matter is
an old idea in science. In physics, phases can be classified according to their scaling exponents, and
having a different set of exponents implies that the underlying dynamics and mechanism are entirely
different (Pelissetto & Vicari, 2002). This connection corroborates our physics-inspired proof.

Breaking of CRH. A major remaining question is whether we can find mechanisms such that
the CRH breaks. The theory in the previous section implies one primary mechanism that the CRH
breaks. For all six alignments to hold, it needs to be the case that both E[∆W ], E[∆Z] are zero, but
these two conditions may not be easily compatible with each other, as they together imply that ∆W
has zero variance. While this may be possible for some subspaces (e.g., see Ziyin et al. (2024a)), it
does not hold for every subspace. In fact, it is easy to show that unless the minibatch size is large
enough the SGD updates will never reach zero variance that is ∆W ≠ 0 even for t→∞ (see Lemma
8 in Xu et al. (2023b); see also Xu et al. (2023a)). Thus, the competition between reaching a training
loss of zero and the need to reach a stationary fluctuation is a primary cause of the CRH breakage.

Phase Back. Alignment Forw. Alignment Back. Power Law Forw. Power Law NC NFA CU llm
CRH Ha ∝ Za ∝ Ga Hb ∝ Zb ∝ Gb - - ✓ ✓ ✓

back. CRH Ha ∝ Za ∝ Ga - - H̃0
b ∝ Z̃0

b ∝ G̃b ✓ ✓

(Hb ∝ Z2
b )

forw. CRH - Hb ∝ Zb ∝ Gb H̃a ∝ Z̃0
a ∝ G̃0

a - ✓(3-6)
(Z2

a ∝ Ga)
1 Ha ∝ Ga Hb ∝ Gb H̃0

a ∝ Z̃a ∝ G̃0
a H̃0

b ∝ Z̃b ∝ G̃0
b ✓(3-6)

2 Ha ∝ Za Hb ∝ Zb H̃a ∝ Z̃a ∝ G̃0
a H̃b ∝ Z̃b ∝ G̃0

b ✓

3 Ga ∝ Za Gb ∝ Zb H̃0
a ∝ Z̃a ∝ G̃a H̃0

b ∝ Z̃b ∝ G̃b ✓

4 Ha ∝ Ga Hb ∝ Zb H̃a ∝ Z̃0
a ∝ G̃a H̃b ∝ Z̃b ∝ G̃−1b

5 Ha ∝ Za Hb ∝ Gb H̃3
a ∝ Z̃3

a ∝ G̃a H̃b ∝ Z̃2
∝ G̃b ✓ ✓(3-6)

6 Ha ∝ Ga Gb ∝ Zb H̃a ∝ Z̃2
a ∝ G̃a H̃b ∝ Z̃3

b ∝ G̃3
b ✓(1)

7 Ga ∝ Za Hb ∝ Gb H̃−1a ∝ Z̃a ∝ G̃a H̃b ∝ Z̃0
b ∝ G̃b ✓

8 Ha ∝ Za Gb ∝ Zb H̃2
a ∝ Z̃2

a ∝ G̃a H̃b ∝ Z̃2
b ∝ G̃2

b ✓ ✓(2)
9 Ga ∝ Za Hb ∝ Zb H̃a ∝ Z̃0

a ∝ G̃0
a H̃0

b ∝ Z̃0
b ∝ G̃b ✓

Table 1: The reciprocal polynomial relations of the CRH Master Theorem. When one forward relation and one
backward relation hold simultaneously, all six matrices are polynomially aligned in a subspace (Theorem 2).
Each scaling relationship can be regarded as a possible phase for the layer during actual training. The right
panel shows how existing observations about neural networks fit into the phase diagram. A ✓ denotes that
this phenomenon is compatible with the specified phase. NC refers to the neural collapse. NFA refers to the
neural feature ansatz. CU (correlated update) refers to the (idealization of the) common observation that ha is
correlated with W a few steps after training (Everett et al., 2024). The llm column shows the compatibility of
the scaling relation for transformer observed in Figure 3.
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Figure 1: Six alignment relations in the penultimate layer and output layer of a ResNet18 trained on CIFAR-10
(res1). Left: forward CRH. Right: backward CRH. We see that all six relations hold significantly across two
fully connected layers. Also, we show that the matrix cov(g, h) is well aligned with WW ⊺ in the appendix
Section C.7, which is a strong piece of evidence supporting the key theoretical step that the cross terms will be
aligned with the weights (and G, H).

Figure 2: Penultimate layer of the conjugate matrices (H,G,Z) after training (fc2). This is an example of
CRH being well satisfied, where all three matrices are well aligned after training.

Because the rank tends to decrease for later layers in networks performing classification, we expect
that CRH holds better for later layers than for earlier layers.

This problem is especially troublesome in the layers where E[∆W ] has a high rank, which holds
true for the earlier layers of the network but not the later layers (Xu et al., 2023a). This is consistent
with the observation that the CRH holds much better in the latter layers than in the beginning layers.
This analysis is consistent with the fact that a stronger alignment is strongly correlated with a more
compact representation (Figure 4).

Finite-Time Breaking of CRH. To leading order in γ, the proof of the CRH implies that

Gb +O(γ)∝ γ2Hb ∝ γ2WW ⊺, Ha +O(γ)∝ γ2Ga ∝ γ2W ⊺W. (10)

This means that when γ is small, the forward alignment between Hb and WW ⊺ are strong (because
the prefactor is independent of γ), while the other two are weak – because the huge disparity be-
tween the two matrices, it might take gradient descent longer than practical to reach such a solution.
Similarly, the backward alignment between Ga and W ⊺W is strong for a small γ. This prediction
will be verified in Section 7 when we discuss the neural feature ansatz.

6 EXPERIMENTS

In this section, we present experimental evidence that supports predictions resulting from the CRH.
We also perform experiments to test mechanisms that break the CRH. When the CRH is broken, we
put special emphasis on verifying the RGA, as it directly links to the formation of representations
and may arguably be the most important relation of the three subsets.

Metric for alignment. We would like to measure how similar and well-aligned the six matrices in
the CRH are. Let A and B be two square matrices, each with d2 real-valued elements. We use the
Pearson correlation to measure the alignment between two matrices (Herdin et al., 2005):

α(A,B) ∶= 1

K

⎛
⎝
1

d2
∑
ij

AijBij −
1

d4
∑
ij

Aij∑
ij

Bij

⎞
⎠
, (11)

where K is a normalization factor that ensures α ∈ [−1,1]. α(A,B) will be referred to as the
alignment between the two matrices A and B. Note that α = ±1 if and only if A = c0B for some
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Figure 3: The power-law alignment between the eigenvalues λh and λg of Hb and Gb in a six-hidden layer
transformer (llm). Left to Right: first to the penultimate layers. The grey dashed lines show the power-law
relations λh ∝ λα

g for α = 1, 2,3 respectively. We see that the first layer has an exponent of 3, the second
has an exponent of 2, and all the layers after it are observed to have an exponent of 1. Different colors show
different heads within the same layer. The range of the power exponents is in almost perfect agreement with
the predicted range in Table 1. Referring to the table, this implies that these layers are in phases 5, 8, and 6,
respectively. The setting is the same as the LLM experiment. Also, see Section C.8 for fully connected nets.

constant c0. Therefore, α can be seen as a quantitative metric for the alignment and if ∣α∣ = 1, the
alignment is perfect. Our initial pilot experiments suggest that the alignment effects are the strongest
when the h and g are normalized and if the mean of each is subtracted.3 Thus, we always normalize
h and g and subtract the mean to be consistent in the experiments. This is equivalent to measuring
cov(ĥ, ĥ) and cov(ĝ, ĝ), where cov denotes covariance and â = a/∥a∥. As a notational shorthand,
we use αab,cd to denote α(cov(a, b), cov(c, d)) for the rest of the paper.

Settings. We experiment with the following settings and name each setting with a unique identifier.
fc1: Fully connected neural networks trained on a synthetic dataset that we generated using a two-
layer teacher network. This experiment is used for a controlled study of the effect of different
hyperparameters. fc2: the same as fc1, except that the output dimension is extended to 100 and the
input distribution interpolates between an isotropic and nonisotropic distribution. res1: ResNet-18
(11M parameters) for the image classification; res2: ResNet-18 self-supervised learning tasks with
the CIFAR-10/100 datasets. llm: a six-layer eight-head transformer (100M parameters) trained on
the OpenWebText (OWT) dataset. The details of training methods are described in Section C.

CRH. We start with the supervised learning setting with ResNet-18 trained on CIFAR-10. We
measure the covariances matrices with data points from the test set. Figure (3) shows that very good
alignment α > 0.7 is achieved quite early in the training, and continues to improve during the later
stage of training. This case might remind some readers of neural collapse (NC) – because NC is
also most significant in the penultimate layer of large image classifiers. As we will show in the next
section, in the interpolation regime of classification tasks, the NC is equivalent to the CRH.

Figure 4: The rank deficiency
and the backward αgg,hh in fully
connected nets (fc2). The rank
of representation is strongly nega-
tively correlated with α. Here, ev-
ery color is a different weight de-
cay (from 10−6 to 10−4), and every
point is a different layer in the net.
The setting is the same as the fully
connected net experiment.

Another example of CRH is provided in Figure 8 below, in case of
a fully connected network in a regression task. The result shows
that when the weight decay is not too small, the CRH is quite
close to being perfectly satisfied for intermediate layers. Exam-
ples of the representation and the dual matrices are presented in
Figure 2 for a layer that (almost) satisfies the CRH.

Breaking of CRH. A clear evidence for the correctness of the
theory is that at a small weight decay, the strongest alignments
are the forward-RWA and the backward-RGA, which will be pre-
sented in the experiment in Figure 8 after we discuss the relation-
ship of the CRH to the NFA.

Two indirect evidences are that (1) the compactness of the repre-
sentation is found to be negatively correlated with the alignment
level (Figure 4), and (2) the observed positive exponents between
the eigenvalues of the matrices are almost aways within the range
[1/3,3], which is the predicted range by Theorem 2 (Figure 3).

RGA. A relation of particular interest to the formation of representations is the RGA, which pre-
dicts that the represenations are aligned with the gradients across them. Now, we show that the

3These may be due to the fact that the gradient and activation have rare outliers that tend to disturb the
balance. See Section C.2 for the RGA on transformers without subtracting the mean.
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Figure 5: Alignment between cov(h,h) and cov(g, g) in a six-layer transformer trained on the OWT dataset
(llm). From left to right: layer 1, 2, 4, 5. Also, see layer 3 in Figure 15. The shaded region shows the
variation (min and max) across eight different heads in the same layer. The RGA is significnatly stronger than
the alignment between initial and final representation, and the alignment between different heads.

RGA holds well across a broad range of tasks in common training settings. When the CRH holds,
the RGA holds as well, and so the experiments in the CRH section already shows that the RGA
holds for the last layers of ResNet.

Large Language Models (llm). We measure the covariances of the output of each attention head
in every layer. See Figure 5 for the evolution of the alignment and Figure 14 for examples of the
representation. Three baselines of comparisons are (1) the alignment between the covariances of a
rank-40 (roughly equivalent to the actual ranks of cov(h,h) and cov(g, g)) random projection of
two 200 dimensional isotropic Gaussian, which stays close to 0.14, (2) the alignment between the
feature covariance of different heads, which starts high but drops to a value significantly lower than
αgg,hh, (3) the alignment between the initial feature and current feature for the same head, which
starts from 1 and also drops quickly. The RGA is found to hold stronger than the other baselines.

Figure 6: The alignment for dif-
ferent layers during 1000 training
epochs (res2). Layers 1-3 are con-
volutional layers, and layers 4-5 are
fully connected ones.

Self-Supervised Learning (res2). Self-supervised learning fo-
cuses on learning a good and versatile representation without
knowing the labels for the problem. See Figure 6 for the time
evolution of α. We see that the RGA holds well for the fully
connected layers, but not so strongly for the conv layers. Exper-
iments do show increased α values if we decrease the batch size
and increase γ. Also, see Figure 13 for examples of the represen-
tations in the convolutional layers. We see very good qualitative
alignment between the two matrices.

Fully Connected Nets (fc1). We also perform a systematic ex-
ploration of how hyperparameters of training and model archi-
tectures affect the formation of representations. Results pre-
sented in Section C.6 show the following phenomena: (1) Grad-
ual Alignment: deeper layers tend to have better alignment; if a layer has an almost perfect alignment
(α ≈ 1), then any layer after it will also have almost perfect alignment (note the similarity of this
phenomenon with neural collapse); this is consistent with the tunnel effect discovered in (Masarczyk
et al., 2024); (b) Critical Depth and Alignment Separation: batch size B affects the alignment sig-
nificantly; earlier layers have worse alignment as B increases; later layers have better alignment as
B increases; wider networks have similar level of alignment as thinner ones for SGD; for Adam, it is
more subtle: early layers have worse alignment for a large width, later layers have better alignment
for a large width; (c) weight decay γ affects the alignment significantly and systematically; larger γ
always leads to better alignment.

7 INSIGHTS

Figure 7: The response diversity
(the diagonal terms of the covari-
ance) and correlation is coupled to
the plasticity of neurons (fc1).

This section first studies the implication of the CRH (mainly the
RGA) for the representation of neural networks (7.1-2). We then
clarify the relation of the CRH to NC and NFA (7.3-4).

7.1 PLASTICITY-EXPRESSIVITY COUPLING

A direct interpretation of the RGA is that the plasticity of neurons
in neural networks is strongly coupled to their expressivity after
training:

E[hbh
⊺
b ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
expressivity

∝ E[gbg⊺b ]
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

plasticity

. (12)
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The first term directly measures the variability of the neuron response to different inputs, thus mea-
suring how expressive or capable this neuron is. The second term measures the degree of plasticity
because the gradient for the weight matrix prior to hb is proportional to gbh

⊺
a, and if gb is zero with

zero variance, the input weights to this neuron will never be updated. It is, therefore, a measure of
plasticity. This coupling is quite unexpected because the expressivity should be independent of plas-
ticity at initialization. See Figure 7 for a scattering plot of how the elements of E[hh⊺] are strongly
aligned with that of E[gg⊺]. While this experiment shows a strong alignment between H and G, it
also shows a limitation of our theory. If the activation norm h is really independent of its direction
h/∥h∥, one would only see one branch in the figure, whereas there are three branches. This can be
another reason for CRH breaking.

7.2 FEATURE-IMPORTANCE ALIGNMENT AND INVARIANT LEARNING

Another direct interpretation of E[gg⊺] is the saliency of a latent feature. The quantity E[gg⊺]
measures how the loss function changes as a neuron activation is changed by a small degree and is
often used on the input layer to measure the importance of a feature (Selvaraju et al., 2017; Adadi
& Berrada, 2018). This interpretation justifies many heuristics for understanding neural networks:
take the principal components of a hidden layer and study its largest eigenvalues. If there is no direct
link between the magnitude of the eigenvalues in these latent representations and their importance
in affecting the learning (measured by the training loss), these analyses will be unreasonable.

Let n̂ be any unit vector that encodes a feature irrelevant to the task. The following theorem shows
that the invariance of the representation to such features is equivalent to the invariance of the model.

Proposition 1. Let f(h(x)) be a model whose hidden states h obey RGA. Let n̂ be a vector and
ϵ a scalar. The following statements are equivalent: (1) ℓ(f(h + ϵn̂)) = ℓ(f(h)) + O(ϵ2); (2)
E[hh⊺]n̂ = 0; (if the CRH also holds) Wn̂ = 0, and Gn̂ = 0.

In some sense, Proposition 1 can be seen as a generalization of NC (next section) because it applies to
both regression and classification tasks. Note that there are two ways for the condition ℓ(f(h+ϵn̂)) =
ℓ(f(h)) to be satisfied: (1) f(h + ϵn̂) = f(h), which means that when the model output itself
invariant to such a variation, the latent representation in this direction will vanish; (2) ℓ(f(h) +
ϵn̂T∇f(h)) = ℓ(f(h)), which means that any variation that does not change the loss function value
will vanish. This fact also means that the model will learn a compact representation: any irrelevant
latent space will have zero variation. This is consistent with the often observed matching between
the rank of the representation and the inherent dimension of the problem (Papyan, 2018; Ziyin,
2024). A major phenomenon of well-trained CNNs is that the latent representations learn to become
essentially invariant to task-irrelevant features (Zeiler & Fergus, 2014; Selvaraju et al., 2017), an
observation that matches the high-level features of the human visual cortex (Booth & Rolls, 1998).
The CRH thus suggests a reason for these observed invariances.

This result also means that the invariances of the models achieved through the CRH are robust: the
objective function is invariant to small noises in the irrelevant activations. While artificial neural
networks rarely contain such noises in the activations, it is plausibly the case that biological neurons
do suffer from environmental noises, and our result suggests a mechanism to achieve robustness
against irrelevant noises or perturbation.

7.3 REDUCTION TO NEURAL COLLAPSE IN PERFECT CLASSIFICATION

We now prove that NC is equivalent to the CRH in an interpolating classifier. We focus on the
first two properties here because NC3-4 are essentially consequences of NC1-2 (Rangamani &
Banburski-Fahey, 2022). NC1 states that the inner-class variations of the penultimate representa-
tion vanishes. NC2 states that the average representation µc of the class c is orthogonal to each
other: µ⊺cµc′ = δcc′ . The ground truth model must be invariant to inner class variations in a classi-
fication task. Let c denote the index of a class, it should be the case that the ground truth model f ′
satisfies: f ′c(xc) = ζ1c, where 1c is a one hot vector on the c-th dimension and ζ > 0 is an arbitrary
scalar. Proposition 1 thus suggests that any model that recovers the ground truth must have such
invariance in the output and in the latent representation h, which is exactly NC1.

Now, we show that when the CRH holds, a perfectly trained model must have neural collapse. Let
xc denote any data point belonging to the c-class among a set of C labels.
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Theorem 3. Consider a classification task and the penultimate layer postactivation ha. If the model
is quasi-interpolating: f(xc) = hb = Wha(xc) = ζ1c, and the loss covariance is proportional to
identity: E[∇f ℓ∇⊺f ℓ] ∝ I , then h satisfies all four properties of neural collapse (NC1-NC4) if and
only if h satisfies the CRH.

The assumption E[∇f ℓ∇⊺f ℓ] ∝ I is empirically found to hold very well in standard classification
tasks at the end of training. See Section C.3 for an experiment with Resnet on CIFAR-10, where the
phenomenon of neural collapse is primarily observed.

7.4 EQUIVARIANCE OF CRH AND NEURAL FEATURE ANSATZ

A closely related hypothesis is the NFA, which is related to the feature learning in fully connected
layers (Radhakrishnan et al., 2023; Beaglehole et al., 2023). Using our notation, the NFA states
W ⊺W ∝ E [∇ha

f∇ha
f⊺]. To see its connection to the CRH, note that it can be written as

W ⊺W ∝W ⊺E[gbg⊺b ]W = E[gag
⊺
a] = E [(∇hb

f)B(∇hb
f⊺)] , (13)

where B = ∇f ℓ(∇f ℓ)⊺. Therefore, the NFA is identical to the GWA (Eq. (5)) when B ∝ I .

Figure 8: After the training of a six-
layer fully connected network, all six rela-
tions (Eq. (3)-(5)) hold strongly at a large
weight decay (fc2). For a small weight de-
cay, at least one forward and backward re-
lation holds strongly. The shaded region
shows the variation across five hidden lay-
ers, and the solid lines show the median of
these alignments. At a small γ, the best
alignment is between Hb and W ⊺W for
the forward relation, and Ga and WW ⊺

for the backward, in agreement with the
theoretical prediction.

This is an instance of a consistency problem of the NFA:
the NFA is not invariant to trivial redefinitions of the loss
function and model. Let f(x) be a model trained on loss
function ℓ(f). Let us assume that NFA applies to this
model. Now, let us construct a trivially redefined model
and loss: f ′(x) ∶= Zf(x) where Z is an invertible matrix,
and ℓ′(f) ∶= ℓ(Z−1f). Now, for NFA to hold for f , we
must have W ⊺W ∝ E[∇f∇⊺f], but for NFA to hold for
f ′, we need W ⊺W ∝ E[∇fZZ⊺∇⊺f]. These cannot hold
simultaneously.

In contrast, the GWA is invariant to such redefinitions:
∇ℓ(f)∇ℓ(f) = ∇ℓ′(f ′)∇ℓ′(f ′). (14)

Therefore, the CRH is more likely to be a fundamental
law of learning as it is invariant to a subjective choice of
basis. For this reason, one may also refer to the GWA
as an “equivariant NFA” (eNFA). Furthermore, if we treat
NFA as a special case of the forward alignment, the back-
ward alignment relations imply a novel variant of the NFA,
which can be referred to as the forward NFA: WW ⊺ ∝
E [∇hb

g∇hb
g⊺]. In this picture, the original NFA should

thus be called the backward NFA. See Figure 8, which val-
idates both forward and backward eNFA.

8 CONCLUSION

In this work, we propose the Canonical Representation Hypothesis (CRH), a new perspective for
studying the formation of representations in neural networks. The CRH suggests that representa-
tions align with the weights and gradients after training. It is a generalization of the neural collapse
phenomenon for any fully connected layer in a neural network. In this view, representations are
formed based on the degree and modes of deviation from the CRH. This deviation leads to the Poly-
nomial Alignment Hypothesis (PAH), which posits that when the CRH is broken, distinct phases
emerge in which the representations, gradients, and weights become polynomial functions of each
other. A key future direction is to understand the conditions that lead to each phase and how these
phases affect the behavior and performance of models. The CRH may also have biological impli-
cations as it implies that neural networks tend to learn an orthogonalized representation, which has
been observed in the biological brain recently (Sun et al., 2025). The CRH may also have algorith-
mic implications. If representations align with the gradients (as in RGA), it might be possible to
manually inject noise into neuron gradients to engineer specific structures in the model’s represen-
tations. However, the CRH and PAH have several limitations. They apply only to fully connected
layers, and a future step is extending them to other types of layers. Additionally, we have primarily
focused on characterizing the final stage of representation formation. A more comprehensive theory
of representation dynamics could lead to better training algorithms.
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A MORE RELATED WORKS

The neural representation is a central object of study in both AI and neuroscience (Esser et al.,
2020; Wang et al., 2018). The widespread use of techniques like t-SNE (Van der Maaten & Hinton,
2008) for analyzing the penultimate layer representation in deep learning highlights the importance
of understanding representation space. However, the theory of how the representations are formed
in neural networks is scarce. A recent work approached this problem from the angle of symmetries
(Ziyin, 2024), showing that permutation symmetries in the latent layers lead to neuron merging and
low rankness in the representation. Ziyin et al. (2024b) showed that after training, the latent repre-
sentation is aligned with a linear transformation of the prediction residual. A recent work showed
that the evolution of the representation during the initial stage of training have universal proper-
ties shared by different types of models (van Rossem & Saxe, 2024). Empirically, Roeder et al.
(2021) and Huh et al. (2024) showed that the neural representations learned by different networks
are essentially similar, which may offer a partial explanation for why the CRH seems to hold across
different architectures. Also, an emergent field in neuroscience studies how the representations
learned by neural networks closely resemble those of biological neurons (Rajalingham et al., 2018).
These results suggest the existence of some fundamentally shared mechanisms of the formation of
representations.

The finding that the neural networks find invariant structures is interesting and should be contrasted
with the finding that sometimes the neural networks learns an invertible function (Zimmermann
et al., 2021; Reizinger et al., 2024). This may have to do with the fact that both neural collapses
have been found to emerge when there is nonnegligible strength of regularization (such as weight
decay (Rangamani et al., 2021)). This suggests that some form of simplicity bias is required to
make neural networks prefer invariant structures, which may be another interesting topic for future
research.

B THEORY AND PROOFS

B.1 GRADIENT MOMENT IS DOMINATED BY GRADIENT COVARIANCE

We show that when there is a bias term in the layer, the expected neuron gradient must be negligible
close to a local minimum:

hb =W ′h′a =Wha + β, (15)

At the local minimum, we have

0 = E[∆b] = −η(E[∇hb
ℓ] + γb) = η(E[gb] − γb), (16)

which implies that
γb = E[gb]. (17)

This implies that
E[gb]E[g⊺b ] = O(γ

2), (18)

which is negligible. This agrees with the experimental observation in Section C.2.

B.2 PROOF OF THEOREM 2

We need a few lemmas. The following lemmas are quite general and apply to arbitrary symmetric
matrices A and B, which is clear from the lemma statement. Eventually, when we apply these
lemmas, the specific A and B will be the H , G, Z matrices we defined in the CRH statement.

Lemma 1. Let A, B be symmetric matrices such that B = ABA, then,

ker(A) ⊆ ker(B) = I −B0, (19)

and B0AB0 is a projection matrix.

Proof. Let n be in the null space of A. We have

Bn = ABAn = 0. (20)
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Thus, n is also in the null space of B. This means that the kernel of A is in the kernel of B. Now,
Let P = B0 and D̃ ∶= PDP , we have that

B = ÃBÃ, (21)

where the rank of A is the same as the rank of B. This implies that there is an orthonormal matrix
O such that

B′ = OBO⊺, A′ = OÃO⊺ (22)
are full rank, A′ is diagonal, and

B′ = A′B′A′. (23)
This implies that

B′ij = aiajB′ij , (24)

where ai is the i-th diagonal term of A′. Because B′ is full-rank. We have that for all i,

ai = 1. (25)

This implies that Ã = O⊺A′O is an orthogonal projection matrix. Because it also has the same
kernel as B, we have

Ã = B0. (26)

The following two lemmas are straightforward to prove by multiplying A−1 from the left and right.4

Lemma 2. Let A, B be symmetric matrices such that A2 = ABA, then,

A0 = A0BA0. (27)

Lemma 3. Let A, B be symmetric matrices such that A = ABA, then,

A−1 = A0BA0. (28)

Lemma 4. If ker(A) = ker(B), then ker(CAC⊺) = ker(CBC⊺), for any symmetric A and B and
arbitrary matrix C.

Proof. For n to be in the null space of CAC⊺, it must satisfy one of the following two conditions:

C⊺n = 0, (29)

which implies that n ∈ ker(CBC⊺). Or
√
AC⊺n = 0, (30)

which implies that C⊺n ∈ ker(
√
A) = ker(A) = ker(B), which again implies that

n ∈ ker(CBC⊺). (31)

This finishes the proof.

Now, we are ready to prove Theorem 2.

Proof. (Part 1) Fix the direction to be forward or backward. Let A,B,C be a permutation of three
moment matrices. Then, that two alignments hold implies that

A∝ B, (32)

and B ∝ C. By transitivity, A∝ B ∝ C. This proves part 1.

(Part 2) There are many combinations, which can be divided into a few types. We thus prove a
prototype for each type of relation, and the rest can be derived in a similar but tedious manner.
The key mechanism is that every forward relation implies a backward relation and vice versa. For
example, if we know E[hbh

⊺
b ]∝ E[gbg⊺b ], we also have

WE[hah
⊺
a]W ⊺ ∝ E[gbg⊺b ], (33)

4Recall that A−1 is the pseudo inverse, and A0 = AA−1 is an orthogonal projector.
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which implies that
W ⊺WE[hah

⊺
a]W ⊺W ∝W ⊺E[gbg⊺b ]W = E[gag

⊺
a]. (34)

Now, let A be either W ⊺W or WW ⊺, B,C be some permutation of the gradient and neuron covari-
ance.

Type 0: this is the simplest and most straightforward type of relations. First, consider relation 5 in
the table. We have, by assumption,

Ha ∝ Za, (35)
WHaW

⊺ =Hb ∝ Gb. (36)
Together, we have

WHaW
⊺ ∝WZaW

⊺ = Z2
b . (37)

So,
Z3
a ∝W ⊺GbW = Ga. (38)

This means that
H3

a ∝ Z3
a ∝ Ga. (39)

Also, this implies that
Hb ∝ Z2

b ∝ Gb. (40)
A similar proof derives relation 6 is thus not shown.

Type 1: ABA ∝ ACA ∝ B ∝ C. Using the above lemmas and defining D̃ ∶= PDP , where
P = B0 = C0, we obtain

Ã = B0 = C0. (41)

Type 2: ABA∝ A2 ∝ ACA. This type of equation simply solves to

B̃ ∝ A0 ∝ C̃, (42)

where the tilde is defined with respect to A0.

Type 3: B ∝ A∝ ACA. By the above lemmas, we have

A−1 ∝ C̃. (43)

We thus have
B ∝ A∝ C̃−1. (44)

Type 4: ABA∝ A2 ∝ C2. This implies that

B̃ ∝ A0 ∝ C0, (45)

where tilde is defined with respect to P = A0.

Type 5: This type is a little strange, and so we explicitly solve them. There are two cases:

E[gag⊺a]∝ Za ∝ Z2
a (46)

E[gbg⊺b ]∝ Zb ∝ Z2
b (47)

This directly implies that Za and Zb are projection matrices. For E[hh⊺], we have that by definition

E[hbh
⊺
b ]∝WE[hah

⊺
a]W ⊺. (48)

This means that the kernel of E[hbh
⊺
b ] must contain the kernel of WW ⊺ = Zb. Therefore, letting

P = E[hbh
⊺
b ]

0

E[hbh
⊺
b ]

0 ∝ PZbP ∝ PE[gbg⊺b ]P. (49)
Likewise, we have that

WE[hah
⊺
a]W ⊺ = E[hbh

⊺
b ], (50)

and so
ker(WE[hah

⊺
a]W ⊺) = ker(E[hbh

⊺
b ]) = kerZb. (51)

This implies that
ker(ZaE[hah

⊺
a]Za) = kerZa. (52)
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This means that we have proved

˜E[hah⊺a]
0
= Z0

a = E[gag⊺a]. (53)

A similar derivation applies to the case when

E[hah
⊺
a]∝ Za ∝ Z2

a (54)

E[hbh
⊺
b ]∝ Zb ∝ Z2

b . (55)

(Part 3) By the pigeonhole principle, two of either the forward or backward relations must be sat-
isfied. This means that by part 2 of the theorem, there are two cases: (a) three forward relations are
satisfied, (b) three backward relations are satisfied. Since the argument is symmetric in forward and
backward directions, we focus on case (a).

Case (a). We have
E[hah

⊺
a]∝ Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W. (56)

There are now three subcases depending on which of the backward relations are satisfied.

Case (a1): Zb ∝ E[gbg⊺b ], which implies that

Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W ∝W ⊺ZbW = Z2
a , (57)

and so all the three forward matrices are (scalar multiples of) projections.

But W ⊺W and WW ⊺ share eigenvalues and so Zb ∝ E[gbg⊺b ] are also projection matrices. Now,

E[hbh
⊺
b ] =WE[hah

⊺
a]W ⊺ ∝WZaW

⊺ = Z2
b , (58)

which is also a projection matrix. This, in turn, implies that all three backward relations hold.

Case (a2): E[hbh
⊺
b ]∝ E[gbg⊺b ]. This implies that

Z2
b =WZaW

⊺ ∝WE[hah
⊺
a]W ⊺ = E[hbh

⊺
b ]∝ E[gbg⊺b ]. (59)

In turn, this implies that

Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W ∝W ⊺Z2
bW = Z3

a . (60)

This implies that Za only contains zero and one as eigenvalues, which implies that Za = Z2
a = Z3

a is
a projection. Similarly, Zb is a projection. Together, this implies that all six relations hold.

Case (a3): Zb ∝ E[hbh
⊺
b ]. This case is subtly different. Here,

E[hbh
⊺
b ] =WE[hah

⊺
a]W ⊺ =WZaW

⊺ = Z2
b = Zb, (61)

and so all three forward matrices are projections.

For the backward relations,

Zb ∝ E[hbh
⊺
b ] =WE[hah

⊺
a]W ⊺ ∝ Z2

b , (62)

which is also a projection matrix. Now, we have essentially no relation for E[gbg⊺b ] as it cannot be
directly derived from any other quantity. But noting that

W ⊺E[gbg⊺b ]
⊺ = E[gag⊺a]∝ Za, (63)

one obtains that
PE[gbg⊺b ]P = P, (64)

where P = Zb. Therefore, when restricted to the subspace of W , E[gbg⊺b ] is also a projection matrix.

For case (b), it is the same, except for the case when Za ∝ E[gag⊺a]. When this is the case, the
alignment happens with

PE[hah
⊺
a]P = P, (65)

for P = Z0
a .

At local minimum. At any local minimum or first-order stationary point, Lemma 5 applies, which
implies that

ker(Zc) ⊆ ker(E[hch
⊺
c ]), (66)
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ker(Zc) ⊆ ker(E[gcg⊺c ]), (67)
for c ∈ {a, b}. This is because

Zc ∝ E[gch⊺c ], (68)
and for any n ∈ ker(E[hch

⊺
c ]), it holds with probability one that

h⊺cn = 0, (69)

and so
Zcn = E[hcg

⊺
c ]n = 0. (70)

The same argument applies to gc.

Now, it suffices to prove the two subtle cases. For case (a3), we have that

PE[gbg⊺b ]P = P. (71)

However, the local minimum condition implies that

kerE[gbg⊺b ] ⊆ ker(P ). (72)

This can only happen if PE[gbg⊺b ]P = E[gbg⊺b ] = P . Therefore, all six relations hold. The same
applies to the other subtle case.

(Part 4) We have
E[hah

⊺
a]∝ Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W, (73)

E[hbh
⊺
b ] =WE[hah

⊺
a]W ∝ Zb ∝ E[gbg⊺b ]. (74)

Plugging the forward relation into the backward relation, we obtain that

WZaW
⊺ ∝ Z2

b ∝ Zb, (75)

which implies that Zb is proportional to a projection matrix. This implies that E[hbh
⊺
b ] and E[gbg⊺b ]

are also projection matrices.

Likewise, one can plug the backward relation into the forward, which implies that

Z2
a ∝ Za, (76)

and is thus proportional to a projection matrix. This completes the proof.

B.3 PROOF OF THEOREM 1

The proof will be divided into several theorems, each of which proves a claimed relation in Section 4.
The following theorem proves Eq. 6.
Theorem 4. Assume assumption 1. If E[∆Ha] = 0 and E[∆Hb] = 0, then,

0 = zbE[gbh⊺b ] + zbE[hbg
⊺
b ] + ηz

2
bE[gbg⊺b ] − 2γE[∆(hbh

⊺
b)] +O(η

2γ), (77)

where zb = E∥ha∥2.

Proof. Let Ba = hah
⊺
a, and Bb = hbh

⊺
b . Let Ha = E[Bb] and Hb = E[Ba]. We consider an online

learning setting. Let x denote the input at time step t. Consider the time evolution of the feature
covariance during the SGD training:

∆(hb(x)h⊺b(x)) =∆(Whah
⊺
aW

⊺) (78)

=∆WBaW
⊺ +WBa∆W ⊺ +∆WBa∆W ⊺ +O(∆Ba) (79)

= −η(∇hb
ℓh⊺a + γW )BaW

⊺ − ηWBa(ha∇⊺hb
ℓ + γW ⊺) + η2(∇hb

ℓh⊺a + γW )Ba(ha∇⊺hb
ℓ + γW ⊺)

(80)

= −η(−∥ha∥2gbh⊺b + γBb) − η(−∥ha∥2hbg
⊺
b + γBb) + η2∥ha∥4gbg⊺b +O(η

2γ) (81)

= η(∥ha∥2gbh⊺b + ∥ha∥2hbg
⊺
b − 2γBb) + η2∥ha∥4gbg⊺b . (82)

Taking expectation of both sides, we obtain that

0 = zbE[gbh⊺b ] + zbE[hbg
⊺
b ] + ηz

2E[gbg⊺b ] − 2γHb, (83)

where zb = E∥ha∥2.
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Similarly, one can show that the pre-activations follow a similar relationship.

Theorem 5. Assume assumption 1. If E[∆Ga] = 0 and E[∆Gb] = 0, then,

za(E[hag
⊺
a] +E[gah⊺a]) + ηz2aE[hah

⊺
a] = 2γE[gag⊺a], (84)

where we have defined za = E[∥gb∥2]

Proof. We have

∆(gag⊺a) =∆(W ⊺gbg⊺bW ) (85)

=∆W ⊺gbg⊺bW +W
⊺gbg⊺b∆W +∆W ⊺gbg⊺b∆W +O(∥∆gbg

⊺
b ∥) (86)

= η(zahag
⊺
a − γgag⊺a) + η(zahag

⊺
a − γgag⊺a)⊺ + η2z2ahah

⊺
a +O(η2γ), (87)

where we have used the relations ga = W ⊺gb and ∆W = η(gbh⊺a − γW ). We have also defined
za = ∥gb∥2 = E[∥gb∥2].
Taking expectation, this leads to

za(E[hag
⊺
a] +E[gah⊺a]) + ηz2aE[hah

⊺
a] = 2γE[gag⊺a]. (88)

The following lemma proves the balance condition at a local minimum.

Lemma 5. (First-order stationary point condition / local minimum balance.) At any stationary
point of the loss function, we have

E[gbh⊺b ] = E[gbh
⊺
b ]
⊺ = γWW ⊺, (89)

E[gah⊺a] = E[gah⊺a]⊺ = γW ⊺W. (90)

Proof. Close to a stationary point, we have

0 = E[∆W ] = η(E[gbh⊺a] − γW ). (91)

Multiplying W ⊺ from the left and the right, we obtain, respectively:

0 = E[gbh⊺a]W ⊺ − γWW ⊺ = E[gbh⊺b ] − γWW ⊺, (92)

0 =W ⊺E[gbh⊺a] − γW ⊺W = E[gah⊺a] − γW ⊺W, (93)

where we have used the definition hb =Wha and the chain rule ga =W ⊺gb.

This condition implies that
E[gbh⊺b ] = E[gbh

⊺
b ]
⊺ = γWW ⊺, (94)

E[gah⊺a] = E[gah⊺a]⊺ = γW ⊺W. (95)

Now, we derive the stationarity condition for ∆WW ⊺ and ∆W ⊺W .

Lemma 6. (Stationary alignment of parameter-outer product.) If at a local minimum and assuming
Assumption 1, then,

1. if E[∆(WW ⊺)] = 0,
zbE[gbg⊺b ] = γ

2WW ⊺. (96)

2. if E[∆(W ⊺W )] = 0,
zaE[hah

⊺
a] = γ2W ⊺W. (97)
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Proof. We have

0 = E[∆(WW ⊺)] = E[∆W ]W ⊺ +WE[∆W ⊺] +E[∆W∆W ⊺] (98)

= 0 +E[∆W∆W ⊺] (99)

= E[(gbh⊺a − γW )(gbh⊺a − γW )⊺] (100)

= zbE[gbg⊺b ] − γE[gbh
⊺
b ] − γE[gbh

⊺
b ]
⊺ + γ2WW ⊺ (101)

= zbE[gbg⊺b ] − γ
2WW ⊺ (102)

where we have used Eq. (89) in the last line.

Likewise, when E[∆W ⊺W ] = 0,

0 = E[∆(W ⊺W )] = E[(gbh⊺a − γW )⊺(gbh⊺a − γW )] (103)

= zaE[hah
⊺
a] − γE[hag

⊺
a] − γE[hag

⊺
a]⊺ + γ2W ⊺W (104)

= zaE[hah
⊺
a] − γ2W ⊺W, (105)

where we have defined za = E[∥gb∥2].

Now, we are ready to prove Theorem 1.

Proof. The above two lemmas imply that

2zb
γ

E[gbg⊺b ] = E[gbh
⊺
b ] +E[gbh

⊺
b ]
⊺. (106)

This relation can be substituted into Eq. (6) to obtain

z2b (ηγ + 2)E[gbg⊺b ] = 2γ
2Hb = zb(ηγ + 2)γ2WW ⊺. (107)

Likewise,
2za
γ

E[hah
⊺
a] = E[hag

⊺
a] +E[hag

⊺
a]⊺. (108)

This relation can be plugged into Eq. (84) to obtain that

z2a(ηγ + 2)E[hah
⊺
a] = 2γ2E[gag⊺a] = za(ηγ + 2)γ2W ⊺W. (109)

This completes the proof.

B.4 PROOF OF PROPOSITION 1

Proof. We first prove that part (1) implies part (2). By assumption, we have that E[hh⊺]∝ E[gg⊺],
and so5

E[hh⊺]n̂∝ E[gg⊺]n̂ (110)

= E[∇hℓ∇⊺hℓ]n̂ (111)
= 0, (112)

where the last line follows from the fact that

ℓ(f(h + ϵn̂)) − ℓ(f(h)) = ϵn̂⊺∇hℓ(h) +O(ϵ2) = O(ϵ2), (113)

which is possible only if n̂⊺∇hℓ(h) = 0. One can derive the other two relations simply using the
definition of CRH: E[hh⊺]∝ E[gg⊺]∝ Z.

For the backward direction, we have that

E[hh⊺]n̂ = E[gg⊺]n̂ = 0. (114)

5Note that the proof still works if we replace the second moments with the covariances.
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This implies that n⊺g = 0 with probability 1. Now,

ℓ(f(h + ϵn̂)) − ℓ(f(h)) = ϵn̂⊺g +O(ϵ2) (115)

= O(ϵ2). (116)

The proof is complete.

B.5 PROOF OF THEOREM 3

As NC4 is a trivial consequence of NC1-3, we focus on NC1-3 here. For notational simplicity, we
state neural collapse in the case when there is no bias in the last layer. The first three properties are
defined as, at the end of training

1. NC1: h(xc) = µc, where xc is any data point in class c;
2. NC2: µ⊺cµc′ = δcc′ ;
3. NC3: W ⊺W = ∑C

c µcµ
⊺
c .

Proof. We first prove that NC1-4 implies the CRH. When NC1 holds,

ha(xc) = µc. (117)

This means that
Ha ∝∑

c

µcµ
⊺
c . (118)

By NC2, we have
µ⊺cµc′ = δcc′ . (119)

This means that Ha is proportional to an orthogonal projection.

By NC3, we have that
W ⊺W ∝∑

c

µcµ
⊺
c . (120)

Additionally,
Ga =W ⊺GbW =W ⊺W, (121)

where we have used the assumption that Gb = E[∇f ℓ∇⊺f ℓ] = I .

Together, this implies the backward CRH

Ha ∝ Ga ∝ Za. (122)

For the forward CRH, because WW ⊺ ∈ RC×C has rank C and they have equal eigenvalues, it must
be proportional to identity:

Zb ∝ I. (123)
By the interpolation assumption, we also have

E[hbh
⊺
b ]∝

C

∑
c

1c1
⊺
c ∝ I. (124)

Therefore, we have proved the forward CRH. This proves one direction of the theorem.

Now, we prove that the CRH implies NC1-NC3. We first prove NC1. By the (backward) alignment
hypothesis for the last layer, we have

Ha ∝ Ga =W ⊺GbW =W ⊺W, (125)

where W is the weight matrix for the last layer. This means that there exists an orthonormal matrix
U such that

W ∝ U
√
Ha, (126)

and that the rank of Ha must be C. By the interpolation hypothesis, it must be the case that

Whc = 1c, (127)
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which implies that for a fixed c. This implies that

hc = zc + v, (128)

where zc is a constant vector and Wv = 0. However, by Proposition 1, v must vanish, and so
hc = zc = µc. This proves NC1.

This means that
Za ∝Ha (129)

is essentially a projection matrix. So,

Wha(xc) = UHaha(xc) = Uha(xc) = 1c. (130)

This implies that in turn, ha(xc) = µc = Uc∶. This proves NC3. Due to the orthogonality of U , we
have that

µ⊺cµc′ = U⊺c∶Uc′∶ = δcc′ . (131)
This proves NC2. The proof is complete.
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C EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

fc1: Fully connected neural networks trained on a synthetic dataset that we generated using a
two-layer teacher network. This experiment is used for a controlled study of the effect of different
hyperparameters. To control the variables, we consider a synthetic task where the input x ∈ R100 is
sampled from an isotropic Gaussian distribution, and the label generated by a nonlinear function of
the form: y(x) = ∑100

i=1 u
∗
i sin((W ∗

i )⊺x + b∗i ) ∈ R, where u∗, w∗i , and b∗i are fixed variables drawn
from a Gaussian distribution. In this form, the target function can be seen as a two-layer network
with sin activation. Our model is a fully connected neural network trained with SGD in an online
fashion, and the representations are computed with unseen data points. Unless specified to be the
independent variable, the controlled variables of the experiment are: depth of the network (D = 4),
the width of the network (d = 100), weight decay strength (γ = 2 × 10−5), minibatch size (B = 100).

fc2: Here, we choose a high-dimensional setting where the teacher net is given by y(x) =
∑100

i=1 u
∗
i sin((W ∗

i )⊺x + b∗i ) ∈ R, where u∗i ∈ R100, w∗i ∈ R100, and b∗i ∈ R are fixed variables
drawn from a Gaussian distribution. In this form, the target function can be seen as a two-layer
network with sin activation. The distribution of x is controlled by an independent variable ϕx such
that x′ ∼ N (0, I100), and x = (1 − ϕx)Z + ϕxI100, where Z is a zero-one matrix generated by a
Bernoulli distribution with probability 0.8. When ϕx is small, the input features are thus highly cor-
related to each other, and the covariance matrix deviates far from I . The training proceeds with SGD
with a learning rate of 0.1 with momentum 0.9 and γ = 10−4 for 105 steps when the loss function
value has stopped decreasing. The training proceeds with a batch size of 100. All the expectation
and covariance matrices are estimated using 3000 independently sampled data points. The trained
model is a 5-hidden layer fully connected network with the ReLU activation.

res1: ResNet-18 (11M parameters) for CIFAR-10; we apply the standard data augmentation tech-
niques and train with SGD with a learning rate 0.01, momentum 0.9, cosine annealing for 200
epochs, and batch size 128. The model has four convolutional blocks followed by two fully con-
nected layers with ReLU activations. The model has 11M parameters and achieves 94% test accu-
racy after training, in agreement with the standard off-the-shelf ResNet-18 for the dataset.

res2: ResNet-18 for self-supervised learning tasks with the CIFAR-10/100 datasets. The model
is the same as res1, except that the last fc layer output becomes 128-dimensional, which is known
as the projection dimension in SSL. The training follows the default procedure in the original paper
(Chen et al., 2020), proceeding with a batch size of 512 and γ = 5 × 10−5 for 1000 epochs.

llm: a six-layer transformer (100M parameters) trained on the OpenWebText (OWT) dataset
(Gokaslan & Cohen, 2019); the number of parameters of this model matches the smallest version
of GPT2. The model has six layers with eight heads per layer, having 100M trainable parameters in
total. For each experiment, we train with Adam with a weight decay strength of 1 × 10−4 for 105
iterations, when the training loss stops changes significantly. Since every representation has three
dimensions: data N , token T , and feature F , we treat each token as if they are a separate sample in
computing the covariances. Namely, we contract the representation tensor along the data and token
dimension, resulting in a F × F covariance matrix.
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Figure 9: Alignment of the matrices E[hh⊺] and E[gg⊺]. The experimental setting is the same as
the LLM experiment.

Figure 10: The ratios of the traces of the second moment matrices for transformer: rg =
Tr[E[g]E[g⊺]]/Tr[E[gg⊺]] and rg = Tr[E[h]E[h⊺]]/Tr[E[hh⊺]]. We see that rg essentially con-
verges to zero, which means that E[gg⊺] = cov(g, g) at the end of training. rh is generally non-zero
but is essentially negligible. The experiment setting is the same as the LLM experiments.

C.2 SECOND MOMENT ALIGNMENTS

This section shows the results for the alignment of the matrices E[hh⊺] and E[gg⊺]. See Figure 9.
The results are qualitatively similar to the result for the alignment between cov(h,h) and cov(g, g),
but with a larger variation. The reason for the similarity is that it is often the case that the covariance
term dominates the second moments at the end of training. See Figure 10.
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Figure 11: Representation of the output layer of Resnet18. Essentially, these are the covariances of
the output at the end of training. First Row: Initialization. Second Row: End of training.

Figure 12: Representation covariance of the last convolution block at initialization (upper) and end
of training (lower).

C.3 REPRESENTATIONS OF RESNET18

See Figure 12 for the representations of the last convolutional layer of Resnet18 before and after
training on CIFAR-10. See Figure 11 for the representations of the output layer. Interestingly, for
the classification task, both cov(g, g) and cov(h,h) become proportional to the identity.
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Figure 13: Examples of representation for Resnet-18 after a self-supervised contrastive training.
Left: second convolution block representation, Right: penultimate convolution block representa-
tion.

Figure 14: Examples of the representation learned by the transformer in the third layer. Left-Mid:
examples. Right: The spectra of the two matrices are exactly the same for the leading eigenvalues.
The difference is mainly in the smaller eigenvalues, and this difference gets smaller as the training
proceeds.

Figure 15: The alignment of feature and gradient covariance (αgg,hh) remains high during most of
the training (llm). The shaded region shows the variation across 8 different heads in the same layer.

C.4 REPRESENTATIONS OF SELF-SUPERVISED LEARNING

See Figure 13 for the representations of the last and the penultimate convolutional layers. They have
significant alignments, but the agreement is perfect. For fully connected layers, the alignment is
much better (see the main text; examples not shown).

C.5 LARGE LANGUAGE MODEL

See Figure 14 and 15.
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C.6 FULLY CONNECTED NETS

See Figure 16 and 17. We see that the alignment effect is significant for both SGD and Adam. Also,
see Figure 18 for the effect of having different depths.

Figure 16: The effect of the width, weight decay γ, and batch size on the alignment for a fully
connected network. The training proceeds for 105 iterations, when the training stops decreasing
significantly. The training proceeds with SGD.

Figure 17: Same as the previous figure, except that the training proceeds with Adam.

Figure 18: Alignment of of different layers of a fully connected ReLU network at different layers
(layer 0 is the input layer). Left: a 6-layer network. Right: a 12-layer network.
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Figure 19: Evolution of α during training for different layers of Resnet-18 on CIFAR-10. For refer-
ence, the training accuracy (grey) and testing accuracy (black) are shown in the dashed line. Left to
Right: (1) penultimate convolution block representation, (2) last convolution block representation,
(3) penultimate fully connected layer, (4) output layer.

C.7 CRH IN RESNET-18

See Figure 1.

C.8 CRH AND PAH IN FULLY CONNECTED NETS

See Figure 20. The task is the same as other fully connected net experiments. The model is a
4-hidden-layer tanh net with the same width.

Figure 20: The alignment scalings in fully connected nets. The dashed lines show power laws with
exponents 1/3, 1/2, 1, 2, 3, respectively.

C.9 STATIONARITY OF THE COVARIANCE MATRIX

See Figure 21 for the evolution of ∆cov(h,h) to zero for three convolutional layers (0-2) and the
two fully connected layers (3-4) in a Resnet-18 during training.

Figure 21: The change in the representation covariance converges to (near) zero at the end of training. The
model is Resnet-18 trained on CIFAR-10 with standard SGD.

C.10 FULL FIGURE TO FIGURE 4

See Figure 22.
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Figure 22: This is the same figure as Figure 4. The legend shows the weight decay value used for
each experiment. Dots with the same color come from the five different hidden layers for the model
trained at this specific weight decay value.

D MEANING OF THE PAH

D.1 LINEAR REGRESSION AND PHASES OF THE PAH

In some sense, the phases of the PAH already appear implicitly in many standard models. Consider
a linear regression problem:

W ∗ =min
W

E∥Wx − y∥2, (132)

where E denotes averaging over the training set. Its solution is well known:

(W ∗)⊺ = E[xx⊺]−1E[xy]. (133)
From the perspective of the PAH, this solution can be seen as a composition of two functional
layers: W ∗ = V1V2, where the first layer is V1 = E[xx⊺]−1/2 and the second layer is V2 = E[x̃y],
and x̃ = E[xx⊺]−1/2x.

The first layer normalizes the input distribution and is apparently related to the PAH because one
can identify

Ha = E[xx⊺] (134)
as the input representation to the layer, and so

E[xx⊺]−1 = (W ∗)⊺W ∗ = Za, (135)
which implies that

H−1a = Za, (136)
which can be identified as the 7th phase of the PAH in Table 1.

D.2 POTENTIAL IMPLICATIONS OF THE PAH

Here, we discuss some possible and interesting meanings of the phases of the PAH. Validating these
intuitions could be of great interest.

One way the phase could imply, as we suggested in the manuscript, is that a positive relation be-
tween Ha and Za could imply a low-rank mechanism, where larger eigenvalues of Ha are expanded
while smaller eigenvalues are suppressed. The fact that neural networks learn these low-rank rep-
resentations is consistent with common observation. For example, see Kobayashi et al. (2024).
Another implied mechanism is representation normalization. This happens when Ha ∝ Z−1a , which
means that Hb will be normalized after this weight. See the discussion about linear regression in
Section D.1 for how this phase exists implicitly, even in linear regression.

Another kind of interesting phase is where the alignment condition implies gradient vanishing or ex-
plosion problems, which have been well-known for decades (Kanai et al., 2017; Hochreiter, 1998).
Noticing that ga =WT gb, it is naturally the case that if Zb and Gb are aligned with a positive expo-
nent, the gradient in the previous layer will face an explosion and vanishing problem simultaneously
(as larger eigenvalues become larger). In contrast, the phase Zb ∝ G−1b seems to be the ideal training
phase as it implies that the gradient in the previous will be normalized. Identifying the causes of
these phases is also of great future interest.
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